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Abstract—Popular unsupervised change detection algorithms
suffer from two problems: first, the difference image generated
by bitemporal images usually includes a large number of falsely
changed regions due to noise corruption and illumination change;
second, fuzzy clustering algorithms are sensitive to noise and they
miss the relationship among feature components. To address these
issues, we propose a multiscale and multiresolution Gaussian-
mixture-model guided by saliency-enhancement (SE-MGMM) for
change detection in bitemporal remote sensing images. The pro-
posed SE-MGMM makes two contributions. The first is a novel
salient strategy that can enhance saliency objects while suppressing
the image background. The strategy uses the saliency weight infor-
mation to enhance changed regions leading to the improvement
of grayscale contrast between changed regions and unchanged
regions. The second is that we present a Gaussian-mixture-model
based on spatial multiscale and frequency multiresolution infor-
mation fusion, which can effectively utilize features of difference
images and improve detection results of changed regions. Exper-
iments show that the proposed SE-MGMM is robust for both
very high-resolution remote sensing images and synthetic aperture
radar images. Moreover, the SE-MGMM achieves better change
detection and provides better performance metrics than state-of-
the-art approaches.

Index Terms—Change detection, feature fusion, Gaussian-
mixture-model (GMM), saliency enhancement.
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I. INTRODUCTION

CHANGE detection aims to identify the changed and un-
changed regions from bitemporal remote sensing images

acquired over the same geographical area but at different times.
Most of these changes are reflected in the location and range of
ground objects, as well as the changes in their properties and
states. So far, change detection techniques have attracted the
attention from many researchers due to wide applications, such
as urban planning and construction [1], land use [2]–[4], disaster
monitoring and evaluation [5], urban environmental survey [6],
acquisition of extended change information [7], etc. Currently,
a lot of change detection methods have been reported to detect
the changed information on this earth we live. These change
detection methods can be roughly grouped into three categories:
pixel-based approaches [8]–[19], object-based approaches [20]–
[25], and deep learning (DL)-based approaches [26]–[34].

The pixel-based approaches include thresholding-based
methods [8]–[10], clustering-based methods [11]–[15], expecta-
tion maximinzation (EM)-based methods [16]–[17], and multi-
variate alteration detection (MAD)-based methods [18-19]. The
basic idea of thresholding is simple as it calculates the threshold
of a difference image according to the grayscale distribution of
pixels. By comparing the grayscale value of each pixel with the
threshold, pixels are classified into two classes, i.e., changed
regions and unchanged regions. Lv et al. [9] used a multithresh-
old segmentation algorithm combining with the voting strategy
to optimize pixel classification. However, thresholding-based
methods seriously rely on the grayscale distribution of pixels and
ignore the spatial structuring information of images. Besides,
they are sensitive to light and noise. To address the problems,
Hao et al. [13] integrated local and global image informa-
tion to improve change detection results of bitemporal remote
sensing images. Therefore, these previous studies demonstrate
that clustering-based methods outperform thresholding-based
methods for change detection tasks. Furthermore, since EM
can better estimate the underlying parameters with the data
distribution of a difference image, Lv et al. [16] employed
a strategy that combines multithreshold and EM attribute to
improve target uniformity and obtain even better change de-
tection results. It should also be noted that Canty and Nielsen
[18] first proposed the iterative reweighted MAD (IRMAD)
and Xu et al. [19] modeled a regularized iteratively reweighted
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object-based MAD method for change detection tasks. These
improved MAD methods aim to solve the limitations among
current multiremote sensing image processing and promote the
robustness of algorithms. Although pixel-based approaches have
been widely used for different change detection tasks, this kind
of methods seriously depend on the complexity of image content
and image preprocessing such as registration accuracy, radiation
correction, etc.

Compared to pixel-based approaches, the object-based ap-
proaches provide higher accuracy and stronger robustness than
pixel-based methods, because they can effectively integrate
richer features of objects for comprehensive evaluation and
analysis, such as shape, texture, and spectral information of
images. The object-based approaches mainly include Markov
random fields (MRF)-based methods [20]–[23] and level set-
based methods [24], [25]. These methods are popular for change
detection tasks because they can consider the spatial relationship
of neighborhood pixels. Yu et al. [21] first used active learn-
ing with Gaussian process to iteratively optimize the detection
model, then integrated attribute (color and texture) information
and contextual information into the MRF model to obtain change
detection results. Touati et al. [22] filled the gap by proposing
Bayesian and Markovian-based multimodal method. Also, Yang
et al. [23] devoted change detection tasks using special MRF
prior and variational Bayesian inference, and [23] achieved a
good performance in respect of shape-preserving ability. For
level set based change detection methods, Li et al. [24] employed
edge-based level set evolution (ELSE) and region-based level
set evolution to track initial change detection profiles, leading
to better change detection results. Furthermore, Zhang et al.
[25] incorporated the level set into an improved MRF model to
achieve change detection of satellite images. However, object-
based approaches easily suffer from the difficulty of parameter
selection and excessively rely on segmentation scales.

