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Key points: 

 A vine copula ensemble downscaling method is proposed to jointly downscale the projected 
precipitation from multiple climate models. 

 Post-simulation analyses of monthly precipitation projections over the Loess Plateau were 
conducted using seven regional climate models. 

 This method can generate more ensemble series than conventional bias-correction methods, 
and thus more robust projections. 
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Abstract 

A vine copula ensemble downscaling (VCED) framework is proposed to jointly downscale the 
projected precipitation from multiple regional climate models (RCMs). This approach can 
effectively reduce the biases inherent to precipitation projections from different RCMs and thus 
provide more reliable ensemble projections. The proposed approach was applied to RCM 
projections over the Loess Plateau of China, which features complex topography and various 
climatic zones. Precipitation projections from 7 RCMs were used, and 21 sets of downscaling 
results were obtained. The performance of the VCED in reproducing historical precipitation 
across the Loess Plateau was evaluated using mean absolute error (MAE), the Taylor diagram, 
and the rank histogram (RH). The proposed VCED approach was found to be more effective than 
quantile mapping and bivariate copula methods in achieving robust precipitation projections. 
Overall flat RH diagrams indicate that the ensemble prediction and observations have strong 
consistency in distribution. Future precipitation changes of two 30-year periods (i.e., the 2050s 
and 2080s) under two Representative Concentration Pathway (RCP) scenarios (RCP 4.5 and 
RCP 8.5) over the Loess Plateau were then analyzed after post-downscaling processes. The 
results show that the average annual precipitation over the Loess Plateau may increase by 8.4 to 
11.4% under the RCP 4.5 scenario and by 9.3 to 17.5% under RCP 8.5. The projected 
precipitation in the south-central parts of the Loess Plateau would be significantly reduced 
whereas those of the other parts be significantly increased. 

1. Introduction 

Climate change can profoundly affect the availability and viability of water resources. In 
order to predict possible future climate change and assess the associated impacts on water 
resources, global climate models (GCMs) are commonly used to generate climate projections 
under different Representative Concentration Pathway scenarios (RCPs; Johnson & Sharma, 
2011; Li et al., 2012; Wang et al., 2014). However, GCMs are often too coarse to accurately 
evaluate climate characteristics at regional and local scales. In view of this, downscaling 
techniques have been developed to transform coarse GCM outputs into high-resolution 
representations. Downscaling approaches can be divided into two categories. Statistical 
downscaling generates local-scale simulations by utilizing statistical relationships between 
observations and GCM outputs (Clark et al., 2004, Thober et al., 2013, Hou et al., 2019). 
Dynamical downscaling is an analytical process in which the outputs of GCMs are used as the 
initial boundary conditions that drive regional climate models (RCMs) to produce high-precision 
projections (Boé et al., 2007; Chen et al., 2013; Thober et al., 2014; Wang & Chen, 2014; Zhou 
et al., 2018). RCMs can more specifically describe complex surface features and climatic 
processes in a particular region, and can also reproduce precipitation patterns more accurately 
than GCMs (Torma et al., 2015; Di Virgilio et al., 2019; Hou et al., 2019). 

Much progress has been made in high-resolution climate projections through RCMs. 
However, dynamic downscaling based on RCMs still faces a number of challenges. For example, 
RCMs are sensitive to the level of resolution used, modeling schemes, and input parameters (Lee 
et al., 2007; Bowden et al., 2012; Hu et al., 2018). Given these challenges, RCM outputs may 
show significant deviations when regional climate is simulated, especially for precipitation in 
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areas with variable topography; this is the case for the Loess Plateau which is dominated by hilly 
and gully areas (Frei, 2003; Laflamme et al., 2016; D'Oria et al., 2017). Only by demonstrating 
the credibility of RCMs in downscaling historical climate can we gain confidence in their 
prediction of future climate (Liang et al., 2006; Thober, et al., 2012; Harding & Snyder, 2014; 
Hu et al., 2018). Consequently, RCM outputs that significantly deviate from observations should 
be further downscaled (or bias corrected) before being used to assess climate impacts (Themeßl 
et al., 2011; Teutschbein, & Seibert, 2012; Gudmundsson et al., 2012, Thober and Samaniego, 
2014; IPCC, 2015). It is also crucial to recognize that such adjustment remains a controversial 
approach with its own pros and cons; adjusted simulations should be used carefully with a full 
understanding of the potential limitations associated with inherent statistical assumptions 
(CORDEX; IPCC, 2015). To deal with this issue, many post-processing approaches aimed at 
correcting biased climate model outputs have been developed in recent years (Boé et al., 2007; 
Engen-Skaugen, 2007; Piani et al., 2010a, 2010b; Johnson & Sharma, 2011; Themeßl et al., 
2011; Dosio & Paruolo, 2012; Chen et al., 2013; Zhou et al., 2018). These methods can be 
classified into two categories according to their complexity: simple methods(e.g. linear 
transformation) and sophisticated ones (e.g. quantile mapping, or Qmap; Piani et al., 2010a, 
2010b); in the Qmap, biases are reduced through the establishment of statistical relationships 
between the cumulative density functions (CDFs) of observed variables and those of projected 
ones. Model outputs are always downscaled to station scales while reducing model error; thus, 
bias correction is also considered a downscaling process (Gudmundsson et al., 2012; Chen et al., 
2013; D'Oria et al., 2017). 

