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0. Abstract

The salient components of the mathematical programming modeling
activity are first analysed. Earlier generation systems such as
program generators and procedural (modelling) languages are briefly
discussed. A proposal for a computer assisted modelling scheme is
then put forward. The proposed system contrasts with the earlier
approaches in that no computer programming expertise is required on
the part of the modeller. A mathematical programming model is
usually constructed by progressive definition of dimensions, data
tables, model variables, model constraints and the matrix coefficients
which connect the last two entities. The philosophy and design of
the experimental system supports this approach to model description.
This aspect is illustrated by a few examples. The introduction of
computer assistance in structuring of the data and the resulting

model is novel and isin line with recent developments in friendly and
flexible user interface.



1. Introduction

Linear Programming addresses itself to the question of making the most
efficient use of scarce resources. The mathematics of Linear

Programming, both formulation as well as computational algorithms have
found extensive use over the last thirty years.  All the major computer
manufacturers such as IBM (MPSX) [1], CDC (APEX) [2], UNIVAC (FMPS) [3] or
large software houses specializing in this area, namely SCICON(SCICONIC)
[4] have developed Mathematical Programming systems for the solution of
Linear and Integer programming problems. The user control aspect of
these systems were all designed in the early to raid seventies and admit a
number of criticisms which are set out below.

An engineer, a planner or an applied mathematician is a typical
investigator wishing to use these systems.

0] In order to use these systems an investigator needs to learn a
procedural language or a command driven language to communicate and
control his application.

(it)  Aninvestigator further needs to possess some knowledge of
computational methods for solving LP/IP, whereas most of hisskills
are vested in model definition and model analysis.

(iii) Description of his model to these systems using a matrix generator
program definitely calls for computer programming skill.

An experimental system is under development by the authorsand Mr.M.Tamiz
[5] and is called CAMPS: Computer Assisted Mathematical Programming
(Modelling) System. In this report the philosophy and design of the
computer assisted modelling (sub) system is put forward with a view to
overcoming the criticism as outlined in (iii) above.

The contents of this report are organized as follows. The logical

analysis of the modelling task, the derivation of the mathematical
statement and a few illustrative examples of LP models are set out in
section 2. The case for the computer assisted method is presented and
argued in section 3. How the CAMPS system may be used to construct one
of the models described in section 2, run optimize, prepare a report of
the solution and finally document the model is discussed in section 4.
The report is concluded with section 5 containing discussions and comments
relating to the overall system.

2. Strategy and Tactics of LP Modelling
2.0 Introduction

Formulating linear and integer programming models for industrial
(optimisation) problems requires an amount of experience and specialist
skill. The method of analysing a physical problem is discussed in
section 2.1. The logical sequence of steps which lead to a mathematical
statement of the model are set out in section 2.2; these concepts are
illustrated by an example. Having obtained a mathematical statement it
IS necessary to prepare the data for suitable processing by a computer
based LP system. This aspect is discussed in section 2.3. Two further
examples are considered in section 2.4 to explain these principles of
modelling.
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2.1 A Logical Analysis of the Problem

A modeller when he comes across an industrial (optimisation) problem does
not necessarily find it well described in a summary form. It is more
than likely he is presented with a description of the problem containing
an amount of details which may be irrelevant for modelling purposes;
further it may also contain a number of gaps. Hence the first task of
the modeller is to consider only the modelling requirements and extract
the quantitative relationships which are germane to that task. Having
identified these items he produces a compact statment of the problem
which contains only these pertinent details. The three examples which
are presented in section 2 and the planning model considered later are
first described in this summary form.

After identifying the key components of the model his next task is to
discover the underlying structure in the model. This amounts to finding
a way of categorizing the modelling information. The following is an
illustrative list of typical categories that are found in practical
problems.

- number of (decentralized) geographical locations

- number of planning periods

— number of different products

— number of grades of people

— number of age groups

— etc.,

This categorization helps him to decide to what details the quantitative
information relating to the problems should be requested and incorporated

in the model. It also indicates to what detail the answers are to be
provided.

Model Variables

Once the categories are defined the model (decision) variables or the
unknowns are broadly identified. An analysis of the decision variables
may also suggest new categories at this stage. The point to note here

is that the model variables are mostly detailed by categories. For the
purpose of illustration a number of decision variables taken from
different contexts are considered below.

- Production Planning: The quantity X,m of a certain product p
manufactured on a machine m.

- Distribution Planning: The quantity X, of a product p thatis
shipped from a source r to an outlet n.

- Inventory Scheduling: The quantity X,: of a product p thatis kept
as closing stock at the end of period t.

