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Abstract—In this paper, a modified collaborative filtering
(MCF) algorithm with improved performance is developed for
recommendation systems with application in predicting basline
data of Friedreich’'s Ataxia (FRDA) patients. The proposed
MCF algorithm combines the individual merits of both the
user-based collaborative filtering (UBCF) method and the iém-
based collaborative filtering (IBCF) method, where both the
positively and negatively correlated neighbors are taken rito
account. The weighting parameters are introduced to quanty
the degrees of utilizations of the UBCF and IBCF methods
in the rating prediction, and the particle swarm optimization
algorithm is applied to optimize the weighting parameters n
order to achieve an adequate tradeoff between the positivel
and negatively correlated neighbors in terms of predictingthe
rating values. To demonstrate the prediction performance b
the proposed MCF algorithm, the developed MCF algorithm is
employed to assist with the baseline data collection for thERDA
patients. The effectiveness of the proposed MCF algorithmsi
confirmed by extensive experiments and, furthermore, it islsown
that our algorithm outperforms some conventional approacles.

Index Terms—Friedreich’s Ataxia, collaborative filtering, pos-
itive correlation, negative correlation, particle swarm gtimiza-
tion.

. INTRODUCTION

URING the past few decades, the recommendation s%e-

tems (RSs) have received an ever-increasing interest fronw
various communities such as computer science, engineelJi
research and medical applications [1]-[3]. Owing to thell
outstanding performance in providing users with product
service recommendations, the RSs have found succes
applications in a variety of domains including e-commerc
music, movies, news and so on [4]—[6]. In order to recomme
goods and services that users are interested in, the RSym
employ information filtering technology to analyze user

requirements by mining user behavior data.

Collaborative filtering (CF), as one of the most successfll
recommendation techniques, has been receiving conslderdy

attention ever since the mith90s with fruitful applications in

recommendation algorithms (RASs) include the user-based CF
(UBCF) algorithms and the item-based CF (IBCF) algorithms.
The main idea of the UBCF algorithms is to analyze the
user behaviors to find similar users (named as neighbors) in
the communities. In this case, the items are recommended
to a target user based on his/her neighbors’ interestedsitem
Similarly, the IBCF algorithms make use of the similarity
between the items rather than users. The items that areasimil
to those in which the target user is interested are recometknd
to the concerned user.

It should be noticed that the similarity measures play a
critical role in the CF-based RAs. Some commonly used
similarity measures in the UBCF and IBCF algorithms include
the adjusted cosine (AC), cosine, and Pearson correlation
coefficient (PCC) measures. Nevertheless, in the casehbat t
user behaviors are complicated, the performance of the CF-
based RAs which use the PCC, cosine or AC as the similarity
measure cannot be always guaranteed. As such, tremendous
efforts have been devoted to the design of more comprehen-
sive similarity measures [8]-[13]. For example, the Shanno
entropy has been employed to quantify the users’ ratingthiabi
[10], [11], where the difference of entropy between users ha
en utilized as the weight to adjust the result of simyarit
hile the state-of-the-art similarity measures have h&lpe
ﬁg)roving the prediction accuracy of the RAs, most of the

asures take either users or items to predict the missing

gﬂplues. It has been shown in some literature that the com-

#uption of the UBCF method and the IBCF method could
ectively improve the performance of the RSs [3], [13]-
%p]. In [13], the confidence weights, which use the degree of
§H’ni|arity of the neighbors as a reference, have been etilin
alance the predictions obtained by the UBCF method and the
IBCF method. In the typical RAs, only positively correlated
Pighbors are utilized to compute the similarity betwees th
ers/items. Nevertheless, the negatively correlateghbers
are also useful in predicting the missing values from arnothe

the development of various RSs by Amazon, YouTube, Netle?rSpeCtive [17]. In this context, a seemingly natural idea

and so on [7]. Generally speaking, the well-known CF-bas
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{ito combine the UBCF and IBCF methods by developing

a new prediction model where the positively and negatively
correlated neighbors in both methods are taken into account
To balance the impacts from the UBCF method and the
IBCF method, a typical approach is to introduce the weightin
parameters to predict the missing values, where the weight-
ing parameters are utilized to make an adequate tradeoff
between the positively and negatively correlated neighbor
in the UBCF/IBCF methods. It is worth mentioning that, in
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the literature, such weighting parameters have been mauisease in Section Ill. Finally, conclusions are drawn in IV
ally selected according to engineering practice by means of
certain rules on an ad-hoc basis [3], [13]. Clearly, manual Il. MAIN RESULTS