Driven by the complex image data and wide application of
change detection, many DL-based approaches [26]–[34] have
been widely used for change detection tasks since they show
powerful ability on feature mining. Generally, change detection
concerns three types of images, i.e., synthetic aperture radar
(SAR) images, VHR images, and hyperspectral images. SAR
images always include one channel while VHR images usually
include three channels. Compared to SAR and VHR images,
hyperspectral images usually include much more channels and
thus provide richer radiation, spatial, and spectral information.
Therefore, it is necessary to design different networks for dif-
ferent change detection tasks. Liu et al. [26] designed a deep
convolutional coupling network that achieves better change de-
tection results than traditional approaches both on heterogeneous
optical and radar images. Then, Wang et al. [27] applied a CNN
framework for change detection problem of hyperspectral data,
the framework can learn the discriminative features effectively
from higher-level multisource data and enhances the general-
ization ability of networks. Similarly, Lei et al. [28] designed
a symmetric Gaussian pyramid fully convolutional network,
then applied it to VHR remote sensing images. The network
provides excellent changed detection results due to its strong
ability of feature representation. More recently, Peng et al. [30]

presented a comprehensive summary of deep learning change
detection techniques and proposed an improved UNet++ for
change detection tasks to capture subtle changes in challenging
scenes. In addition, in order to summarize the development
and challenges of change detection, Shi et al. [32] presented a
survey that showed there was an upward trend in the current
publicly change detection datasets, but only a few of them
were labeled due to the difficulty of annotation. To sum up, the
DL-based approaches provide excellent change detection results
due to the strong ability of feature representation. However, they
have higher requirements on the quality and quantity of labeled
images, but it is difficult to label the changed information in
remote sensing images. Therefore, it is hard to guarantee that
the DL-based approaches can be widely used for scene change
detection.

For these three kinds of techniques mentioned above,
they cannot be widely used for change detection tasks due
to two limitations. First, change detection results based
on difference images are easily affected by atmospheric
environment, especially noise corruption and illumination
change. Second, many unsupervised change detection methods
employ fuzzy clustering to achieve the classification of changed
and unchanged regions [12]–[15], but popular fuzzy clustering
methods have low robustness since they are sensitive to noise
and often ignore the relationship among feature components.
To solve these two problems, we propose a multiscale and
multiresolution Gaussian-mixture-model (GMM) guided by
saliency-enhancement (SE-MGMM) for change detection in
bitemporal remote sensing images. The advantages of the
proposed SE-MGMM are summarized as follows.

1) The SE-MGMM uses a new saliency strategy to enhance
difference images, which solves the problem that a dif-
ference image is often sensitive to noise corruption and
illumination change.

2) The SE-MGMM employs a GMM based on spatial multi-
scale and frequency multiresolution information fusion,
which solves the problem that popularly unsupervised
change detection approaches insufficiently utilize the fea-
ture relationship of bitemporal images.

II. MOTIVATIONS

A. Saliency Enhancement for Change Detection

Change detection is a process of comparing and analyzing
changed information in bitemporal images. During this process,
the quality of difference images easily influences the precision
of change detection results. However, a difference image usually
includes a large number of falsely changed regions due to
illumination change, noise corruption, etc. And, it is difficult
to distinguish falsely changed regions from the really changed
regions for a difference image. Therefore, it is important to
improve the quality of difference images for achieving accurate
change detection.

To solve this problem, researchers have made great efforts to
improve the quality of difference images [35]. In [36], Li et al.
employed the Gabor feature extraction and variables of local
similarity to enhance the contrast of difference images. Usually,
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Fig. 1. “Nantes” data from Onera satellite change detection (OSCD) dataset
and the enhanced difference image. (a) Pretemporal image. (b) Posttemporal
image. (c) Ground truth. (d) Original difference image. (e) Difference image
using saliency enhancement.

the change detection tasks obtain the change detection results by
directly performing image segmentation on a difference image.
Although the flowchart is very popular in many algorithms
since it improves change detection results, it ignores the effect
of intuitive-visual attention. In fact, the human visual system
serves as a filter; it can well allocate more attention to obvious
and prominent objects in images for perceptual processing.
The visual system maintains vision at salient positions in an
image, i.e., when we see an image, we first pay attention to
salient information of the image, then use the first sight of
feature information as one of our prior cognitions to analyze
and understand the whole image.

Fig. 1(a) and (b) shows a pair of bitemporal images and
Fig. 1(c) shows the ground truth of bitemporal images. The pair
of images (582 × 522) were captured by the Sentinel-2 satellite
in Nantes, France in 2015 and 2017, which is mainly used for
geological surveys. In Fig. 1(d), it is difficult to detect changed
regions due to very low contrast. It is clear that the saliency
enhancement can improve the visual effect of changed regions
as shown in Fig. 1(e). Therefore, it is necessary to analyze salient
information of images before obtaining target areas, since salient
information can guide image analysis and image processing.
Driven by computer vision applications, many visual saliency
models aiming to identify salient areas from images or videos
have been proposed [37]–[39]. Inspired by this motivation as
shown in Fig. 1, we will employ salient information of images
to solve the problem that difference images are often sensitive
to noise corruption and illumination change.

B. Image Information Fusion for Change Detection

For a change detection task, the early methods [8]–[10] rely
on finding a good threshold to achieve binary classification, but
it is difficult to find the threshold for high-dimensional data.
Fuzzy c-means (FCM) is superior to thresholding methods for
change detection tasks since it is unnecessary to consider the
dimension of input data. Furthermore, a lot of studies show that
the FCM clustering algorithm is useful for the task [12]–[15].
However, it is well known that the FCM is sensitive to noise and
it ignores the spatial information of images. Thus, it is difficult
to obtain good detection results if we perform the FCM directly
on original difference images or saliency-enhancement images.

For the problem mentioned above, image fusion is useful
due to the utilization of more and richer feature information
[40]–[42]. It is a process of extracting important features of mul-
tiple original images to generate an image that contains richer
information than a single image, which also has been widely

Fig. 2. Framework of SE-MGMM for change detection.

used in medical imaging, microscopic imaging, computer vision,
and remote sensing [43]. The pixel-level fusion is one of the
most popular image fusion methods. So far, researchers have
proposed many strategies for pixel-level image fusion, such as
intensity-hue-saturation (IHS) [44], [45], principal component
analysis (PCA) [46], [47], multiresolution information analysis
methods [14], [48], [49], etc., of which the multiresolution
information analysis is more popular than other methods.