- Project Analysis: Whether one should invest in project p at the
beginning of time period t, or notinvestin this project Ypt=21o0r0
may be represented by this zero-one variable Y .



M odel Constraints

The constraints connect the decision variables and express the physical
restrictions of the problem. By and large these are also detailed by
categories. A few examples of these are set out below.

- Material Balance Equation

XOt + XB - XCt -Dt ,t=1,2,...T.

In this equation X0 represents the opening inventory, XC; represents
the closing inventory, and XP; the quantities to be produced. They are
all decision variables pertaining to the time period t. D¢
represents the customer demand for the product and is an input
information.

- Capacity Restrictions

P
D Xom-tom <Ap, m =12, M.
p=1

Here p = 1,2,...P indicate the range of products which are manufactured on
machines m = 1,2,...M. The rate of production is indicated by tyn, that
is, the time taken to produce one unit of product p on machinem. Ap
indicates the number of hours the machine m is available. Xpn isthe
production variable and the constraints express the capacity of production
for the machine m as limited by the number of hours of its availability.

- Blending Requirement

<
c . p=1.P
or
2 Xep bor { o Qpr r =1 ..R
ca >

In this case ¢ = 1,...C are number of components which are used to blend

p = 1,...P products. The components for instance could be different crudes
and products could be different types of gasoline. r = 1,...R indicate
quality requirements. Typical requirements are maximum vapour pressure,
minimum volatility index etc. Thus ber, Qpr are input information
pertaining to linear blending rates and quality requirements

respectively. Xep is the decision variable indicating fractions (by

volume or weight) of component c¢ that are blended to derive product p.
Thus

C
> Xep =1, p=1..p.

C=1

Note that in the discussion of the model variables and model constraints
the subscripts p,m,n c,r,t etc which have been introduced indicate

categories taken from the context of the model. Thus identifying these
amounts to setting out the basic structure of the model .
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2.2 Derivation of a Mathematical Statement : An Example.

It follows from the preliminary analysis presented in the last section
that in order to derive a mathematical statement of the model one has to
formally define the matrix elements of the constraint relations. In
order to do this it is necessary to define the subscripts and their

ranges. Note that the matrix elements themselves may be derived out of
tabular input information relating to the problem. These matrix elements
may be considered to be model descriptors and are often referred to as
"technology coefficients". The model (decision) variables in contrast
are output information. Their values are obtained by solving the.
model. The sequence of steps leading to the derivation of a model thus
naturally emerges and is set out below.

Sepl Define the subscripts and their ranges (sets and dimensions).

Step2 Define model variables, model constraints and the matrix
coefficients in terms of these subscripts (step 1).

Step3  Specify the linear relationships in a row wise fashion which
connect the items defined in step 2.

Inits simplest and most standard form an LP model can be stated in the
following way:

- Subscripts, Ranges:
i=1,...m j =1,.n.

- Variables, constraints, coefficients:
X% ,j=L.n, r:r,i=L..m,

c:¢g,j=1l..n, b:b, i =1..m,
A g i=1....m, j=1...n.

- Linear objective function and constraints:

n
Max > CiX;
[
n
Subjectto r: Y ax; = b, i=1.m
=
szo, j=1....n.

However, in all real life applications the corresponding models possess
more detailed structure than this standard form. As aresult of such
structure the A - matrix turns out to be highly sparse and b,c can also be
sparse. In practice therefore formulating a model requires specifying
only the nonzero coefficients of the A-matrix as used in stating the
linear constraint relations.
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In deriving the mathematical statement of an LP model and specially the
linear constraint relations it is often convenient to prepare a material

flow diagram for the problem. This enables the modeller to visualize and
set out the balance relations, the capacity restrictions etc. The

principles of LP modelling discussed so far are illustrated in the
derivation of a production cum distribution model considered here and two
further models described in section 2.4.

A Production cum Distribution Problem: An Example.

