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I.      INTRODUCTION 

A    precursor  to    a    finite element analysis   of   a   curved   surface 
such   as   an   aircraft  or  car  body,    is   that   of   the   mathematical 
desc rip t ion   of   the  surface   itself.  This  topic    is     a   subject     of 
the    theory   of   computer- aided    geom tric   design   or   computational 
geometry   and   is  related   to   finite   element   methods   through   its 
use   of   piecewise  defined   interpolation   and   approximation    theory. 
In   particular,    a   curved   surface   in   c,a.g.d.     is   usually 
represented   as   a   piecewise   defined   vector   valued   function 
[x(u,v),y(u,v), z ( u , v)]    ,   where    the   parametric   variables    (u, v) 
are   de fined   ove r   rectangular   elements. 

The   use  of  vector  valued,,  rather than   scalar   valued,    functions 
gi ve s    the   designer much  greater  flexibility   in   the    representation 
of    the    curved   surface. Also,  the    almost   exclusive  use  of 
rectangular   elements   enables   continuity   conditions    between   those 
elements  to   be  handled   relat1vely   easily,    whilst    simplifying   the 
data   structure  required   for   the   complete   surface    and   simplifying 
routines   such   as    those   required   for   plots   and   cross-sections. 
Indeed,    the   special  problems   associated   with   vector   valued 
surface   representation   seems   to have   precluded   the   use   of 
triangular   elements    favoured   by   the    finite   element   analyst   and 
more   research   is   needed   in   this   area.  There   are,   however, 
situations    peculiar    to   vector   valued   representations,    where    a 
surface   patch  requi ring   a   non- rectangular    domain   of   definition, 
such   as   a  triangle or   pent agon,    can   occur   within   a   rectangular 
patch    framework..   This   paper,    after    reviewing   the    subject    of 
rectangular    patch    representations,    will   consider   a     recent 
development  in   the   representation  of   such   surfaces. 

A   starting   point    for   the    development  of   curved  surface 
representations is  to  consider  a   wire    frame   model   as    illustrated 
in   the   simple  example  of   Fig.  1. Each   portion   of    the   surface 
bounded   by  four  curved sides  is   to   be   defined   by   a   rectangular 
patch,  that  is a  vector   valued   function  with   a   rectangular   domain 
of   definition. The example also   shows   how   a   triangular   patch   can 
occur   within  a  rectangular patch framework.    The   next   section 
gives   a   brief   review   of   local  rectangular   patch   representations. 
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For   mo re   details    the   interested   reader  should  consult   references 
[2],[6],    and   [7], 
 

 

FIG.  1.    Example of  a wire  frame  model. 

2.  SURFACE  REPRESENTATION  OVER RECTANGLES 

In   briefly   reviewing   the    subject   of   rectangular   surface   patch 
representations,    the    following   structure    can   be   discerned: 
Le t   univariate  curves  be defined  by  
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where      r   ≡   [ x ,y , z ]     ,       a i  , b j  є  R3      ,    and   the    {αi }    and   {ßj}      are 
polynomial        basis     functions      of      degree       m       and      n      respectively. 
Then,    for          (u,v)      є     [ a , b ] x [ c , d ]     ,      three    types    of    bivariate 
surfaces    can       be      defined: 

2.1.    The   Lofted  Surfaces 
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2.2. The Tencor Product Surface. 
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2.3.    The   Boolean   Sum   Blended   Surface      
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The    tensor   produce   surface   will   be   familiar   to   the   finite, 
element   analyst,   where  the  {α i  }   and   {(ß j }     are   defined   by 
Hermite    interpo1ation   bases. The  Boolean   sum   blended   surface    is 
a   generalization    introduced   by   Coons   [4],    its    application   being 
restricted   to    interpolatory   bases.       In    this    case    the    lofted 
surfaces  can be written as 

]f[2p
2
rand]f[1p

1
r −=

−−=
−

                                                                          (2.6)

P1     denoting    a    linear  operator  which  acts  on   a  bivariate   vector 
valued    function   f(u,v)   considered   as   a  function   of   u ,    and 
P2   denoting   an   operator   which   acts   on   f(u,v)   considered   as   a 
function   of      v   . The    tensor   product   and   Boolean   sum  blended 
surfaces   are   then   defined   by 

t   =   P 1  P2[f ]    ,   p  =    (P1 ⊕     P2) [ f  ]   ≡  (p1 + p2 - p1p2 )  [ f  ].   (2.7) 