Due to their capacity in constructing joint dependence structure among different variables 
and the flexibility to select multiple functions, copula-related methods were developed for use in 
hydrological and climate studies (Nelsen, 2006; Serinaldi, 2009; Samaniego et al., 2010; Fan et 
al., 2015; Kong et al., 2015; Wei & Liu, 2018). More recently, methods based on bivariate 
copulas (or Bi-Copula methods) were introduced to the field of bias correction in climate 
projections (Vogl et al., 2012; Mao et al., 2015; Zhou et al., 2018; Alidoost et al., 2019; Maity et 
al., 2019). For instance, Mao et al. (2015) and Zhou et al. (2018) have applied Bi-Copula method 
to correct precipitation projections from WRF (Weather Research and Forecasting Model) and 
temperature projections from PRECIS (Providing Regional Climates for Impacts Studies), 
respectively. Their results showed that, compared with Qmap, the Bi-Copula method is more 
robust in building statistical relationships between observations and simulations. 

Post-downscaling methods (such as Qmap and Bi-Copula) face a number of general 
challenges. (i) They are based on individual RCM outputs, and reflect only one-to-one 
relationships between simulations (from each RCM output) and observations (e.g. PRECIS in 
Zhou et al. (2018), and WRF in Mao et al. (2015) and Maity et al. (2019)). (ii) Different RCMs 
perform unevenly when simulating regional climate, leading to great deviations especially in the 
case of precipitation in areas with complex terrains. One-to-one relationships (outputs from one 
RCM vs. observations) are unable to reflect these uncertainties (or abnormal deviations). (iii) 
Existing approaches generate deterministic results, without reflection the uncertainties that exist 
in modeling parameters and input conditions. To address the above challenges, a vine copula-
based ensemble downscaling (VCED) method was developed, in which the vine copula 
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(Brechmann & Schepsmeier, 2013) was designed to reflect interdependence among information 
from observations and RCM projections, and probabilistic distributions were derived for 
downscaled variables conditional on projections from RCM models. The distributions obtained 
can provide bases for jointly downscaling RCM projections in both deterministic and 
probabilistic expressions. 

The Loess Plateau in China was chosen as the study area. The proposed VCED model 
was established based on the probabilistic dependence between historical observations and the 
corresponding outputs from multiple RCMs. In detail, simulated precipitation for historical and 
projected future periods from seven RCMs over the Loess Plateau were used as inputs for the 
VCED framework. The vine copula method was used to build probability correlations between 
RCM projections and observations and export post-downscaled results based on this relationship. 
The jointly downscaled historical simulations obtained using the developed method were 
compared against observations to evaluate the performance of the VCED approach. The 
approach was then compared against Qmap and Bi-Copula methods to further assess its 
performance. Finally, future changes in precipitation over the Loess Plateau were estimated 
based on ensemble predictions. 

2. Study area and data 

2.1. Study area 

The Loess Plateau (between 33°43′N to 41°16′N and 100°54′E to 114°33′E), is located in 
the upper and central reaches of the Yellow River watershed in North China (Figure 1). The 
region covers an area of approximately 640,000 km2 and its total population is around 86 
million. The majority of the region has a sub-humid and semiarid climate, with annual mean 
temperatures ranging from 4.3 °C to 14.3 °C and annual precipitation fluctuating from 150 to 
800 mm, increasing from the northwest to the southeast. 60-70% of the annual total rainfall 
occurs as high-intensity rainstorms between June and September (Liang et al., 2015). The 
average annual air temperature in the Loess Plateau has significantly increased over the past 60 
years (0.22 °C per decade), while precipitation across the Loess Plateau has shown a slightly 
decreasing trend (−1.2 mm yr−1) during the same period (Wang et al., 2017b). Although over 
8.5% of the population of the country resides in the region, the water resources of the Loess 
Plateau account for only 2% of China's total water resources. The water utilization ratio of the 
major rivers is up to 70%, far exceeding the internationally recognized threshold of 40% (Gao et 
al., 2009). Furthermore, according to the Yellow River Water Resources Bulletin, rapid 
development of the social economy has led to human water consumption increasing by 86% over 
the Loess Plateau from the 1980s to 2010 (Gao et al., 2017; Wang et al., 2017b). 

------------------------------ 

Place for Figure 1 

------------------------------ 
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The Loess Plateau was chosen as the research area for two main reasons. Firstly, there is 
a need for practical research in the region. As a large ecological and agricultural zone in China, 
the natural conditions of the Loess Plateau (i.e., water shortages, severe soil erosion, and unique 
landscape, etc.) make it crucial to study the climate change characteristics in this area (Zhang et 
al., 2012). However, due to the complex characteristics of the region, simulation results are often 
of low reliability, and few related studies have been conducted over the entirety of the Loess 
Plateau (Li et al., 2012; Liu & Tang, 2013; Wang et al., 2017a). Secondly, the study area can 
satisfy the applicability test of the proposed method. With complex topography (altitude ranging 
from 800 to 3000m), diverse climatic types, and an uneven distribution of precipitation, the 
RCMs generally have difficulties in robustly capturing spatial and temporal variabilities of 
precipitation over the region (Wang et al., 2017a); consequently, deviations may exist between 
simulations and observations. Therefore, applicability of the developed method in refining 
climate projections can be fully tested over the Loess Plateau. 

2.2. Data 

Due to uncertainties in modeling parameters and input conditions, projection results from 
different RCMs tend to be very different and multi-RCMs are commonly used for ensemble 
projection in order to improve reliability (Buytaert et al., 2010; Deser, et al., 2012; D'Oria et al., 
2017). Herein, the proposed VCED approach was applied to integrate outputs from multiple 
RCMs to provide deterministic and probabilistic climate projections. In addition, a large group of 
RCM ensemble combinations were applied to enable complete verification of the applicability of 
the VCED model. Monthly precipitation projections (transformed from the daily scale) from 
seven RCMs with a horizontal resolution of 0.44° across the Loess Plateau were used in this 
study for the following periods: historical (1986–2004), and the RCP4.5 and RCP8.5 scenarios 
(2036-2095) (Table 1). Three datasets were simulated by our research team, including datasets 
downscaled from HadGEM-ES through PRECIS 
(www.metoffice.com/research/hadleycentre/models/PRECIS.html) and RegCM (Pal et al., 
2007), and those downscaled from GFDL-ESM2M through the RegCM model. Four other RCM 
datasets were obtained from the Coordinated Regional Downscaling Experiment (CORDEX, 
Giorgi et al., 2009; http://www.cordex.org). The data of all RCMs were split into three periods: 
1986–2004 (the baseline period), 2036–2065 (2050s), and 2066–2095 (2080s). Detailed 
information for data generation agencies and their RCMs and GCMs are shown in Table 1. The 
seven RCMs were numbered to facilitate subsequent analyses. 

