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Abstract
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Given the matrix G( o) ={ (o) d(a)
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}jj:isshown that if

1
b(a)/Ja( a)—d(a )i[a(O()—d(O())z +4b( o) c(oc)]? can be exp ressed

as a ratio of polynomials then the matrix G(a)can be explicitly Wiener-
Hopf factorized. The Wiener-Hopf factors will also have algebraic

growth at infinity.



1. Introduction

Recently there have appeared a number of papers dealing with the
explicit Wiener-Hopf factorization of special types of matrices.
Lebre[l]uses a rather elaborate procedure to factorize the matrix

2
Gl(oc)=[l ap ] (1.1)

where a(a) is an arbitrary function and p(x) is a rational polynomial.
Meister and Speck[2][3] factorized the matrix

(1.2)
Gz (o) = B1(a) Ry () +B2 (o) Ry (o)

where Bi(a) and B, (a) are arbitrary scalar functions and R;(a)and Ry (o)
are matrices with rational elements such that

R?°= R , Ry=1I - Ry . (1.3)

Meister and Speck applied these results to the explicit factorization of
the matrix
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2+€§-—t1t2,which occurs in elastodynamic problems

Where wf:4r—3k§,t:a
Kupradze[4]. Hurd and Luneburg[5]carried out a rather complicated

factorization procedure for the matrix (which occurs in a problem of

diffraction by an anisotropic impedance half plane)
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where T = &2-—a2 2,k2::k2 —k%. However, 1n alater paper Luneburg et

al[6] they did realise that this matrix could be diagonalized by means



-2-

Of polynomial matrices. In the paper* [6] they simply state the
factorization of the matrix(which occurs in a diffraction problem by a

partially coated dialectric slab):

12 1.2
k2 —k
#4.&(](%_]{%) ikz-i-io{kz
G5 (o) = L P2 2512 P2 (1.6)
k k o
Tz v B ok, L+ B (x3-x2)
B1 B B1 B2 ]

1 1

where By = (kj2.—oc2)2, kj:(k%.—k%ﬁ y=1,2, in the form
(1.7)

Gs(a) = T H()A ()T ()
2 2
ot ko Elﬂ+pk 0

T(a)= X, o I Bl =B B, (1.8)

0 By +1Bo

The present paper shows that all the above matrices Gy(a), J=1,2,3,4,5
fall into a more general class which can be Wiener-Hopf factorized by
elementary means. We also give a simple criterion on the coefficients

of the general matrix G(u) given by

a (o) b(oc)} (1.9)

Guﬂz{
c (o) d (o)

which will ensure that the matrix can be polynomially diagonalized.

That 1is that G(a) can be represented in the form
G(a) = P(a)D(a)P' () (1.10)
where P(a) and P'(a) have only polynomial elements. P'(a) = det (P)P~

* They represent these factors as G_(a)= T@%Z\_(O(),G_F(oc): Z\+(0()T(0()
Their factorization would seem to be not strictly correct because
T'(a) will have poles at a = tik. However, in the application they
eventually only require G, o) and G_ﬂ(a) = A(ax) T(x) to be analytic

and regular in their regions of reguality, and hence their procedure

gives the correct results.
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is the "formal inverse", and D(a) = diag{d, (a),d;(a)} where d, (a) and
d, (a) are arbitrary functions of ao. Obviously once such a decomposition

as (1.10) has been achieved then the Wiener-Hopf factorization can be

carried out quite simply as
G(a) = Gi(x)G-(a) (1-11)
where
Gy (a) = P (x)Ds () G (a) = D_(a)P'(a) (1.12)
D, =diag{d ; *(a) d, = (a), d; =dq + (e} —(a) dy(@)=d, +(a)d, - («)

We also observe that the factorization processes ensures that the
factors will have algebraic growth at infinity, and thus enable complete

solution of the relevant Wiener-Hopf problem to be carried out.

2. Polynomial diagonalization

Consider the matrix

a(a) b(a
G(a) = (@) bla) (2.1)
c(a) d(a)
The characteristic equation of this matrix is given by det(G-AI) = 0,

i.e. A’-A(a+d)+ad-bc=0. Thus the characteristic values of G are given

by
1

x (o) = (@+d)- {(a —201)2 +4bc }2

. (@+d)- {(a—ol)2 +4bc }E .

