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® This method can generate more ensemble seriestimyentional bias-correction methods,
and thus more robust projections.
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Abstract

A vine copula ensemble downscaling (VCED) framewsrgroposed to jointly downscale the
projected precipitation from multiple regional cate models (RCMs). This approach can
effectively reduce the biases inherent to predipitaprojections from different RCMs and thus
provide more reliable ensemble projections. The@psed approach was applied to RCM
projections over the Loess Plateau of China, whealtures complex topography and various
climatic zones. Precipitation projections from 7N were used, and 21 sets of downscaling
results were obtained. The performance of the V@Ei@producing historical precipitation
across the Loess Plateau was evaluated using rbealuge error (MAE), the Taylor diagram,
and the rank histogram (RH). The proposed VCED @ggr was found to be more effective than
guantile mapping and bivariate copula methods Ineatng robust precipitation projections.
Overall flat RH diagrams indicate that the ensenploézliction and observations have strong
consistency in distribution. Future precipitatidranges of two 30-year periods (i.e., the 2050s
and 2080s) under two Representative ConcentraatimiRy (RCP) scenarios (RCP 4.5 and
RCP 8.5) over the Loess Plateau were then anabftexdpost-downscaling processes. The
results show that the average annual precipitatie@n the Loess Plateau may increase by 8.4 to
11.4% under the RCP 4.5 scenario and by 9.3 t@/d drider RCP 8.5. The projected
precipitation in the south-central parts of the $o®@lateau would be significantly reduced
whereas those of the other parts be significantlygased.

1. Introduction

Climate change can profoundly affect the availapdind viability of water resources. In
order to predict possible future climate change asskss the associated impacts on water
resources, global climate models (GCMs) are comynoséd to generate climate projections
under different Representative Concentration Paglsganarios (RCPs; Johnson & Sharma,
2011; Li et al., 2012; Wang et al., 2014). Howew&fMs are often too coarse to accurately
evaluate climate characteristics at regional andllscales. In view of this, downscaling
techniques have been developed to transform c@a¢ outputs into high-resolution
representations. Downscaling approaches can beedivinto two categories. Statistical
downscaling generates local-scale simulations thging statistical relationships between
observations and GCM outputs (Clark et al., 200vbEr et al., 2013, Hou et al., 2019).
Dynamical downscaling is an analytical process Imcv the outputs of GCMs are used as the
initial boundary conditions that drive regionalnciite models (RCMs) to produce high-precision
projections (Boé et al., 2007; Chen et al., 20I8bkr et al., 2014; Wang & Chen, 2014; Zhou
et al., 2018). RCMs can more specifically descabeplex surface features and climatic
processes in a particular region, and can als@degge precipitation patterns more accurately
than GCMs (Torma et al., 2015; Di Virgilio et &019; Hou et al., 2019).

Much progress has been made in high-resolutionatéirprojections through RCMs.
However, dynamic downscaling based on RCMs stik$aa number of challenges. For example,
RCMs are sensitive to the level of resolution useddeling schemes, and input parameters (Lee
et al., 2007; Bowden et al., 2012; Hu et al., 20@8yen these challenges, RCM outputs may
show significant deviations when regional clima&eimulated, especially for precipitation in
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areas with variable topography; this is the casé¢he Loess Plateau which is dominated by hilly
and gully areas (Frei, 2003; Laflamme et al., 2@'@ria et al., 2017). Only by demonstrating
the credibility of RCMs in downscaling historicdinsate can we gain confidence in their
prediction of future climate (Liang et al., 200610ber, et al., 2012; Harding & Snyder, 2014;
Hu et al., 2018). Consequently, RCM outputs thgnifcantly deviate from observations should
be further downscaled (or bias corrected) befomegogsed to assess climate impacts (Themel3|
et al., 2011; Teutschbein, & Seibert, 2012; Gudnssod et al., 2012, Thober and Samaniego,
2014; IPCC, 2015). It is also crucial to recogrtizat such adjustment remains a controversial
approach with its own pros and cons; adjusted sittarls should be used carefully with a full
understanding of the potential limitations ass@dawith inherent statistical assumptions
(CORDEX; IPCC, 2015). To deal with this issue, mangt-processing approaches aimed at
correcting biased climate model outputs have beseldped in recent years (Boé et al., 2007,
Engen-Skaugen, 2007; Piani et al., 2010a, 2010msbm & Sharma, 2011; Themel3l et al.,
2011; Dosio & Paruolo, 2012; Chen et al., 2013;Zhbbal., 2018). These methods can be
classified into two categories according to themglexity: simple methods(e.qg. linear
transformation) and sophisticated ones (e.g. gieamt@pping, or Qmap; Piani et al., 2010a,
2010b); in the Qmap, biases are reduced througbdtabdlishment of statistical relationships
between the cumulative density functions (CDF)lferved variables and those of projected
ones. Model outputs are always downscaled to statiales while reducing model error; thus,
bias correction is also considered a downscalinggss (Gudmundsson et al., 2012; Chen et al.,
2013; D'Oria et al., 2017).

