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Particle Filtering for Nonlinear/Non-Gaussian
Systems with Energy Harvesting Sensors Subject to
Randomly Occurring Sensor Saturations

Weihao Song, Zidong Wang, Jianan Wang, Fuad E. Alsaadi and Jiayuan Shan

Abstract—In this paper, the particle filtering problem is in- the recursive propagation demands the calculation of multi-
vestigated for a class of nonlinear/non-Gaussian systems with dimensional integrals that is numerically difficult. To solve
energy harvesting sensors subject to randomly occurring Sensor s yroplem, various filtering algorithms have been developed
saturations (ROSSs). The random occurrences of the sensor L " . . . .
saturations are characterized by a series of Bernoulli distributed by ““"Z'”g, dlffer.ent numerical apprpxmatlon methods with
stochastic variables with known probability distributions. The €xamples including, but are not limited to, extended Kalman
energy harvesting sensor transmits its measurement output to filtering with first-order linearization [1], [31], unscented
the remote filter only when the current energy level is suffi- Kalman filtering with unscented transform [20], [21], cubature
cient, where the transmission probability of the measurement Kalman filtering with cubature rule [2], and particle filtering

is recursively calculated by using the probability distribution . . .
of the sensor energy level. The effects of the ROSSs and theWIth Monte Carlo approximation [3], [12], [28], [61].

possible measurement losses induced by insufficient energies are  Owing to the applicability to general systems with any type
fully considered in the design of filtering scheme, and an explicit of noises, the particle filtering algorithm has captured much

expression of the likelihood function is derived. Finally, the attention from both academy and industry, and a rich body of
numerical simulation examples (including a benchmark example results has been reported from various perspectives, such as

for nonlinear filtering and the applications in moving target Lo .
tracking problem) are provided to demonstrate the feasibility reduced communication burden [27], model uncertainty [55]

and effectiveness of the proposed particle filtering algorithm. and packet dropouts [62]. Among others, the group importance
. I . . sampling algorithm has been proposed in [40], which aims
Index Terms—Particle filtering, nonlinear/non-Gaussian sys- ¢ the statistical inf tion included i t of
tems, randomly occurring sensor saturations, energy harvesting 0 _compress e s.a Istica _'n ormation Inclu (_a in a se_ 0
sensor, multi-sensor systems weighted samples into a single summary weighted particle.
In [42], a particle selection method has been proposed for
cost-reference particle filtering algorithm, which is capable of
. INTRODUCTION overcoming the difficulty (incurred by resampling) of parallel

computation in conventional particle filters. In addition, the

gs one IOf the fupdameﬁta]!_llss_ues mbls,lgnar:I ProcessIg icle filtering problem has been investigated in [45] consid-
and control communities, the filtering problem has attract ing the presence of out-of-sequence measurements.
considerable research interest during the past few decade

T l-world applicati f networked syst it |
6, [17], [25]. [32], [51]. As early as in [15]. a general many real-world applications of networked systems, it is

