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Abstract—Friedreich’s ataxia (FRDA) is the most common
inherited ataxia that causes progressive damage of nervous
systems and performance deterioration of physical movements.
FRDA baseline data analysis plays a crucial role in advancing the
disease research, where the main obstacle comes from the baseline
data collection due primarily to the degenerative symptoms of the
FRDA patients. Inspired by the nowadays popular collaborative
filtering (CF) method, a new FRDA baseline data collection
algorithm is proposed in this paper, with which the patients
(or their families) are only required to provide certain reliable
baseline data acquired from home and the uncertain/missing
parts of the data can then be predicted with acceptable accuracy
by utilizing existing patient information. The framework of the
proposed algorithm is constructed based on a novel hybrid model
combining the merits of model- and memory-based CF methods,
thereby facilitating the baseline data collection with improved
prediction accuracy. The proposed hybrid algorithm exhibits
the following two main features: 1) when a patient does not
have neighbors sharing similar baseline data, the model-based
CF component is activated to employ certain clustering method
to find similar neighbors based on their attributes; and 2) in
the case that a patient does have neighbors, a novel similarity
measure, which accounts for more statistical characteristics
by integrating rating habits and degree of co-rated items, is
developed in the memory-based component of the algorithm
in order to adjust initial similarities between the patients. To
evaluate the advantages of the proposed algorithm, the Scale for
the Assessment and Rating of Ataxia (SARA) is selected from
the European Friedreich’s Ataxia Consortium for Translational
Studies database. Experimental results demonstrate that our
proposed hybrid CF approach is superior to other conventional
approaches.

Index Terms—Collaborative filtering, Friedreich’s Ataxia, K-
means clustering, Shannon entropy, Jaccard index.

I. INTRODUCTION

FRIEDREICH’S ataxia (FRDA) is a genetic disorder that
causes progressive damage to the nervous system and

leads to muscle weakness, deep sensory loss, loss of position
sense, difficulty in speech or even heart disease [3]. The first
symptom for an FRDA patient is usually the difficulty in
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walking that gives rise to the necessity of using wheelchairs.
FRDA was named after Nicolaus Friedreich, a German doctor
who first described the condition in1863. FRDA is the most
common hereditary ataxia across most of Europe with the
prevalence of2–4 in every 100, 000 individuals. The symp-
toms usually first appear around puberty, but in a few cases,
symptoms develop in adulthood or early childhood. Though
there is currently no effective therapy method to cure FRDA,
many of the symptoms and complications of the disease can
be treated in order to help patients maintain optimal physical
functioning.

To have a comprehensive understanding of FRDA, the
European Friedreich’s Ataxia Consortium for Translational
Studies (EFACTS) assembles a group of experts to create
the first prospective international European FRDA registry in
2010 with the aim to improve FRDA patients’ health status.
EFACTS is committed to adopting a translational research
strategy by combining basic biology research with clinical
trials to solve practical problems for FRDA patients [18], [19].
One of the most important tasks is to collect and analyze
different kinds of baseline data which are of significant use
in clinical trials and fundamental research. Until the end of
2018, EFACTS has collected989 patients’ baseline data from
14 study sites distributed in9 European countries. This number
only accounts for less than 7% of the total FRDA patients in
the European Union, and the potential FRDA patient data size
is considerably large.

Many existing clinical studies suffer from small sample
sizes that cause the results to be insignificant [16]. Clearly,
more baseline data can help promote better disease research
in terms of sufficient sample selection, effective biostatistical
analysis and extensive clinical studies [6], [17]. By the tra-
ditional data collection method, the patients take part in the
corresponding tests at nearby study sites where the organiza-
tion (EFACTS) can collect accurate and detailed baseline data.
Unfortunately, such a traditional method has many drawbacks
such as unaffordable cost and low efficiency. Furthermore,
the specific pathology of the FRDA is likely to cause in-
convenience for some patients to be physically present at the
study sites due to poor physical conditions. Thus, EFACTS
is faced with many challenges which result in slow/inefficient
data collection. The FRDA patient baseline data is collected at
different local EFACTS study sites through patient interviews,
questionnaires, observations and coordinated tests. It was con-
sidered whether an alternative way can be designed for patients
who are unable to attend the assessments in the study sites.
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In here, we make a reasonable assumption that most FRDA
patients or their families can provide some accurate baseline
data after long-term observation and care. In this case, there
is an urgent need to develop effective/efficient algorithms with
particular aim to handle the data imperfection/incompleteness
issues.

In search of suitable approaches for overcoming the sparsity
problem in the baseline data collection for FRDA patients,
the collaborative filtering (CF) based algorithms appear to be
a competitive candidate. CF is one of the most popular and
successful techniques for recommendation systems [20] that
have received considerable attention since the mid-1990s with
wide application in a variety of fields such as E-commerce,
media, entertainment, government, education and other fields
[14], [15], [21], [28]. The main idea of CF-based algorithms
is to analyze the active users’ interests through user behaviors
so as to find similar users in the communities. Based on
these similar users’ comments on a piece of information,
CF-based algorithms predict the preference degree of active
user to determine whether to make a recommendation. In this
sense, the main idea of the CF-based algorithms is particularly
suitable for predicting the missing/uncertain/incomplete FRDA
baseline data.