------------------------------ 

Place for Table 1 

------------------------------ 

Observed monthly precipitation data for 44 meteorological stations across the Loess 
Plateau for the period between 1986 and 2015 (Figure 1, Table S1) were obtained from the China 
Meteorological Administration (http://cdc.cma.gov.cn). Data for the period of 1986 to 2004 were 
used for post-downscaling and validation analyses. The first 10-year data (1986–1995) were used 
to develop a joint downscaling model, whereas the remaining 9-year data (1996–2004) were used 
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for validation. Data for the entire time period (1986 to 2015) were utilized for comparative study 
between historical and future periods. 

3. Methodology 

A single regional climate model is likely to be inadequate for simulating precipitation. In 
this case, the bias corrections for the outputs of a single RCM cannot capture realistic 
precipitation conditions. Therefore, combinations of multiple RCM outputs are used to jointly 
improve the reliability of simulations. This requires a method that can help establish statistical 
relationships among multiple RCM outputs, as well as observation records, such that improved 
robustness of precipitation projections can be accomplished. For this purpose, in the VCED 
model, the vine copula is used to construct a joint multivariate probability distribution based on 
the abundant dependency information of various bivariate copulas. The projected precipitation 
can thus be refined by using the established statistical relationships among the observations and 
outputs from every two of the seven RCMs. Developed by Sklar (1959), copulas are functions 
that connect univariate distribution functions to form multivariate distribution functions. A joint 
distribution function F for a random vector with n components can be expressed as: 

1 2 1 1 2 2( , ,..., ) ( ( ), ( ),..., ( ))n n nF x x x C F x F x F x=                    (1) 

where C is the copula function corresponding to F, and F1(x1), F2(x2),..., Fn(xn) are 
marginal distributions of the random vectors (X1, X2, …, Xn). It is difficult to calculate the joint 
distribution of multiple variables directly. The core function of the vine copula is to perform an 
alternative decomposition of a multivariate density into a set of bivariate copula densities related 
to the original variables and their conditional variables (Aas et al., 2006). The basic theory and 
application of vine copulas can be found in Kurowicka and Joe (2011), and Brechmann & 
Schepsmeier (2013). Details of the calculation process for new projections derived from the 
multivariate joint probability distribution (random vector with n components) can be found in 
Text S1. 

In three-dimensional situations, a possible decomposition of the three-dimensional 
probability density function 1 2 3( , , )f x x x  can be written as: 

1 2 3 1 1 2 1 3 1 2( , , ) ( ) ( | ) ( | , )f x x x f x f x x f x x x=                       (2) 

According to Sklar’s theorem, the conditional densities an then be expressed as: 

1 2
2 1 2 2 1,2 1 1 2 2

1

( , )
( | ) ( ) ( ( ), ( ))

( )

f x x
f x x f x c F x F x

f x
= =                    (3) 

and 
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2 1 3 1 2,3|1 2 1 3 12 3 1
3 1 2

2 1 2 1

3 1 2,3|1 2 1 3 1

3 1,3 1 1 3 3 2,3|1 2 1 3 1

( | ) ( | ) ( ( | ), ( | ))( , | )
( | , )

( | ) ( | )

( | ) ( ( | ), ( | ))

( ) ( ( ), ( )) ( ( | ), ( | ))

f x x f x x c F x x F x xf x x x
f x x x

f x x f x x

f x x c F x x F x x

f x c F x F x c F x x F x x

= =

=

=
   (4) 

The joint density expressed by equation (2) is converted to a product of marginal 
distributions and bivariate copula densities c1,2, c1,3 and c2,3|1. To determine the parameters for 
decomposed bivariate copula functions, the VCED requires marginal distributions fitted to RCM 
outputs and observations at each station. In this study, all marginal distributions were constructed 
using the Kernel estimation method, after which the Kolmogorov-Smirnov (K-S) test was 
employed to evaluate their performance (Zhou et al., 2018). Several commonly used copula 
functions were examined, including the Gaussian, Student’s t, Clayton, Gumbel, and Frank 
copulas. The basic properties of the identified copula functions are presented in Table S2. Copula 
parameters can be estimated using the maximum likelihood method (MLE; Shih & Louis, 1995). 
To ensure the accuracy of dependence structures in the VCED, the root-mean-square error 
(RMSE), Akaike information criterion (AIC), and Cramér von Mises statistic (Genest et al., 
2009) were used to perform goodness-of-fit tests for the copulas (Fan et al., 2015). A copula with 
a minimum AIC or RMSE (or combination of both) was considered the most appropriate. The 
performance of the chosen copula was then further tested using the p-value of the Cramér von 
Mises statistic. 

In the calculation for joint density of multiple variables (e.g. Equation 2), the potential 
schemes with combinations of climatic variables are diverse, and thus multiple dependence 
structures can be established. Figure 2 shows a vine copula structure corresponding to formulas 
(2) to (4). Figure 2(a) depicts the vine copula structure of two trees with three edges (each edge 
is associated with a pair-copula). Variables 1 and 2 (x1 and x2 in formulas (2) to (4)) in each 
structure tree represent precipitation projections from two RCMs, whereas variable 3 (x3 in 
formulas (2) to (4)) represents the corresponding observations. According to the structure tree in 
Figure 2(a), a three-layer marginal distribution and three bivariate copula functions can be 
established (Figure 2(b)). Using the probability integral transform (Rosenblatt, 1952; see also 
Text S1), new projections can thus be generated. 