selection of the weigh_ti_ng parameters requ?res in—depthad_n Given an RS consisting of. users andh items, the user
knowledge and specific fine-tuning techniques, which is ngfqfiles are denoted by @ x n matrix called the user-item

always possible in practice. As such, it makes practica&eny,airix R *". The sets of users and items are defined as
to automate the parameter selection algorithm with locall LUz, um} and ] = {i1,is,...,i,}, respectively. Each

optimized performance. elementr, ; in R represents that the userrates the value
In search of an effective algorithm capable of locatingn the itemi, wherew € U, i € I. If the useru has rated
optimally weighted parameters in terms of improving thghe itemi, thenr € 1,2,...,7 (7 is the upper bound of the

prediction performance, the Evolutionary computation XEGatings). Furthermorey, ; = 0 if the useru does not rate the
algorithms appear to be an ideal candidate. EC algorithwes hgem ;.

shown distinguished advantages in solving optimizatiabpr
lems in a diverse range of real-world applications inclgdi

o . X : (?A The computation of similarity
telecommunication, signal processing, system sciencesan . o
on [18], [19]. An effective yet popular EC algorithm is the The PCC is one of the most well-known similarity measures

so-called particle swarm optimization (PSO) algorithmtthd" RSs due to its high prediction accuracy and easy implemen-
owns the distinctive advantages of easy implementatioikqu {@tion [13], [22]. In the UBCF algorithm, the PCC similarity
convergence and great competence in effectively searthing de9ree between userand user is calculated according to
global optimum. So far, the PSO algorithm has gained mud¢ following formula:

attention from both academia and industry with successful Yoier  (rui—=Tu)(rai—Ta)

. . . . . . . . s SimPCC: 1€1y,a ’ ’ (1)
applications in solving various multi-objective optimiizan w,a — —
problems, see e.g. [20], [21]. Owing to its particular Shiiigy, \/Zielu,a (rui=Tu) \/Zielu,a(raai_ra)
the PSO algorithm is exploited in this paper to optimize thv(\a/hereSimigc is the PCC similarity degree between users

weighting parameters in order to achieve an adequate tifadeaond I Y 1AL is the subset of items on which both
between the po;itively anql negatively correlated neighirr USEI‘S;I, gﬁada h;ve r;ted wheré, denotes all the items that
terms .Of predicting the ratm_g valu_es. ..nave been evaluated by userand I, denotes all the items

Motivated by the above discussions, we propose a modifi t have been evaluated by userr, ; indicates the rating
CF (MCF) algorithm in this paper by combining the merit§/al ’

oo ue of items rated by usemn andr, ; indicates the rating
of UBCF and IBCF methods. Through the utilization of the . e of itemi rated by usen; 7, is the mean rating value of

infprmation from both the positi\{ely a_“d negatively coatelq _items that user, has rated; and, is the mean rating value
neighbors, the proposed algorithm is capable of predlcu%g items that usewn has rated. The values calculated by (1)

the missing values in multi-aspects with satisfactory aacy are in the range of-1 to 1. A larger value ofSim?CC means
In particular, the PSO algorithm is dedicatedly exploited ty . v " \ser, and usem ére more similar wa

determine (locally) optimized weights of our proposed MCF | . |gcE algorithm, the AC method is introduced to

algorithm so as to further improve the prediction accuracy . ate the degree of similarity between the iteand item
To illustrate its application potential, our proposed aithon . by the following formula [23]:
is applied to assist with the baseline data collection f(gr '

AC ZueUi,j (rui—=Tu)(Tuj—Tu)