In this paper, we make one of the first few attempts to
view the FRDA baseline data prediction as a recommendation
problem where patients correspond to users and test-items
on symptoms correspond to items. Intuitively, similar patients
should exhibit similar symptoms under reasonable conditions
where the severity degree of symptoms can be reflected by
different rating values, and therefore the ratings between
similar patients should be similar as well [27]. For FRDA
patients, it is often the case that they can only provide a
moderate amount of auxiliary baseline data of test-items, and
there might be unfilled parts of the data that can be regarded
asmissingvalues. The prediction of missing rating values can
be naturally considered as a typical design problem of the
recommendation system, which is referred to as the FRDA
Rating Recommendation System (FRRS). The FRRS consists
of U FRDA patients andI test-items, the relationship between
patients and test-items is denoted by aU × I matrix, which is
called as a patient-item matrix. FRRS can predict unfilled part
through retrieving the similarities between patients in EFACTS
database.

Due to its nature of recommendation system, the proposed
FRRS should be capable of achieving good prediction ac-
curacy on FRDA missing value. Nevertheless, two possible
drawbacks with the FRRS are identified with the first one
being the sparsity problem of the database. In the progress
of collecting new patient data, the CF algorithm generates
predictions by calculating the similarities between patients,
and the corresponding accuracy might not be guaranteed when
the self-assessed data is very sparse. The second drawback
is that the commonly used similarity measures only consider
the ratings on test-items but largely overlook the uncertainty
issue arising from individual differences (e.g. different rating
habits from different users in recommendation system). These
individual differences stem mainly from different physical
condition, autognosis, treatment method and environment,

onset age, disease duration, and so on. For example, an
adolescent patient and an adult patient might have similar
disease levels but with different specific symptoms. In this
case, the traditional CF algorithm might lead to the so-called
overestimation problem of the patient similarities. To this
end, it is theoretically necessary and practically significant to
improve CF algorithms in FRRS by overcoming the emerging
drawbacks, thereby achieving satisfactory performance in a
wider environment.

Motivated by the above discussions, in this paper, we
propose a hybrid CF algorithm for baseline data prediction
of FRDA patients. The proposed algorithm switches between
model-based and memory-based CF techniques according to
degrees of the data sparsity and individual differences. More
specifically, the model-based CF is used to deal with the situ-
ation where a patient does not have similar neighbors because
of the sparsity, and the memory-based CF is exploited for a
patient who has neighbors but is under uncertainties arising
from individual differences. In the former case, the model-
based CF is harnessed to find similar neighbors with similar
FRDA symptoms by clustering this patient into the class based
on his/her attributes. Here, it is quite challenging to choose key
attributes for clustering because 1) we need to analyze what
kinds of attributes that FRDA patients can provide; 2) based
on the pathology of FRDA and basic statistical analysis, key
attributes are picked out from the results of the previous step
to conduct the clustering; and 3) the most suitable number
of clusters is determined according to the clustering results.
In the case of a patient with similar neighbors, we adopt
an advanced memory-based CF algorithm with an improved
similarity measure, where both the patient rating habits and
the number of co-rated test-items are taken into account from
a unified viewpoint.

The main contributions of this paper are outlined in three-
fold as follows. 1) A novel hybrid CF framework is intro-
duced whose idea to switch between model-based CF and
memory-based CF according to the actual situation for a
comprehensive use of incomplete FRDA baseline data. 2)
By analyzing different attributes of the patients, the model-
based component of the hybrid CF framework deals with
the situation for patients who cannot find neighbors due to
data sparsity, and the memory-based component takes the
individual differences between patients into the calculation
of similarities quantified by Shannon information entropy and
Jaccard index. 3) Comprehensive experiments are carried out
to show that our proposed hybrid CF algorithm improves the
prediction accuracy of the FRDA baseline data.

II. T HE LITERATURE REVIEW

The CF algorithm is used to design recommendation sys-
tems and this algorithm was first introduced in1992 by
Goldberg et al [8]. In this section, we review some major
approaches of CF that will be used in this paper.