------------------------------ 

Place for Figure 2 

------------------------------ 

To illustrate the usage of this method more intuitively, a simple example with variables 
of x1, x2, and x3 and the corresponding CDFs of u1, u2, and u3 (with a sample size of 1,000 for u1, 
u2, and u3) is presented. The Frank copula is fitted to each pair of decomposed variables, with the 
sample size of u1, u2, and u3 each being 1,000. Kendall’s τ values between the pair-variables (i.e. 
x1~x2, x1~x3 and x2|x1~x3|x1) and corresponding Frank copula parameters θ1, θ2, θ3 are displayed 
in Figure 2(a). 
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In the case where the data for u1, u2, and u3 are known (at the model training phase), a set 
of dependent variables u1, u2, u3 is converted into a set of independent and uniform variables on 
the [0, 1] interval (w1, w2, w3) according to the probability integral transform (Equations 7 and 8 
in Text S1). Figure 3 shows the Rosenblatt transform and its inverse calculation results (Eq. (7) 
and Eq. (8) in Text S1). Figure 3(a) shows the correlation between the original u2 and u3. Figure 
3(b) indicates a lack of correlation between w2 and w3 (independent) after transformation 
calculation, where )|(1|2 12 uuw C2 =  and )|(2,1|3 1,233 uuw C= . When u1 and u2 are known and u3 

is unknown (at the validation and projection stages), the values of u3 can be estimated via the 
inverse Rosenblatt transform based on information from decomposed pair-copulas. Assume that 
one set of u1 and u2 (denoted as u1,i and u2,i) is chosen from the 1,000 samples. In order to obtain 
the projections of u3,i, 300 samples of w3,i, which are uniformly distributed within [0, 1], are 
generated through a Monte Carlo simulation (Zhou et al., 2018). Following this, a series of 
simulated u3,i values are obtained using the inverse Rosenblatt transform, and denoted as

1
|3, 31,2 3, 1, 2, ( | , )i i i iu C w u u−= . Figure 3(c) shows the probability density distribution of 300 sampling 

results of w3,i, and Figure 3(d) shows the probability density distribution of the estimated u3,i 

(300 prediction values for u3,i) conditional on u1,i and u2,i. Simulation results for the entire u3 
(averaged u3,i) sequence are shown in Figure 3(e). Values of x3 corresponding to simulation 
values of u3 can then be obtained. 

------------------------------ 

Place for Figure 3 

------------------------------ 

Detailed steps of the VCED model application used for downscaling the RCMs in this 
study can be generalized as follows. 1) Estimate the marginal distributions of F1(x1), F2(x2), and 

F3(x3) for precipitation of two RCM simulations and observations from the training period 

(1986–1995). 2) Estimate the parameters of decomposed pair-copulas related to the original 
variables and their conditional variables, then perform goodness-of-fit tests to select optimal 
copula functions. 3) Generate the u3 sequence for the training period according to the inverse 
probability integral transform. 4) Identify the interval around the maximum probability density 
value of simulated u3, with the mean value (mean of conditional CDF values) representing the 
final simulated value. 5) Generate the u3 sequence for the validation period (1996–2004) and 
verify the simulated x3 values by comparing with the observations. 6) Project the changes of 
future precipitation relative to the baseline period base onto the validated model. 

4. Analysis of Results 

4.1. Implementation and performance of the proposed approach 

In this study, joint downscaling was conducted using the proposed VCED model for 
every combination of two RCMs and was applied to each station. The VCED approach may be 
compared to the more commonly used technique of Qmap and newly developed Bi-Copula 
methods. The marginal distributions in the Bi-Copula method are consistent with those of the 
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VCED approach, such that the relevant effects on the modeling results are insignificant. Data for 
1986–1995 were used for calibrating the VCED model, while those for 1996–2004 were used for 
its validation. Twenty-one combinations of seven RCMs were introduced into the established 
VCED, resulting in 21 sets of jointly bias-corrected outputs. These schemes and their 
corresponding serial numbers (RCMs) are shown in Table 2. 

------------------------------ 

Place for Table 2 

------------------------------ 

Before making a comprehensive evaluation of the VCED model performance for all 
stations under each combination scheme, nine stations from scheme 1 (outputs from PRECIS and 
RegCM driven by HadGEM-ES) were selected to enable more detailed description and intuitive 
evaluation. The performance of PRECIS and RegCM outputs (monthly mean precipitation) 
during the validation period (1996–2004) for nine stations before post-downscaling processing is 
shown in Figure 4. These nine stations were chosen because they contain diverse comprehensive 
characteristics: 1) precipitation can be accurately simulated by both RCM models, i.e., RCM 
simulations are close to observations (e.g. Figure 4-3); 2) the outputs from only one model are 
close to observation values (Figure 4-1 and 4-7); and 3) both RCM outputs deviate significantly 
from the observed values. The simulation results of two RCMs at the same station are very 
different from each other and generally different from observations. The proposed method can 
therefore be tested through comparison with the calibration results from different methods under 
different simulation scenarios. 

------------------------------ 

Place for Figure 4 

------------------------------ 

A comparison of results using the VCED, Qmap, and Bi-Copula (monthly mean 
precipitation from schemes of PRECIS & RegCM) methods at nine meteorological stations is 
shown in Figure 5. Figures 4 and 5 show that the Qmap and Bi-Copula methods largely fail to 
capture precipitation information accurately when the RCM outputs exhibit significant 
discrepancies. This implies that the VCED method has an improved capacity for identifying 
significant information in discrepant RCM outputs, such that more robust projections are 
achieved. In addition, the prediction interval, rather than fixed values, can be generated based on 
multiple sampling calculations (see Text S2, Figure S1 and Figure S2 in the appendix), which 
can be used for uncertainty analysis further to deterministic analyses. 