Due to their capacity in constructing joint depemckestructure among different variables
and the flexibility to select multiple functionsypula-related methods were developed for use in
hydrological and climate studies (Nelsen, 2006jrtadati, 2009; Samaniego et al., 2010; Fan et
al., 2015; Kong et al., 2015; Wei & Liu, 2018). Marecently, methods based on bivariate
copulas (or Bi-Copula methods) were introducedeofield of bias correction in climate
projections (Vogl et al., 2012; Mao et al., 2015p¥7 et al., 2018; Alidoost et al., 2019; Maity et
al., 2019). For instance, Mao et al. (2015) anduzéioal. (2018) have applied Bi-Copula method
to correct precipitation projections from WRF (WesatResearch and Forecasting Model) and
temperature projections from PRECIS (Providing Begl Climates for Impacts Studies),
respectively. Their results showed that, comparitkd @map, the Bi-Copula method is more
robust in building statistical relationships betwedservations and simulations.

Post-downscaling methods (such as Qmap and Bi-@pfade a number of general
challenges. (i) They are based on individual RCNpots, and reflect only one-to-one
relationships between simulations (from each RCkpwt) and observations (e.g. PRECIS in
Zhou et al. (2018), and WRF in Mao et al. (2015) Btaity et al. (2019)). (ii) Different RCMs
perform unevenly when simulating regional climd¢ading to great deviations especially in the
case of precipitation in areas with complex tegafbne-to-one relationships (outputs from one
RCM vs. observations) are unable to reflect thesedainties (or abnormal deviations). (iii)
Existing approaches generate deterministic resuiteput reflection the uncertainties that exist
in modeling parameters and input conditions. Taesklthe above challenges, a vine copula-
based ensemble downscaling (VCED) method was deseé|on which the vine copula
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(Brechmann & Schepsmeier, 2013) was designed liectehterdependence among information
from observations and RCM projections, and prolthildistributions were derived for
downscaled variables conditional on projectionsfiRCM models. The distributions obtained
can provide bases for jointly downscaling RCM petifans in both deterministic and
probabilistic expressions.

The Loess Plateau in China was chosen as the atedy The proposed VCED model
was established based on the probabilistic depeedagtween historical observations and the
corresponding outputs from multiple RCMs. In detsiinulated precipitation for historical and
projected future periods from seven RCMs over tbeds Plateau were used as inputs for the
VCED framework. The vine copula method was useuolitd probability correlations between
RCM projections and observations and export postrdgealed results based on this relationship.
The jointly downscaled historical simulations ohtd using the developed method were
compared against observations to evaluate thenpeafice of the VCED approach. The
approach was then compared against Qmap and Bit&omthods to further assess its
performance. Finally, future changes in precipitatbver the Loess Plateau were estimated
based on ensemble predictions.

2. Study area and data

2.1. Study area

The Loess Plateau (between 33Ni8 41°16N and 100°5% to 114°3%), is located in
the upper and central reaches of the Yellow Rivatevshed in North China (Figure 1). The
region covers an area of approximately 640,008 &nd its total population is around 86
million. The majority of the region has a sub-hurardl semiarid climate, with annual mean
temperatures ranging from 4.3 °C to 14.3 °C andiahprecipitation fluctuating from 150 to
800 mm, increasing from the northwest to the saghé&0-70% of the annual total rainfall
occurs as high-intensity rainstorms between JudeSaptember (Liang et al., 2015). The
average annual air temperature in the Loess Plat@asignificantly increased over the past 60
years (0.22 °C per decade), while precipitatiomssthe Loess Plateau has shown a slightly
decreasing trend (-1.2 mm ¥ during the same period (Wang et al., 2017b). &ltfh over
8.5% of the population of the country resides mthgion, the water resources of the Loess
Plateau account for only 2% of China's total wagésources. The water utilization ratio of the
major rivers is up to 70%, far exceeding the iraionally recognized threshold of 40% (Gao et
al., 2009). Furthermore, according to the YellowdRiWater Resources Bulletin, rapid
development of the social economy has led to huwaar consumption increasing by 86% over
the Loess Plateau from the 1980s to 2010 (Gao,2@l7; Wang et al., 2017b).
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The Loess Plateau was chosen as the researcloatea fmain reasons. Firstly, there is
a need for practical research in the region. Aswgel ecological and agricultural zone in China,
the natural conditions of the Loess Plateau {vater shortages, severe soil erosion, and unique
landscape, etc.) make it crucial to study the diéwdange characteristics in this area (Zhang et
al., 2012). However, due to the complex charadtesi®f the region, simulation results are often
of low reliability, and few related studies haveebeonducted over the entirety of the Loess
Plateau (Li et al., 2012; Liu & Tang, 2013; Wangkt 2017a). Secondly, the study area can
satisfy the applicability test of the proposed noethVith complex topography (altitude ranging
from 800 to 3000m), diverse climatic types, andiaaven distribution of precipitation, the
RCMs generally have difficulties in robustly caphgy spatial and temporal variabilities of
precipitation over the region (Wang et al., 201 tajysequently, deviations may exist between
simulations and observations. Therefore, appliggitof the developed method in refining
climate projections can be fully tested over thedoPlateau.