However, image fusion often causes the increase of feature
dimensions. Improved FCMs show poor performance for high-
dimensional images since the Euclidean distance is used for
similarity measurement. The GMM is superior to the FCM since
the former considers the correlation between different feature
dimensions, and effectively calculates the similarity of multidi-
mensional data using covariance. Specifically, we propose the
explanations on GMM in Section III.B. Finally, we intend to
utilize image fusion combining with the GMM to achieve change
detection for images with complex background.

III. METHODOLOGY

In this section, we present the framework of the proposed
SE-MGMM as shown in Fig. 2. It consists of the following
steps.

1) Input a pair of bitemporal images and set parameters: I1 is
the preimage, I2 is the postimage, while C is the number
of mixed Gaussian distribution used for GMM and s is the
scale used for multi-information fusion.
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2) Generate the difference image and change vector analysis
(CVA) map: There are two kinds of input images. If the
input image is an optical image, thenDI = |I2 − I1|; else
DI = |log(I2)− log(I1)|.

3) Obtain the salient difference image: First, we use image
down-sampling to generate a multiscale difference image,
then calculate the weight of each saliency cue, separately.
By combining advantages of various saliency cues, we
obtain a multiscale saliency image.

4) Implement image segmentation: We first perform wavelet
fusion on saliency-guided difference images. In addition,
we add a CVA channel to the fused image to utilize much
more image information. Finally, the GMM algorithm is
executed to achieve change detection.

5) Implement postprocessing: Image postprocessing is help-
ful for improving change detection results. We use adap-
tive morphological reconstruction to narrow the difference
between experimental results and the ground truth.

6) Output the change detection result.

A. Saliency Enhancement

In computer vision tasks, salient information is often used to
highlight interesting objects while suppressing background in
an image [50]. In practical applications, saliency detection can
guide image co-segmentation. In this article, we first perform
standard k-means algorithm on the original difference image to
obtain fake labels, and then calculate the saliency weight using
obtained fake labels.

Three cues are used to calculate saliency weights here: the
contrast cue is mainly used to represent the similarity of at-
tributes between objects and backgrounds in an image, such as
intensity, color, shape and other attributes. Contrast-based meth-
ods [51], [52] focus on calculating global saliency information
of an image, and they are very popular for saliency measurement.
The contrast cue wc is often defined as follows:

wc(C) =

C∑
i=1,i�=C

(
Nki

NI

∥∥kC − ki
∥∥
2

)
(1)

where C is the number of clusters for the k-means algorithm,
ki represents center value of the ith cluster, NI represents the
number of pixels of the input image, and Nki represents the
number of pixels of the ith clusters. Nki

NI
mainly assigns the

weight to each pixel that belongs to the ith class. The Euclidean
distance is used to measure the similarity between pixels in Cth
cluster and other clusters in (1).

Although cues described above can obtain better salient in-
formation for images, they are insufficient for remote sensing
images with complex background and low contrast. As spatial
relationship of objects in images plays a vital role for human
visual attention mechanism [53], it is also employed for saliency
measurement. The description of salient information based on
spatial relationships is presented as follows:

ws(C) =
1

NkC

NI∑
j=1

[
‖Aj −Ao‖2 × δ(L(Aj)− L(kC))

]
(2)

Fig. 3. Comparison of difference images using saliency weight cues. (a)
Ground truth, (b) original difference image, (c) saliency-guided difference image
using wc and ws, and (d) saliency-guided difference image using wc, ws, and
wm.

where theNkC represents the number of pixels in the Cth cluster,
theAj represents the coordinate of the jth pixel in the image, and
the Ao represents the coordinate of the center pixel of an image.
The L(Aj) is used to achieve the mapping operation from the
pixel Aj to its class label. The value of δ(Ω) is either 0 or 1. If Ω
is 0, then the value of δ(Ω) equals 1; otherwise, the value of δ(Ω)
equals 0. Although the ws is useful for saliency detection when
objects are closely located in the center of the image, it is difficult
to apply (2) directly to change detection tasks since many small
changed regions are randomly distributed in different positions
of the image.

In view of this problem, we define a new salient information
cue (wm) that reduces the relevant information of changed
and unchanged regions by using both local and global spatial
information. The wm(C) is defined as follows:

wm(C) =
1

NkC

NI∑
j=1

[
‖Aj − km‖2 × δ(L(Aj)− L(kC))

]
(3)

where km represents the largest cluster center in the fake label.
Then, we normalize each weight cue, and further design a new
salient information cue (W (C)) that fuses three popular saliency
weights

W (C) = wc(C)× ws(C)× wm(C) (4)

W (C) → S(·) (5)

where W (C) denotes the final saliency weight cue of pixels
belonging to Cth class. It can be seen from (1) to (4) that if the
value of W (C) is larger, then the similarity between the Cth
class and really changed regions will be higher. S(·) denotes the
mapping information of saliency weight in the image.

To demonstrate the effectiveness of the proposed saliency
cue, Fig. 3 shows the comparison of difference images using
saliency-guided weight cues. Fig. 3(b) shows a low contrast
image. However, Fig. 3(c) and (d) shows strong contrast between
the changed and unchanged regions. It is clear that Fig. 3
demonstrates that the saliency information improves the quality
of the difference image, and Fig. 3(c) and (d) shows that wm

reduces the relevant information and similarity of changed and
unchanged regions. By comparing Figs. 1 and 3, we can see that
the strategy of saliency enhancement is helpful for improving
the quality of difference images.
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Fig. 4. Comparison of image fusion effect using SM-FM strategy. (a) Ground
truth, (b) original difference image, (c) scale-1 saliency difference image, (d)
scale-2 saliency difference image, and (e) SM-FM image.