------------------------------ 

Place for Figure 5 

------------------------------ 
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The mean absolute error (MAE) of monthly mean precipitation (Figure 5) at each of the 
nine stations is shown in Table 3. This shows that the MAE values using Bi-Copula-PRECIS 
schemes are lower (2.87 mm lower on average) at all stations than those using the Qmap method, 
but higher (3.95 mm higher on average) than those from VCED. Similarly, most of the MAE 
levels from VCED are significantly lower than those from the Bi-Copula and Qmap RegCMs. 
The average MAE from VCED is 3.05 and 1.24 mm lower than that arising from the Bi-Copula 
and Qmap RegCMs, respectively. Thus,we can conclude from the MAE tests that: (i) the Bi-
Copula method performs better than Qmap in bias-correcting precipitation projections, which is 
consistent with the conclusions of Zhou et al. (2018); and (ii) the proposed VCED based on 
multiple RCMs can produce better results than the Qmap and Bi-Copula methods. 

------------------------------ 

Place for Table 3 

------------------------------ 

The analyses detailed above show rough comparisons between post-downscaled and 
observed monthly mean precipitation for selected stations during the validation period. In order 
to verify the results for different quantile segments of precipitation series over all stations, the 
MAE was also used as a global quantitative evaluation method (Gudmundsson et al., 2012). A 
set of MAEs (MAE0.1, MAE0.2,...,MAE1.0) obtained from the equally-spaced probability 
intervals of empirical CDF (for observed information) were used to approximate the distributions 
of precipitation within different probability intervals. Figure 6(a) shows the mean precipitation 
over all stations for each month, denoting differences between simulated results from different 
methods and observations throughout the entire region. The results from VCED are closer to 
observational values than those from the Qmap and Bi-Copula methods, especially during the 
rainy season (June–August). Both the average MAE and the value of MAE at each probability 
interval (MAE0.1, MAE0.2, ..., MAE1.0) are shown in Figure 6(b). For specific probability 
intervals, MAE values from VCED are generally lower than those using the Qmap and Bi-
Copula methods (except MAE0.7). In detail, the MAE1.0 arising from VCED simulations (i.e. 
24.52 mm) is smaller than that arising from both the Qmap (35.81 mm for PRECIS and 37.79 
mm for RegCM) and Bi-Copula methods (36.18 mm for PRECIS and 36.07 mm for RegCM). 
Detailed data from all MAEs used in Figure 6(b) and other schemes are shown in Table S3. 
These results demonstrate that VCED is advantageous for post-downscaling precipitation relative 
the existing Qmap and Bi-Copula methods, especially for individual wet months (or the rainy 
season). 

------------------------------ 

Place for Figure 6 

------------------------------ 

MAE values were calculated as the average of all stations after sorting precipitation 
values in ascending order. Taylor diagram verification was undertaken in order to evaluate the 
post-downscaled precipitation as time series. Figure 7 presents Taylor diagrams of correlation, 
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root-mean-square (RMS) difference, and the ratio of standard deviation between simulations and 
observations (Taylor, 2001). In detail, seven RCM outputs led to 35 downscaling schemes 
comprising seven Qmap, seven Bi-Copula and 21 (i.e. C(7, 2)) VCED schemes. Figure 7(a) 
shows the mean correlation coefficient (MR), normalized standard deviation, and RMS 
differences between observations and simulations for each scheme at 44 stations (each point 
represents a station). The MRs of the tested Qmap schemes range from 0.461 to 0.580, with an 
average of 0.518, while those of the tested Bi-Copula schemes range from 0.523 to 0.618, with 
an average of 0.566. In comparison, the proposed VCED schemes have MRs of 0.553 to 0.638, 
with an average of 0.593. The points corresponding to the VCED schemes are more concentrated 
to the unit radius (i.e., their ratio of variance is closer to 1). The closer the point to the horizontal 
axis, the lower the RMS difference between observations and simulations. Figure 7(b) shows the 
location of the mean distances of all points to the unit circle under each scheme, where the 
enlarged drawing marks the scheme numbers and corresponding points for each method. The 
average rates of deviation from the unit circle for the Qmap, Bi-Copula, and VCED methods 
were 23.4%, 18.5%, and 15.3%, respectively. In addition, the resulting 35 schemes were ranked 
according to the skill scores of statistical indicators (Figure 7(c); Taylor, 2001). The resulting 
score-based ordination diagram (Figure 7(c)) demonstrated that VCED schemes had a higher 
ranking than either the Qmap or Bi-Copula methods. 

------------------------------ 

Place for Figure 7 

------------------------------ 

The above validation methods may be used to verify the performance of each group of 
post-downscaling simulations. In addition, rank histograms (RH) were used (Anderson, 1996; 
Hamill, 2001) to evaluate the distribution reliability of ensemble projections. As a visual tool for 
assessing whether projections and observations have the same distribution, a flat RH is expected 
to indicate a satisfactory correlation. Figure 8 provides the RH validation results of VCED 
projections at all stations for 1996–2004. Most RHs are flat, indicating that the ensemble 
projections are credible. Several stations show a slight U-shape, indicating that the distribution of 
the projection results at these stations is slightly more concentrated. For the Wutai Mountain 
Station (station 15), at which many observations were outside of the ensemble extremes, the 
maximum probability is 0.10 higher than the mean line. This could arise from the fact that this 
station was moved from 2894 m to 2485 m above sea level in 1998, such that significant 
differences in surface conditions led to discrepancies in the observation data. 

------------------------------ 

Place for Figure 8 

------------------------------ 

Figure 9 shows the ensemble projected intervals of monthly mean precipitation at the 44 
stations based on 21 post-downscaling groups using the VCED model at the verification stage 
(1996–2004). The average deviation between the groups of prediction results and observations 
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ranges from 3.5 mm to 12.1 mm. The ensemble intervals at some stations are slightly larger, 
however, all ensemble mean predictions are close to observational values, confirming their 
validity. 