. ubiquitous that the physical sensor cannot produce measure-

f||t§r|tngf frgmewcr)]rk h?ﬁ' beertl) %qustréjcte(jt frfom t‘f" BageDsF'?ﬂent signals with unlimited amplitude due mainly to the hard-
point of view, where the probabiiity density function ( Mare restrictions, and this is referred to as the sensor saturation
of the state of interest conditioned on the measurementsvlim%nomenon Such a phenomenon, if not properly considered
been c_omput_ed IN & recursive manner. For linear systems the stage of filter design, is likely to result in performance
Gaussian noises, it is well known that the renowned Kalm gradation or even algorithm divergence. Accordingly, a
f||ter_[33] offers the analytlcally optimal solution. For gener arge amount of research attention has been devoted to the
nopllnelar ?leor nprt1—Ga|1u$,S|an systerr][s, Ithe corrgspon il &ring problem with sensor saturations [11], [16], [37], [38],
optimal solution existonly in-a conceptual sense ecaus&w]_ For example, the distributed set-membership filters have
, — _ _ been designed for systems with sensor saturations, unknown
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work congestions and subsequent network-induced behaviassfollows: 1) a unified framework for sequential Bayesian
(e.g. communication delays and packet dropouts [24], [5&stimation is proposed for a general class of nonlinear/non-
[53]) which, in turn, give rise to the so-called ROSSs [63]Gaussian systems under the energy-dependent transmission
Note that the ROSSs can also result from abrupt environmg@mbtocol; 2) a modified particle filtering algorithm is de-
changes and random/intermittent sensor failures [58]. Up teloped to address the multi-sensor fusion problem subject
now, the filtering problem for systems suffering from ROSS® partial measurement-information-loss induced by different
has aroused an initial yet quickly increasing research interesergy levels of each individual sensor; and 3) the recursion
see [26], [34], [56] and the references therein. Neverthelessfat importance weight is derived to take into account the joint
is worth mentioning that the corresponding filter design isswffects from the ROSSs and the sensor energy constraints.
for general non-Gaussian systems subject to ROSSs has ndthe remainder of this paper is organized as follows. In
been investigated adequately. Section II, the concerned filtering problem is formulated.
It is often the case in practice that the energy supply is rather Section Ill, the particle filtering algorithm is designed
scarce and this inevitably imposes certain constraints on the considering the phenomenon of ROSSs and the energy
efficient/smooth usage of the wireless sensor networks sirt@vesting sensors. In Section IV, two numerical examples
more sensors are battery-operated. To prolong the sensarg presented to show the usefulness and effectiveness of the
lifetime, two kinds of approaches have been put forward, opeoposed particle filtering scheme. Concluding remarks are
is to reduce the energy consumption and the other is to increéisally provided in Section V.
the energy supply. For the former approach, considering thafNotation. Throughout this paper, the notation used is
the wireless transmission of data streams constitutes the nfaiinly standard.R™ represents the-dimensional Euclidean
cause for energy consuming, a great deal of work (e.g. [2¥Ector space.|| - || stands for the Euclidean norm of a
[35], [57], [59]) has been concerned with the event-triggerector. The superscripf’ denotes the operation of trans-
schemes where the data transmission is activated only whmse. diag{a1, as,...,a,} denotes a diagonal matrix with
certain predefined event occurs. For the latter approach, thereas, .. ., a,, being the diagonal elements,(-) stands for
has been a notably growing research interest towards the PDF of a stochastic variablgi.e.,z ~ p,(-), andp,,(-)
so-called energy harvesting technology [14], [44], [54]. Fatenotes the conditional PDF of a stochastic variabdgveny.
sensors equipped with energy harvesters, the energy canPbéA} denotes the occurrence probability of the discrete event
harnessed (and then replenished) from the surrounding emdi- N (a,b) represents the Gaussian distribution with mean
ronment such as solar and mechanical vibrations [23]. and covariancé. G(a, b) denotes the Gamma distribution with
Given the practical importance of the energy harvestirahape parameter and scale parametér Exp(a) stands for
sensors, the corresponding filter design problem has recettlig exponential distribution with mean z.; represents the
been gaining some initial attention. For example, in [22}rajectory of z from time instantk to time instant/. Other
the optimal energy allocation problem has been studied footations will be provided as the need arises.
multi-sensor estimation with energy harvesting and energy
sharing technologies. In [18], both the state and the sensor Il. PROBLEM FORMULATION
energy level have been estimated for a linear Gaussian systemgqnsider the following discrete-time nonlinear system
by incorporating the available set-valued and point-valued
event-triggered measurements. In [50], a recursion expression Tpt1 = fr(Tr) + wk (1)
for the probability distribution of the energy level has beegnq ' energy harvesting sensors with randomly occurring
derived and an effective recursive filtering algorithm has begfy rations
proposed to address the phenomenon of sensor-energy-induced . . . o .
missing measurements for a class of nonlinear time-delayed ;. = vxSat(hy(zx)) + (1 — )by (vx) + v} )
systems. It should be noted that, so far, most reported res%ﬁere, fori — 1,2, ..

have been_focused on tlhegar G§u55|ar§yste_ms [18], [23] state of the target plant and the measurement output atlthe
or the nonlinear systems wigpecial nonlinearitie$50]. The sensor at time instark, respectively.f.(-) : R" — R" and

filter design issue for general nonlinear/non-Gaussian syste ) : R" s R denote the state transition function and the
with energy harvesting sensors subject to ROSSs has asurement function of théh sensor, respectively;, ¢ R”
received adequate attention despite its practical significancge resents the process noise satisfying(-) and v% € R
Summarizing the above discussions, in this paper, we a| the measurement noise on sensaatisfying p 1(’?) The
Ijk' .

to d_eal with the pa_rtlcle f||ter|ng. prob!em for a class o afuration functiorat(-) : R — R is modelled by
nonlinear/non-Gaussian systems involving both ROSSs an

probabilistic missing measurements caused by the energy Sat(k) = sign(x) min{ Kmax, |k|} 3)

harvesting sensors. Through recursively calculating the provl\?ﬁeresign(-) is the signum function andy,. represents the

ability q!strlbut|on of the sensor energy level, the MISSNGaturation level. Moreover, a Bernoulli distributed stochastic
probability of the measurement is derived. Accordingly, a_ . i , .
variable~;, is defined to characterize the phenomenon of the

particle filtering algorithm is developed to restrain the eﬁeﬁOSSs on theth sensor [58], which takes a value @for 1

from both the ROSSs and the limited sensor energy o
the filtering performance by virtue of a modified likelihood" { Pr{y, =