A. Memory-based CF approaches

The memory-based CF approaches (also called
neighborhood-based CF approaches) are among the most
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popular prediction techniques in the family of CF methods. In
general, the memory-based CF approaches can be classified
into user-based and item-based CF approaches according to
the performance specifications [10]. The basic idea of the
user-based CF approach is to make interest prediction of
a target user on an item by analyzing the collective taste
information of similar users. First, a user-based CF approach
calculates the similarity between a target user and other
existing users. It then chooses then most similar users as the
nearest neighbors and their similarity values are regarded as
weights. Finally, a weighted average is employed to predict
the rating of the target user. The only difference between
user-based and item-based CF approaches is that item-based
CF approach focuses on the similarity between items instead
of users. Some commonly used similarity measures include
the Cosine, the adjusted Cosine, the Pearson Correlation
Coefficient (PCC) and the Spearman’s Rank Correlation
Coefficient. As described in [1], [22], PCC similarity measure
can be easily implemented and can achieve a better overall
performance than others.

B. Model-based CF approaches

The model-based CF approaches utilize different data min-
ing and machine learning algorithms to learn an appropriate
model from the collection of ratings, which is then used to
predict users’ ratings on unrated items. The commonly used
techniques are clustering, Bayesian classifiers, probabilistic
models, latent factor model, artificial neural networks and
so on. Clustering models work by clustering like-minded
users into classes. The unrated ratings of a target user can
be predicted by averaging the ratings of other users in the
same cluster. In Bayesian classifiers, each node in a Bayesian
network represents a class of items, and the status of each
node corresponds to the possible rating value for each item.

In recent years, different artificial neural network (ANN)
models [9] (including deep neural network models) have
been widely applied in recommendation systems. Some rather
popular ANN models include, but are not limited to, restricted
Boltzmann machine [11], convolutional neural network [24],
autoencoder [23] and so on [5]. Other well-known model-
based approaches are latent factor model and probabilistic
model which involves probabilistic semantic analysis, aspect
modeling and probabilistic matrix factorization.

C. Hybrid CF approaches

In certain circumstances, memory- and model-based CF
techniques have been combined together to yield the so-called
hybrid ones that would help the performance improvement [2].
Based on different cases, a hybrid CF approach can include
two or more techniques, thereby achieving a better overall
performance than any individual one, and this is particularly
true when dealing with the data imperfection issues such as
sparsity, individual differences and loss of information. In this
paper, a hybrid CF approach is proposed, which combines
clustering-based and modified user-based CF methods, in order
to achieve satisfactory results on FRDA patient baseline data
prediction.

III. T HE METHODOLOGY

A. Data description

To implement the method for the addressed data collection
problem, three data sets have been chosen from the EFACTS
database, which are Scale for the Assessment and Rating of
Ataxia (SARA), Demographics and Onset data sets.

SARA data set.SARA, first introduced in2006 [25], is
an effective assessment tool for assessing the severity and
treatment effectiveness of ataxia symptoms. SARA has fewer
assessment items than other well-known scales like Inter-
national Cooperative Ataxia Rating Scale (ICARS), thereby
possessing the advantage of easier daily assessment of atax-
ia symptoms. For a decade or so, many researchers have
demonstrated the validity and reliability of SARA in handling
different kinds of ataxia, and EFACTS has thus used SARA
to evaluate the severity of FRDA. It can be seen from Table I
that SARA contains16 features in8 categories reflecting
neurologic manifestations of ataxia which are gait, stance,
sitting, speech disturbance, finger chase, nose-finger test, fast
alternating hand movements and heel-shin slide. A scale of0
to n (n ∈ {4, 6, 8}) is created for each test-item to describe
the order of severity of FRDA, where0 means the normal
condition andn implies the most serious situation. The total
SARA scores reflect overall severity degree which is calculated
by adding scores of eight categories.

Demographics and Onset data sets.The Demographics da-
ta set includes demographic information of the FRDA patient
such as year of birth, country of birth, age and sex. Onset
data set contains onset information of FRDA patient, which
includes age of first FRDA symptoms, symptoms at onset
and problems during neonatal period. After preliminary da-
ta analysis, two pieces of crucial yet essential information,
namely, onset age and disease duration, are extracted from the
demographics and onset data sets.

B. Hybrid collaborative filtering framework

In this paper, a hybrid CF framework is proposed in Algo-
rithm 1, which is fairly general to include the model-based
CF and memory-based CF components and is particularly
suitable to solve the baseline data prediction problem for
FRDA patients. Based on the circumstances, the model-based
CF and memory-based CF can switch back and forth between
them over the course of the execution of the algorithm.

C. The model-based CF component

Clustering is a method to divide a set of data into a specific
number of groups through a form of association. There are
many algorithms that can be used to do clustering. In this
paper, we useK-means algorithm as the basic clustering
algorithm with the aim of evaluating the intrinsic nature and
regularity of data by using unlabeled training samples [26].

Following the operation on existing patients based on the
above clustering algorithm, some traditional machine learning
algorithms can be further applied to solve the sparsity problem
for the new patients. Here,K-NN is used for obtaining precise
classification when the new patients provide sparse data [4].
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After determining the class of new patient (specified as
a), we retrieve the similar neighbors who have same ratings
on overlapped test-items within the same class. The missing
values of test-items can be predicted by the following equation:

P (ra,i) =

∑

u∈K̂a
ru,i

|K̂a|
, (1)

where K̂a is a set of existing patients who have the same
ratings with new patienta on overlapped test-items in the same
class, and|K̂a| denotes the number of matched patients.