Friedreich’s ataxia (FRDA) patients. The main contribngo Sim

are summarized as follows: J \/ZueUi,j (Fui—Tu)? \/Zuem,j (Fuj—Tu)?
1) An MCF algorithm is proposed which not only combines
the merits from the UBCF and IBCF methods but als¢/here Sim;'¢ is the AC similarity between items and j;
makes full use of the positively and negatively correlatedi,; = U; N U; is the subset of users who have rated both
neighbors in predicting the missing values. item ¢ and itemj, whereU; denotes the users who have rated
2) The PSO algorithm is utilized to optimize the weight§e€m ¢ andU; denotes the users who have rated itgnand
in the MCF algorithm so as to achieve a) an adequate,; denotes the rating value provided by useon item j.
tradeoff between the user-based and the item-bad¥gtice that the values calculated by AC are in the range of
similarity measures; and b) a proper balance betweer} t0 1.
the positively and negatively correlated neighbors.
3) The developed algorithm is successfully applied to tt®. The neighbor selection

FRDA assessment system to assist clinical sample col-ragitionally, the topk algorithm is used to rank the neigh-
lection for FRDA patients who are unable to attend thgo s hased on their similarity degrees in the descendingrord
tests in the study sites. and then the top neighbors are chosen to predict the missing
The remainder of this paper is structured as follows. Thelues. As mentioned previously, the ValueSSd}higc and
detailed introduction of the proposed MCF approach is prSimf_‘jC lie in the range of [-1, 1]. The closer that similarity
sented in Section Il. The performance of our proposed MGff PCC/AC is to 1, the more similar the users/items are.
approach is evaluated in the case of a real-world neura@bgitsers with positive correlations can undoubtedly be used to

, (@
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make predictions. On the contrary, negative correlati@o althe negatively correlated neighbors according to the falig

expresses the relationship between two users from theinegatormula:

side. The closer that similarity of PCC/AC is tel, the more §imAC A
o . ) . = Zj*ENegi img = (ry - —J7)

dissimilar the users/items are. For example, if useenda Py =1 — —c ,

have the similarity of-1, it means when user rates an item Zremegi Simj ;-

with a h?gh value th_en user will definitely give a Ic_)w value wherej~ is the average value of the itefit which has the
on that item, and vice versa. To sum up, the neighbors W'Hégative similarity degree with the target item

both positive and negative correlations should be utilied |, our work the UBCFE method and the IBCE method
forecast the missing values from different perspectivdse Tare combined where both the positively and the negatively

neighbor selection has always been a key yet hot topic {8 rejated neighbors are taken into account to predict the
RSs. A large number of neighbor selection strategies haygssing values. Three weighting parameters are employed
been designed with hope to improve the RSs’ performangg. ihe “geveloped MCF algorithm in order to achieve 1) a

Based on the neighbor selection strategy suggested byesr per balance between the UBCF method and the IBCF
[22], the neighbors with high correlations are more valaab ethod, 2) an adequate tradeoff between the positively and
than t.hose yvith low correlations. T_herefore, the positine a negatively correlated neighbors in UBCF method, and 3) an
negative neighbor sets of userand item: are formed by:  4qequate tradeoff between the positively and negativateeo

(10)

Pos, = {a+|Simiff > 0.5,a # ul, (3) !ateﬁl neighb?rﬁ in IBCF method. The formula for prediction
Neg, = {a~[Sim"CC < —0.5,a £ u}, @) is shown as follows:
Pos = {j*[Sim{ 5% > 0.5,j* # i}, G T B
e : L . . P =+
Neg, = {j~[Sim/C < —0.5,5~ # i}, 6) o x (54 x Zatepos Slmwﬁ. (T;gé at)
Za*EPOSL Sunu,u,Jr

where Pog represents the set of similar users having positive
correlation with useru; Neg, represents the set of similar
users having a negative correlation with ugsePos indicates
the set of similar items having positive correlation witanit -
. . o : : 3. Sim29 (1, i+ —j1)
i; and Neg indicates the set of similar items having negative F(l—a)x [i+8x jt€Pos it Tugt —J
correlation with item. S+ epos Simi

Z'* ) Slmf‘q (ru,,'* _5_)
C. The prediction of missing values —(1- ) x LT - : ;o (11)

L . Zj*eNegi Simzqu
In the UBCF methods, the missing values on items are A b
predicted by utilizing positively correlated neighborsusters Wherea denotes the weight for the UBCF methad; — «)

—(1=X)

pPCC

. pcc __
% Za*ENegu Slmu,a* (Tafai —a )
z:a*GNegu Simu,a*

according to the following formula [22]: denotes the weight for the IBCF method; and (1 — )\)
. poC - represent the weights of the positively correlated neighbo
h— Zlﬁepo@ Simy, o+ (ra+i —a") @) and negatively correlated neighbors in the UBCF method,
o Dot cpog, SimL ¢ ’ respectively;3 and(1— ) denote the weights of the positively

correlated neighbors and negatively correlated neighhdlse
IBCF method, respectively.