A clothing manufacturer has two factories Southail (FT1) and Leeds
(FT2). In the Southall factory he can manufacture the products Shirts
(P1), Denim Jeans (P3), and in Leeds he can manufacture Shirts (P1),
Skirts (P2) and Denim Jeans (P3). The manufacturer ships these products
direct to three main dealers in quantities of thousands. The dealers are
Young Londoner (DL1), Beaute Paris (DL2) and Wiener Mode Anzug (DL3).
The manufacturer knows his production costs, the transport costs and the
monthly production capacity of his factories. The dealers send their

Diagram 2.1

requirements for the next month on the first day of each month. All the
numerical data relating to the problem are set out in Table 2.1. The
line diagram 2.1 illustrates the possible relationships  between
factories, products and dealers.
DEALERS REQUIREMENTS AND PRODUCTION
CAPACITY IN UNITS OF THOUSANDS
Product Dealer Requirements Factory Capacity
DL1 DL2 DL3 FT1 FT2
P1 50 10 30 36 54
P2 15 15 20 - 60
P3 20 60 30 85 45
PRODUCTION AND TRANSPORT COST IN
POUND STERLING PER ITEM
Factory Production Costs Dealer
Pl P2 P3 DL1 DL2 |DL3
FT1 15 - 5.6 0.6 1.2 14
FT2 18 | 7.0 6.2 0.7 13 |15
Table2.1
"FT1 ‘—J—l FT2
DL1 DL2 DL3
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The manufacturer at the beginning of each month, needs to
formulate and solve a simple linear programming problem. A
mathematical statement of this problem is set out below.

- Subscripts and Dimensions.

=12 denotes the factories

j =1,2,3 denotes the products

k=123 denotes the dealers.
- Model Variables

Xj jk the quantity of product | manufactured in factory i

and shipped to dealer k. However, fori =1 (Southall) the
product j = 2 skirtsand its shipments are not defined.

=L =13 } k =123
i =2, ] =123

That is

- Model Coefficients (Descriptors)

pij the cost of producing one unit of product j at factory
I,

ik the cost of transporting one unit of each product from
factory i to dealer Kk,

Cijk the derived cost of production as well as transport for

giveni, j, k which may be expressed as

Gijk = Pij Tl

aij the production capacity of the factory i for the
product j,
rjk rjkthe requirement of the dealer k for the product j.
Linear Constraint Relations: A Mathematical Statement
Minimise
2 3 3
cost =2, 2 (Cilkxijk ¥ Ci3kxi3k) &y G2k X 22k -

subject to the constraints:
capacity of production

% X... <a. =1 =13
K_q k7T =2, j=123)



and satisfying dealer requirements
2
Z Xijk:rjk’ J =13
=1

Xook = ok

k=123

and xijk > 0.

2.3 LP User Formulation of the Model

The mathematical statement of the model set out in the last
section is concise and convenient for communication and
discussion by mathematicians and analysts. However, for the
purpose of processing the model by a comnputer based LP system
and deriving numerical solutions this form is abstract and not
suitable.

Model information is usually presented to an industrial LP
system in a compact form and it is appropriate to highlight a
few features of LP input at this point.

(i) All applicable LP models display a high degree of sparsity
of the constraint matrix.

(it)  Only the nonzero coefficients of the matrix are specified
as input.

(iii) Instead of arow index and a column index one uses a row
name and a column name to specify a non-zero coefficient
of the matrix.

(iv) Feature (iii) requires that suitable name is given for the
rows and columns of the model.

IBM's MPSX input format is industry's de facto standard

for model specification: this format is described in [1]
and also in the CAMPS manual [6].

To obtain the LP user formulation the following model variable
and constraint names are first defined.

— Model Variable Name

FTIPIDL1 The amount of product Pi produced in the factory
FT1 and shipped to the dealer DL 1 etc.
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- Model Constraint Names

COSTROW The objective row,

FT1P1CAP The capacity constraint corresponding to the product PI
produced in factory FT1,

REQPIDL1DL1 The requirement of the product P1 by the dealer DL1
etc.

The sparse but complete constraint matrix in terms of these row and
column names is set out in Tableau 2.1. The corresponding MPSX
format input data filein line images is set out in Display 2.1.

2.4 Further Examples

Blending of Gasoline Products

An oil company in an off shore island maintains a reserve of five

basic components Butane, Light Naptha, Heavy Naptha, Catalytic Naptha
and Catalytic Reformate which are blended and replenished on a weekly
basis to meet the demands for two grades of gasoline called GAS1 and
GAS2. The availability, the linear blending coefficients and the

costs for these components are tabulated in Table 2.2 The quality
requirements and the volume demands for the two gasoline products are
set out in Table 2.3. The oil company wishes to derive an LP model
that must be solved on a weekly basis to find the optimal blending of

the components.

Blending Componets

Componet Availability, Reseach Vapour Volatility Code Cost, cents

Thousand of  Octane pressure Index Name Per
Barrels number gallon
Butane 3.5 120.0 60.0 105 BU 5.2
Light
naphtha 2.0 84.5 18.0 30 LN 6.4
Heavy
naphtha 4.0 73.0 4.0 12 HN 8.3
Catalytic
naphtha 10.5 96.0 6.4 15 CN 10.2
Catalytic
reformate 8.0 99.0 2.5 3 CR 11.0

Table 2.2
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Gasoline Requirements

Needed volume, Minimum research Maximum Minimum

Code
thousand of octane number vapour volatility name
barrels pressure index
10.0 95.0 11.0 18 GAS1
6.0 98.0 12.0 20 GAS2
Table2.3

Diagram 2.2 shows how the two products connect the five components.