D. Memory-based CF component

There are two kinds of methods for memory-based CF,
which are user-based CF and item-based CF method. In this
subsection, we present the user-based CF method with an
enhancedsimilarity measure.

Let us start with the PCC, which is a popular similarity
computation method in CF and has been widely used in a
number of recommendation systems owing to its capability of
achieving a high accuracy [29]. The similarity degree between
patientsu anda is calculated by

Sim(u, a) =

∑

i∈I(ru,i − r̄u)(ra,i − r̄a)
√
∑

i∈I(ru,i − r̄u)2
√
∑

i∈I(ra,i − r̄a)2
, (2)

where Sim(u, a) is the similarity degree between FRDA
patientsu and a; I = Iu ∩ Ia is the subset of test-items
that both patientsu and a have rated, withIu (respectively,
Ia) denoting all test-items that patientu (respectively,a) has
evaluated;ru,i (respectively,ra,i) is the rating value of test-
item i provided by patientu (respectively,a); r̄u andr̄a denote
average ratings of different test-items that patientsu and a

have rated, respectively. It can be easily seen from (2) that the
similarity of two patients takes value in the interval of[−1, 1].
Clearly, a larger similarity indicates that patientsu anda are
more similar.

The PCC index, though widely used, might suffer from the
issue of overestimating the similarities of patients who are
actually dissimilar but happen to have similar symptoms on a
few co-rated test-items. In order to avoid such an issue, one
can make use of the so-calledJaccard indexwhich is a sample
statistic measuring the similarity and diversity of sample sets
as defined as follows:

J(u, a) =
|Iu ∩ Ia|

|Iu ∪ Ia|
=

|Iu ∩ Ia|

|Iu|+ |Ia| − |Iu ∩ Ia|
, (3)

where |Iu ∩ Ia| represents the number of co-rated test-items
of patientsu and a; |Iu ∪ Ia| denotes the number of total
test-items that patientsu anda have rated; and|Iu| and |Ia|
are the numbers of test-items rated by patientu and patienta,
respectively.

Taking advantage of the diversity reflected in the Jaccard
index, one can define the followingmodified PCC(with hope
to get rid of the overestimating issue):

SimJ(u, a) = J(u, a)× Sim(u, a), (4)

whereSimJ (u, a) is a modified similarity measure.

Remark 1:When the number of co-rated test-items
(i.e. |Iu ∩ Ia|) is small, the introduction of Jaccard index
J(u, a) in (4) helps reduce the similarity between patientsu

anda, thereby mitigating the overestimating issue. Since the
Jaccard indexJ(u, a) takes value in interval of[0, 1] and the
PCC similarity varies in the interval of[−1, 1], the new index
SimJ (u, a) is still in the interval of[−1, 1].

Apparently, the similarity measure defined in (4) serves as
a modified version of the PCC index by taking into account
the patients’ differences via the consideration of the co-rated
test-items. This modified similarity measure is, however, not
sufficiently comprehensive yet and there is still a room for
further improvement. Specifically, we need to further examine
the individual rating distribution of the patients. In fact,
the occurrence, the development and the cure of a disease
are influenced by various factors (e.g. climate, geographical
environment, constitution, sex and age) that give rise to the
individual differences on the ratings through filled forms.
More specifically, there might be the case that two patients
have similar order of disease severity (i.e., similar overall
ratings) but their score on the same test-items might be
significantly different, and such kind of differences needs to
be reflected in the similarity measurement. To this end, we
introduce Shannon’s entropy concept to describe the individual
differences of the patients’ ratings through considering the
degree of uncertainty/disorder of the scores.

Shannon entropy, which has been applied on CF algorithms
(see e.g. [7], [12]), is defined as:

Hu = −
∑

r∈RD

Pu,r log2 Pu,r, (5)

whereHu denotes the entropy of patientu, Pu,r represents
the frequency of valuer which has been rated by patientu on
test-items, andRD denotes the rating domain which contains
a finite number of discrete values. The PCC with entropy
weighting has been defined in [13] as follows:

SimE(u, a) =
1

1 + |Hu −Ha|
Sim(u, a). (6)

Clearly, when the values ofHu andHa differ greatly, the sim-
ilarity degree between patientsu anda is reduced accordingly.
Also, it is easy to see that the value ofSimE(u, a) remains in
the interval of[−1, 1].

Having gone through the discussions on the PCC, the mod-
ified PCC and the PCC with entropy weighting, we are now
ready to present our proposedenhanced similarity measureas
follows:

SimEJ(u, a) =
1

1 + |Hu −Ha|
× J(u, a)× Sim(u, a) (7)

whereSimEJ(u, a) is an enhanced similarity index, and the
value ofSimEJ (u, a) is clearly within the interval of[−1, 1].