It is worth mentioning that the formula (11) would be
egenerated into that for the traditional UBCF algorithrmewh
« and A are equal tal, and into that of the traditional IBCF
algorithm whena = 0 and 3 = 1.

wherer, ; is the predicted value of, ;; @ is the mean value of
different items provided by user, anda™ is the mean value of
items provided by the user™ who has the positive similarity d
degree with the target user. For the UBCF methods that
utilize the negative correlation neighbors, the missinfyies
of the test-item are predicted by the following formula:

. PCC __ ,
A Za—eNegu Simy, = (re-; —a~) ®) D. The PSO-based parameter selection strategy
o ereNegu Simi§9 ’ The PSO algorithm, which is a popular evolutionary com-

. utation algorithm inspired by the simulation of the social
wherea ™ represents the mean value of items rated by the u%er 9 b y

o~ who has the negative similarity degree with target user ehavior of fish-schooling/birds-flocking, is applied instpa-
In the IBCF methods employing the positive neighbors, trPer to dispose of the parameter optimization problem becaus

. : . of its competitive strength in seeking a relatively satisbay
missing values of the test-items are determined based on i oo \vell as its easy-to-implement feature [20]. e-er

> j+cPos Simf}ﬁ (ruj+ —J1) each particle in the swarm indicates a candidate solution to
S SimAC ) (9 the research problem.
jtepos wit In the proposed MCF algorithm, we select three appropriate
where i represents the average values of itémmated by weighting parameters to guarantee the prediction perfocaa
users, andj ™ is the average value of itenit which has The weights are expressed by 3adimensional vector as
the positive similarity degree with the target iteimTo be follows:
specific, the missing values on items are predicted by inijiz wEa B A

fu,i =i+



REVISED 4

Without loss of generality, we divide the user-item matrixalue whenk = 0, and w; indicates the final value of the
R into the training set (with 60 percent of the data), thmertia weight whenk = kmax.
validation set (with 20 percent of the data) and the testingIn this paper, the initial and final inertia weights values ar
set (with 20 percent of the data). The training set is appliegt asw;, = 0.9 andw; = 0.4, respectively. In general, a large
to train the weighting parameters, and the validation set irgertia weight will benefit the global exploration at the lgar
utilized to validate the predicted results by using theniedi stage and a small inertia weight will help the local explibaa
weighting parameters. As the prediction accuracy readies at the later stage. In addition, the acceleration coeffisien
desired threshold, the trained weighting parameters griiealp andc, are calculated by the following equations [26]:
to predict the results in the testing set.

The fitness function of the PSO algorithm is shown as c1=ciy+ (c1y —cif) ¥ w’ (16)
follows: max
fitness= 1 Z |Tusi — Puil (12) kmax — K
- o = Co5 + (2 — Cay) X IR 17)
wr max

whereV’ represents the validation s¢v;| denotes the numberwhere ¢;; denotes the initial value of cognitive acceleration
of ratings in the validation set arid ; is calculated by formula coefficientc; and ¢;; denotes the final value of cognitive
(12). acceleration coefficient;, co; denotes the initial value of

Our attention is focused on choosing suitakbleso as cognitive acceleration coefficient andc,; denotes the final
to minimize the fitness function of the PSO algorithm. Thealue of cognitive acceleration coefficient. According to
optimization problem in our work is defined by: experiment experience, the valuesaf, ¢1 7, co; andcyy are
set to be2.5, 0.5, 0.5, and 2.5, respectively. Finally, when
the PSO algorithm terminates, we can obtain the optimal

In this paper, the particles move at a certain speed inparameter vector as* = g(kmax), Wherekmax represents the
3-dimensional search space. Denote number of maximum iteration.

om(k) = [oma(k) oo (k) vm3(k)}T, The pseudocode of the MCF algorithm is shown in

. Algorithm 1 on next page.
wm(k) = [wml (k) wmg(k) wmg(k)] y

as the velocity and position of the:-th particle at thek-th Algorithm 1 The MCF Algorithm
iteration, respectively. The historical best position od t2-th

particle (n = 1,2,..., N) at thek-th iteration and the global
best position detected by the entire swarm are, respeptivell,

w® = argmin fitness. (23)