. N, z, € R" andyi € R are the

1} =5
function. The main contributions of this paper are highlighted Pr{y, =0} =1-%"' (4)
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wherey! € [0,1] is a known constant.
Next, the following assumptions are made to further clarify Plant
the considered system.
Assumption 1The initial stater, satisfies the prior density Solar Energy
Do (), 1.€4, 20 ~ Do (+)-
Assumption 2The process noisey, the N measurement
noises{v{}¥, and the stochastic variablgs:}} , are all

mutually independent and also independent of the initial stat Sens6r 1 _E Sensér2 e e+ Sems6rN

Zo- | | |
Assumption 3:The nonlinear functiongy(-) and h% () as K k

well as the PDFg,, () andp,, (-) are all known. X E'>0 E2=0 X EY >0

Let the ith energy harvesting sensor be powered by a <-¢‘ , <¢"
chargeable battery whose maximum energy storage capac’
is denoted byE‘ and the energy level of théth sensor at Remote Filter (Fusion Center)
time instantk is defined byE: € {0,1,..., E'}. DenoteH;
as the number of the units of energy harvested byithe Fig. 1: Block diagram of the networked system with energy

sensor at time instant, which is modelled as a first-order harvesting sensors and ROSSs.

Markov model. Assume thak; takes a value in the finite

non-negative integer séfl = {0,1,..., H} with transition

probability matrix IT = [m,.]7«7, Where H denotes the Remark 2:Compared with the existing results concerning

maximum energy that can be harvested by the sensgys= particle filtering with packet dropout [62] anH.. filtering
Pr{H} ,, = v|H} = u} denotes the transition probability forwith missing measurements [49], two distinguishing features
all u.v € I and ZH o Tuw = 1. of the considered model are identified as follows. 1) A novel

Remark 1:As stated in [14], [23], the energy harvestindndicator variablel{Ei>0}_, whose p_robability distribution is
process may be correlated among different time instants, el§Pendent on the evolution dynamics of the energy level (6),
the amount of the harvested solar energy is contingent fintroduced to characterize whether or not the measurement
the weather and the period of a day. The rationality of tHg is successfully transmitted to the remote filter. Note that
first-order Markov energy harvesting model is justified by thb(z; >0} IS @ time-correlated variable (rather than a Bernoull
empirical measurements when the solar energy is the eneﬁjg‘ﬁ'}”b“md stochastic variable with known probability distri-
harvesting source [13]. bution). 2) Both the measurement noise and the channel noise

Assumption 4The energy harvesting sensor can transmit &€ taken into consideration to better cater for the real-world
measurement to the remote filter only when it stores nonzeigenario. In addition, there is no specific requirement on the
units of energy and each measurement transmission consuffB§ Of the noise, and therefore the application potential is

one unit of energy. further increased. In summary, it is_ Fhes_e d_istinguishing fea-
Define an indicator variablé ., for the energy con- tures that r.end.er some additional difficulties in the subsequent
sumption as i deS|g|j of f|lter|ng scheme._
1L if B >0 _ At time instantk, the available measuremeTnts at th_e_remote
Lpisoy = { 0 othekrwise’ (5) filterare denotedasi’™ = [z} 27 --- z'] .Inaddition,
’ let us denoteZl:Y = [(zFM)T  (2AMN)T ... ()77

then the energy level of thih sensor at each time instant isys the vector of all available measurements up to time instant
recursively calculated as [50] k

EZH — min {Ei ~ Lipisoy + H]i+17Ei} 6 Thg purpose of this paper.is to develop a particle filtering
algorithm for the general nonlinear/non-Gaussian systems sub-
with the initial energy leveld < Ei < E‘. Note that the ject to the sensor energy constraints and the ROSSs such that
energy level is unknown at each time instant 1 due to the the estimate of state, can be obtained at the remote filter in
unpredictable characteristic of the amount of harvested enerpg sense of minimum mean-square error (MMSE) based on
and the probability distribution of the energy level will bethe available actual measurement informatiof. .
discussed in the subsequent section.
As illustrated in Fig. 1, theith energy harvesting sensor 1. ALGORITHM DESIGN AND DISCUSSION
transmits the new measurement to the remote filter only whenag is well known, the MMSE estimate of the unknown state
the sensor’s curreqt energy is sufficient, i.€;, > 0. Due vectorzy, is defined by
to the above-mentioned property of the energy harvesting
sensors, at the remote filter side, the available measurement - /Ikp(a?kllef;iV)dIk. (8)
contributed by theth sensor at time instarit is described as
1 . ) Unfortunately, it is difficu_lt to_obtain an analytical solution
k= HE>0 Yk T TR to the problem addressed in this paper due to the fact that the
whereni € R denotes the channel noise in the reception ofiarginal posterior PDp (x| Z]:Y) is non-Gaussian. As an
the ith sensor’s information, which satisfi@@;c(-). alternative method, the particle filtering algorithm [3] can be
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utilized to obtain an approximate expressionptk..|Z1:Y) Proof: To prove the result, we will discuss the form of
with a set of weighted particle trajectories as the likelihood function in the following three cases.
M Case 1:If the energy of sensor nodeis sufficient and the
o] ZEN) = Z Wio(zo.x — g1,) (9) Phenomenon of sensor s?turathn.dqes not occur at time instant
o k,i.e,1ligisoy =1 andy, = 0, it is immediate to see from