------------------------------ 

Place for Figure 9 

------------------------------ 

4.2. Projections of future precipitation changes 

To better understand future precipitation changes across the Loess Plateau, the ensemble 
projections of future precipitation under two RCP scenarios (i.e., RCP4.5 and RCP8.5) for two 
30-year periods (i.e., the 2050s and 2080s) were generated using the VCED model. Precipitation 
projections for future scenarios were then compared with historical observations (1986–2015). 

Figure 10 presents a comparison of average annual total precipitation between historical 
observations and the mean ensemble projections of two future 30-year periods under two RCP 
scenarios. The interpolation figure obtained by Kriging shows that the spatial distributions of 
average annual precipitation under future scenarios are similar to those known throughout 
historical records (i.e., increasing from the northwest to the southeast). In general, projected 
future precipitation values in most areas of the Loess Plateau are higher than the corresponding 
values from historical observations, especially in the western region. The average annual total 
precipitation over the entire Loess Plateau increases by 8.4% and 11.4% for the 2050s and 
2080s, respectively, under the RCP 4.5 scenario. In comparison, the average annual total 
precipitation increases by 9.3% and 17.5% for the 2050s and 2080s, respectively, under the 
RCP 8.5 scenario. Variations in the projected precipitation of different regions are inconsistent, 
ranging from –23.4 mm to 110.8 mm for RCP 4.5 and from –19.2 mm to 133.3 mm for RCP 8.5. 
Based on the ensemble projections, these uncertain intervals of future precipitation were 
determined to reveal the extreme situations possible for future precipitation. The upper and lower 
limits of average annual total precipitation under both RCP scenarios are compared to historical 
observations in Figures S3 and S4). The monthly mean precipitation changes for each station 
under the RCP scenarios for the 2050s and 2080s relative to historical conditions are shown in 
Figure S5 to S8. 

------------------------------ 

Place for Figure 10 

------------------------------ 

Annual precipitation across the Loess Plateau is expected to increase significantly based 
on the ensemble predictions. However, as the region with the most serious soil erosion, it is 
necessary to study future precipitation changes in the rainy season (July–September) since this 
accounts for 57.2% (historical) of the annual total precipitation in this region. Figure 11 
compares the mean precipitation in the rainy season from the historical period against the two 
30-year future periods considered. Figure 11(a) is an interpolation map of precipitation in the 
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historical rainy season. Rows 2 to 4 show the means, and the lower and upper bounds, of the 
ensemble predictions for the future rainy season, respectively. The simulated precipitation along 
the spatial trend in all future scenarios is largely consistent with that of the historical record. The 
upper and lower bounds of projections show extreme cases of ensemble predictions, whereas the 
mean ensemble predictions are general cases with relatively high probabilities of occurrence. 
The mean ensemble simulations show that the projected precipitation in the south-central part of 
the Loess Plateau is significantly reduced under both future scenarios, contrary to the 
precipitation changes predicted in other regions. Under this circumstance, the difference between 
the precipitation in the northern and southern regions would be significantly reduced. 

------------------------------ 

Place for Figure 11 

------------------------------ 

According to these results, precipitation during future rainy seasons on the Loess Plateau 
may have obvious spatial and temporal changes in distribution relative to the present. Figure 12 
shows the changes of mean ensemble precipitation in the rainy season under two RCP scenarios 
relative to the historical period. The precipitation variation interval at different stations and in 
different periods under the two tested RCP scenarios ranges from –50.5 to 71.8 mm, which is 
significantly different from that of annual precipitation (–23.4 to 133.3 mm). Projected 
precipitation changes are somewhat higher under RCP 8.5 than under RCP4.5. Rainy season 
precipitation in the northeast (stations in blue panels) would respectively increase by 25.9 and 
25.0 mm in the 2050s and 2080s under RCP 4.5, and by 28.0 and 40.7 mm in the 2050s and 
2080s under RCP 8.5. In comparison, the precipitation in the rainy season in the south (stations 
in red panels) would respectively decrease by 34.8 and 3.8 mm during the 2050s and 2080s 
under RCP 4.5, and by 10.8 mm in the 2050s under RCP 8.5; however, RCP 8.5 results in an 
increased precipitation of 9.4 mm in the 2080s. Significant decreases and increases in 
precipitation occur in different regions during the rainy season, indicating that both the spatial 
and temporal distributions of precipitation may change significantly in the future. 

------------------------------ 

Place for Figure 12 

------------------------------ 

5. Discussion 

In this study, a vine copula-based ensemble downscaling approach (VCED) was 
developed to jointly downscale monthly-precipitation projections from multiple RCMs. Similar 
to other downscaling methods, this approach assumes that the dependence structure among 
observed and projected precipitation amounts is stable during the study period (Mao et al., 2015). 
However, the essence of VCED is to generate downscaled/bias-corrected precipitation 
projections from multiple RCMs rather than from single models, and thus fully capitalize the 
information from discrepant RCM outputs. Moreover, VCED is able to produce multiple sets of 
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projection series by pairing several climate models (e.g. seven RCMs have generated 21 sets of 
downscaed results in this study). These results can help improve the robustness in reflecting 
uncertainties in climate projections (Tebaldi & Knutti, 2007). 