Such   operators   have    interesting   approximation   theoretic 
properties  which  have  been  studied   by   Gordon   [8],      The   Boolean 
sum   blended   form  has  been  used   in   finite    element   theory,  for 
example  in   the   derivation  of  the  mapping    techniques   of  Gordon 
and   Hall   [9]   and  in  the  systematic   derivation   of   serendipty   type 
elements   [ 5 ] .  For  the  purposes  of   c. a. g. d.  ,  the   Boolean   sum 
blended   surface   has    the   useful   property  of  combining   the 
interpolation   properties   of    the    two  lofted  surfaces,   where   it    is 
assume d  that   f   is  such  that  P1  and  P2     commute . 

2. 4,    Pati nal      Forms 

Extra   degrees of  freedom can be  introduced   by  replacing    (2,1) 
and    (2,2)   with   the   rational    forms 
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Appropriate   modificat ions   can    then   be   made    to   the   bivariate 
surface   descript ions.       Quadratic    rational   curves    and   surfaces 
are   useful    in    that    they   can   be   used   to   represent   conies   and 
quadrics. 

2.5,    Continuity   Between   Surface   Patches 

Suppose      p(u,v) and   q (u,v)       define    two   regular   parametric 
representations   on     [0,1]x[0,l]    .       Then   the   patches   join   with 
c0     continuity   of   position   if,    for   example, 
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p(l,v)      =q(0,v) (2.10)   

Conditions    sufficient   for      C1 (tangent   plane)    and      C2

(curvature)    continuity   across    this   common   boundary   are    then 
given   by 

c1  p1,0  (1,v) = c2 q1,0 (0,v) , c1 ,c2 >0,     (2,11)   
 
c1

2  p 2 ,0  (1,v)    +   k1   p1,  0  (l.v) 

                                    =   c2 2     q2,0 (0,v)    +   k2 q1,0 (0,v) .(2.12) 

The   above   conditions   match    tangent  and  curvature  along   the 
v   =   constant   direction   and   clearly   more   general    continuity 
conditions   could  be  formulated.   However,    the    above    conditions, 
and    their   duals   across   other   boundaries,    suffice    for   most 
practical   cases. 

2. 6. Examples 
2.6.1 Linear interpetation 

The    lofted   surfaces  are   defined    in   operator   form   on   the 
square       [0,1]x[0,1]      by 

p 1  [ f ]  (u ,v )    =     (1 -u )    f(0,v)    +   u    f ( l , v )      , 
(2.13) 

P 2  [  f  ]  (u ,v)     =   (1-v)    f(u,0)    +   v   f (u-1)    , 

The   tensor  product   and   Boolean   sum  blended   forms   are    then 
defined   by    (2.7).  The   tensor   product    surface   interpolates       f 
at   the   corners  of   the  square,   whereas  the  Coons'   Boolean  sum 
blended   surface   matches     f     along   the  entire  boundary . 

2.  6. 2.    Cubic   Hermite   interpolation 

Let   the  cubic  Hermite   basis functions  be defined on   [0,1]      by 

φ 0(t)    =    (l-t) 2  (2t+l)     ,        Φ1(t)    =    (l-t)2t 
(2,14) 

ψ 0(t)    =    t2 (-2t+3) , � j  ( t )     =    t2 (t-l)    . 

Then   the    lofted   surfaces   are   defined   on      [0,1]x[0,1]      by 
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The    tensor   product   and   Boolean   sura  blended   forms    are    then 
defined      by    (2.7),   where,    for   commutivity   of    the   operators,   we 
assume    that      ∂2 f / ∂u ∂v    =    ∂2f / ∂v∂u       at    the    corners   of    the   square . 