where M denotes the number of the particles ai(d) rep- (2) and (7§ that

resents the multi-dimensional Dirac delta function. In ad- 2} = hi(wg) + Vi + nj. (16)
dition, the particles{z{", }2"_, are drawn from a proposal
density functiong(zo.x|Z12) and the corresponding weight-
s {W;},.—, are calculated via the importance sampling p(zh |z al{E,g>o} =1, =0)= Puj+ni (2 — hi ().

Then, the likelihood function is evaluated as

method. To be more specific, the importance weigkg* (17)
associated withr{’, is defined by Case 2:If the energy of sensor nodes sufficient and the
plam,, ZEN) phenomenon of sensor saturation occurs at time ingtaie.,
= 0 Lk s (10) 1{pi~gy =1 and~; =1, we obtain from (2) and (7) that
a(xph| Z1i)) ¥ , ) . .
If the proposal density function is selected such that we can 2, = Sat(hy (zr)) + vi, + ng. (18)
factorize it as Then, we can denote the likelihood function as
Q@ Z0) = a@l o1, Z00)aG@Ei 1 Z050) A1) peilal, 1oy = 13k = 1) = pug 1t (2h—Sat (B (27)).
then we have o o ] (19)
m LN Summarizing the above two cases, it is obtained from (17)
wm — P(gh 21k ) and (19) that

_ p(Z;?NIIZl)p(x?IIZlfl)P(%’?kfla lezzljﬁvfl)
‘J(Ing:lk—lvle::ljcv)Q(xS?k—1|Z11::ljcv—1)

p(zlic|172na 1{E,i>0} =1)

(12) 1 o
Zzp(ziﬁi = jlay', 1{E,§>0} =1)

According to Assumption 2, it is straightforward to see that §=0
N ! , , .
p(zp N |2y = Hp(z,ﬂxzn) (13) =) p(zlays Ligisoy =Lk = J)Priv, = j}
i=1 J=0
Substituting (13) into (12) yields =(1 = ¥)p(zkl2i’, Limi sy = 1,7k = 0)
ilm mim + (2|2 1 g =1,7 =1
(Hi\il p(2; |z ))p(xk |27 1) 7Pkl (£ >0y Tk )

Wi =wr, (14)

g@ =g 25N =(1 —71)pu,g+n;(zi - h%@?))
It is evident from (2) and (7) that the actual measurement + 7" Puj i (2 — Sat(hg(21)))- (20)
z;, (contributed by theith energy harvesting sensor at the Case 3:If the energy of sensor nodgeis insufficient and
remote filter) is dependent on 1) the energy level and 8e current measurement is not transmitted at time ingtant
whether the sensor saturation occurs or not. Therefore, e, 1{E}-€>0} = 0, then only the channel noise is received at
update equation of the importance weights, which is relat@ge remote filter and we have
to the indicator variablé . ..o, and the Bernoulli distributed ; ;
stochastic variabley, is distinct from that in the standard e = e (21)
sequential importance sampling method. In the sequel, we aimilarly, the likelihood function is rewritten as
to derive an explicit expression of the likelihood function with . .
the purpose of compensating for the effects resulting from the P(zilek’, Lgy >0y = 0) = Py (21). (22)
ROSSs and the probabilistic missing measurements. By noting (20) and (22) together with the law of total
Proposition 1:With the measurement model described byrobability, the likelihood functiorp(z%|«}") with regard to
(2) and (7), the likelihood function of the system state assfhe ith sensor at time instarit is expressed by
ciated with theith energy harvesting sensor at time instant .
is given by p(zil2y")

p(zgl2r") P(Zliw 1{E;;>0} = jlag")

o

= Pr{l{gisoy = L [(1 = ¥)Puj g (21 — i (27)) j=0
+ A Vi i zr, — Sat(h} (x}" il,.m . :
Y Pui+ ,C( k ( k(z k )))} :ZP(Zk|17k al{E,i>0} = J)Pr{l{EPO} =J}
+ Pr{l(gisop = 0}pni (21) (15) =0
wherep,; i () is the PDF of the sum of the measurement =Pr{l{pi0p = Lp(zilaf’s Lpi 50y = 1)

noisev;, and the channel noise,. +Pr{1 g 20y = 0}p(21 |27 1gg 50y = 0)