2.2. Data

Due to uncertainties in modeling parameters andtiopnditions, projection results from
different RCMs tend to be very different and m&Rt{:Ms are commonly used for ensemble
projection in order to improve reliability (Buytdeat al., 2010; Deser, et al., 2012; D'Oria et al.,
2017). Herein, the proposed VCED approach was eghpdi integrate outputs from multiple
RCMs to provide deterministic and probabilistio@dite projections. In addition, a large group of
RCM ensemble combinations were applied to enabigptete verification of the applicability of
the VCED model. Monthly precipitation projectionngafisformed from the daily scale) from
seven RCMs with a horizontal resolution of 0.44fbas the Loess Plateau were used in this
study for the following periods: historical (198®&2), and the RCP4.5 and RCP8.5 scenarios
(2036-2095) (Table 1). Three datasets were sindilayeour research team, including datasets
downscaled from HadGEM-ES through PRECIS
(www.metoffice.com/research/hadleycentre/models/@Ehtml) and RegCM (Pal et al.,
2007), and those downscaled from GFDL-ESM2M throtighRegCM model. Four other RCM
datasets were obtained from the Coordinated Regidmanscaling Experiment (CORDEX,
Giorgi et al., 2009; http://www.cordex.org). Thealaf all RCMs were split into three periods:
1986—-2004 (the baseline period), 2036—2065 (20%30s) 2066—2095 (2080s). Detailed
information for data generation agencies and tR€iMs and GCMs are shown in Table 1. The
seven RCMs were numbered to facilitate subsequeaiyses.

Observed monthly precipitation data for 44 metemgmal stations across the Loess
Plateau for the period between 1986 and 2015 (EBigumable S1) were obtained from the China
Meteorological Administration (http://cdc.cma.gav).cData for the period of 1986 to 2004 were
used for post-downscaling and validation analy$as.first 10-year data (1986—1995) were used
to develop a joint downscaling model, whereas émeaining 9-year data (1996—2004) were used
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for validation. Data for the entire time period 88%o 2015) were utilized for comparative study
between historical and future periods.

3. Methodology

A single regional climate model is likely to be demuate for simulating precipitation. In
this case, the bias corrections for the outputs sihgle RCM cannatapture realistic
precipitation conditionsTherefore, combinations of multiple RCM outputs ased to jointly
improve the reliability of simulations. This reqgesra method that can help establish statistical
relationships among multiple RCM outputs, as welbbservation records, such that improved
robustness of precipitation projections can be mgdizshed. For this purpose, in the VCED
model, the vine copula is used to construct a jmalktivariate probability distribution based on
the abundant dependency information of variousri@t@copulas. The projected precipitation
can thus be refined by using the established statiselationships among the observations and
outputs from every two of the seven RCMs. Develape&klar (1959), copulas are functions
that connect univariate distribution functions donh multivariate distribution functions. A joint
distribution functionF for a random vector with components can be expressed as:

F(X, %,-%)= C(R(X), BEO%),- B (%) 1)

whereC is the copula function correspondingrpandFi(x1), F2(X2),..., Fn(xn) are
marginal distributions of the random vectaxs,(Xz, ..., Xn). It is difficult to calculate the joint
distribution of multiple variables directly. Theredfunction of the vine copula is to perform an
alternative decomposition of a multivariate densitp a set of bivariate copula densities related
to the original variables and their conditionalightes (Aas et al., 2006). The basic theory and
application of vine copulas can be found in Kurdwi@and Joe (2011), and Brechmann &
Schepsmeier (2013). Details of the calculation ssdor new projections derived from the
multivariate joint probability distribution (randowector with n components) can be found in
Text S1.

In three-dimensional situations, a possible decattipo of the three-dimensional
probability density functionf (x;, x,, X;) can be written as:

f (X, %, %) = f,(%) (%] %) f(%] X, %) (2)

According to Sklar’'s theorem, the conditional déasian then be expressed as:

g1 = () = KODGLFOR. o) ®

and
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Osl%.%) f (% 1%) f(% %)
= (%1 %) C g F(X,| %), F(X5] X)) (4)
= f(X3)C13( F(x), F{X)) C2,3|( R xJ X, H x{ X))

The joint density expressed by equation (2) is eot@d to a product of marginal
distributions and bivariate copula densittes, c1,3 andcy 3. To determine the parameters for
decomposed bivariate copula functions, the VCEDireg marginal distributions fitted to RCM
outputs and observations at each station. In thysall marginal distributions were constructed
using the Kernel estimation method, after whichKlsémogorov-Smirnov (K-S) test was
employed to evaluate their performance (Zhou eall8). Several commonly used copula
functions were examined, including the Gaussiamd&tt’s t, Clayton, Gumbel, and Frank
copulas. The basic properties of the identifiedutapunctions are presented in Table S2. Copula
parameters can be estimated using the maximunihided method (MLE; Shih & Louis, 1995).
To ensure the accuracy of dependence structutbe MCED, the root-mean-square error
(RMSE), Akaike information criterion (AIC), and Grer von Mises statistic (Genest et al.,
2009) were used to perform goodness-of-fit testshfe copulas (Fan et al., 2015). A copula with
a minimum AIC or RMSE (or combination of both) wamsidered the most appropriate. The
performance of the chosen copula was then furdsted using thp-value of the Cramér von
Mises statistic.

In the calculation for joint density of multiple Nvables (e.g. Equation 2), the potential
schemes with combinations of climatic variablesdiverse, and thus multiple dependence
structures can be established. Figure 2 showseacdpula structure corresponding to formulas
(2) to (4). Figure 2(a) depicts the vine copulacture of two trees with three edges (each edge
is associated with a pair-copula). Variables 1 21fd andx in formulas (2) to (4)) in each
structure tree represent precipitation projectioos) two RCMs, whereas variable & {n
formulas (2) to (4)) represents the correspondimggovations. According to the structure tree in
Figure 2(a), a three-layer marginal distributionl &mree bivariate copula functions can be
established (Figure 2(b)). Using the probabilitegral transform (Rosenblatt, 1952; see also
Text S1), new projections can thus be generated.