Input: User-item rating matrixRk, k£ in top-k method,
parameters in the PSO algorithm
Divide all the known data inR into the training set and

denoted by the validation set with a certain proportion;
P (k) = [pm1(k)  pma(k) pm?’(k)]T’ 2: Calculate the PCC similarity between users and the AC
T similarity between items by utilizing the data in the
g(k) = [gl (k) 92(/{) g3(k)] . training set;
The velocity and the position of theu-th particle are 3: Employ the PSO technique to select the optimal parameter
updated by the following equation: vectorw* (presented in Steps 4-14) on the validation set:
4: Initialize velocity and position for each particle;
U (k + 1) = wo, (k) + c1r1(pm (k) — wim (k) 5: for k = 0 t0 kiay dO
+ cora(g(k) — wm(k)), 6: for p=1to N do
Wi (k + 1) = Wi (k) + vm(k + 1), (14 T Predict the rating values on the validation set based
_ L ) ) ) on equation (11);
wherew is the inertia weight factorg; is the acceleration . Calculate the fitness value based on equation (12);
coefficient called the cognitive parameter, andis another . Obtainp,,, (k);

acceleration coefficient called the social paramete@ndry  15.  end for
are two random numbers that satisfy the uniform distributio, ;. Obtain g(k);
in the range of 0 to 1k is the number of current iteration. ;5. ypdate velocity and position for each particle based on
In order to enhance the search ability and reduce the pos- equation (14);
sibility of getting trapped into local optima, lots of impred ;5. and for
algorithms have been proposed to adjust the parametersjn get,,* — 9(kmax);
PSO algorithm. In this papes; is formulated according to the ;5. calculate the PCC similarity between users and the AC
relationship between current iteration and maximum iterat similarity between items by utilizing all the known data;
number as mentioned in [24], [25], which is given as followsig: predict the missing values ift by equation (11) according
kmax — k to the values ofy, 5, A in w*.
kmax (15) Outh;ut: The predictions of missing values in rating matrix

w(k) =wy + (w; —wy) X

where k£ and kmax are the number of current iteration and
maximum iteration, respectivelyy; is the initial inertia weight
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TABLE |
RATING DATA FORMULATION IN SARA
. L . - Finger chase Nose-finger test
Gait Stance S|t(t:|ng Speech disturban ight Teft mear®  Tight oft oAt
0Oto8 O0to6 Oto4 0to6 Oto4 Oto4 Oto4 Oto4 Oto4d Oto4d
Fast alternating hand movements Heel-shin slide b
right left mean® right left mean® SARA Total
Oto4 Oto4 Oto4 Oto4 Oto4 Oto4 0 to 40

a8 The mean indicates the average value of right and left sides.
b The SARA Total indicates the sum of the values on first 4 tesh$ and the
mean values on last 4 test-items.

1. APPLICATION IN FRIEDREICH’S ATAXIA B. Data pre-processing

ASSESSMENT SYSTEM In this paper, the scale for the assessment and rating of

) ataxia (SARA) dataset has been selected from the database
A. FRDA assessment with the help of CF method provided by the EFACTS. SARA is a new clinical scale that

Friedreich's ataxia (FRDA), which is defined by a Germalr? utilized to evaluate the treatment effectiveness andrggv

neurologist in 1863, is an inherited neurodegenerativerder of different types of cerebellar ataxia such as Friedreich

that affects the nervous system and the heart with sy Sé)_mocerebellar and sporadic ataxia [32]. As shown in Tab. |

. tere are 12 test-items in 8 categories to assess a range of
toms of deep sensory loss, muscle weakness, kyphoscohoag

dysarthria, heart disease and difficulty in speech [27]. RRD frerent |mpa|rments. _The categories are _ga|t, stancengi
. : 2 . speech disturbance, finger chase, nose-finger test, fast alt
is the most common hereditary ataxia with 1-2 cases in every,. N
. . hating hand movements and heel-shin slide. SARA has an
50,000 white people. To comprehensively study FRDA, the . .
. s . ) accumulative score ranging from 0 to 40 where 0 means no
European Friedreich’s Ataxia Consortium for Translationa, . .
ataxia and 40 means most severe ataxia.