Remark 2:Our proposed enhanced similarity measure (7)
has the remarkable advantages of 1) retaining the merits of the
PCC such as clear practical insights and neat mathematical
property (i.e., invariance under location and scale changes
in the two variables); 2) accounting for the impact from
the diversity of the patients; and 3) reflecting the individual
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TABLE I
RATING DATA FORMULATION IN SARA

Gait Stance Sitting Speech disturbance Finger chase Nose-finger test
right left meana right left meana

0 ∼ 8 0 ∼ 6 0 ∼ 4 0 ∼ 6 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4

Fast alternating hand movements Heel-shin slide
SARA Total b

right left meana right left meana

0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 40

a The mean value represents the average of right side and left side.
b The total value represents the sum of the first 4 values and the 4 means.

differences in rating scores. As such, the enhanced PCC (7)
provides a unified basis to quantify the similarity between the
patients, which is more comprehensive than existing ones.
In fact, in addition to the establishment of the hybrid CF
algorithm for FRDA baseline data collection, this enhanced
similarity measure (7) constitutes the second contribution of
this paper.

The basic yet natural assumption for the CF algorithms is
that similar patients should have similar ratings on test-times
and, therefore, appropriate selection of similar neighbors is
vitally important in improving the prediction accuracy. For
this purpose, we employ a top-n algorithm by which we first
arrange the similarities between patients in the descending or-
der and then select the topn patients as the similar neighbors.
In order to avoid using dissimilar neighbors, some conditions
[29] are added to the top-n algorithm as follows:

Ŝ(a) = {au|au ∈ T (a), Sim(au, a) > 0, au 6= a}, (8)

whereŜ(a) denotes a set of similar patients of patienta that
is chosen to use in the following rating prediction, andT (a)
is a set of topn similar patients of patienta.

After the topn similar neighbors of the patient are selected,
the missing values of test-items can be predicted by the
following equation [1]:

P (ra,i) = ā+

∑

au∈Ŝ(a) Sim
EJ(au, a)(rau,i − āu)

∑

au∈Ŝ(a) Sim
EJ(au, a)

, (9)

where P (ra,i) denotes the predicted value of the missing
value ra,i in the patient-item matrix,̄a is the average value
of different test-items provided by patienta, and āu is the
average value of test-items provided by the similar patientau.

Remark 3: In this paper, a new FRDA baseline data col-
lection scheme is put forward based on a combination of
the merits of model- and memory-based CF methods with a
much enhanced similarity measure. The new data collection
scheme exhibits the following three distinctive characteristics:
1) it switches between model-based CF and memory-based
CF according to when a certain patient has neighbors sharing
similar baseline data; 2) a new yet comprehensive similarity
index is proposed to take into account the individual differ-
ences between patients by employing the Shannon information
entropy and the Jaccard index; and 3) extensive experiments
are conducted in the next section to show the superiority
of the proposed scheme with the determination of optimal
number of clusters for FRDA. The proposed FRDA baseline
data collection scheme is believed to be effective in assisting
disease research.

Algorithm 1: Hybrid CF framework

• Given a new patienta with I rating test-items,
onset age and disease duration;

• AnalyzeI rating test-items;
• If the new patient only provides single rating or

multiple ratings with same values (system switches
to model-based CF);
The model-based CF component

1) CreateK patient clusters by using the at-
tributes: onset ages, disease durations and
total SARA scores;
(K-means algorithm is applied;)

2) Find n neighbors in the database with same
rating test-items, then averaging total scores
of n neighbors as the initial SARA scoreSa

of new patienta;
3) Classify the new patienta into clusterKa

by using the attributes of onset age, disease
duration and initial SARA scoreSa;
(K-NN algorithm is applied;)

4) Retrieven′ similar neighbors who have same
rating test-items in clusterKa;

5) Predict the rating on the target test-itemi for
a by averaging the corresponding values rated
by n′ similar neighbors on the test-itemi;

• else (system switches to memory-based CF)
The memory-based CF component

1) Calculate similarity SimEJ(u, a) between
each existingu and new patienta by consid-
ering their PCC, Jaccard index and Shannon
entropy; (Technique details will be introduced
in Section III-D)

2) Select top-̃n similar users as the nearest
neighbors of new patienta;

3) Predict the rating of the target test-itemi for
a by the behaviors of thẽn nearest neighbors.