>

"{

GAS 2

Diagram 2.2

GAS 1



- Subscripts and Dimensions

= 1,...5 denotes the components,

= 1,2,3 denotes the three quality indices: octane number
vapour pressure, volatility index,

k=1,2 denotes the two gasoline products.

|
j

- Modd Variables
Xik The amount of component | that is blended into the product k.

- Modd Coefficients
a The amount of component i that is available for blending,

bij the linear blending coefficient for component i and quality
index. | ,
C. the cost of component i,

rkj the blending quality requirement for the product k against quality
index |,
dk the demand for the gasoline product k.

- Linear Constraint Relations: A Mathematical Statement.

5 2
Minimise X 26Xy
i=1K=1
subject to
2
Availability restriction Y Xi <& i =1...5,
K=1 ’
Demand balance
5
i=1
and
Blending requirements
5
2 X big 2dyn g j=1 Octane specification
i=1
5
inkbizgdk.rkz K =12,j=vapour pressure
i=1
5
i=1 '

and X, >0 i=1..5 k=12
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B L H C C B L H C C R

U N N N R U N N N R H

G G G G G G G G G G PRHATIONS S

A A A A A A A A A A Vv

S §$ S S S S S S S S A

1 1 1 1 1 2 2 2 2 2 L
cost 52 64 83 102 110 52 64 83 102 110 HREE
AVAILBILITY
AVAILBU 1 1 LE 35
AVAILLN 1 1 LE 20
AVAILAN 1 1 LE 40
AVAILCN 1 1 LE 105
AVAILCR 1 1 LE 80
DEMANDS
DEMGASL 1 1 1 1 1 EQ 100
DEMGAR 1 1 1 1 1 EQ 60
BLENDING
REQUIREMENTS
BLOCTGSL 120 845 B3 B D GE 900
BLVARGSL 60 18 4 64 25 LE 1100
BLVLTGSL 1 0 12 15 30 GE 1800
BLOCTGR 120 845 3 B D GE 3880
BLVARGR2 60 18 4 64 25 LE 720
BLVLTGX? 16 D 12 15 30 GE 1200

TABLEAU 2.2



LP User Formulation
- Model Variable Name

BUGASI, LNGASL... The amount of Butane; used to produce
CRGAS2 GASL... until amount of Catalytic
Reformate used to produce GAS2.

- Model Constraint Name

AVAILBU,... AVAILCR The restrictions on availability for the
five components.

DEMGASI, DEMGAS2 The demand balance equations for the two
Products,
BLOCTGSL...BLVLTGS2 The six constraints for blending

requirements,

The matrix of the constraint relations is now set out in Tableau 2.2

A Multi Time Period Multi Mode Production Problem

A company manufactures three products PI, P2, P3 (NUTS, BOLTS,
WASHERS) and has at its disposal three machines M|, M2, M3. The
company can undertake normal and overtime production and needs to plan
for two time periods, say WINTER and SUMMER. Any product left after
the second time period has very little resale value. The necessary
information concerning the operation of the company is set out in

Tables 2.3, 2.4, 2.5.

It is necessary to find an LP formulation that maximizes the profit of
the company's operation over the two periods.

- Subscripts and Dimensions

Let thefour indices i, j, k, 1 bedefined as

i =12 the index for the two time periods,
Summer and Winter,;

] =12 the index for the two modes of
production, Normal, Overtime;

k =123 the index for the three product types,
P1, P2, P3;

¢ =123 the index for the three machines, M|, M2,
M3.

- Model Variables

xijkI the quantity that is produced in the
category i, j, k, I,

Yik the quantity of product k stored in
period i,

Zi the quantity of product k sold in

period i.