To illustrate the usage of this method more ingelif, a simple example with variables
of X1, X2, andxs and the corresponding CDFsuaf uz, andus (with a sample size of 1,000 for,
Uz, andus) is presented. The Frank copula is fitted to gaihof decomposed variables, with the
sample size adi;, uz, andus each being 1,000. Kendalltsralues between the pair-variables (i.e.
X1~X2, X1~X3 andxz|x1~xs|x1) and corresponding Frank copula parameterg,, 0s are displayed
in Figure 2(a).
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In the case where the data tar uz, andusz are known (at the model training phase), a set
of dependent variables, u», uz is converted into a set of independent and unifean|ables on
the [0, 1] interval 1, wa, ws) according to the probability integral transforBg(ations 7 and 8
in Text S1). Figure 3 shows the Rosenblatt tramsfand its inverse calculation results (Eq. (7)
and Eq. (8) in Text S1). Figure 3(a) shows theatation between the originab andus. Figure
3(b) indicates a lack of correlation betweenandws (independent) after transformation

calculation, wherew, =C, (u, |u;) andw, =Cy,(U; |U,,) . Whenui andu; are known andis

is unknown (at the validation and projection stageée values ofis can be estimateda the
inverse Rosenblatt transform based on informatiomfdecomposed pair-copulas. Assume that
one set ofi; andu (denoted asi1,i anduy,) is chosen from the 1,000 samples. In order tainbt
the projections ofizi, 300 samples of,i, which are uniformly distributed within [0, 1],ar
generated through a Monte Carlo simulation (Zhoal.e2018). Following this, a series of
simulatedus, values are obtained using the inverse Rosenbdausform, and denoted as

Uy; = Cy1, (W5 | Uy, u,) . Figure 3(c) shows the probability density disitibn of 300 sampling

results of w;, and Figure 3(d) shows the probability densityriiation of the estimateds
(300 prediction values far ) conditional oruy i anduz,i. Simulation results for the entitg
(averagedis,) sequence are shown in Figure 3(e). Values obrresponding to simulation
values ofuz can then be obtained.

Detailed steps of the VCED model application usedibwnscaling the RCMs in this
study can be generalized as followsEsjimate the marginal distributions®f(x1), F,(x2), and
F(x3) for precipitation of two RCM simulations and obsgions from the training period
(1986-1995). 2Estimate the parameters of decomposed pair-copeied to the original
variables and their conditional variables, therfqgren goodness-of-fit tests to select optimal
copula functions. 3fenerate thes sequence for the training period according tarkerse
probability integral transform. 43lentify the interval around the maximum probapitiensity
value of simulatedis, with the mean value (mean of conditional CDF ea)uepresenting the
final simulated value. Spenerate thas sequence for the validation period (1996-2004) and
verify the simulateds values by comparing with the observationsPf)ject the changes of
future precipitation relative to the baseline pdriase onto the validated model.

4. Analysis of Results

4.1. Implementation and performance of the proposed approach

In this study, joint downscaling was conducted gghe proposed VCED model for
every combination of two RCMs and was applied chestation. The VCED approach may be
compared to the more commonly used technique ofgand newly developed Bi-Copula
methods. The marginal distributions in the Bi-Ca@pulethod are consistent with those of the
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VCED approach, such that the relevant effects emibdeling results are insignificant. Data for
1986-1995 were used for calibrating the VCED moadhile those for 1996-2004 were used for
its validation. Twenty-one combinations of sevenM&Gnere introduced into the established
VCED, resulting in 21 sets of jointly bias-corretteutputs. These schemes and their
corresponding serial numbers (RCMs) are shown biela.

Before making a comprehensive evaluation of the B@&odel performance for all
stations under each combination scheme, nine sgafiom scheme 1 (outputs from PRECIS and
RegCM driven by HadGEM-ES) were selected to enataee detailed description and intuitive
evaluation. The performance of PRECIS and RegCMuiat(monthly mean precipitation)
during the validation period (1996—-2004) for nitatisns before post-downscaling processing is
shown in Figure 4. These nine stations were chbseause they contain diverse comprehensive
characteristics: 1) precipitation can be accuratehulated by both RCM models, i.e., RCM
simulations are close to observations (e.g. FiguBg 2) the outputs from only one model are
close to observation values (Figure 4-1 and 4479; 3 both RCM outputs deviate significantly
from the observed values. The simulation resultsvofRCMs at the same station are very
different from each other and generally differeoni observations. The proposed method can
therefore be tested through comparison with thibredion results from different methods under
different simulation scenarios.

A comparison of results using the VCED, Qmap, ar@&pula (monthly mean
precipitation from schemes of PRECIS & RegCM) mdthat nine meteorological stations is
shown in Figure 5. Figures 4 and 5 show that the@and Bi-Copula methods largely fail to
capture precipitation information accurately whiee RCM outputs exhibit significant
discrepancies. This implies that the VCED methosldraimproved capacity for identifying
significant information in discrepant RCM outputgch that more robust projections are
achieved. In addition, the prediction intervalhetthan fixed values, can be generated based on
multiple sampling calculations (see Text S2, Figoteand Figure S2 in the appendix), which
can be used for uncertainty analysis further temeistic analyses.
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The mean absolute error (MAE) of monthly mean piggiion (Figure 5) at each of the
nine stations is shown in Table 3. This shows ttratMAE values using Bi-Copula-PRECIS
schemes are lower (2.87 mm lower on average) atatlbns than those using the Qmap method,
but higher (3.95 mm higher on average) than thase VCED. Similarly, most of the MAE
levels from VCED are significantly lower than thdsam the Bi-Copula and Qmap RegCMs.
The average MAE from VCED is 3.05 and 1.24 mm lotkan that arising from the Bi-Copula
and Qmap RegCMs, respectively. Thus,we can condtodethe MAE tests that: (i) the Bi-
Copula method performs better than Qmap in biagecting precipitation projections, which is
consistent with the conclusions of Zhou et al. @0&nd (ii) the proposed VCED based on
multiple RCMs can produce better results than thee@and Bi-Copula methods.