Studies (EFACTS) has assembled a body of expertise to ado . . . .
. he number of patients in the SARA dataset is continuously
a translational research strategy for FRDA [28], [29]. _updated. Up to now, the SARA dataset has included the

EFACTS has been devoted to collecting and analyzingsejine data of 1029 patients. The user-item maliis a
FRDA patient baseline data since 2010. Up to now, EFACT, 29 x 12 matrix, where each row denotes an FRDA patient,
has collected more than one thousand patients’ baselige dgty aach column denotes a test-item. As shown in Tab. I
from nearly twenty study sites in nine European countieﬁ,]e rating intervals are different. Therefore, we norneatize
but the coverage is still far from enough. According to th?ating values into the 0-1 range based on
morbidity rate, the potential FRDA patients are huge. Due to
the limitations of physical, psychological or economicsesas, / T — Tmin (18)

: . r=—
many patients may not be able to go to the study sites for the Tmax — Trmin

FRDA medical assessment. . .
wherex’ is the normalized value;,;, andz,,.x are, respec-

Note that most baseline data are collected through int<ﬁ(7e|y the minimum and maximum values efwhich give the
views, questionnaires, observations and coordinated st rangé ofz

the study sites without using any medical instruments. Here
the detailed test methods and rating rules have been pivic'~
by EFACTS. Therefore, we make a reasonable assumpt

that patients who are not able to go to the study sites c 0zl o er

be assessed at home and let their families (or themselves) ool —% B¢k | |

as examiners. The examiners can be relied upon in providi K

certain reliable ratings in the portion of test-items dgriong- il 7

term observation and care. 017t ;f - %
Intuitively, similar FRDA patients exhibit similar symptes. w 016 ¢ o= 1 el

The unfilled parts in test-items are regarded as missingesalu = o.1s| o ’/j i// -

The prediction of missing values can be considered as 014} ////%;i/

typical RS problem, where the patients correspond to tl o3l /j;;;i/+

users, and FRDA test-items correspond to the items. Irspit 012k — =~ @j;/

by the idea of CF, the missing values can be predicted o=

utilizing the certain values provided by the examiners dred t ~ °* |

data collected by EFACTS. Therefore, the application of ol 0l e som 1% oo 50w a0 ao%

proposed MCF algorithm in FRDA provides an alternative wa Density

to assist patient baseline data collection. In this way, ynan ‘ _ N
more patient samples can be exploited in clinical trialsicvh Fig- 1. MAE metric under different densities.
will provide better bases for FRDA research [30], [31].
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TABLE Il

EXPERIMENTAL RESULTS UNDER DIFFERENT DENSITIES

density of matrix

Metrics Methods

90% 80% 70% 60% 50% 40% 30%
MCF 0.1132 0.1166  0.1302 0.1348 0.1449  0.1535  0.1684
MAE UBCF 0.1198  0.1231  0.1356  0.1471  0.1543  0.1627  0.1740
(Improve) (5.51%) (5.28%) (3.98%) (8.36%) (6.09%)  (5.65%)(3.22%)
IBCF 0.1157  0.1183  0.1314  0.1391  0.1486  0.1634  0.1841
(Improve) (2.16%) (1.44%) (0.91%) (3.09%) (2.49%)  (6.06%)(8.53%)
MCF 0.1583  0.1592 0.1722  0.1769  0.1907  0.1977  0.2265
RMSE  UBCF 0.1634  0.1643  0.1811  0.1945 0.2065  0.2209  0.2389
(Improve)  (3.12%) (3.10%) (4.91%) (9.05%) (7.65%) (10.50%(5.19%)
IBCF 0.1601  0.1627  0.1802  0.1845 0.2012  0.2156  0.2431
(Improve) (1.12%) (2.15%) (4.44%) (4.12%) (5.22%)  (8.30%)(6.83%)
026 population of the swarm is 20; the maximum iteration number
= is set to be 1000; and the search spacexgf, A is in the
—O- UBCF| | interval of [0, 1].
0.24 F —¥— IBCF a
//
A . :
022t e D. Results and Discussion
- ¥ /
w P e In this paper, we implement our approach on the SARA
— / . .
% 02r e Ky dataset provided by EFACTS to evaluate the effectiveness of
_ /*/ ///f/ our algorithm by employing the density of the testing set
0181 AT from 90% to 30% with a step size ofl0%. We repeat each
AT experiment 100 times to avoid random influence, and the
om@;zfﬁi/ average values of MAE and RMSE have been recorded. To
demonstrate the superiority of our proposed MCF algorithm,
014 | | | | ‘ we make a comparison of the UBCF and IBCF methods with
90% 80% 70% 60% 50% 40% 30% our proposed MCF method on the MAE and RMSE metrics.
pensity Experiment results of the UBCF, IBCF and MCF methods
Fig. 2. RMSE metric under different densities. are shown in Figs. 1 and 2. The vertical coordinate denotes