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSP.2020.3042951, IEEE Transactions on Signal Processing

FINAL VERSION 5
=Pr{l{gisoy = 1} [(1 = ¥)Puj 4 (21 — i (z}")) From Lemma 1, we immediately obtain the transmission
—i i i(m robability of theith sensor's measurement at time instant
+ 7' Dui i (21, — Sat(hi (27)))] tphat is Y ! ! me Instan
+Pr{lgiogy = 0}p,: (21), (23) ’ ,
e P=Prllpag=1)=0 L - Ur.  (26)
which completes the proof. [ | Bi

. A(_:cording o Proposition 1’. the explicit expression O.f the Remark 3t should be noted that the structure of Lemma 1
likelihood funct|ort1t corresqgndmr? tﬁ thieh er;f.;rg()j/ har;llestmgi is, similar to that in [50], but the distinction lies in that the
serzﬁor Is norv]\{[ wnde? az( z V\;hlc fcatn?r?t ?h |rtec Y appiig (;obablhty distribution of the harvested energy in Lemma 1
n beb\ivtel% ;Jp ate uelo eb a;: ak € rarésrfms& time-varying and dependent on the previous time instant,
probabrity e }. is by far unknown. Before | ;o can he calculated recursively with a time-varying matrix
proceeding further, the following lemma is introduced to deal; In fact, Lemma 1 can be reduced to that in [50] if we
. . k- 1
WIT such ‘Tés.sue'th q . £ th | i simply set the probability transition matrix as an identity
emma 1:Given the dynamics of the energy levek } matrix. In addition, due to the limited hardware level of the

described by (6) with initial energy levelt; and the first- energy harvesting modules, the maximum amount of energy
order Markov energy harvesting procelg;. } with the initial that can be harvested by thih sensor might be less than the
dlstrlbuuon of H{, the recursion of the probability distribution maximum amount that it can store. i.él < £ — 1. In this

7. of the energy level for théth energy harvesting sensor Car&ase, some elements in the matﬂ}g’will t’)g always equal to

be calculated by zeros, i.e.p , = 0 forv > H. Meanwhile, the first?' — H +1
elements of'the last row in the matri, are equal to-1 by

p?c U - 251 OTFU”p;cfl u
' noting Zu Op,C . = 1. Consequently, the computational cost

Tk—X"‘Ska 1

=0 -+ 0 1 0 - 0 (24)  of the matrix S}, will be reduced.
T T_’E—’ Now, subst|tut|ng (15) and (26) into (13), we can evaluate
0 0 the likelihood functionp(z;V |x}) as
where
‘ . p(z N2
T = [Pr{E,i =0} --- Pr{El= EZ}] , N ‘ ‘
_ r =TI {» Dupsnt (2h — h(a)
x=[0 - 0 1] vi+ni \Fk k\ Tk
— ’ i=1
B =i i i (i
b bl T R %wm%»ﬂ+u—am%m%.
i P i 0 27)
k.1 kil k.0 Remark 4Due to the simultaneous presence of the measure-
P2 Dk,2 Pia T 0 . : .
_ : ' : ment noise and the channel noise, when the energy harvesting
Sk = : : : : sensor has sufficient energy to send the current measurement
pLE_l p}’c_E_1 pLELQ Pio to the remote filter, the calculation of_ the likelihood fu_nction
E1 Ei-1 Ei-2 } depends on the PDF of random varialjl¢ + n}). Noting
-2 Ph,s -2 Dh,s -2 Prs " ~Pho that v; and n} are two independent random variables, the
- = =0 - PDF of random variablévj +nj,) is the convolution op,; (-)
and andpnz(-). To be more specific, if the sensor saturation phe-
v, = Pr{H = v}. nomenon does not occur at time instanthen the likelihood

function for themth particlex}* is calculated by
Proof: For v € H, according to the law of total probabil-

ity, we have p%ﬁﬁwi—hux?»:i/niwnmg%—4¢@$>—DMJ
.= Pr{H} =) o )
g In fact, some distributions (e.g. normal distribution and
- ZP (Hi = v, Hi_, = u} exponential distribution) possess simple convolutions. When
- = e = 0 1 = 0 the accurate convolution is difficult to obtain in some cases,
“ an alternative approximation of (28) is given by a simulation
_ ZPY{Hk — o|H}_, = u)Pr{H!_, = u} approach. That is,
pl/;i-i-’ﬂ ( hz x}’cn ank hz xk) Dc)
= Z Wuvpk 1,us (25)
where pyi(ﬁ) is approximated by its particle representation
by which the probability distribution of the harvested energ% chzl 6(v — v°) andC' is the number of the particles.
guantity can be calculated at each time instant. The remainingrhe implementation of the modified particle filtering algo-