TABLE OF MACHINE HOURS (TABH)

SUMMER PERIOD (H1) WINTER PERIOD (H2)
Normal (N) (O) | Total Hours (AV) Normal (N) (O) | Total Hours (AV)
Working Hours | Overtime Available Working Hours | Overtime Available
PL | P2 | P3| PL|P2| P3| NOmMA | oetimel P P2 | P3| PL| P2 | P3| NOMA | Ougtime
w-Hrs W-Hrs
MACHINEL MI] 4 | 5 | 63|45 100 80 516 7 |4|5]|5 110 90
MACHINE 2 M2 7 | 6 | 6 | 6|55 100 0 87| 7 | 7|66 110 100
MACHINE 3 (M3) 3 2 40 30 4 3 50 40
P1=MUTS P2=BOLTS P3 = WASHERS
TABLE 2.3

GT



TABLE OF PRODUCTION-COSTS (TABC)

SUMMER PERIOD WINTER PERIOD
Normal Normal
Working Hours | Over time Working Hours | Over time
P1 P2 P3 | P1L | P2 | P3| P1 P2 P3 PL | P2 | P3
MACHINE 1 2 3 4 3 4 5 3 4 5 4 5 6
MACHINE 2 4 3 2 5 4 3 5 4 3 6 5 4
MACHINE 3 1 _ ] 2 | . ] 2 ] ] 3 ] ]
P1=NUTS P2=BOLTS P3=WASHERS
TABLE 24
o
TABLE OF ADDITIONAL-COSTS (TABC)
SUMMERPERIOD WINTERPERIOD
MUTS BOLTS WAHERS | MUTS BOLTS WASHRS
SALEPRICE 10 10 9 11 11 10
MINIMUMDEMAND 25 30 30 30 25 25
STORAGE CAPACITY 20 20 -
DATA COSsT 1 1 1
RESALEVALUE 2 2 1

TABLE 25
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- Model Coefficients

The following information relating to the problem are available in the
table TABH.

tijké number of hours required to produce one unit of the product type k

on the machine Z, in the time period i, using Normal or Overtime
production j;

aijkﬁ machine availability in hours for the machine ¢ in period i and

mode j.

In the table TABD,

Pik
dik

selling price
demand,
storage cost for the product type k in one time period;

} for the product type k in the time period i;

the corresponding storage capacity;

the final resale value at the end.

In the table TABC,

Cijke

Linear Constraint Relation

the production cost in the category i, j, k, 7.

The profit function of the problem may be expressed as

3
=G )X
1 Zél (plk |jk,€) Ijke

e

2
profit= > X
i=l j=1

3 3
-3 s r, — .
kzzl kY + kZ:l( k ~ Pak)Yak

In an optimal plan Profit must be maximized subject to the
constraints

(i)

(if)

machine availability,

3
2 Liike X = ke for al i

stock balance in the two periods,

2 3
121 Kzlxijk(_ylk_zlkzo for period 1, and al k

and
2 3 .

ZlXij[_ylk_kazo for period 2, and al k
=1 /=

J
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(iii) minimum demand to be satisfied

ik for al i, and k;

(iv) upper bound on storage,

<h for al k;

Yik k
(v) nonnegativity of the variables,

Yik 20 for al ik and Xijk s = 0, for dl i,j,k, r

LP User Formulation
- Model Variable Name
Production:
TINP1IM1...T20P3M3 The production variablesxXyjj1...X2033
Storage:
T1P1STR... The storage variables yq1 etc.,

Amount meeting demand:
TIPID... the quantities which are allocated to satisfy
demand z;; etc.,

- Model Constraint Name

PROFIT Objective row.

TIMIAN... Availability of machine 1, time period 1 and normal
production,

T1P1ST stock balance equation time period 1 product 1.

The other three constraints are satisfied by upper' bound and lower bound
restrictions. The right hand side column is called RHS and the bound is
called LIM and the full model is set out in Tableau 2.3.

3. Computer Assisted LP Modelling.
3.0 Earlier Generation Modelling Systems.

A number of matrix-generator report-writer (MGRW) systems are in use in
industry, and for any organization that uses mathematical programming(MP)
as a serious modelling tool such systems are of considerable value.
Without exception such systems are used in conjunction with proven MP
software: [7] contains a brief survey of such MGRW systems.

To understand the requirements of an MGRW system in which matrix-generator
(MG) programs and report-writer (RW) programs are written it is necessary
to identify the tasks performed by an MG or aRW. An MG or a RW may, of
course, be written in a high-level computer language such as FORTRAN,

ALGOL, PLI, or in an MGRW language. A typical modelling system using an
MG, and OPTIMIZER, and a RW as shown in Diagram 3.1 may work in the
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following way. The PROBLEM DATA is presented in the form of sets of
tabulated information. These are read and processed by an MG program that
produces a lineimage INPUT FILE. This usually contains,

(& thelogical (i.e., slack and artificial) variables names or row names
that are coded by suitable text expressions;

(b) the structural variables names or column names that are similarly
coded;

(0 the coefficients of the problem matrix;
(d) the RHS, BOUNDS, and RANGES information;

(e) some information concerning the starting basis.

