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1. INTRODUCTION
It is well known that the general initial value problem of order N
given by

yMN )= £ y.y' .y N D), x> xq, (D

with initial conditions
y(x0) = v0 ,y P (x0) = zp (r=12,..,N 1), 2)

may be expressed as the system of N first order equations
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where u; (x) = y(x) and ug (x)=y(s'l) (x) fors =2, ...,N. The initial
conditions associated with (3) are given by
T
u(0)=[y0.21,22,---z2N-1] ", 4
T denoting transpose. Clearly, the solution vector is u= u(x)
=[u1,u2,...,uN]T.
A particular example of (1) is Blasius' equation
" 1 "
Y =-2yx) YR, x>x, ()
with Initial conditions
y(x0)=y0, ¥'(x0)=21,y"(x0)=22. (6)

Blasius’ equation was originally a boundary value problem: numerical
results were reported by Howarth [1] and the problem was formulated as
an initial value problem in a recent paper by Radok and Chan [3].

Allied to (3), the Blasius initial value problem can be expressed as the

first order system
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with initial conditions

u(0)=ug =[y0,z,221" (®)

or as

Du(x) =u'(x) =Mu(x)+F(u); u(x)=u, )]

where D = diag{d/dx} is of order three,
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u=u(x)=[u,uyu,] and F() =[0,0-Lujuzl’,

2. THE FAMILY OF NUMERICAL METHODS
Numerical methods for the solution of the Blasius problem (5), (6) will
be obtained by approximating the exponential term in

u(x +h) = exp(hD)u(x). (10)
In equation (10), h is an increment in x so that the independent variable
x is discretised in such a way that x,=xo+nh (n=0,1,2,...).

Using the approximation
exp(hD)=(I-6hD) [+ (1-6)hD], (11)

where 0< 6 <1 is a parameter and I is the identity matrix of order

three, leads to
(I-6hD)U(x +h) =[1+ (1 -06)hD]U(x) (12)

which, using (9), gives the numerical method

(1—ehM) UM —n M+ — (14 (1-0)hM]UD + (1-0)hE™. (13)



In (13) U™ =U(xy)denotes the solution of the numerical method and
F' =F(U"M)with n = 0,1,2,...

Equation (13) describes a family of numerical methods for the
solution of (9) and thus of the Blasius initial value problem (5), (6).
Choosing 6 = 0 is equivalent to the use of the (0,1) Padé approximant
to replace exp(hD) in (10) and leads to the well known explicit Euler
method for solving (9); choosing 6=1 is equivalent to the use of the

(1,0) Padé approximant to exp(hD) and leads to the fully implicit or

backward Euler method for solving (9); and choosing 6 =1 is equivalent

to the use of the (1,1) Padé approximant to exp(hD) and gives the
modified Euler or trapezoidal rule for solving (9).
Implementing the family of methods is easy; with =0 the solution
at Xp+1 1s given by
upt! =up +nUd
udtl —uf +nud (14)
Ut = Inup ug

forn = 0,1,2,... . With 0 < 6 < 1 the solution is obtained by solving

a nonlinear algebraic system of the form
QHH E?(gnﬂ):g, (15)

. 1
where 0 is the zero vector of order three and the elements of gm are

¢."" =¢,(U"H= U —0hULT —UY —(1-0)hU;
d)r;rl :d)z@nﬂ):U];rl _thngl _U121 _(l_e)hlj; , (16)
¢3n+1 =¢3 (Ljn+1)=U1;+1 +% eh[Jtlﬁl [Jx;—l _Ux; +% (l_e)h[j; [J!; )

n+l

The elements Jg'" (r,s = 1,2,3) of the Jacobian of (I_)“”are
it =1 L I8 =—en, 18t o
A o L1872 =1 IR ——en (17)

AT =tenuftl | 8t -0 gt <14 Lenupt!