IV. I MPLEMENTATION AND EXPERIMENTS

A. Data preprocessing

The data set SARA is constantly updated. Until31st De-
cember 2018, the SARA data set has contained the information
of 989 patients. As shown in Table I, the rating intervals for
test-items are not identical and, therefore, we adopt a feature
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TABLE II
BASELINE DEMOGRAPHIC CHARACTERISTICS

Age (years) Male Female
Age of onset

(years)
Disease duration

(years) Education (years) SARA

Aachen, Germany
(n=56[6%]) 29(6-62) 29(52%) 27(48%) 13(0-25) 14(2-54) 14(0-49) 19(2-40)

Athens, Greece
(n=20[2%]) 25(8-42) 12(60%) 8(40%) 12(3-21) 10(4-22) 15(3-31) 23(7.5-40)

Bonn, Germany
(n=23[3%]) 39(20-59) 11(48%) 12(52%) 13(0-19) 20(9-50) 19(5-44) 20(3.5-31.5)

Brussels, Belgium
(n=52[6%]) 25(7-69) 26(50%) 26(50%) 12(9-21) 14(3-60) 11(1-38) 18(3-34)

Dublin, Ireland
(n= 8[1%]) 25(7-69) 6(75%) 2(25%) 15(10-19) 19(3-42) 11(4-19) 16(8.5-26)

Innsbruck, Austria
(n=57[6%]) 31(8-62) 31(54%) 26(46%) 11(2-18) 17(1.5-47) 13(2-35) 20(6-38)

Kassel, Germany
(n= 6[1%]) 44(23-73) 3(50%) 3(50%) 13(9-15) 19(10-40) 25(11-37) 23(8.5-40)

london, UK
(n=205[23%]) 33(15-77) 94(46%)a 110(54%)a 15(0-30) 14(1-55) 20(11-37) 22(1.5-40)

Madrid, Spain
(n=78[9%]) 32(6-65) 34(44%) 44(56%) 14(0-24) 14(2-44) 17(1-44) 21(5-37)

Milano, Italy
(n=195[22%]) 34(7-70) 94(48%) 101(52%) 12(0-22) 16(3-61) 18(1-46) 22(3-39)

Munich, Germany
(n=66[8%]) 33(12-60) 35(53%) 31(47%) 12(0-22) 16(2-56) 17(2-45) 19(2-40)

Paris, France
(n=60[7%]) 37(19-76) 28(47%) 32(53%) 13(0-23) 20(3-65) 17(0-36) 23(5-39)

Rome, Italy
(n=17[2%]) 24(9-61) 7(41%) 10(59%) 9(3-21) 14(1-40) 10(2-22) 15(7-36)

Tübingen, Germany
(n=35[4%]) 35(14-74) 16(46%) 19(54%) 11(5-19) 18(0-46) 17(5-39) 22(7.5-39)

a Data for sex was missing for one patient in London.

scaling method, known as unity-based normalization, to bring
all rating values into the range of[0, 1] according to

x′ =
x− xmin

xmax − xmin
, (10)

wherex′ represents a normalized value,xmin represents the
minimum value inx given its range, andxmax describes the
maximum value of inx given its range.

It should be mentioned that the SARA data includes missing
values and redundant information. Hence,111 patients are
deleted because their data is null, missing or abnormal. A
total of 878 patients have been selected for the follow-up
experiments. The details of these patients are displayed in
Table II. “Aachen, Germany(n=56[6%])” means the baseline
data of 56 patients were collected in Aachen (Germany) and
accounted for 6% of the total patients. “29(6-62)” means
average age is 29 and spread between 6 to 62 years old.

B. Experimental setup

We divide the878 patients into two parts, with the first part
consisting of existing patients and the second part containing
the new patients. As mentioned in Section I, there are two
situations that we need to consider. The first situation is that
the new patients cannot find neighbors from existing patients
and the other situation is that new patients can find neighbors.
In the first situation, we randomly keep one rating value of
new patients and set other values as testing data. In the second
situation, we randomly remove different number of elements
to make the patient-item matrix sparser with different density

(e.g., 50%, 60%, etc.), where the density refers to the ratio of
number of entries presented to the total number of the entries
in the patient-item matrix. The developed hybrid model- and
memory-based CF algorithm is employed for predicting the
rating values of new patients’ unfilled parts.

For the propose of evaluating the prediction accuracy of
the algorithm, the criteria of Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) are taken into account,
which are defined as follows:

MAE =
1

N

∑

a∈Ad

∑

i∈Id

|ra,i − P (ra,i)|, (11)

RMSE =

√

1

N

∑

a∈Ad

∑

i∈Id

(ra,i − P (ra,i))2 (12)

whereN denotes the total number of predicted values,Ad is
the user set of the testing data andId is the test-item set of
the testing data,ra,i is the actual value of test-itemi provided
by patienta, andP (ra,i) denotes the predicted value from the
developed CF method.