C. Experiment setting

the values of MAE or RMSE, and the horizontal coordinate
represents the different densities of the user-item maifiive
MAE and RMSE of different CF-based algorithms are dis-

In our simulation,1029 patients have been divided into thePlayed in Tab. II. The results indicate that our MCF algarith
training set (70%), validation set (15%) and testing se®4L5 has better MAE and RMSE values than the UBCF and the

The training set and validation set are used for selectieg tHBCF algorithms under different densities. To sum up, the
parameter vectow to minimize the error. The data in theProposed MCF algorithm has shown satisfactory prediction
testing set is regarded as patients who cannot take the t@§@uracy in the FRDA baseline data.

in any study site. In this case, the patients in the testirig se

only provide ratings on the portion of test-items. The pisgzb E. Complexity Analysis

MCF method is utilized to predict the rating values on paten

unfilled parts.

Classic UBCF (IBCF) algorithm involves the calculation of

To evaluate the prediction quality of the algorithm, the meg!Ser-user (item-item) similarity matrix in an offline wayhish
absolute error (MAE) and the root mean square error (RMS[S) computationally expensive. For both UBCF and IBCF,

used in our experiments are given as

follows:

1 .
MAE = < > > frui = ful,

uelUgi€ly

1
RMSE= |+ SN (rus

uclUg 1€y

- fu,i)Qv

(19)

(20)

the offline computation of similarity matrices is very time-
consuming. The offline time complexity of UBCF and IBCF

is O(m? - n) and O(m - n?), respectively, wheren denotes

the number of users and denotes the number of items. In
MCF, the offline computation is even more expensive because
our proposed algorithm needs to compute both user-user and
item-item similarity matrices. The offline time complexiby

where N represents the total number of predicted values the MCF isO(m? - n + m - n?).

the testing set{/; and I, represent the user set and test-item In the online phase, the time complexity of MCF method
set in the testing set, respectively,; is the true rating value in the prediction part is the same as that of UBCF/IBCF
in the testing set; and, ; is the predicted value provided bymethod, which isO(k) wherefk is the size of the neighbors

our proposed CF algorithm.

of the target user and item. To sum up, our proposed method

The parameters of the PSO algorithm in the simulation aimproves the prediction accuracy at the expense of extia®ffl
given as follows. The dimension of each particle is 3; theomputation.
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In this paper, an MCF algorithm has been presented and
successfully employed to deal with the data prediction lemb [13]
of FRDA patient baseline data. The proposed MCF algorithm
has combined the merits of both the UNCF method and the
IBCF method, and has been shown to outperform the UNCF
method alone or the IBCF method alone. It should be point
out that the positively and the negatively correlated nieigh
have also been taken into account in the MCF algorithm with
hope to improve prediction accuracy. In the developed M
algorithm, the weighting parameters have been employed
balance the usage of 1) the UBCF method and the IBCF
method; and 2) the positively and the negatively correlated
neighbors. The PSO algorithm has been applied to autom%t@
the selection of locally optimized weights so as to guamnte
the prediction accuracy. The MCF algorithm has been appli&é]
to deal with a real-world disease, the FRDA, to justify its

IV. CONCLUSION

application potential. Experiment results have shown that

proposed approach greatly improves the prediction acgurdt]

with better performance than either the UBCF algorithm or

the IBCF algorithm.
In the future, we aim to explore the possibility of using

dynamical systems [33]-[40], deep learning technique${{41

[46] and up-to-date optimization approaches to improve thg;

developed recommendation systems [47], [48].
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