In the VCED method, nonlinear dependencies in precipitation amounts from RCMs and 
observations can be captured through vine copulas, such that the conditional distributions of the 
precipitation (to be corrected) can then be derived. Such conditional distributions can facilitate 
bias-corrections for future projections based on their mean values (mean conditional CDF values, 
or mean CCVs). Therefore, an important issue of VECD is the robustness of conditional CDFs. 
The parameters in VCED are linked to the levels of correlations between RCM outputs and 
observed records, while these correlations may have significant impacts on the conditional 
CDFs. A proximity ratio (PR) was investigated at nine selected stations (Section 4.1) to illustrate 
such impacts (see Table S4 for the details of Kendall coefficients of correlation between 
precipitation levels from four RCMs and observed ones at each station). The PR(x, y) is the ratio 
of the mean CCVs that are more proximate to the corresponding CDF values from RCM_x than 
those from RCM_y (see Text S3 for detailed explanation of the PR calculation). 

The results indicate that, the precipitation outputs from different RCMs would show 
different levels of correlation with the observations, leading to different Kendall coefficients. 
Moreover, when the differences among the obtained Kendall coefficients are significant (e.g. 
greater than 0.1), the resulting mean CCVs would have low likelihood of approaching the CDF 
values of those RCM simulations that have low Kendall coefficients (Table S5). For example, for 
PR(1, 2), the correlation coefficients between RCM_1 outputs and observed records are 
significantly lower than those between RCM_2 outputs and observed records at Stations 2, 8, and 
9 (Table S4). Consequently, the PR values at these three stations are significantly lower than 
50%, i.e., most of mean CCVs are close to CDF values from RCM_2 simulations. Among these 
stations, the difference of correlation coefficients at station 8 is the highest (0.16), with less than 
20% of mean CCVs being close to CDF values from RCM_ 1 simulations. These results indicate 
that, for the two RCMs with their outputs having different levels of correlation with the 
observations, the one with higher correlation would have a greater contribution to VCED. 
However, if the difference of correlation between the two RCMs is insignificant, then the other 
factors (e.g. types of marginal distributions or copula functions) would dominate the 
performance of VCED. 

Another important factor affecting the conditional distributions is the type of dependence 
model. All marginal distributions of simulations and observations were constructed through 
Kernel estimations to mitigate the influence in terms of the choice of marginal distributions. Five 
copulas (i.e., Gaussian, Student’s t, Clayton, Gumbel, and Frank copulas) were provided to 
express the dependence among simulations and observations; decomposed bivariate copulas 
were identified based on goodness-of-fit tests. However, different copulas might lead to different 
mean CCVs. The influence of copula function on conditional CDFs was investigated through 
comparisons of PR values from Frank and Gaussian copula schemes at nine stations, which mean 
that the bivariate dependence structures of VCED could be quantified through Frank or Gaussian 
copula (Table S6). The results demonstrate that, when the difference in correlation coefficients is 
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greater than or equal to 0.02, the mean CCVs from Frank copula scheme would have high 
likelihood of approaching the CDF values of those RCM outputs that have higher correlation 
with observations. In comparison, similar results can be obtained through Gaussian copula when 
the difference in correlation coefficients is greater than 0.06. Thus, Frank copula is more 
sensitive to the differences in correlation, and would produce higher PR values. 

The MAE values for different probability intervals from Frank, Gaussian, and combined 
copula schemes at nine stations are also analyzed (Table S7). The combined copula scheme 
consists of decomposed bivariate copulas identified from the five options based on goodness-of-
fit tests. The results indicate that the average MAEs from Frank copula are lower than those from 
Gaussian and combined ones. The MAE values from Frank copula at probability intervals of 0.7 
to 1.0 are generally lower than those from combined ones. Although the results of MAE1.0 from 
Gaussian copula scheme are more accurate (the average MAE1.0 of six RCM combinations is 
17.27 mm), the mean values of MAE0.7 and MAE0.8 for six RCM combinations under this 
scheme are respectively 3.56 and 4.04 mm larger than those under copula combinations. Thus, 
Gaussian copula is less effective in reflecting the differences among high precipitation levels. In 
general, Frank copula is more sensitive to differences in correlation coefficients, and performs 
better in MAE analyses. 

6. Conclusions 

In this study, a VCED method has been developed to reflect interdependence among 
RCM simulations and observations, derive probabilistic distributions for downscaled variables 
conditional on RCM outputs, and jointly downscale RCM projections in both deterministic and 
probabilistic expressions. The proposed VCED has the following advantages: (i) information 
from multiple RCMs and a large number of ensemble bias-correction series can be generated to 
reflect the effects of multiple uncertainties (e.g. 7 RCMs, and 21 sets of downscaled results); (ii) 
for two RCMs with their outputs having significant difference in correlation with the 
observations, the one with poor correlation could hardly contribute significantly to the VCED; 
thus improved reliability in climate projections can be accomplished based on the improved 
robustness in reflecting such correlation differences. 

The proposed VCED approach successfully facilitated the joint downscaling of 
projections from seven RCMs over the Loess Plateau, China for two 30-year periods under two 
RCP scenarios. The performance of VCED was demonstrated through comparisons with those of 
Qmap and Bi-Copula methods (MAE and Taylor diagrams). The MAE assessment results 
revealed that VCED is advantageous for the post-downscaling of precipitation, especially in wet 
months. The Taylor diagram verification results showed that the post-downscaled precipitation 
from VCED outperformed those from the two other methods in terms of correlation level, RMS 
difference, and the standard deviation. The results demonstrated that VCED is more effective in 
both identifying significant information from discrepant RCM outputs and achieving robust 
projections. 

Based on the VCED results, variations in precipitation over the Loess Plateau were 
analyzed for two 30-year periods (2050s and 2080s) under two RCP scenarios (RCP 4.5 and 
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RCP 8.5). It was found that such variations were inconsistent at different stations, regions and 
periods. Significant decreases or increases in precipitation during rainy seasons might occur at 
each temporal or spatial unit under both RCP scenarios. The projected precipitation in the south-
central Loess Plateau would significantly decrease during both 2050s and 2080s, while those in 
other regions would notably increase. Relatively dry climate in the south-central part might lead 
to an increased risk of drought. Precipitation in the east was higher than those of the other 
regions during the historical periods; nonetheless, it is projected to increase significantly in the 
future, leading to increased flooding risks. 