B. GMM Based on SM-FM

The main factors deciding change detection results involve
difference feature extraction and classification algorithms. In
Section III-A, the saliency weight cue is employed to obtain
better difference images, which is helpful for improving differ-
ence feature extraction. Furthermore, both information fusion
and wavelet transform (WT) are also popular strategies [42]
aiming to obtain richer image features, which is significant for
improving the change detection accuracy of bitemporal images.

It is well known that multiscale information fusion can obtain
richer image spatial features [40], [41] while WT can obtain
better image frequency features. For image fusion based on
multiscale information, down-sampling is often performed to
obtain multiscale images. By combining these images with
different scales, richer spatial features will be exploited. For
image fusion based on WT, it is more effective to combine
important perceptual features of images due to shift invariance
of WT. Moreover, the WT possesses good localization and mul-
tiresolution characteristic, which provides horizontal, vertical,
diagonal information as well as low- and high-pass components.
In this article, we present an image fusion strategy that utilizes
both spatial multiscale and frequency multiresolution (SM-FM).
First, we use down-sampling operation to obtain multiscale dif-
ference images Is1 and Is2 , then perform saliency enhancement
to obtain improved difference images Os1(·) and Os2(·). Second,
we perform wavelet transform fusion on O1 and O2. Finally, the
fused image is given as follows:

O = w−1
dwt(ρ(wdwt(Os1(·)), wdwt(Os2(·)))) (6)

where wdwt and w−1
dwt denote the wavelet transform and the

inverse wavelet transform, respectively, O is the final fusion
image, and ρ(·) denotes the implementation of maximum fusion
rule.

To demonstrate the effectiveness of the proposed SM-FM,
we apply the SM-FM to Nantes data, and Fig. 4 shows the
comparison of image fusion results using SM-FM strategy. We
can see that the WT maintains important feature information
while suppressing noise information, and the multiscale operator
effectively suppresses image background information. At the
same time, it can be seen from Fig. 4(e) that the fusion operation
further suppresses noise, and thus, the SM-FM shows better local
detection ability due to the employment of richer image features.

In practice, CVA is very useful for change detection tasks,
and it is usually integrated into fused images to improve the
detection accuracy. As mentioned above, the pros and cons of

classification algorithms are another important factor that affects
the final change detection results. Most studies employ FCM to
achieve a binary classification, i.e., changed and unchanged re-
gions. However, FCM utilizes the Euclidean distance to achieve
similarity measurement, which ignores the relationship between
different feature components. Here, we consider GMM as the
classification algorithm to achieve change detection tasks. On
the one hand, GMM considers the prior probability of pixel dis-
tribution, which is helpful for obtaining better post-probability
distribution. On the other hand, GMM employs the covariance
matrix to obtain the relationship between different feature com-
ponents. Therefore, GMM often shows better performance for
data with complex distribution.

The probability density function of GMM is expressed as
the weighted sum of C Gaussian component densities, which is
specifically defined as follows:

p(O) =
C∑
i=1

πip(O|μi,Σi) (7)

where C denotes the number of mixed Gaussian distributions,
O denotes a vector of continuous dimension data, μi denotes the
mean value of the ith Gaussian component, Σi is the covariance
matrix of the ith Gaussian component, πi is the prior probability
of each component, πi ≥ 0, and

∑C
i=1 πi = 1. The density of

each component is determined by the variable Gaussian function
defined as follows:

p(O|μi,Σi) =
1

(2π)
D
2 (Σi)

1
2

exp

{
− 1

2
(O−μi)

TΣ−1
i (O−μi)

}
(8)

where D denotes the dimensionality of an image and T denotes
transpose operation. By performing the expectation maximiza-
tion iteratively until the largest probability value is obtained on
the probability density function, we can obtain related parame-
ters of GMM as follows:

uin =
πip(On|μi,Σi)∑C
i=1 πip(On|μi,Σi)

(9)

μi =

∑N
n=1 uinOn∑N
n=1 uin

(10)

Σi =

∑N
n=1 uin(On − μi)

T (On − μi)∑N
n=1 uin

(11)

πi =
1

N

∑N

n=1
uin (12)

where N denotes the number of pixels in an image, uin denotes
the posterior probability.

Based on the above analysis, we propose a multiscale infor-
mation fusion method combined with GMM to achieve change
detection. Fig. 5 shows the comparison of image segmentation
results using different strategies. It is clear that both the image
fusion strategy and GMM are helpful for improving change
detection results.
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Fig. 5. Comparison of image segmentation results using different strategies.
(a) Ground truth, (b) difference image + FCM, (c) SM-FM image + FCM, (d)
difference image + GMM, and (e) SM-FM image + GMM.

C. Postprocessing for Change Detection

Generally, the goal of change detection is to obtain a binary
image in which the foreground denotes changed regions and the
background denotes unchanged regions. Based on Sections III-A
and III-B, we can obtain a binary image by utilizing the proposed
model on a pair of bitemporal images. However, the bitemporal
images often include a lot of small and isolated regions since
remote sensing images have complex background information.
In practical applications, as morphological filtering is one of the
most popular methods for the removal of small objects in images
[48], it is usually employed to remove those isolated regions that
are considered as falsely changed regions.