C. Performance comparison

This section is divided into two parts which describe two
situations, one is that the new patient does not have neighbors
and the other one is that the new patient does have neighbors.
In these two situations, we compare our approach with other
well-known approaches. In the experiment, we set the value
k = 7 during the K-means clustering. Fig. 1 shows the
experimental results.
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Fig. 1. K-means clustering diagram

1) The patient without neighbors:In this part, the single
regression (SREGR) imputation and expectation-maximization
(EM) algorithms as well as four different mean imputation
methods for missing value prediction are employed to compare
with our method. These mean imputation methods include
the rating-mean (RMEAN) imputation, user-mean (UMEAN)
imputation, centered user-mean (CUMEAN) imputation and
adjusted user-mean (AUMEAN) imputation methods, where
the RMEAN approach employs the average of filled ratings
of the current new patient, the UMEAN approach utilizes the
average SARA ratings of the existing patients in database to
predict the new patient unfilled ratings, the CUMEAN ap-
proach considers the rating bias by subtracting the mean value
of each existing patient, and the AUMEAN approach uses
the average SARA ratings of the existing patients who have
the same ratings on overlapped test-items. The mathematical
expressions for these four approaches are displayed as follows:

RMEAN : P (ra,i) = r̄a (13)

where r̄a is the average rating value of different test-items
rated by the new patienta.

UMEAN : P (ra,i) =

∑n

u=1 ru,i

n
(14)

whereru,i represents the rating value of test-itemi rated by
existing patientu in the database.

CUMEAN : P (ra,i) = r̄i +

∑n

u=1(ru,i − r̄u)

n
(15)

wherer̄u represents average rating value of different test-items
rated by the existing patientu in the database.

AUMEAN : P (ra,i) =

∑

u∈Ŝ ru,i

|Ŝ|
(16)

whereŜ is a set of existing patients who have the same ratings
with new patienta on overlapped test-items,|Ŝ| denotes the
number of matched patients.

The detailed information of performance comparison of
different approaches is displayed in Table III. To demonstrate
the validity and the superiority of the proposed algorithm,
we randomly choose10% of total patients and set them as
new patients during each experiment. In order to facilitate
the situation of no neighbors, we only keep one rating value
and remove all remaining rating values by setting them as
the unfilled part. Each experiment is repeated50 times, and
the average MAE and RMSE values are reported in Table III.
From the experiment results, we conclude that:

1) Under all experimental settings, our approach obtains
the smallest MAE and RMSE values consistently, which
indicates the best prediction accuracy.

2) Relative to AUMEAN (the best of the four different
mean imputation methods) which considering the all
patients with same ratings on overlapped test-items, our
approach only consider the patients within the same
class. Experimental results demonstrate the MAE of our
approach is 15.6% better and the RMSE is 7.5% better
than those produced by AUMEAN.

TABLE III
MAE AND RMSE COMPARISON WITH FOURBASIC APPROACHES

Metric Methods New
patients(10%)

MAE RMEAN 0.1999
UMEAN 0.2880
CUMEAN 0.2038
AUMEAN 0.1644
SREGR 0.2025
EM 0.1498
Our approach 0.1388

RMSE RMEAN 0.2964
UMEAN 0.3442
CUMEAN 0.2421
AUMEAN 0.2163
SREGR 0.2765
EM 0.2097
Our approach 0.2001

2) The patient with neighbors:To evaluate the prediction
performance on a new patient who has neighbors, we compare
our approach with four other approaches: MEAN imputation,
SREGR imputation, user-based CF using PCC (UPCC), user-
based CF using PCC with entropy (UPCCE) and user-based
CF using PCC with Jaccard index (UPCCJ). UPCC only
considers the performance of similar patients to make the
prediction according to (2). UPCCE considers the disorder
degree of the data and UPCCJ considers the overlapped part
of the data. To study the impact of our approach that combines
the information entropy and Jaccard index, we implement
our approach on SARA dataset by employing the density
decrementing from 90% to 50% with the interval of 10%.

The results of the performance comparison with our pro-
posed algorithm are shown in Fig.2 and Fig.3, where the
vertical coordinate represents the value of MAE/RMSE, and
the horizontal coordinate denotes the different degrees of
density of the test data. Additionally, the detailed experimental
results are displayed in Table IV from which we conclude that:

1) The proposed algorithm demonstrates its superiority
over MEAN, SREGR, UPCC, UPCCE and UPCCJ in
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Fig. 2. Line graphs of MAE.

terms of evaluation indices including the MAE and
RMSE. Especially, compared to the most basic approach
UPCC, our approach achieves a vast improvement.

2) Experimental results show that it is better to consider
both information entropy and Jaccard index at the same
time than anyone individually.

3) According to the changes of MAE and RMSE with the
density varying from90% − 50%, we can see that as
the density of test data decreases, the superiority of our
algorithm can be reflected more significantly.

TABLE IV
MAE AND RMSECOMPARISON WITH BASIC APPROACHES FROM DENSITY

50%TO 90%.