In this research, VCED was developed for projecting monthly precipitation under climate 
change. Further extensions to daily-scale projections are desired. However, issues related to 
sample autocorrelation in daily precipitation series need to be addressed before the VCED-based 
downscaling can be undertaken. VCED can be extended to other climate variables, such as 
temperature and wind speed, and can also facilitate the downscaling of GCM projections. 
Among the copula functions that have passed the statistical tests in VCED modeling, those that 
are more sensitive to differences in correlation coefficients would have better performance in 
climate projections. 
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Captions of Tables 

Table 1. Regional climate models (RCMs) together with the driving global climate models 
(GCMs). 

Table 2. The 21 numbered combinations of 7 RCMs (the number of individual RCMs are shown 
in Table 1). 

Table 3. Comparison of MAE of observations and bias-corrected simulations for monthly mean 
precipitation. 

 

Captions of Figures 

 

Figure 1. Location and topography map of the Loess Plateau, with 44 meteorological stations 
indicated. 

Figure 2. Structure of the vine copula model and parameters with different τ values between 
decomposed pair-copulas. 

Figure 3. Illustration of the Rosenblatt transform and its inverse calculation, where (a) shows the 
correlation between u2 and u3, (b) indicates the correlation between w2 and w3, (c) shows the 
probabilistic distribution of 300 samples for w3,i, (d) gives the probabilistic distribution of the 
variable to be bias-corrected (i.e. u3,i), and (e) shows the simulation results for the entire u3 
(averaged u3,i) sequence. 

Figure 4. Monthly mean precipitation from PRECIS and RegCM datasets before post-
downscaling analyses at nine meteorological stations during the validation period (1996–2004). 

Figure 5. Post-downscaling results using different methods for monthly mean precipitation at 
nine meteorological stations during the validation period (1996–2004). 

Figure 6. Comparisons between different methods. Left: comparison of monthly mean 
precipitation at all stations. Right: average MAE for all stations and at each probability interval. 

Figure 7. Taylor diagram (a), enlarged diagram (b), and ranking chart (c) for 35 schemes of 
verification (1996–2004). Red points derive from the Qmap method, blue points from the Bi-
Copula method, and green points from VCED; ranking numbers are placed at the tops of the 
bars. 

Figure 8. Ranking histograms for ensemble precipitation projections at 44 stations. Dashed line 
denotes an identical probability level; horizontal axes show 21 ensemble members with 22 bins. 
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Figure 9. Monthly mean interval (shadowed) of precipitation during the verification stage 
(1996–2004) obtained from 21 groups of downscaling results at 44 stations. Black lines represent 
monthly mean observations; red lines represent the ensemble mean predictions. 

Figure 10. Comparison between the historical average annual precipitation and projected mean 
ensemble precipitation under two RCP scenarios in which (a) denotes the historical average 
annual precipitation, (b) represents the mean ensemble precipitation during the 2050s under RCP 
4.5, (c) the 2050s under RCP 8.5, (d) the 2080s under RCP 4.5, and (e) the 2080s under RCP 8.5. 

Figure 11. Comparison of average annual precipitation in the rainy season between historical 
observations and two RCP scenarios in which (a) shows observations, (b) shows the mean 
ensemble of RCP 4.5 for the 2050s, (c) denotes the mean ensemble of RCP 4.5 for the 2080s, (d) 
shows the mean ensemble of RCP 8.5 for the 2050s, (e) represents the mean ensemble of RCP 
8.5 for the 2080s, (f-i) represent future lower-limit ensembles corresponding to (b-e), and (j-m) 
are future upper-limit ensembles corresponding to (b-e). 

Figure 12. Projected changes of the rainy season at 44 stations on the Loess Plateau between two 
30-year periods under two RCP scenarios, compared with the historical period. 
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Table 1 Regional climate models (RCMs) together with the driving global climate models (GCMs). 
Number (1) (2) (3) (4) (5) (6) (7) 
GCMs HadGEM-ES GFDL-ESM2M IPSL-CM5A-MR MPI-ESM-LR HadGEM2-AO 
RCMs PRECIS RegCM RegCM RCA4 RCA41 RCA4 HadGEM3-RA2 

Institution University of Regina SMHI SMHI SMHI NIMR 
1: Rossby Centre regional climate model, Detailed information can be obtained through Kupiainen et al., 2014 
2: Detailed introduction about the HadGEM3-RA regional climate models is shown in Diallo et al., 2014. 
SMHI: Swedish Meteorological and Hydrological Institute 
NIMR: National Institute of Meteorological Research, KMA, South Korea 

 

Table 2 The 21 numbered combinations of 7 RCMs (the number of individual RCMs are shown in Table 1). 
RCMs (1) (2) (3) (4) (5) (6) 

(2) 1      
(3) 2 7     
(4) 3 8 12    
(5) 4 9 13 16   
(6) 5 10 14 17 19  
(7) 6 11 15 18 20 21 

 

Table 3 Comparison of MAE of observations and bias-corrected simulations for monthly mean precipitation. 
Scheme Station number Mean 

1 2 3 4 5 6 7 8 9 
VCED 6.67 4.02 7.17 6.51 12.37 6.5 6.64 9.59 6.4 7.32 

Qmap PRECIS 14.31 8.36 8.68 7.39 22.84 14.83 16.09 18.94 15.8 14.14 
RegCM 10.09 3.68 8.7 6.2 13.17 11.49 12.02 10.95 16.99 10.37 

Bi-Copula PRECIS 11.87 5.97 8.56 6.71 13.9 10.31 13.02 17.56 13.51 11.27 
RegCM 8.43 4.63 11.2 6.45 10.29 8.95 8.66 11.22 7.25 8.56 
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