2.6.3.    The   cubic   as   a   convex   combination 

For   a   given   constant      k    ,    0   <   k   ≤ -3    ,    let   cubic  basis 
functions   be    defined   on      [0, 1 ]      by 

γ0(t)    =    ( l - t ) 2 ( 2 t - k t + l )     ,       γ 1 ( t )     =   k ( l - t ) 2 t    , 

γ2(t)    =   k t 2 ( l - t )  , γ3( t )     =   t2(-2t+k+3-k)

(2.16) 

Then   with      α i    =   γ i         ßj  =  γ j    , and  m  =  n  =  3   ,    univariate 
curves    (2.1)    and   (2.2)    can   be   defined.   The lofted  surfaces    and 
tensor   product   surface    are    then   defined   by    (2.3)    and   (2.4) 
respectively.      The   res tri ction   that      0   <   k  ≤   3      ensures    that 
γ i(t)    ≥   0  on   [0,1]       and   since     Σγ i   =   1   it   follows    that   the 
curves  and  surfaces    are   defined   by    convex   combinations.      The 
basis    (2.16)    is    related   to   the   cubi c  Hermite   basis    (2.14)    in 
that,    in   (2.1), 

r (0)    =   a0    ,      r'(0)    =   k (a1 -a0)  , 

r(1)     =    a3   ,      r'(1)   =   k(a3-a2)    . 
(2.17) 

The   examples   2.6.2   and   2.6.3   can   be   used   to   construct 
piecewise de fined   C 1  surfaces.      The   Coons'   Boolean   sum  b1ended 
cubic  Hermite   surface   has   the   property   that   it  matches   a 
function   f  ,   and  cross   boundary    tangent   vector     fn      say,    along 
the   entire   boundary   of    the   square      [0,1]x[0,1]    .      The   tensor 
product   cubic   Hermite   surface   is   a   special   case   of   the   Boolean 
sum blended   form   which  is  used   in  many  c.a. g. d.  sys tems .    The 
tensor   product   form  of   the  cubic  convex  combination  with    k   =   3 
is   an   example  of  a  surface  used  by   Bezier   [3],   where  the  bas is 
functions    are    the   Berns tien   polynomials.      The  rep resentation   as 
a   convex   combination   gives    the   designer   some   control   over   the 
behaviour   of   the   curve   or   surface,    for   example,    the   represent- 
ation  will    lie   in   the   convex   hull   of   the   coefficients.   The   case 
k   =   2   corresponds    to   that   used  by  Ball  [1]  in   a  rational   lofted 
form,    where    the   variable    coefficients   of   the   rational   lofted 
form   are   also   defined  by   rational   forms. 
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3.    SURFACE    REPRESENTATION    OVER   TRIANGLES   AND   PENTAGONS 

We   now  consider    the    problem   of   constructing   surface   patches 
with   non-rectangular   domains      of   definition   but   which   occur 
within   a   rectangular   patch   framework.      More   specifically,   we 
cons i de r   the   need   for   triangular   and   pentagonal   patches  as 
illustrated  by   the   wire    frame   model   problems   of   Fig.  2 .   Such 

 

FIG.    2.      Triangular   and   pentagonal   patch   model   problems. 

problems    are   intrinsically   vector   valued,    there   being   no 
equivalent   scalar   valued   problems,    since    the   domains   of 
definition   of   the  surface   patches  cannot   lie   in   a   common   domain 
in      R 2  . One   approach   to   this   problem   is    to   divide    the   non- 
rectangular   patch   in   to   a   subsystem    of   rectangular    patches    and 
this   has   been   considered  by   Bezier   [3]   and  Handscomb      [12], 
Here,    however,   we   briefly   describe   a  method   due    to   the   author 
and   P.    Charrot   which   specifically   uses   non-rectangular      domains. 
Further   details   can   be    found   in   references   [10]   and   [11]. 

We    restrict   the    discussion    to   the   C1    case,   where   continuity 
of   function   and   tangent   plane   is    requi red   across    the   boundary 
curves    of    the   wire   frame   model.  The   boundary   curve   and   cross 
boundary    tangent   vector   are   assumed  to  be   defined   on   each   side 
by   an    appropriate   rectangular   patch     representation.      The   method 
is    then   to   construct   Boolean   sum blended   interpolants   which 
match   function   and   tangent   plane   conditions   on   two   adjacent 
sides   of   the  non—rectangular   domain.      An   appropriate   convex 
comb ination   of    these   interpolants   is    then   formed  which   is 
designed   to   give   interpolation   to   the   function   and   tangent  plane 
along   the   entire   boundary. 

3.1.   Boolean   Sum   Blended  Taylor  Interpolant 

Let    lofted   Taylor   interpolants   be   defined   by 
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T1[f](u,v)     =   f(0,v)    +   u  f 1,0 (0,v)    , 

T2[f](u,v)    =  f(U,0)    +   v      f 0,1 (u,0)    . 
(3.1) 

 

Then      the   Boolean    sum   blended     surface 

p(u,v)    =   (T1    +   T2   -   T1T2) [f] (u,v) (3.2) 

has   the   property   that   i t   interpolates      f      and   the   tangent   plane 
of     f     on      u=0   and   v=0. 