Despite the fact that the classic morphological opening or
closing operations can effectively improve binary segmentation
results, they often smooth boundaries of main objects as well.
Removing false objects while maintaining details of real objects
are usually difficult for morphological filters. For this problem,
morphological reconstruction is an excellent tool, and it has been
widely used for object detection [54], [55]. It is able to achieve bi-
nary image filtering while maintaining large objects unchanged.
Here, we employ morphological reconstructions to optimize the
output result from GMM. Rc denotes morphological closing
reconstructions, and is defined as follows:

Rc(f,B) = Rε(Rδ(f,B), B) (13)

where Rε and Rδ denote morphological erosion and dilation
reconstruction, respectively, f denotes a binary output from
GMM, and B is a structuring element. If the size of B is too
large, some real objects will be removed. On the contrary, some
false objects will be maintained when the size of B is too small.
Therefore, the operation requires to set the suitable size of B to
control image reconstruction results. To address the issue, we
propose an adaptive morphological reconstruction for change
detection. For example, a smallB can be selected when changed
regions are small, and a largeB should be selected when changed
regions are large. For the adaptive morphological reconstruction,
we first compute the ratio of connected components in an image.
If the ratio is large, then we choose a large B, vice versa. In this
article, the parameter used for B is computed as follows:

r = 10× round

(
S

M ×N

)
+ 1 (14)

where S denotes the region of connected components in an
image, M and N denote the width and height of the image,
respectively. The change detection results are shown in Fig. 6,
and it is clear that the postprocessing can improve change detec-
tion results by removing many falsely detected small regions.

Fig. 6. Comparison of change detection results. (a) Ground truth, (b) SM-FM
image + GMM, and (c) postprocessing on (b).

Algorithm 1: Multiscale and Multiresolution Gaussian-
Mixture-Model Guided by Saliency Enhancement (SE-
MGMM).

1: Input: I1 (a pretemporal image), I2 (a posttemporal
image)

2: Initialize: set the values to C (the number of mixed
Gaussian distribution) and s (the scale parameter used
for multi-information fusion)

3: Compute DI , CV A
4: If I1 is optical image then
5: DI = |I2 − I1|
6: Else
7: DI = |log(I2)− log(I1)|
8: End if
9: CV A(i, j) = (

∑N
n=1 [I2(i, j, n)− I1(i, j, n)]

2)(
1
2 ),

N denotes the dimension of input images
10: Compute Is1 , Is2
11: Is1 = DI , Is2 = down− sampling(DI)
12: Compute wc, ws and wm on Is1 , Is2 , by

implementing (1) to (3)
13: W (C) = wc(C)× ws(C)× wm(C)
14: O = w−1

dwt(p(wdwt(Os1(·)), wdwt(Os1(·)))
15: O = (O : CV A)
16: Execute GMM algorithm on O for obtaining f
17: r = 10× round(S/(M ×N)) + 1
18: Output: Io (a binary image), Io = Rc(f,B)

Based on the analysis above, we present the algorithm de-
scription of the SE-MGMM as shown in Algorithm 1.

IV. EXPERIMENTS

To demonstrate the superiority of the proposed SE-MGMM,
several popular approaches, i.e., change detection based prin-
cipal component analysis and k-means (PCA-Kmeans) [11],
change detection based on a robust semisupervised FCM (Semi-
FCM) [12], change detection based on fuzzy clustering method
and Markov random field (MRFFCM) [20], change detection
using iteratively reweighted object-based MAD method (IRO-
MAD) [19], change detection using fast fuzzy c-means cluster-
ing (CDFFCM) [14], change detection based on convolutional-
wavelet neural networks (CWNNs) [56] and change detection
using pixel pairwise-based Markov random field model (PP-
MRF) [22] are considered as comparative approaches in this
article.
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Fig. 7. Experimental results on the first group of data (mainly including build-
ing changes). (a) Pretemporal image. (b) Posttemporal image. (c) Difference
image. (d) Ground truth. (e) PCA-Kmeans. (f) Semi-FCM. (g) MRFFCM. (h)
IRO-MAD. (i) CDFFCM. (j) CWNN. (k) PP-MRF. (l) SE-MGMM. Note that the
red color denotes truly changed regions, the blue color denotes falsely detected
regions, and the cyan color denotes truly missed regions.

In our experiments, the parameter setting of comparative
approaches follows original papers. We set C = 5 and s= 2 for
the SE-MGMM. All approaches are implemented on a DELL
desktop with Intel(R) Core (TM) CPU, i7-8700, 3.20 GHz,
64 GB RAM.

A. Dataset Description

In our experiments, six groups of images are considered as
testing data to verify the effectiveness and robustness of the
proposed SE-MGMM, where each group of images include a
pretemporal image, a posttemporal image, and a ground truth
image. To avoid the influence on bitemporal images acquired
by different remote sensing sensors, typical corrections, such as
image coregistration and relative radiometric correction, were
done on these images.

The first group of data (from 2020-Google dataset) [57] as
shown in Fig. 7(a)–(c) mainly reflect building changes. The VHR
bitemporal images (4872 × 4024) with a spatial resolution of
0.55 m were acquired between 2006 and 2019 at the suburb areas
of Guangzhou City, China.

The second group of data (from 2020-LEVIR dataset) [58]
mainly include land changes and construction growth. The VHR
bitemporal images (1024× 1024) as shown in Fig. 8(a)–(c) were
acquired with a time span of 5 to 14 years; the spatial resolution
is 0.5 m.

The third group of data from1 [59] are as shown in Fig. 9(a)–
(c). Their changed regions mainly consist of new buildings and
the image size is 650 × 650.

The fourth group of data were obtained by the Earth Ob-
servation Satellite 5 (SPOT5) at Tianjin, China, in April 2008
and February 2009. The bitemporal images generated by fusing

1[Online]. Available: https://github.com/hbaudhuin/LamboiseNet

Fig. 8. Experimental results on the second group of data (mainly including
land changes and construction growth). (a) Pretemporal image. (b) Posttemporal
image. (c) Difference image. (d) Ground truth. (e) PCA-Kmeans. (f) Semi-FCM.
(g) MRFFCM. (h) IRO-MAD. (i) CDFFCM. (j) CWNN. (k) PP-MRF. (l) SE-
MGMM. Note that the red color denotes truly changed regions, the blue color
denotes falsely detected regions, and the cyan color denotes truly missed regions.