and the solution vector Qnﬂ is found from (15) by applying the
Newton-Raphson method
Jn+1 _ n+l
(oz(k)  ~ Q(k) ? (18)
+1 n+l
[_Jn(k+1) =U ® T z(k) (19)

in which the subscript k= 0,1,2,... is the iterate number. In (18)
and (19) z(k) is the correction vector which is determined by solving

the linear algebraic system (18). It is an easy matter to write a

computer program to implement (13) from (14) or (16), (17), (18), (19).
The local truncation error vector L[u(x);h] of (12)/(13) is given

by
LIu(x) ;h] = {(G-0)h*D> + (L—10)h°D + (L Loh*D* + Juc)  (20)

from which it follows that the method is first order accurate with
error constant C; = -0 (see Lambert [2]) for 0+ % but is second order

accurate with error constant C3 =-; for 6=1 The global truncation

vector Glu(x);h]is given by

Glu(x);h]={(}-0)hD* +({ —16)h°D’ + (3; — ¢ Oh’D* + .. hu(x). 21

Stability of the family of methods (13) is investigated in relation

to the usual single test equation
w'(x) = Aw(x) su(x,) =, (22)

in which A <0 is real. Equation (10) thus becomes

w(x +h) = exp(hA)w(x) (23)

and it follows from (11), using W to represent the solution of a

1+(1-6)hr
WHH—( 1(_9hi JWn (24)

Defining h =h , so that h <0 , the term

numerical method, that

g _1+(1-0h

25
"= _on (25)



is variously called the amplification factor or amplification symbol or
symbol of the numerical method defined by (10), (11). In the case of
(9), A is usually taken to be the real part (assumed negative) of an

eigenvalue of the Jacobian of Mu(x)+F(u). For A< 0 real, the stability

interval of the numerical method is the range of values of h for which

|Sg| < 1. It is easy to verify that (12)/(13) has a finite stability
interval for 0<0 <+ and that (12)/(13) is absolutely stable or A-stable

for $<0<1. Furthermore, it is easy to verify that 6 = 1 is the only

L-stable member of the family described by (13). Clearly the methods

are applicable also to general initial value problems of higher order.

3. GLOBAL EXTRAPOLATION OF THE NUMERICAL SOLUTION
Introducing a slight change of notation, suppose that the discretization

of x used so far is called Grid 1 and consists of the points XIQ)

(n=0,1,2,...) and suppose further that the numerical solution is sought
at some fixed point X:xdl) =x( +Qh. Here, the superscript refers to
Grid 1 and the chosen numerical method is used Q times to integrate from
X =Xo to x = xo+ Qh. The global truncation error at X is given by (21).

Suppose now that the interval of integration is divided into 2Q

subintervals each of width Jh giving a second discretization to be called
Grid 2 consisting of the points ng) =X +%ih (0,L...,2Q). Clearly
the points x?) (r =0,2,4,...,2Q). of Grid 2 are coincident with the points

of Grid 1 . The global error for Grid 2 has the form

GPlu(x);1h]= {1 (1 -0)hD? + L (E-10)h’D’ + 1 (L~ 10)h’D* +...}u(x). (26)
Suppose, with another slight change of notation, that 2(8 and
2(22)(2 are the solutions obtained at X on Grids 1 and 2 respectively.

Then it may be shown that, when 6+, the globally extrapolated solution
(B) -y, 2Q _ Q
u Uy +0-o)Ugy, (27)
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where o is some parameter, is second order accurate provided a = 2, for
then the term in h in the associated global extrapolated error function
G —a6@ +1-agM (28)
vanishes (here Q(l) is given by (21)).
It is easy to show that the global extrapolation procedure just

L
29

described, when applied to the method with 6=<, gives a third order

method provided a=4%

Global extrapolation thus improves the numerical methods developed
in §2 for the numerical solution of Blasius’ equation by one order of

accuracy.

4. NUMERICAL RESULTS
Numerical results were obtained for the Blasius initial value problem
y"=—7yy" ; y(0)=y'(0)=0 ,y"(0)=0.33206 (29)
which was used by Radok and Chan [3], Four numerical methods were used;
these were
Method A: the first order L-stable method obtained by writing 6 = 1
in (11),
Method B: the second order extrapolation of Method A,
Method C: the second order A-stable method obtained by writing 6 =7
in (11),
Method D: the third order extrapolation of Method C.
The solution vector Q:[y,y',y"]Twas computed for x = 0(h)9 using step
sizes h=1, 0.5, 0.25, 0.2, 0.1, 0.05, 0.025, 0.02, 0.01.
Following Radok and Chan [3], the results of Haworth [1] were taken
to be the theoretical solution of the problem. Haworth showed that the
solution y(x) increases linearly (approximately) for x > 4, that y'(x) —1

(from below) as x increases, and that y"(x) — 0 (from above) as x increases
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indicating that Methods A and B should model the behaviour of y"(x) fairly
accurately.