The analyses detailed above show rough compartsstmseen post-downscaled and
observed monthly mean precipitation for selectati@ts during the validation period. In order
to verify the results for different quantile segriseof precipitation series over all stations, the
MAE was also used as a global quantitative evalnatiethod (Gudmundsson et al., 2012). A
set of MAEs (MAEO.1, MAEO.2,...,MAE1.0) obtaineain the equally-spaced probability
intervals of empirical CDF (for observed informatjavere used to approximate the distributions
of precipitation within different probability inteals. Figure 6(a) shows the mean precipitation
over all stations for each month, denoting diffeesbetween simulated results from different
methods and observations throughout the entiremegihe results from VCED are closer to
observational values than those from the Qmap a@@bBula methods, especially during the
rainy season (June—August). Both the average MARlaa value of MAE at each probability
interval (MAEo.;, MAEo.>, ..., MAEL ) are shown in Figure 6(b). For specific probapilit
intervals, MAE values from VCED are generally lovilean those using the Qmap and Bi-
Copula methods (except MAR. In detail, the MAE o arising from VCED simulations (i.e.
24.52 mm) is smaller than that arising from bot @map (35.81 mm for PRECIS and 37.79
mm for RegCM) and Bi-Copula methods (36.18 mm fREEIS and 36.07 mm for RegCM).
Detailed data from all MAEs used in Figure 6(b) atioer schemes are shown in Table S3.
These results demonstrate that VCED is advantageopsst-downscaling precipitation relative
the existing Qmap and Bi-Copula methods, espedatlindividual wet months (or the rainy
season).

MAE values were calculated as the average of alicsts after sorting precipitation
values in ascending order. Taylor diagram verifaratvas undertaken in order to evaluate the
post-downscaled precipitation as time series. Eigupresents Taylor diagrams of correlation,
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root-mean-square (RMS) difference, and the ratistaidard deviation between simulations and
observations (Taylor, 2001). In detail, seven RQNpats led to 35 downscaling schemes
comprising seven Qmap, seven Bi-Copula and 21, 2)) VCED schemes. Figure 7(a)
shows the mean correlation coefficient (MR), noiread standard deviation, and RMS
differences between observations and simulationsdoh scheme at 44 stations (each point
represents a station). The MRs of the tested Qmiagnses range from 0.461 to 0.580, with an
average of 0.518, while those of the tested Bi-Gopahemes range from 0.523 to 0.618, with
an average of 0.566. In comparison, the proposelY&chemes have MRs of 0.553 to 0.638,
with an average of 0.593. The points corresponthripe VCED schemes are more concentrated
to the unit radius (i.e., their ratio of variansecloser to 1). The closer the point to the hottiabn
axis, the lower the RMS difference between obsematand simulations. Figure 7(b) shows the
location of the mean distances of all points touh circle under each scheme, where the
enlarged drawing marks the scheme numbers andspomding points for each method. The
average rates of deviation from the unit circletf@ Qmap, Bi-Copula, and VCED methods
were 23.4%, 18.5%, and 15.3%, respectively. Intamdithe resulting 35 schemes were ranked
according to the skill scores of statistical indoca (Figure 7(c); Taylor, 2001). The resulting
score-based ordination diagram (Figure 7(c)) demnatesl that VCED schemes had a higher
ranking than either the Qmap or Bi-Copula methods.

The above validation methods may be used to viréyperformance of each group of
post-downscaling simulations. In addition, rankdgsams (RH) were used (Anderson, 1996;
Hamill, 2001) to evaluate the distribution reliatyilof ensemble projections. As a visual tool for
assessing whether projections and observationsthaveame distribution, a flat RH is expected
to indicate a satisfactory correlation. Figure 8yides the RH validation results of VCED
projections at all stations for 1996—2004. Most Ritsflat, indicating that the ensemble
projections are credible. Several stations sholightdJ-shape, indicating that the distribution of
the projection results at these stations is shgmibre concentrated. For the Wutai Mountain
Station (station 15), at which many observationsaveritside of the ensemble extremes, the
maximum probability is 0.10 higher than the meae liThis could arise from the fact that this
station was moved from 2894 m to 2485 m aboveees in 1998, such that significant
differences in surface conditions led to discrepzsim the observation data.

Figure 9 shows the ensemble projected intervatsafthly mean precipitation at the 44
stations based on 21 post-downscaling groups wseyy CED model at the verification stage
(1996—-2004). The average deviation between thepgrotiprediction results and observations
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ranges from 3.5 mm to 12.1 mm. The ensemble inteatasome stations are slightly larger,
however, all ensemble mean predictions are closéservational values, confirming their
validity.

4.2. Projections of future precipitation changes

To better understand future precipitation changesss the Loess Plateau, the ensemble
projections of future precipitation under two RGfesarios (i.e., RCP4.5 and RCP8.5) for two
30-year periods (i.e., the 2050s and 2080s) warergé&ed using the VCED model. Precipitation
projections for future scenarios were then comparidd historical observations (1986—-2015).