Fig. 9. Experimental results on the third group of data (mainly including new
buildings change). (a) Pretemporal image. (b) Posttemporal image. (c) Differ-
ence image. (d) Ground truth. (e) PCA-Kmeans. (f) Semi-FCM. (g) MRFFCM.
(h) IRO-MAD. (i) CDFFCM. (j) CWNN. (k) PP-MRF. (l) SE-MGMM. Note
that the red color denotes truly changed regions, the blue color denotes falsely
detected regions, and the cyan color denotes truly missed regions.

panchromatic band and multispectral bands have image size of
600 × 600 and spatial resolution of 2.5 m. This group of data
covers farmland, roads, and buildings as shown in Fig. 10(a)–(c).

The fifth group of data were captured by the Sentinel-2 at the
capital city of Abu Dhabi in 2015 and 2018, the images with size
of 515 × 468 are shown in Fig. 11(a)–(c). The changed regions
include new buildings or new roads during the two periods.

https://github.com/hbaudhuin/LamboiseNet
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Fig. 10. Experimental results on the fourth group of data (mainly including
farmland, roads, and building changes). (a) Pretemporal image. (b) Posttemporal
image. (c) Difference image. (d) Ground truth. (e) PCA-Kmeans. (f) Semi-FCM.
(g) MRFFCM. (h) IRO-MAD. (i) CDFFCM. (j) CWNN. (k) PP-MRF. (l) SE-
MGMM. Note that the red color denotes truly changed regions, the blue color
denotes falsely detected regions, and the cyan color denotes truly missed regions.

Fig. 11. Experimental results on the fifth group of data (mainly including
new buildings and roads changes). (a) Pretemporal image. (b) Posttemporal
image. (c) Difference image. (d) Ground truth. (e) PCA-Kmeans. (f) Semi-
FCM. (g) MRFFCM. (h) IRO-MAD. (i) CDFFCM. (j) CWNN. (k) PP-MRF.
(l) SE-MGMM. Note that the red color denotes truly changed regions, the blue
color denotes falsely detected regions, and the cyan color denotes truly missed
regions.

The final group of data were obtained by the Radarsat-2 sensor
at the Yellow River basin in China. The bitemporal images with
size of 280 × 450 were taken during the summer floods in June
2008 and June 2009. The changed regions mainly include water
and land as shown in Fig. 12(a)–(c).

Fig. 12. Experimental results on the sixth group of data (mainly including
water and land changes). (a) Pretemporal image. (b) Posttemporal image. (c)
Difference image. (d) Ground truth. (e) PCA-Kmeans. (f) Semi-FCM. (g) MRF-
FCM. (h) IRO-MAD. (i) CDFFCM. (j) CWNN. (k) PP-MRF. (l) SE-MGMM.
Note that the red color denotes truly changed regions, the blue color denotes
falsely detected regions, and the cyan color denotes truly missed regions.

B. Evaluation Indices

Four popular indices including OE (Overall error), CA (Cor-
rect accuracy of classification), KP (Kappa) and F1-score, are
often used for the evaluation of change detection methods. Here
we present the definition of these four indices. The F1-score is
an important index for object detection and it is defined as

F1− score =
2× Pre×Re

Pre+Re
(15)

where the Precision (Pre) denotes the ratio of detected ar-
eas that are really changed regions in totally detected regions.
The Recall (Re) denotes the ratio of detected areas that are
really changed regions compare to ground truths, i.e., Pre =

TP
(TP+FP ) and Re = TP

(TP+FN) . For the Pre and Re, the FP

(false positive) denotes the total pixels over-detected, the FN
(false negative) denotes total pixels miss-detected, the TN
(true negative) denotes total pixels accurate-detected on really
unchanged regions, and the TP (true positive) denotes total
pixels accurate-detected on really changed regions, respectively.
Generally, a large value ofF1-scoremeans that the result is good
while a small value means that the algorithm is inefficient for
the test data.

The OE is usually used to evaluate the overall error ratio of
object detection, and it is defined as

OE =
FP + FN

TP + TN + FP + FN
. (16)

In general, a small value of OE corresponds to a good change
detection result due to low error ratio. The KP is often used
for the evaluation of unsupervised image segmentation, and it is
defined as

KP =
CA− P

1− P
(17)
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TABLE I
QUANTITATIVE EVALUATION RESULTS ON THE FIRST GROUP OF DATA, THE

BEST VALUES ARE IN BOLD

where CA and P can be computed, respectively

CA =
TP + TN

TP + TN + FP + FN
(18)

P =

[
(TP + FP )× (TP + FN)×
(FN + TN)× (FP + TN)

]

(TP + TN + FP + FN)2
.

(19)

C. Experiments

We applied different comparative approaches and the pro-
posed SE-MGMM on six groups of bitemporal images. Figs. 7–
12 show detected results on changed regions. Here, the regions
marked by red color denote truly changed regions, the regions
marked by blue color denote false-detected regions, and the
regions marked by cyan color denote truly missed regions.

Fig. 7(a) and (b) shows the suburb areas in difference periods,
these changes mainly focus on building changes. Fig. 7(e) and
(f) suffers from a serious problem that the change detection
results contain too many falsely changed regions due to the
background of the difference image includes complex infor-
mation as shown in Fig. 7(c). Clearly, IRO-MAD provides a
higher value of F1-score than PCA-Kmeans and Semi-FCM,
since it can detect the changes of unstable points in bitemporal
images. Thus, it detected fewer falsely changed regions (blue)
than the first two comparative methods as shown in Fig. 7(e)
and (f). Apparently, Fig. 7(g), (i), and (k) shows better visual
effects and higher values of F1-score since both MRFFCM and
PP-MRF utilize MRF to characterize the relationship between
neighboring pixels. Moreover, CDFFCM focuses on structural
information leading to a better change detection result. In fact,
CWNN fails to process the bitemporal images due to memory
overflow. By contrast, the proposed SE-MGMM provides the
largest value ofF1-score and the smallest value ofOE as shown
in Table I since it adopts saliency-enhancement to suppress
falsely changed regions and uses MGMM instead of FCM to
obtain better image segmentation results.