It was found that Methods A,B,C,D each gave accurate representations
of all three components y, y', y" of the solution vector U, the accuracy
increasing as h was decreased.

Comparing the results obtained with those of Haworth [1] and the best
results of Radok and Chan [3] which are given in the Appendix, it was
found that for x x >5 and

(i) for h=0.01, Method A gave results for y(x) which were almost as

accurate as those of Radok and Chan, while the results for y'(x)
and y"(x) were more accurate. Results for h-0.01 are given in
Table 1,

(ii) for h < 0.25, Method B gave results for y(x)- y (x), y"(x) which
were closer to those of Haworth than those of Radok and Chan.
Results for h=0.25 are given in Table 2;

(iii) for h £ 0.25, Method C, which is of the same order as Method B,

also gave more accurate results than the method reported by Radok
and Chan in [3];
(iv) for all values of h tested, Method D gave results for all of
y, y', y" which were closer to those of Haworth than those of Radok
and Chan. Results for h =1 are given in Table 3.
Overall, the methods proposed in the present paper were found to give more
accurate results for larger values of x than the method of Radok and Chan
[3], when tested on the model Blasius problem (29). Following Radok and

Chan, all results are given to five decimal places .

5. SUMMARY

A family of numerical methods has been developed for the numerical solution

of the Blasius initial value problem y"'(x) = —31y(x) y"(x), x >Xx¢ with

y(Xo0), ¥'(X0), y"(x0) given. The methods were tested on a problem from the
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literature and were seen to give good accuracy for higher values of x.
The family of methods may be used to solve general initial value

problems of higher order.
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Table 1: Values of y, y' and y" for x = 0(1)9 using h = 0.01

X A B C D

y 0 0.00000 0.00000 0.00000 0.00000
1 0.16719 0.16557 0.16557 0.16557
2 0.65266 0.65004 0.65003 0.65003
3 1.39890 1.39683 1.39681 1.39682
4 2.30551 2.30578 2.30576 2.30576
5 3.27975 3.28331 3.28329 3.28330
6 4.27258 4.27966 4.27964 4.27965
7 5.25868 5.27928 5.27927 5.27927
8 6.26514 6.27925 6.27925 6.27925
9 7.26162 7.27925 7.27925 7.27926

y' 0 0.00000 0.00000 0.00000 0.00000
1 0.32965 0.32978 0.32978 0.32978
2 0.62882 0.62977 0.62977 0.62977
3 0.84373 0.84605 0.84605 0.84605
4 0.95223 0.95552 0.95552 0.95552
5 0.98799 0.99154 0.99155 0.99155
6 0.99543 0.99898 0.99898 0.99898
7 0.99640 0.99992 0.99993 0.99993
8 0.99648 1.00000 1.00000 1.00000
9 0.99649 1.00000 1.00000 1.00000

y" 0 0.33206 0.33206 0.33206 0.33206
1 0.32274 0.32301 0.32301 0.32301
2 0.26597 0.26675 0.26675 0.26675
3 0.16060 0.16136 0.16136 0.16136
4 0.06403 0.06423 0.06423 0.06423
5 0.01599 0.01591 0.01591 0.01591
6 0.00246 0.00240 0.00240 0.00240
7 0.00023 0.00022 0.00022 0.00022
8 0.00001 0.00001 0.00001 0.00001
9 0.00000 0.00000 0.00000 0.00000
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Table 2: Values of y, y' and y" for x=0(1)9 using h=0.25