 
FIG,    3.      The    triangular   and   pentagonal   domains. 

3.2.    The   Triangular   Surface   Patch 

It   is   convenient    to   choose   the   domain   as   an   equilateral 
triangle   of   height   unity   and   to   define     λ i      as   the   perpendicular 
dis tance   of   a   general   point   V    to   the   side   opposite   the   vertex 
Vi    ,    i=l,2,3.      The   boundary   curve    f   and   the   cross   boundary 
tangent   vec tor     fn  i       are   assumed   to   be   given   along  each   side 
 λ i    =   0  . Choosing    u  =  λ i+1   and  v  =   λ i -1    as    the    independent 
variables,   and   interpreting     f n  i+1. along       λ i  -1  =   constant, 
f n  i -1    along    λ i+1   = constant   ,      allows   us   to   define   the   Boolean 
sum     blended   interpolant,     Pi(v)      say,   which   interpolates   the 
f unc tion   and   tangent   plane  on   λ i  +1  = 0   and  λ i  -  1  =  0   . The 
triangular   surface   patch   is    then   defined   by 

(3.3).)1iλ1i6 λi2 λ(32
iλ(v)iα,(v)

i
P(v)iα

3
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Σ(v)P −++−=
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The   leading   term      λ i
2 in   the   definition  of     α i(V)    ,   together 

with      the      property      that Σα i(V)   =  1  ,  ensures   that   the 
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function  and  tangent  plane  of     P(V)        on  λ i  =   0  is   an    average 

of    those   of    P i  + 1  (v)   and     P  i  -  1 (V)      Thus   P(V)   in terpola tes  

the  function and   tangent   plane   along   the    entire    boundary  of   the 

triang1e . 

3. 3,    The.   Pentagonal   Surface  Patch 

The   domain  is  now chosen to  be   a   regular   pentagon   of   height 
unity   and,    as   before,     λ i   is   defined   as    the   perpendicular 
distance   of   a   general   point    V   to the   side   opposi te   the   vertex 
Vi    ,  i=1 , . . , 5 . A  Boolean  sum blended  Taylor interpolant      Pi (V) 
could   now  be   defined   with respect  to  the variables     λ i  +  2     and 
 λ i -2    .  We  Prefer,  however,  to  choose  the  variables 

,)2iλ1i/( λ2iλv,)2iλ1i/( λ2iλu −++−=++−+=                          (3.4)  

in    the definition  of   the Boolean  sum  blended    Taylor   interpolant. 
The    tangent   vector  f n  i  +  2  is   then  interpreted   along     v=constant 
which   is    along   the   radial  line joining   the   point   of   intersection 
of       λ i+1   =   0    and    λ i  -  2   =   0  to the  point   V  .Similarly,  the 
tangent   vector     fn   i  -  2. is   interp re ted   along   the   radial   direction 
u=constant    .      The    resulting   surface      Pi (V) interpolates  the 
function   and   tangent   plane   on   λ i+2  =  0   and  λ i  -  2  =  0   .  The 
pentagonal   surface   patch  is  now   defined  by 
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FIG.    4 .  Cross—sections  through  surface  patches ofmodel   problems.
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By   app lying   argriments  similar  to  those   used   for   the    triangular 
surface   patch,    the   properties   of    the    rational    function   (3.6) 
ensure    that      p(V)   interpolates   the    function   and   tangent   plane 
along   the   entire   boundary   of   the   pentagon,      (An   alternative 
rational   weight   function   for   the   triangle,    corresponding   to   that 
used   for   the   pentagon,  is    α i(V)  =  λ i

2/Σλ k
2  . A  polynomial 

weight   function   for   the   pentagon  cannot  be  found.) 

The   implementation  of   the  triangular   and   pentagonal   surface 
patches    for   the   model   problems  of  Fig.  2 is  shown  in  Fig.4, 
where    the   plotting   lines   are   cross   sections.   In  these  examples, 
the   rectangular  patches  are  tensor   product   cubic   Hermite   surfaces. 
Further   examples   can  be  found  in  references  [10]  and  [11]- 
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