Figure 10 presents a comparison of average anotalprecipitation between historical
observations and the mean ensemble projectiongoofuture 30-year periods under two RCP
scenarios. The interpolation figure obtained bygkry shows that the spatial distributions of
average annual precipitation under future scenariesimilar to those known throughout
historical records (i.e., increasing from the naist to the southeast). In general, projected
future precipitation values in most areas of thedsoPlateau are higher than the corresponding
values from historical observations, especiallthie western region. The average annual total
precipitation over the entire Loess Plateau in@edy 8.4% and 11.4% for the 2050s and
2080s, respectively, under the RCP 4.5 scenaricotmparison, the average annual total
precipitation increases by 9.3% and 17.5% for ®&08 and 2080s, respectively, under the
RCP 8.5 scenario. Variations in the projected jpitation of different regions are inconsistent,
ranging from —23.4 mm to 110.8 mm for RCP 4.5 anthf—19.2 mm to 133.3 mm for RCP 8.5.
Based on the ensemble projections, these uncantanvals of future precipitation were
determined to reveal the extreme situations pasédvlfuture precipitation. The upper and lower
limits of average annual total precipitation undeth RCP scenarios are compared to historical
observations in Figures S3 and S4). The monthlynnpeecipitation changes for each station
under the RCP scenarios for the 2050s and 208&svesto historical conditions are shown in
Figure S5 to S8.

Annual precipitation across the Loess Plateaup&eted to increase significantly based
on the ensemble predictions. However, as the ragitinthe most serious soil erosion, it is
necessary to study future precipitation changélamainy season (July—September) since this
accounts for 57.2% (historical) of the annual tpt@cipitation in this region. Figure 11
compares the mean precipitation in the rainy se&eomthe historical period against the two
30-year future periods considered. Figure 11(apisterpolation map of precipitation in the
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historical rainy season. Rows 2 to 4 show the meam the lower and upper bounds, of the
ensemble predictions for the future rainy seasespectively. The simulated precipitation along
the spatial trend in all future scenarios is laygeinsistent with that of the historical recordeTh
upper and lower bounds of projections show extreases of ensemble predictions, whereas the
mean ensemble predictions are general cases Wativedy high probabilities of occurrence.

The mean ensemble simulations show that the pemjgotecipitation in the south-central part of
the Loess Plateau is significantly reduced undén hdure scenarios, contrary to the
precipitation changes predicted in other regiongday this circumstance, the difference between
the precipitation in the northern and southernaegiwould be significantly reduced.

According to these results, precipitation durintufe rainy seasons on the Loess Plateau
may have obvious spatial and temporal changessinlalition relative to the present. Figure 12
shows the changes of mean ensemble precipitatitheirainy season under two RCP scenarios
relative to the historical period. The precipitatiariation interval at different stations and in
different periods under the two tested RCP scesaidinges from —50.5 to 71.8 mm, which is
significantly different from that of annual predagion (—23.4 to 133.3 mm). Projected
precipitation changes are somewhat higher under & Ehan under RCP4.5. Rainy season
precipitation in the northeast (stations in bluagig) would respectively increase by 25.9 and
25.0 mm in the 2050s and 2080s under RCP 4.5, a28.6 and 40.7 mm in the 2050s and
2080s under RCP 8.5. In comparison, the precipitati the rainy season in the south (stations
in red panels) would respectively decrease by 84B3.8 mm during the 2050s and 2080s
under RCP 4.5, and by 10.8 mm in the 2050s undé& &6; however, RCP 8.5 results in an
increased precipitation of 9.4 mm in the 2080snflicant decreases and increases in
precipitation occur in different regions during tiaény season, indicating that both the spatial
and temporal distributions of precipitation may ge significantly in the future.

5. Discussion

In this study, a vine copula-based ensemble dovingcapproach (VCED) was
developed to jointly downscale monthly-precipitatfarojections from multiple RCMs. Similar
to other downscaling methods, this approach asstiméshe dependence structure among
observed and projected precipitation amounts ldestduring the study period (Mao et al., 2015).
However, the essence of VCED is to generate dovedst@as-corrected precipitation
projections from multiple RCMs rather than fromgenmodels, and thus fully capitalize the
information from discrepant RCM outputs. MoreoWtGED is able to produce multiple sets of
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projection series by pairing several climate modelg. seven RCMs have generated 21 sets of
downscaed results in this study). These resulthemimprove the robustness in reflecting
uncertainties in climate projections (Tebaldi & Kin2007).

In the VCED method, nonlinear dependencies in pretion amounts from RCMs and
observations can be captured through vine copsile) that the conditional distributions of the
precipitation (to be corrected) can then be deri®ah conditional distributions can facilitate
bias-corrections for future projections based @irtimean values (mean conditional CDF values,
or mean CCVs). Therefore, an important issue of BE€the robustness of conditional CDFs.
The parameters in VCED are linked to the levelsasfelations between RCM outputs and
observed records, while these correlations may beyweficant impacts on the conditional
CDFs. A proximity ratio (PR) was investigated atenselected stations (Section 4.1) to illustrate
such impacts (see Table S4 for the details of Kiédafficients of correlation between
precipitation levels from four RCMs and observeéat each station). The FRY) is the ratio
of the mean CCVs that are more proximate to theesppnding CDF values from RCMthan
those from RCMy (see Text S3 for detailed explanation of the PRutation).