X A B C D

y 0 0.00000 0.00000 0.00000 0.00000
1 0.20461 0.16633 0.16543 0.16557
2 0.70876 0.65385 0.64903 0.65003
3 1.43459 1.40410 1.39434 1.39682
4 2.28331 2.31380 2.30214 2.30576
5 3.18142 3.28978 3.27937 3.28329
6 4.09391 4.28396 4.27585 4.27965
7 5.00949 5.28140 5.27569 5.27927
8 5.92556 6.27919 6.27590 6.27925
9 6.84170 7.27701 7.27613 7.27925

y' 0 0.00000 0.00000 0.00000 0.00000
1 0.32478 0.33062 0.32951 0.32978
2 0.60243 0.63149 0.62893 0.62977
3 0.78677 0.84652 0.84515 0.84605
4 0.87590 0.95404 0.95521 0.95552
5 0.90676 0.98939 0.99168 0.99155
6 0.91449 0.99681 0.99921 0.99898
7 0.91592 0.99776 1.00016 0.99993
8 0.91612 0.99782 1.00023 1.00000
9 091614 0.99782 1.00023 1.00000

y" 0 0.33206 0.33206 0.33206 0.33206
1 0.31559 0.32339 0.32276 0.32301
2 0.24794 0.26632 0.26659 0.26675
3 0.14510 0.15996 0.16167 0.16136
4 0.06049 0.06357 0.06459 0.06423
5 0.01795 0.01589 0.01596 0.01591
6 0.00386 0.00237 0.00236 0.00240
7 0.00061 0.00017 0.00021 0.00022
8 0.00007 0.00001 0.00001 0.00001
9 0.00001 0.00000 0.00000 0.00000




Table 3: Values of y, y' and y" for x =

11

0(1)9 using h=1.

X A B C D

y 0 0.00000 0.00000 0.00000 0.00000
1 0.29001 0.18896 0.16278 0.16570
2 0.78805 0.71417 0.63417 0.65000
3 1.40818 1.48225 1.35891 1.39634
4 2.08803 2.37882 2.25021 2.30514
5 2.79280 3.32546 3.22229 3.28281
6 3.50663 4.28658 4.22080 4.27915
7 4.22336 5.25073 5.22435 5.27866
8 4.94093 6.21528 6.22829 6.27855
9 5.65873 7.17982 7.23222 7.27846

y' 0 0.00000 0.00000 0.00000 0.00000
1 0.29001 0.34249 0.32557 0.32973
2 0.49804 0.64097 0.61721 0.62954
3 0.62013 0.83502 0.83228 0.84588
4 0.67985 0.92604 0.95031 0.95557
5 0.70477 0.95669 0.99386 0.99151
6 0.71383 0.96384 1.00316 0.99886
7 0.71674 0.96475 1.00394 0.99983
8 0.71757 0.96466 1.00393 0.99991
9 0.71779 0.96456 1.00392 0.99991

y" 0 0.33206 0.33206 0.33206 0.33206
1 0.29001 0.32411 0.31908 0.32298
2 0.20804 0.25501 0.26420 0.26675
3 0.12208 0.14668 0.16594 0.16146
4 0.05973 0.05812 0.07012 0.06417
5 0.02492 0.01528 0.01699 0.01585
6 0.00905 0200184 0.00161 0.00246
7 0.00291 0.00051 0.00004 0.00022
8 0.00084 0.00040 0.00000 0.00001
9 0.00022 0.00000 0.00000 0.00000
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APPENDIX Values of y, y and y" for x=0(1)9; H :Howarth's solution [1],
RC : Radok and Chan [3].

X H RC

y 0 0.00000 0.00000
1 0.16557 0.16557
2 0.65003 0.65003
3 1.39682 1.39682
4 2.30576 2.30576
5 3.28329 3.28290
6 4.27964 4.27487
7 5.27926 5.26736
8 6.27923 6.26023
9 7.27923 7.25318

y' 0 0.00000 0.00000
1 0.32979 0.32978
2 0.62977 0.62977
3 0.84605 0.84605
4 0.95552 0.95552
5 0.99155 0.98955
6 0.99898 0.99193
7 0.99992 0.99276
8 1.00000 0.99295
9 1.00000 0.99298

y" 0 0.33206 0.33206
1 0.32301 0.32301
2 0.26675 0.26675
3 0.16136 0.16136
4 0.06424 0.06419
5 0.01591 0.00646
6 0.00240 0.00152
7 0.00022 0.00023
8 0.00001 0.00003
9 0.00000 0.00000