A RW is used primarily to extract only the pertinent information from the
solution obtained by the OPTIMIZER, and it presents this information in a
suitably tabulated format. The RW usually consults the PROBLEM DATA held
as tables, and LINE IMAGE INPUT; it may also carry out some arithmetical
operations on these solution values. An MGRW system therefore
incorporates at least the following feaures:

0] input of PROBLEM DATA in tabular form;
(i) construction of row and column names by name expressions;

(i) using constants or arithmetic expressions to specify the matrix, RHS,
BOUND, etc., coefficients by suitable row or column generator clause
(procedure);

(iv)  accessing the solution file to obtain solution values, reduced costs,
ranges, etc.;

(v) format and print tabular information.

By and large these systems are either a procedural language compiler
[8,9,10] or a program generator [11,12 ].

PROBLEM MG CLINE . IMAGE OPTIMIZER RW REPORT
DATA INPUT /

—

Diagram 3.1. Matrix generation, optimization, and report writing: a
flow diagram.
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In recent times a number of applications systems have avoided the use of a
procedural language to communicate to a computer. The interactive program
development and usage environment encourages this in contrast with the
batch facilities of earlier computer operating systems. Some systems
allow procedural language commands to be issued to the computer in the
interactive mode. This latter approach does not provide the ideal
interactive communication since the user of the system still needs to
remember or refer to the syntax and semantics of a finite number of
language commands.

31 Design Objectives of the system

In the construction of the computer assisted Mathematical Programming
(Modelling) System: CAMPS we have followed the modern trends in system
design and have aimed to meet the objectives set out below.

(a) The (computer based) system should provide assistance to the modeller.

(b) The modeller should be able to communicate his requirements via a set
of menu options.

(c) The modeller is considered to possess quantitative modelling skill and
Is not necessarily an expert in computer programming. He conceives
and states mathematically his model and the system assists him in
communicating this to the computer.

The progressive approach to model definition as described in section 2 of
this report is strictly followed in CAMPS. A modelling system is of
greatest assistance to the modeller when he is experimentally investigating
and developing his model. The purpose of CAMPS is to provide support at
this stage. The modeller by and large needs to maintain a mathematical
documentation of the constructed model for his own reference and also to
communicate with others. A mathematical statement of a completed model
can also be obtained using CAMPS.

3.2 The set of Primary Options

CAMPS is fully described in the user document [ 6]. A set of five primary
options showing the main functions are displayed in Table 3.1.

... CAMPS . ..

Date : 5.11.83. Time: 10.32
User : CORMAC Model: MTMPRD
MAIN OPTIONS
1 CREATE AND AMENDMODH. ... CA
2 GENERATE MODEL ... GM
3 RUN OPTIMISE ... RO
4 ANALYSS AND REORT ... AR
5 UTILITES .. UT
6 LOGOUT ... LO

Table3.1
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The options 2 to 5 are connected with the task of experimentally
investigating a model. The option 1 is used to formulate a model.
A number of subfunctions which can be carried out using this
modelling option are described in the next section.

3.3 The Set of Modelling Options.

Four out of five options (Table 3.2) which are provided under the heading
of CREATE AND AMEND MODEL are based directly on the analysis of LP
modelling strategy presented in section 2 of this report. It also follows
from the analysis of section 2 that these options may be not entirely
independent of each other. For instance using option 1 all.

the subscripts and their dimensions must be defined as the very first
step. Only after this DATA TABLES, and MODEL VARIABLES can be defined
independent of each other but consistent with the definitions under
option 1. Under option 4 the model constraints (logical variables)

are first defined and have to be consistent with the definitions under
option 1. The linear constraint relationships are then stated and

have to be consistent with definitions under options 1,2,3. Under
option 5 test qualifiers for different items of data are introduced.

These text qualifiers are subsequently put together in another part of
the system to annotate the mathematical statement of the model (model
documentation).

... CAMPS . ..
Date: 5.11.83. Time: 10. 32 .
User: CORMAC Model: MTMPRD
CREATE AND AMEND MODEL

SUBSCRIPTS AND DIMENSIONS
DATA TABLES

MODEL VARIABLES

MODEL CONSTRAINTS

TEXT QUALIFIERS

O~ WDN P

Table3.2

The hierarchical relationship of the command options and information
flow through the system isillustrated in Diagram 3.1. It can be

seen from the diagram that the system is designed to provide both
modelling support and data handling support.
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4. Investigation of a Model using the System.
40 Introduction

In this section the use of CAMPS to create and investigate LP modelsis
explained with an illustration. In section 4.1 the multitime period,
multimode production problem of section 2 is considered to illustrate
the modelling options of the CAMPS system. The optimisation controls,
the method of reporting, and preparing model documentation are then
explained in sections 4.2, 4.3, 4.4 respectively.