> (2.2)

; Ap(a
The corresponding eigenvetors are given by the solutions of the equations

(a=A1) vi1+bvy, = 0, cviy +(d-A{)ve= 0 for A (2.3)
(a=Ap) vi+ bvy, = 0, cviy +(d=-A3)voy = 0 for As. (2.4)

Since the determinant of G-AI vanishes,the 2 equations in (2.3) are

linearly dependent. Hence taking any one, say (2.3), we have

vll(a)_ - 2b

v21 ) @-d)- {(a—d)2 + 4bc }%
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Now, 1f we can diagonalise, the first column of the transformation

matrix will consist of vi; (o) and viz (a), and we require them to be

polynomials. Thus if
-2b Pll(a)
= . (2.0)
2 L Poq (o)
(@a-d)-1(a -d) +4bcy) 2
where Pj;(x) and P,; (o) are polynomials, then we can choose
viy (o) = P11 (o), vo1 () = Poi (o) .
Similarly, solving either of the -equations (2.4) we get for the
components of the eigenvector corresponding to A, that
v —-2b
12 _ ; (2.7)
V22 2 :
(a—-d)+{(a—-d)" +4bc)2
and if
—2b (e
L ) (2.8)
L op (4&)
2 22
(a-d)+{(a—-d) +4bc)2
where Piy(a) and Py, (o) are polynomials then we can choose
viz(a)= P 12(x), Voo () = P22 (o) . (2.9)
Thus if (2.6) and (2.8) (where these expressions must have distinct

values in order to be able to diagonalize) are satisfied then G(a) can
be represented by

G (o) = P(a)D(a) P! () (2.10)

where

)N (a)
-1 O . aet )

Psq Gx) Psy Gx) ’ 0

0

A2(a) ’

det(P)

T (o) = F22 ()2, (O‘)}

= Pyp (@) Py ()]

and the Wiener-Hopf factorization can be carried out to give (1.11)
and (1.12).

3. Special cases of the general matrix

(a) If we let a(a)=1, d(a)=1, b(a)=c(a)p2(a) where p(a) is a rational



polynomial then we get the matrix considered by Lebre[l]. The

expressions (2.5) and (2.7) now become

Vll(a)_p, and Z;zﬁiz__p, (3.1)

V21(a)_ sz(a)_
so clearly we can polynomially diagonalize.
(b) If we let (3.2)
a(a)==Bl(a)rll(a)4-52(U)fil(a), b(a)zzBl(a)rlz(“)*'52(a)fi2(a)
c(a) = By (O()rz 1 (o) + 62(0()?2 1 (o) a(o) = B (O‘)rzz(o‘) B (O‘)f2 2(0‘)

where r. .(0() and T. .(o<) are the rational elements of the matrices R, and
ij i 1

R, respectively, then we obtain the matrix (1.2).The condition (1.3)
requires that the elements of R; and R, satisfy:

rq T =1 Tty =1, +F =0, 5y +T1 =0, rfy +ry,1y =1y,

r12Tp1 * 5 = Typs (3:3)
rlZ(rll+r22—1)=0,r21(r11+r22—1)=0 (3.4)
Substituti ng (3.2) into the expressions (2.5) and (2.7) and using the

fact that r12=—r12,r21=—r21,r11=1—rll,r22=1—r22 we get

Vll(a)/vzl(d) ~ _Zrlz(ﬁl_ﬁz)
- 1
7120/ v55() (b1 — 8o Mers — 200 )1y 8o Flery —mpp F +aley —ByFrpqz 502
1

— v -
=21y 5/ ey~ )Flleyy —mpp P+ 55y012)
Now the conditions (3.4) require either (1) ri, =r,7 =0 or (ii) r{qtrp, =1.

If (1) holds then r12=r212312232120 and the original matrix 1is
already in diagonal form (this corresponds to vii/vy =vis /vy =0).

If (ii)holds then from (3.3)we have rrq 1o =—r222 +I5, z—(l—r11)2+(l—rll)

giving r121 —Iqq tIi,ryg =0 so that riq ={1+ ‘/1—4r12r21 }/2. Also from (3.3)
ry{q —Ipp, =2ry7 —1. Thus (2.15) becomes
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vip (@)v,y (@) ~2r,, ~2r ),

N

v12(a)ﬁ722(a)

(3.6)

Clearly (3.6) satisfies the conditions (2.6) and (2.8) and therefore
polynomial diagonalization can be carried out. The remaining matrices
Gi,1=3,4,5 can also be shown to satisfy the conditions (2.6) and (2.8)

and thus be Wiener-Hopf factorized by polynomial diagonalization.

In conclusion we suggest that given any 2x2 matrix that is required
to be Wiener-Hopf factorized, the first test one should apply is that
the elements satisfy (2.6) and (2.8). If these conditions are not
satisfied, then consider the more sophisticated methods of
factorization, see for example Heins[7], Daniele([8], Jones[9],
Krapkov([10), Hurd([1l1l], Rawlins and Williams[12], Rawlins[13],
Williams[ 15]. A similar approach can be carried out for 3x3 matrices,
however, although the cubic characteristic equation can be solved
explicitly, the resulting formulae are complicated. It 1is probably
better to apply the general principle of section 2 of this paper to 3x3
or indeed nxn matrices. This principle being that when one is solving
the eigenvector equations one should choose the elements vij(x) of the
transformation matrix such that they solve the eigenvalue equations and

they are polynomials.
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