part of this proof is similar to that of Lemma 1 in [50] and igithm for systems with energy harvesting sensors subject to
omitted here. B ROSSs is provided in Algorithm 1.
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Algorithm 1 Modified particle filtering with energy harvestingweights. Therefore, a resampling procedure [3] is introduced to
sensors subject to ROSSs reduce the effect of the degeneracy phenomeBtep(§. Note
Step 1.Particle initialization that the proposed algorithm can be straightforwardly extended
Sample M particles from the prior density, i.e.,to the adaptive resampling case, i.e., the resampling procedure
Tl ~ pg(m0),m = 1,2,..., M and the corre- is executed only when the effective sample size [41] is less
sponding importance weight¥ (" are all set to be than a predefined threshold.
%. In addition, set the maximum recursive time Remark 5:Up to now, the filtering problem has been

instant .. addressed for a class of nonlinear/non-Gaussian systems sub-
Step 2.Importance sampling ject to the ROSSs and the sensor energy constraints in the
For eachm = 1,..., M, sample particle:’” from framework of sequential Bayesian estimation. By recursively
the transition PDfp(z}" |z}, ). calculating the probability distribution of each sensor’s energy
Step 3.Weight update level, the probability of measurement transmission is obtained
Calculate the unnormalized weightgV;"}2_, at each time instant. Accordingly, we have derived a mod-
based on (27) as ified likelihood function to update the importance weights.

It is worth figuring out that our proposed algorithm is also

Wi applicable to the case without sensor energy constraints, i.e.,
, . Ai = 1, and the case where the missing measurement is
= Wiy H {)\Z VPuini (21, = hi(#))  governed by a Bernoulli distributed stochastic variable with
known probability distribution [58]. Meanwhile, if we set
+79 Puﬁn;’c( kT Sat(hi(ff?)))] A% =0, then our proposed algorithm degenerates to the case
(1= Ai)p,: (Zzi)}- with only sensor energy constraints. _
" Remark 6:1t should be pointed out that, in recent years,
Step 4.Normalization many particle filtering methods have been proposed to address
Normalize the importance weights as the model uncertainty by adopting multiple candidate state-
- space models. A common approach available in the literature is
Wit = % to utilize a batch of particle filters, each of which corresponds
Yo W to one of the candidate models (see e.g. [5], [9], [29], [30],
Step 5.State estimate update [42], [55]), and another kind of strategy is to jointly make
Calculate the state estimatg and estimation error inferences on the states and model index [10]. Actually, due to
covarianceP, as the random nature of the sensor saturations and measurement
information loss, the measurement process of each sensor can
By = Z W also be described by a system with three candidate models
ke ko (e, 1ygisoy =1 andy; =0, 1oy = 1 andy; = 1, and

, 1{E1 >0} = 0) by following the line of [29], [30]. However, it
P, = Z W (@l — a5) (2 — i5) 7. is worth noting that, in this paper, the missing probability of
the measurement has been derived in a recursive manner and
. we are able to directly derive the likelihood function based on
Step 6.Resampling o L
the statistical characteristics of the ROSSs and measurement
Resample the particles based on the normahzedrE . L ; : !
- information loss, avoiding the use of multiple particle filters
importance weight§ W™ }M_, .
Step 7.If £ < K, then go to Step 2; otherwise go to Stegnd the inference on the model index.
g Remark 7:The particle filtering problem for nonlinear/non-
Gaussian systems has become a hot topic for a few decades
Step 8.Stop. . o . .
with successful applications in many areas. Comparing to the
rich body of existing results in the literature, the main results
established in this paper own the following specific merits:
As can be seen from Algorithm 1, the proposed recursilg the problem addressed is new in the sense that both the
agorithm is mainly constructed by: 1) sampling new particlegnergy-dependent transmission protocol and the phenomena of
from the proposal density function(zx|zo.x—1, 217 ) by ROSS are taken into account; 2) the particle filtering algorithm
using previous particlesSteps land 2); and 2) collecting proposed is new that tackles the multi-sensor fusion issue
the measurements from all the energy harvesting sensors anbject to partial measurement-information-loss induced by
updating the importance weights according to the availaldéfferent energy levels of each individual sensor; and 3) the
measurements; ", which are dependent on the energy leveecursion derived for importance weight is new as the joint
of each individual sensor and the ROSSteps 3and 4). effects from the ROSSs and the sensor energy constraints are
For the convenience of implementation, the state transitienplicitly reflected.
PDF p(x|zr—1) determined by (1) is chosen as the proposal
density function in Algorithm 1. Nevertheless, after a few IV. SIMULATION RESULTS
iterations, the particle degeneracy phenomenon may occurln this section, some illustrative examples are presented
which means that all but one particle will have insignificartb verify the effectiveness of our modified particle filtering
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B. Application to 2-D and 3-D target tracking problems
30

----- Ground truth In this subsection, the proposed algorithm is firstly used to
FrROSSEH track a target that moves in a two-dimensional plane. The state
h of the target at time instarit is denoted as

Tt t t t T
Tk = [Sm,k’vz,kvsy,kvvy,k] ’

where(s!, ., s; ;) and(v, ,, v, ;) are the position and velocity
of the target’s centroid, respectively.