4.1 Model Construction

To construct a model the "CREATE AND AMEND" option (CA) of the MAIN
OPTIONS menu (see Table 3.1) is first chosen. Alternatives available
under this option such as SUBSCRIPT and DIMENSIONS,..., TEXT
QUALIFIERS, are then chosen in their natural order to progressively
construct the model.

- SUBSCRIPTS and DIMENSIONS
The full set of options under this command are set out in Table 4.1.

For the given model only options 1 and 4 are used. Option 1 is used
to declare the index sets (indices and their ranges).

... CAMPS . ..

Date : 5.11.83. Time : 10.32.
User ¢ CORMAC Model : MTMPRD
SUBSCRIPTS AND DIMENSIONS

SET

NETWORK SET
SUBSET

LIST INPUT

SET MANIPULATION

agrwbdE

Table 4.1

Option 4 is used to create the text attribute set and the name
attribute set corresponding to each entry is the index set as defined
in option 1. The text and name elements are entered under the List
Input facility.

- DATA TABLES

The tables TABH, TABD, TABC are defined using this command. The full
set of options under this command are set out in Table 4.2. Under
option 1 the dimensions of the tables and the type of its elements are
specified.






... CAMPS . ..

Date : 5.11.83. Time : 10. 32.
User : CORMAC Model :  MTMPRD

DATA TABLE

TABLE DEFINTION
TABLE INPUT

TABLE EDIT

TABLE MANIPULATION
TABLE DISPLAY

agbrwbdE

Table4.2

It is only necessary to introduce the name of a table (the dimensions
are chosen using sets already defined) and its type. There are three
possible types for a table; integer, real or text. Option 2 is

used to enter data into the table or read it from some other data

file held in the system. Option 5 is used to display and hence
verify the contents of the tables set up in this way.

- MODEL VARIABLES

The three options under this command are set out in Table 4.3. The
model variables x, y, z in terms of their appropriate subscripts

... CAMPS . ..

Date : 5.11.83. Time : 10. 32.
User : CORMAC Model : MTMPRD

MODEL VARIABLES

1. VARIABLE DEFINITION

2. SPECIFY (MPS) NAME

3. SPECIFY VARIABLE BOUNDS
Table4.3

x(i, j, k, D,y(i, k),z(i, k) are first defined under option 1. To make
the generated model variable names meaningful the mps variable names
such as TINP1M1 etc. may be introduced under option 2. However,
this is not obligatory and the system provides default names. Using
option 3 the demand and storage bounds are specified.



- MODEL CONSTRAINTS

The four options under this command are shown in Table 4.4

..CAMPS...

Date : 5.11.83 Time : 10.32
User : CORMAC Model : MTMPRD

MODEL CONSTRAINTS

CON STRAINT DEFINITION AND EXCEPTIONS
SPECIFY (MPS) NAME

CONSTRAINT RELATIONSHIP

SIMPLE LINEAR INPUT

CONSTRAINT DISPLAY

gk wdrE

Table 4.4

Using option 1 the stock balance, the machine availability constraints
and also the objective function are defined. These definitions amount
to introducing the slack variables for the first set of constraints and
the artificial variables for the second and one free row for the
objective. Under option 2 the MPS names TIMIAN ..., TIPIST ..., PROFIT
may be constructed for these which compare with the names used in the
example. Again this step is not obligatory and default names are
supplied by the system. Using option 3 the linear forms for these row
groups are stated. Option 4 provides the facility of simple "equation
mode" input. Using option 5 the constraints are displayed and verified.

- TEXT QUALIFIERS

This command leads to the set of optionsillustrated in Table 4.5.
Under the four options the four groups of items

..CAMPS...
Date: 5.11.83 Time : 10.32.
User: CORMAC Model : MTMPRD

TEXT QUALIFIERS

SUBSCRIPTS AND DIMENSIONS/T
DATA TABLES /T

MODEL VARIABLES /T

MODEL CONSTRAINTS /T

Ll

Table 4.5
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DIMENSIONS, ....CONSTRAINTS which are defined earlier are annotated.
Typical examples of these text annotations are

... : "number of time period(s) ."

J .. : "number of production mode(s) ."

T(, j, k,0) "Tablé of production rate (hours)."