The results indicate that, the precipitation owgusm different RCMs would show
different levels of correlation with the observasoleading to different Kendall coefficients.
Moreover, when the differences among the obtaineadéll coefficients are significant (e.g.
greater than 0.1), the resulting mean CCVs woule haw likelihood of approaching the CDF
values of those RCM simulations that have low Kdratgefficients (Table S5). For example, for
PR(1, 2), the correlation coefficients between R@Mutputs and observed records are
significantly lower than those between RCM_2 owspartd observed records at Stations 2, 8, and
9 (Table S4). Consequently, the PR values at ttiese stations are significantly lower than
50%, i.e., most of mean CCVs are close to CDF walimm RCM_2 simulations. Among these
stations, the difference of correlation coefficgeat station 8 is the highest (0.16), with lessitha
20% of mean CCVs being close to CDF values from RAMimulations. These results indicate
that, for the two RCMs with their outputs havindfelient levels of correlation with the
observations, the one with higher correlation wcdgle a greater contribution to VCED.
However, if the difference of correlation betweba two RCMs is insignificant, then the other
factors (e.g. types of marginal distributions op@la functions) would dominate the
performance of VCED.

Another important factor affecting the conditiodadtributions is the type of dependence
model. All marginal distributions of simulationschabservations were constructed through
Kernel estimations to mitigate the influence inmsrof the choice of marginal distributions. Five
copulas (i.e., Gaussian, Student’s t, Clayton, Gelpdnd Frank copulas) were provided to
express the dependence among simulations and alises; decomposed bivariate copulas
were identified based on goodness-of-fit tests. elew, different copulas might lead to different
mean CCVs. The influence of copula function on d¢oowlal CDFs was investigated through
comparisons of PR values from Frank and Gaussipnla@schemes at nine stations, which mean
that the bivariate dependence structures of VCHIDdcbhe quantified through Frank or Gaussian
copula (Table S6). The results demonstrate thagnwhe difference in correlation coefficients is
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greater than or equal to 0.02, the mean CCVs friank-copula scheme would have high
likelihood of approaching the CDF values of thog&MRoutputs that have higher correlation

with observations. In comparison, similar resulie be obtained through Gaussian copula when
the difference in correlation coefficients is gegahan 0.06. Thus, Frank copula is more
sensitive to the differences in correlation, andild@roduce higher PR values.

The MAE values for different probability intervdl®m Frank, Gaussian, and combined
copula schemes at nine stations are also analyadie(S7). The combined copula scheme
consists of decomposed bivariate copulas identffieh the five options based on goodness-of-
fit tests. The results indicate that the averageBgl&Aom Frank copula are lower than those from
Gaussian and combined ones. The MAE values fromkFzapula at probability intervals of 0.7
to 1.0 are generally lower than those from combimeeks. Although the results of MAEfrom
Gaussian copula scheme are more accurate (thegaVdiaE; o of six RCM combinations is
17.27 mm), the mean values of M@éEand MAR g for six RCM combinations under this
scheme are respectively 3.56 and 4.04 mm largerttiese under copula combinations. Thus,
Gaussian copula is less effective in reflectingdifferences among high precipitation levels. In
general, Frank copula is more sensitive to diffeesnin correlation coefficients, and performs
better in MAE analyses.

6. Conclusions

In this study, a VCED method has been developedflect interdependence among
RCM simulations and observations, derive probaislgistributions for downscaled variables
conditional on RCM outputs, and jointly downscaléMR projections in both deterministic and
probabilistic expressions. The proposed VCED haddhowing advantages: (i) information
from multiple RCMs and a large number of ensemids-borrection series can be generated to
reflect the effects of multiple uncertainties (&.dqRCMs, and 21 sets of downscaled results); (ii)
for two RCMs with their outputs having significatifference in correlation with the
observations, the one with poor correlation cowdlly contribute significantly to the VCED,;
thus improved reliability in climate projectionsnche accomplished based on the improved
robustness in reflecting such correlation diffeesnc

The proposed VCED approach successfully facilitétedoint downscaling of
projections from seven RCMs over the Loess Plat€aina for two 30-year periods under two
RCP scenarios. The performance of VCED was dematastthrough comparisons with those of
Qmap and Bi-Copula methods (MAE and Taylor diagiafise MAE assessment results
revealed that VCED is advantageous for the postrdoaling of precipitation, especially in wet
months. The Taylor diagram verification resultswsld that the post-downscaled precipitation
from VCED outperformed those from the two othermoels in terms of correlation level, RMS
difference, and the standard deviation. The resigitsonstrated that VCED is more effective in
both identifying significant information from disgpant RCM outputs and achieving robust
projections.

Based on the VCED results, variations in precigtabver the Loess Plateau were
analyzed for two 30-year periods (2050s and 2080dgr two RCP scenarios (RCP 4.5 and
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RCP 8.5). It was found that such variations weoemsistent at different stations, regions and
periods. Significant decreases or increases ingtaton during rainy seasons might occur at
each temporal or spatial unit under both RCP sg@narhe projected precipitation in the south-
central Loess Plateau would significantly decrehgéng both 2050s and 2080s, while those in
other regions would notably increase. Relativelyaimate in the south-central part might lead
to an increased risk of drought. Precipitationh@& ¢ast was higher than those of the other
regions during the historical periods; nonetheless,projected to increase significantly in the
future, leading to increased flooding risks.