Following [7], the dynamics of the target is represented by
the white noise acceleration model described by

Value of x

1 7T 0 0
0 1 0
T = o 9 1 T | %k + wp (30)
-50 10 20 30 40 50 60 70 80 90 100 O O O 1

Time, k
Fig. 2: Estimation results of PF-ROSS-EH and SPF. whereT denqtes ‘h? samplmg period ang o!enotes t_he Zero-
mean Gaussian white noise sequences with covariance matrix

Q) determined by

algorithm. %e T72 0 0
T2
= T 0 0
=A| 2 31
A. Numerical example @ 0 0 %3 TTZ (31)
2
In this subsection, a simple non-stationary model (modified 0 0 TT T

from [64], [65]) is employed to show the feasibility of theandA denotes the acceleration variance.

proposed algorithm (abbreviated as PF-ROSS-EH). Let the moving target emit a radio or acoustic signal. The
Consider a nonlinear and non-Gaussian system describeqQ¥sjve received-signal-strength (RSS) sensors are deployed in
(1)-(2) with the following nonlinear functions the reconnaissance region to measure the emitted signal energy

k of the target. To be specific, the measurement model oftthe

fe(zk) = 0.5z, + 25# + 8cos(1.2k)

7 (29) RSS sensor located gfifk, s;’_f}c) is represented by [7], [46]
: (zx —0)* o
hY Tl :77121,2 . St ,St T—SS"Z,SS"ZT
o) 20 hi(x1) = Py— 10n, logy, <|[ o i y vyl | :
wheres; = 0.1 andsy = —0.1. The process noise;, satisfies 0 32)
the Gamma distribution, i.ews, ~ G(2,2). The measurement. 1.9, N, whereP, is the received signal energy at the

n0|_se5uk_and channel noises, obey the exponentlal distr reference distancé, andn, is the path loss exponent.
butions, i.e.,vj, ~ Exp(2) andnj, ~ Exp(2) for i = 1,2.

: - S Due to the effect of the ROSSs, the actual measurement
The occurring probability of the sensor saturation is set to %%t Ut of theith sensor is given b
~% = 0.5 and the saturation level is,.x = 10. The_ maximum P ! 9 y
number of the storable energy for both sensor&'is- 3 and yi, = vSat(hj, () + (1 — )i (zx) + v (33)
the initial energy ist} = 1. The state space of the energy
harvesting process is defined & = {0,1,2,3}, and the wherev; denotes the zero-mean Gaussian white noise se-
transition probability matrix is given by guence with varianceir Afterwards, if the sensor energy

is sufficient, the measurement output is transmitted to the

o0 oL o2 703 0.5 020201 remote filter via a noisy communication channel (see (7)). The
mo T T2 Mg || 04004°0.101 communication noise!, is modelled by a zero-mean Gaussian
20 T2t w2z T2 0.3 03 0202 white noise sequence with varianeg ;.

T30 731 732 733 0.3 0.1 0.2 04 ’

To evaluate the performance of the proposed algorithm, the
In addition, the initial state iszy = 1 and the initial200 oot mean-square error (RMSE) on the position and velocity
particles are drawn from a Gaussian prior distributdofl, 4). are respectively defined as follows:

For comparison, the standard particle filtering algorithm 0
(abbreviated as SPF) is utilized without considering the ROS SE _ R Z {(Sm _ gt )2 4 (St,j _ghd )2}
and the possibly failed measurement transmission. The estima- . © %" MC 4 ok Cak vk Tk
tion results are shown in Fig. 2. It can be seen that our PF- !
ROSS-EH provides a more accurate estimate than the SPF, 1 M¢ " » " "
which demonstrates the feasibility and effectiveness of odFMSEvel r = Vel Z {(%’,Jk = 0,%)% + (v, — @y’i)z}
proposed filtering algorithm. =1
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where M C denotes the total number of the Monte Carlr