MEAN SREGR UPCC UPCCE UPCCJ Our ap-
proach

50%
MAE 0.2639 0.1585 0.1650 0.1458 0.14440.1397
RMSE 0.3116 0.2307 0.2201 0.2007 0.19570.1936

60%
MAE 0.2632 0.1515 0.1579 0.1383 0.13320.1290
RMSE 0.3094 0.2240 0.2100 0.1912 0.17950.1792

70%
MAE 0.2661 0.1341 0.1417 0.1276 0.12150.1189
RMSE 0.3132 0.1879 0.1887 0.1768 0.16560.1649

80%
MAE 0.2628 0.1259 0.1260 0.1153 0.11300.1111
RMSE 0.3110 0.1806 0.1670 0.1598 0.15330.1531

90%
MAE 0.2698 0.1202 0.1039 0.1028 0.10310.1016
RMSE 0.3178 0.1668 0.1438 0.1456 0.14350.1426

V. D ISCUSSIONS AND CONCLUSION

A. Discussions

Many existing clinical studies suffer from small sample
sizes that cause the results to be insignificant. In our research,
the output of the algorithm is to assist in the collection of
baseline data for patients who cannot attend the assessments,
thereby helping with the clinical sample collection and data
analysis from the researchers’ perspective. Once more and
more patient baseline data are collected, our follow-up plan
will be carried out in the following two ways.
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Fig. 3. Line graphs of RMSE.

• Thefirst way is to increase the interpretability of the im-
puted data. The most common view of the interpretability
in recommendation system is to increase the algorithm
transparency, and this is particularly true in our research
where reliable explanations can largely increase the con-
fidence of the end users (patients and/or doctors) in the
imputed data. Also, with a satisfactory interpretability of
the imputed data, the end users could evaluate the pre-
dicted ratings and make appropriate adjustments in real-
time based on the explanations, thereby providing us with
more reliable data. Such a cycle would help improve the
performance of the developed recommendation system
with hope to have more accurate predictive information.

• The second way is to combine adequate machine learning
algorithms with our proposed method to classify patients
accurately. As discussed in the introduction, we are com-
mitted to helping EFACTS in collecting more patient data
and assisting clinical sample collection. In our paper, we
have divided patients into 7 categories by clustering. In
practical application, we could consider different patient-
side information and adjust our method according to
the complicated actual situations. In this case, the latest
deep learning algorithms can be employed to classify
the patients in a more accurate way with hope to help
doctors/researchers in the selection of clinical samples.

On the other hand, it is predictable that the future analysis
will use longitudinal data rather than only the baseline data.
We are pleased that some FRDA patients are taking follow-up
assessments every year for many years (leading to longitudinal
data) but, unfortunately, we are also aware that the number
of return visits is decreasing every year, which is inevitable
because FRDA symptoms are degenerating and the FRDA
patients are usually progressively in poor physical conditions.

• In the context of FRDA patients, the existing longi-
tudinal data do have certain limitations and need to
be further improved because 1) the number of patients
in the EFACTS database is very limited; and 2) these
patients have different disease durations and onset ages
with different numbers of follow-up assessments. In order
to make more sense of the longitudinal analysis, we
need to expand the number of patients to find enough
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suitable samples in order to observe/study their disease
progression, drug reaction and so on. In this sense,
our presented method can not only effectively increase
the number of potential clinical samples but also help
the missing value prediction in longitudinal data, which
provides the expected assistance for future longitudinal
data analysis.

• As potential disease-modifying therapies in FRDA are
emerging, there is indeed an urgent need to conduct
longitudinal studies to identify and validate robust mea-
sures of clinical progression so as to guide the design
of future clinical trials. Our future work will include the
adoption of the advanced dynamic models for the time
series analysis of the disease progression, for which our
purpose is to determine the long-term trends and also
consider the seasonal changes, cyclic fluctuations and
irregular changes in the time series, with the ultimate
goal of making reliable statistical predictions. The above
analysis requires high quality of longitudinal data and
we believe that our presented method will definitely help
EFACTS in improving the quality of longitudinal data.

B. Conclusions

In this paper, a hybrid model- and memory-based algorithm
has been presented and successfully applied to improve the
prediction performance on FRDA baseline data. By taking
model-based CF into account, the drawback of the tradi-
tional similarity calculation methods in finding neighbors in
the sparse data condition has been overcome. Moreover, an
enhanced and more generalized similarity measure has been
proposed in memory-based CF so as to provide a more
comprehensive evaluation for the similarity degree between
two patients by considering the rating habits and degree of
co-rated test-items. Large-scale real-world FRDA experiments
have been conducted and the comprehensive experimental
results have shown the validity and feasibility of our algorithm.

Future work can be summarized into three aspects: (1)
how to further improve the prediction performance of the
FRDA baseline data by considering matrix factorization, deep
learning techniques and dynamics analysis; (2) how to extend
our algorithm to other disease baseline data collection prob-
lems and the wider health systems; and (3) how to provide
explanations for the recommended results. The explainable
recommendation is our key research direction because the
effectiveness and persuasiveness of the recommended results
can be greatly improved if the system uses the easy-to-
understand explanation to let the patients know why the results
are recommended to them. Interpretation of prediction results
can also assist doctors and patients to make the accurate
decision about whether to accept predicted results or to make
reasonable adjustments.
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