A, j, ¢) "Table of machine availability (hours)."
X, j, k, £): "The .amount produced.”

y(i, k) : "The amount stored.”

etc.

These texts are stored together with the model data in the
model master file. It can be used both by the Documentation
subsystem and the Analysis and Report subsystem.

4.2  Optimisation Control

Using the Generate Model command at the main level the resulting model
Is produced in MPS format and summary information concerning the model
can be examined. The Run Optimise command is then used to process the
model. A small model can be processed interactively. Larger models
are processed in the batch queue. Once the processing is complete a
call back file is set up for the user to interrogate the solution.
The optimisation controls such as choice of objective function,
direction of optimisation (max or min). Maximum number of
iterations, saving of the processed model, etc. are set up by a series
of options.

43  Analysis and Report

Analysis of the solution and preparation of report usually amounts to
preparing a few summary tables and printing these. In the given
example for instance this could be production summary of storage

used. From the point of view of data handling the user first needs
to load the (input) Data Tables, solution to the model. He then
defines and manipulates summary tables, assigns values to them, and
finally prints these summary tables.

44 Model Documentation

The annotating texts which were introduced under the "Text Qualifier"
option are used to construct the documentation of the model. The
full documentation for the given example is set out below.
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Title: Multi time Period Multimode Production Model.

Prepared by: C. Lucas Date: 5.11.83.

Subscripts and Dimensions.

o= 1,2 the number of time periods,

j = 1,2 the number of production modes,

k =1,...,3 the number of products,

¢ = 1,...,3 the number of machines.

Data Tables

T(, ), k, 2)... the table of production rate (hours) for time
period i, production mode j, product k, and
machine 7 ,

A, g, ) ... the table of machine availability (hours) for time

period i, production mode j and machine type /7,

P(i, k) the table of selling price (sterling) for time
period i, and product Kk,

D(i,k) ... the table of demand for time period i and
product Kk,

S(k) the table of storage cost for product k,

H.(k) the table of storage capacity for product Kk,

R(k) the table of resale value for product k,

C(i,j,k, ¢) ... the table of production cost for time period i,

production mode j, product k and machine 7.

Model Variables

X(,].,k,¢) ... theamount produced in time period i, in production
mode |, of product k, on machine /7,

Y(1i, k) ... the amount of product k stored in time period i,
Z(1i, k) the amount of product k sold in time period i,

Model Constraints

Bounds
Minimum demand lower bounds Exception: None
Z(i, k) >=D(1, k) for all time periods i,
and all products k.
Storage capactiy upper bounds Exception: None

Y(l, k) <=H(k) , all products k.



Objective and Linear Constraints
Objective

PROFIT:
SUM...over i [SUM...over j LSUM...over k [SUM...over 7/
[(p(i k) - C(ij ko, 0))*x(ij k., 0) 1111
# Sales revenue less production costs #
- SUM...over K[S (K)*Y (I ,k)]
# less storage cost #

+  SUM...over K[(R(K) - P(2,K)*Y(2,K)]

# plus resale value less production cost #
Machine Availability Exceptions. None
MA(i j,¢):

SM..oe  Kk[T(i,jk, ¢ ¥X(3,j.k, £)] <=AGj,7)
all time periods i, all modes j, all machines /.

Stock Balance 1 Exceptions. None
STBALI (k):
SUM over j[SUM...over /[ X(l,j,k,2)-Y(,k )-Z(1,k)]] =0
al products k.
# Amount produced balances with storage and amount used to meet
demand period 1 #

Stock Balance 2 Exceptions. None
STBAL 2(Kk):

DUM....ova j[SIM..ove 7 [X2,jk,¢) + YK -YRK-Z2K]] =0
al products k.

# Amount produced balances with storage and amount used to meet
demand period 2 #

The text qualifiers for dimensions are restated in defining the
tables, model variables and model constraints. The bounds and other
linear constraints which are expressed in groups may have exceptions
in their specified ranges. Different expressions in linear forms are
also annotated and these annotating texts are included within a pair
of opening and closing hash marks #...# .



5 Discussion

The salient components of the mathematical programming models have been
analysed. A number of earlier generation systems have been briefly
considered. A computer assisted modelling scheme has been put forward
which is derived out of the logical steps in the formulation of LP
models. A clear and suitably annotated documentation of the model is an
important requirement for the modeller. The system is designed to
satisfy this requirement. A number of problems have been described and
their mathematical formulations have been derived to illustrate the
modelling principles and the design philosophy of the system. An
example of applying the system to create, investigate and document a
model is also set out to illustrate the LP modelling and data handling
support provided by the system. A full user specification of the system
can be found in [6 ].
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