From Fig. 8(a)–(d), it can be seen that the visual effect of
the difference image includes some falsely changed information
since the ground information changes over time. All testing
approaches can generate changed regions, but PCA-Kmeans,

TABLE II
QUANTITATIVE EVALUATION RESULTS ON THE SECOND GROUP OF DATA, THE

BEST VALUES ARE IN BOLD

TABLE III
QUANTITATIVE EVALUATION RESULTS ON THE THIRD GROUP OF DATA, THE

BEST VALUES ARE IN BOLD

Semi-FCM, MRFFCM, IRO-MAD, CWNN, and PP-MRF suf-
fer from the over detection problem as shown in Fig. 8(e),
(h), (j), and (k). However, Fig. 8(i) shows better result than
other comparative methods since it effectively exploits the im-
age structural information by performing image segmentation
on pre- and posttemporal images, respectively. Compared to
Fig. 8(i), Fig. 8(l) is closer to the ground truth image and includes
fewer falsely detected regions (blue) and truly missed regions
(cyan), which shows that saliency enhancement is helpful for
suppressing background information and enhancing foreground
objects. Consequently, the SE-MGMM provides the largest
value of KP and F1-score as shown in Table II, which further
shows the advantages of the proposed SE-MGMM for change
detection.

The changed areas in third group of bitemporal images is very
clear as shown in Fig. 9(a) and (b). Therefore, all comparative
methods can acquire good change detection results. Similar to
the first two group of bitemporal images, the third group of data
also include complex background as shown in Fig. 9(c). Fig. 9(e),
(f), and (j) include more falsely changed background objects,
which shows that PCA-Kmeans, Semi-FCM, and MRFFCM
fail to detect changed information for the third group of data.
We can see that both MRFFCM and PP-MRF detected fewer
falsely changed areas, which demonstrates MRF-based methods
are valid for this type of data. Also, it should be noted that IRO-
MAD and CDFFCM perform a better background suppression
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TABLE IV
QUANTITATIVE EVALUATION RESULTS ON THE FOURTH GROUP OF DATA, THE

BEST VALUES ARE IN BOLD

effect as shown in Fig. 9(h) and (i). Furthermore, the proposed
SE-MGMM outperforms comparative methods in visual effect
and it obtains an extra 9% than the best result from comparative
approaches on F1-score as shown in Table III.

Fig. 10(a) and (b) shows the fourth group of data. The changes
in the bitemporal images mainly include farmlands, roads, and
buildings. In Fig. 10, all testing approaches can generate changed
regions, but the MRFFCM, CWNN, and PP-MRF include a lot
of falsely changed regions as shown in Fig. 10(g), (j), and (k).
In contrast, Fig. 10(f) and (h) suffers from a serious problem of
leak detection since Semi-FCM is a postclassification approach.
From Fig. 10(h) and Table IV, we can see that IRO-MAD
provides a larger value ofF1-score than Semi-FCM, MRFFCM,
CWNN, and PP-MRF. Among the comparative methods, both
PCA-Kmeans and CDFFCM provide better results as shown
Fig. 10(e) and (i). Finally, as can be seen from Fig. 10(l),
SE-MGMM shows a better detection result as it adopts saliency-
enhancement to suppress falsely changed regions. Table IV
shows advantages of the SE-MGMM on the fourth group of
data.

The experimental results on the fifth group of data are shown
in Fig. 11, they are complex and show low contrast of intensity
and hue as shown in Fig. 11 (a) and (b). Therefore, the original
difference image also shows low contrast between changed
regions and unchanged regions as shown in Fig. 11(c), which
easily leads to poor results for change detection. PCA-Kmeans,
Semi-FCM, CDFFCM, and CWNN show poor results that in-
clude many falsely detected regions as shown in Fig. 11(e),
(f), (i), and (j), i.e., blue regions. It is observed that these
comparative approaches are sensitive to the quality of difference
images. However, Fig. 11(g), (h), and (k) shows better visual
effect, which demonstrates that the MRFFCM, IRO-MAD, and
PP-MRF are available for this kind of images. Moreover, the
SE-MGMM provides the best detection result that includes
fewer falsely changed regions and more truly changed regions as
shown in Fig. 11(l), which further demonstrates that the strategy
is useful for suppressing background and enhancing foreground
regions. Besides, Table V shows the comparison of performance
indices, we can see that the SE-MGMM outperforms compara-
tive approaches due to the largest value of KP and F1-score,
the smallest value of OE.

TABLE V
QUANTITATIVE EVALUATION RESULTS ON THE FIFTH GROUP OF DATA, THE

BEST VALUES ARE IN BOLD

TABLE VI
QUANTITATIVE EVALUATION RESULTS ON THE SIXTH GROUP OF DATA, THE

BEST VALUES ARE IN BOLD

Fig. 12 shows the sixth group of experimental results. The
group of bitemporal images is simpler than other testing data
since image content only involves water and land. As can be
seen from Fig. 12(a) and (b), the pair of bitemporal images
provide clear change information in Fig. 12(a)–(c). Although
changed regions are clear, the background includes more falsely
changed regions caused by noise. Fig. 12(e)–(i), and (k) shows
poor results since these methods are sensitive to illumination
change and noise. Among them, Fig. 12(i) contains many falsely
changed regions, i.e., blue regions, which demonstrates that
the CDFFCM is not helpful for this testing data. Fig. 12(j)
and (l) shows a better visual effect on really changed regions,
where SE-MGMM provides higher values ofKP andF1-score,
smaller value of OE than comparative approaches in Table VI.