In this research, VCED was developed for projectimanthly precipitation under climate
change. Further extensions to daily-scale projestare desired. However, issues related to
sample autocorrelation in daily precipitation semeed to be addressed before the VCED-based
downscaling can be undertaken. VCED can be extetwetther climate variables, such as
temperature and wind speed, and can also facitii@teownscaling of GCM projections.

Among the copula functions that have passed thiststal tests in VCED modeling, those that
are more sensitive to differences in correlatioefiitcients would have better performance in
climate projections.
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Captions of Tables

Table 1. Regional climate models (RCMs) together with theidg global climate models
(GCMs).

Table2. The 21 numbered combinations of 7 RCMs (the nuraberdividual RCMs are shown
in Table 1).

Table 3. Comparison of MAE of observations and bias-cogg@aimulations for monthly mean
precipitation.

Captions of Figures

Figure 1. Location and topography map of the Loess Platw#h,44 meteorological stations
indicated.

Figure 2. Structure of the vine copula model and parametétsdifferentt values between
decomposed pair-copulas.

Figure 3. lllustration of the Rosenblatt transform and itgarse calculation, where (shows the
correlation betweenz andus, (b) indicates the correlation betwegnandws, (c) shows the
probabilistic distribution of 300 samples @, (d) gives the probabilistic distribution of the
variable to be bias-corrected (ig,), and (e) shows the simulation results for theent
(averagedus,) sequence.

Figure 4. Monthly mean precipitation from PRECIS and RegCafladets before post-
downscaling analyses at nine meteorological statthming the validation period (1996—2004).

Figure 5. Post-downscaling results using different methadsrfonthly mean precipitation at
nine meteorological stations during the validageniod (1996—-2004).

Figure 6. Comparisons between different methods. Left: campa of monthly mean
precipitation at all stations. Right: average MAF &ll stations and at each probability interval.

Figure7. Taylor diagram (a), enlarged diagram (b), and irankhart (c) for 35 schemes of
verification (1996—2004). Red points derive frore @map method, blue points from the Bi-
Copula method, and green points from VCED; rankingbers are placed at the tops of the
bars.

Figure 8. Ranking histograms for ensemble precipitationgutipns at 44 stations. Dashed line
denotes an identical probability level; horizorgaes show 21 ensemble members with 22 bins.
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Figure 9. Monthly mean interval (shadowed) of precipitatéuring the verification stage
(1996-2004) obtained from 21 groups of downscalasylts at 44 stations. Black lines represent
monthly mean observations; red lines represen¢tisemble mean predictions.

Figure 10. Comparison between the historical average annealigtation and projected mean
ensemble precipitation under two RCP scenarioshichwv(a) denotes the historical average
annual precipitation, (b) represents the mean ebksepnecipitation during the 2050s under RCP
4.5, (c) the 2050s under RCP 8.5, (d) the 20808mREP 4.5, and (e) the 2080s under RCP 8.5.

Figure 11. Comparison of average annual precipitation inréiiey season between historical
observations and two RCP scenarios in which (ayshabservations, (b) shows the mean
ensemble of RCP 4.5 for the 2050s, (c) denotemttan ensemble of RCP 4.5 for the 2080s, (d)
shows the mean ensemble of RCP 8.5 for the 208D ffresents the mean ensemble of RCP
8.5 for the 2080s, (f-i) represent future loweritiensembles corresponding to (b-e), and (j-m)
are future upper-limit ensembles correspondindpte)(

Figure 12. Projected changes of the rainy season at 44 ssabiothe Loess Plateau between two
30-year periods under two RCP scenarios, compaitbdive historical period.
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Table 1 Regional climate models (RCMs) together with the drivioba climate models (GCMs).

Number 1) 2 3) 4 5) (6) ()
GCMs HadGEM-ES GFDL-ESM2M  IPSL-CM5A-MR  MPI-ESM-LR  HG&M2-A0
RCMs PRECIS RegCM RegCM RCA4 RCA4 RCA4 HadGEM3-RA

Institution University of Regina SMHI SMHI SMHI NIMR

1 Rossby Centre regional climate model, Detailed informatim be obtained through Kupiainen et al., 2014
2. Detailed introduction about theladGEM3-RAregional climate models is shown in Diallo et al., 2014.
SMHI: Swedish Meteorological and Hydrological Institute

NIMR: National Institute of Meteorological Research, KNbduth Korea

Table 2 The 21 numbered combinations of 7 RCMs (the numbediofdoal RCMs are shown in Table 1).

RCMs (1) (2) 3) (4) (5) (6)
(2) 1
(3) 2 7
(4) 3 8 12
(5) 4 9 13 16
(6) 5 10 14 17 19
(7) 6 11 15 18 20 21

Table 3 Comparison of MAE of observations and bias-correctedikitions for monthly mean precipitation.

Scheme Station number Mean
1 2 3 4 5 6 7 8 9
VCED 6.67 4.02 7.17 6.51 12.37 6.5 6.64 9.59 6.4 327.

Qmap PRECIS 14.31 8.36 8.68 7.39 22.84 1483 16.@941 158 14.14
RegCM 10.09 368 8.7 6.2 13.17 1149 12.02 1095 16.99 10.37
Bi-Copula PRECIS 11.87 597 856 6.71 139 10.31.02317.56 1351 11.27
RegCM 843 463 11.2645 1029 895 8.66 1122 7.25 8.56
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Precipitation variations during the rainy season (mm)
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