Tables I, II, V, and VI show that SE-MGMM clearly outper-
forms the comparative methods, while Table IV shows that they
have similar performance. One of the most important reasons
is that these groups of testing data including the first, second,
third, fifth, and sixth have complex backgrounds, but the fourth
group of testing data has simple background. Since the purpose
of salience enhancement is to suppress image background and
highlight targets, salience enhancement can effectively improve
the quality of difference image obtained by bitemporal images
with complex background. Consequently, SE-MGMM shows
clear advantages than comparative methods for images with
complex background as shown in Tables I, II, III, V, and VI.
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Fig. 13. Performance comparison of different approaches on average values
of F1-score.

Fig. 14. Comparison of ablation experiments. (a) GMM and postprocessing,
(b) SE-GMM, (c) MGMM, and (d) SE-MGMM. Note that the red color denotes
truly changed regions, the blue color denotes falsely detected regions, and the
cyan color denotes truly missed regions. The changes consist of building changes
and construction growth.

Besides, the fourth group of testing data contains richer change
information such as farmland, roads and buildings, than other
groups of testing data. More changed information easily leads
to a difference image with simpler background information.
Therefore, SE-MGMM shows slight advantages than compar-
ative methods for images with simple background as shown in
Table IV.

D. Discussion

Through the comparison and analysis of our experimental
results, the proposed method is effective for change detection on
bitemporal remote sensing images. Fig. 13 shows a line chart of
change detection results from bitemporal remote sensing images
on the average value of F1-score. Obviously, the SE-MGMM
provides the highest average value, which shows the SE-MGMM
achieves better change detection results and is more robust than
comparative approaches.

We verified the effectiveness of different contributions of the
proposed SE-MGMM on the first two bitemporal images, by
presenting four ablation experiments about GMM, GMM with
salient information (SE-GMM), GMM with multi-information
fusion (MGMM), and GMM with salient information and multi-
information fusion (SE-MGMM). In Fig. 14, the first group of
rows corresponds to the change detection results on the first

TABLE VII
QUANTITATIVE EVALUATION RESULTS FOR ABLATION EXPERIMENTS, THE BEST

VALUES ARE IN BOLD

TABLE VIII
QUANTITATIVE EVALUATION RESULTS ON F1-score USING

DIFFERENT VALUES OF C

TABLE IX
QUANTITATIVE EVALUATION RESULTS ON F1-score USING

DIFFERENT VALUES OF s

testing data and the second group of rows corresponds to the
change detection results on the second testing data. Similarly,
test 1 and test 2 in Table VII correspond to the results of the first
testing data and the second testing data, respectively. In order
to analyze the performance of the proposed method better, all
ablation experiments employ the same postprocessing strategy,
and four indices are used to evaluate different contributions.
From Fig. 14 and Table VII, we can see that SE model is valid
for change detection tasks by comparing GMM to SE-GMM
and comparing MGMM to SE-MGMM, we can also draw a
clear conclusion that multi-information fusion is very useful
for improving change detection results by comparing GMM to
MGMM.

Beyond that, we further evaluated the proposed method for
different bitemporal images under appropriate parameter set-
tings. We use an adaptive postprocessing method described
in Section III-C. Therefore the SE-MGMM only involves two
required parameters, where C is the number of Gaussian com-
ponent used for GMM, s is the scale parameter used for multi-
information fusion. To test the influence of parameters on the
performance of SE-MGMM, we set C = 4, 5, 6, s= 2, 3, 4, and
employF1-score to evaluate the experimental results. Similarly,
In Tables VIII–IX, test 1 corresponds to the results of the first
group of rows in Figs. 15 and 16, and test 2 corresponds to the
results of the second group of rows in Figs. 15 and 16. It can
be seen from Figs. 15 and 16 and Tables VIII–IX, the proposed
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Fig. 15. Comparison of change detection results using different values of C.
(a) C = 4, (b) C = 5, and (c) C = 6. Note that the red color denotes truly
changed regions, the blue color denotes falsely detected regions, and the cyan
color denotes truly missed regions. The changes consist of building changes and
construction growth.

Fig. 16. Comparison of change detection results using different values of s.
(a) s = 2, (b) s = 3, and (c) s = 4. Note that the red color denotes truly
changed regions, the blue color denotes falsely detected regions, and the cyan
color denotes truly missed regions. The changes consist of building changes and
construction growth.

TABLE X
COMPARISON OF RUNNING TIME (SECONDS) USING DIFFERENT METHODS ON

ALL TESTING DATA, THE BEST VALUES ARE IN BOLD

approach is insensitive to parameters, which further verifies the
robustness of our proposed method.

Finally, Table X illustrates the computational cost of com-
parative methods and our proposed method on testing images
with different sizes. In Table X, the CDFFCM is much faster
than other methods for the first testing data, and the MRFFCM
is much faster than other methods for other five groups of
testing data. The proposed SE-MGMM is time consuming since
the covariance is computed in GMM. But this drawback is
compensated by its better performance on F1-score. Note that,
“1”–“6” in Table X represent the corresponding testing data.

V. CONCLUSION

In this work, we have studied the popular change detection
approaches and analyzed their advantages and disadvantages.
We have proposed an unsupervised change detection using
multiscale and multiresolution SE-MGMM for bitemporal re-
mote sensing images. The proposed SE-MGMM can effec-
tively achieve change detection result and makes two useful
contributions. The first is that the SE-MGMM is insensitive
to illumination change due to the employment of saliency dif-
ference information. The second is that it can make full use
of richer feature information in bitemporal images due to the
employment of GMM-SMFM. The proposed SE-MGMM is
tested on six groups of remote sensing images, and experimental
results demonstrate that the proposed SE-MGMM is superior to
state-of-the-art change detection methods since it provides the
best results. In future works, we will explore more robust and
fast algorithms for change detection to solve this problem.
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