trials, (s, 5,47 and [v)7,v5}]T stand for the realiza- 100
i it 2t T 't 't T i H True Trajectory
tion of [si 1, s} 4] ant_:i AR whoste_ e.:,u_mates in . et Trmctory
the jth Monte Carlo trial are denoted by’ , 5 ]7 and
tj ot . o,k Py k gor ® -
[0,%,0,7%)" - For the convenience of readers, a summary of tl AN A
notation involved in this application is provided in TABLE I. or Sensor 3 Sensor 4
60 -
TABLE |: Summary of the involved notation. 7
s 50f _
Variables Descriptions 401 g
st /st the target position in the X/Y coordinate direction 30
vl L/ the target velocity in the X/Y coordinate direction 20l Sensor 1 " Sensor 2
st /8% the realization ofst , /st , in the jth Monte Carlo trial g / Y
z,k/ Py, k z,k/ y,k J
”;’Jk/vgjk the realization ofv’ , /! | in the jth Monte Carlo trial lop = =
b7 /549 the estimate 08"/ /s in the jth Monte Carlo trial 0 ] ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
A A . FAT ) . 0 10 20 30 40 50 60 70 80 90
0%/ Oy the estimate obx’k/vy’k in the jth Monte Carlo trial X(m)
E s;lk the ith sensor’s position in the X/Y coordinate direction ) ) ) _ ) )
T the sampling period Fig. 3: The true target trajectory and its estimate in oné. tria
A the acceleration variance
N the number of sensors
Kmax the saturation level
Py the received signal energy at the reference distahce ‘ ‘ ‘ ‘ ‘
ny the path loss exponent 30 A
2 ; ; | (1] o nte N V
oL the measurement noise variance H o I . /
o2, the channel noise variance = | I [y Vh /" Saturation level
—{ - } @ \ A APEASRY
¥ the occurrence probability of sensor saturations T-35f H‘ ‘\ R ATAl N b ,
B the initial energy level of théth sensor - “\ /”\J VA
£ the maximum energy that thi¢h sensor can store N \/\
H the harvestable maximum energy at each time 40 s s s s s s s s s
1T, /11, the transition probability matrix 0 10 20 30 40 50 60 70 80 9 100
MC the total number of the Monte Carlo trials
M the number of the particles
In the simulation, the number of particles is set to b
M = 500 and 100 times of independent Monte Carlc
trials are conducted (i.e/C = 100). In each trial, the

true trajectory is generated independently with initial sta
2o = [25m 0.3m/s 10m 0.4m/s]". Similar to [7], the ime.

position components of the initial particles are drawn from a g 4: The measurement output with ROSSs (Sensor 4).
Gaussian prior distribution with med2b, 10]7 and covariance
matrix diag{252,25%}, while the velocity components are
calculated by the resultant velocity and the azimuth whic
are drawn from a Gaussian prior distribution with mea
[v/(0.3)2 + (0.4)2, arctan(0.4/0.3)]7 and covariance matrix
diag{0.22, (7/30)%}. In addition, the state space of the energ
harvesting process and the corresponding transition probabi
matrix are the same as that in Section IV-A. For the sal
of clarity, the values of other parameters involved in th
simulation are displayed in TABLE II.

The simulation results obtained in one Monte Carlo trial al
shown in Figs. 3-5. Fig. 3 sketches the true target trajectc
and its corresponding estimate, which shows that our propo:
PF-ROSS-EH is able to well track the moving target. Fig. 4 d
picts the measurement output of Sensand the phenomenon
of ROSSs while Fig. 5 displays the energy level of Sensor
and the transmission instants of measurement output.

For the purpose of comparison, five scenarios, includir
tr".}‘Ckmg with our P.F'RO.SS'EH’_ trackmg with SPF, traCkIn&ig. 5: The energy level and the associated transmission time
with standard particle filter using the ideal measurements instants (Sensor 4).

(unaffected by the ROSSs and the sensor energy constraints,

N

Energy level
[

0 10 20 30 40 50 60 70 80 90 100
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TABLE II: Parameter settings.

0.6

Parameters  Values  Parameters Values | |m—— SPF-IM
SPF
T 1s Py 1dBm 05 PF-ROSS-EH
N 4 Kmax 30dBm | T e PF-ROSS
do im 02, 0.1dBm? P el = N
nr 2 o2, 0.049dBm? 04T ~
~t 0.2 012,73 0.064dBm? g
E} 1 o2, 0.144dBm? 5
_Y ) >03
o 3 o2, 0.001dBm? ul
H 3 A 0.0016m? /s* 2
0.2
0.1
25
----- SPF-IM L L L L L L L L L I}
SPF 0

PF-ROSS-EH )
200 Yo e - PE-ROSS Time, k

Fig. 7: Velocity RMSEs of PF-ROSS-EH, PF-ROSS, PF-EH,
SH- and SPF-IM.

0 10 20 30 40 50 60 70 80 90 100
Time, k Time, k

Fig. 6: Position RMSEs of PF-ROSS-EH, PF-ROSS, PF-Et 02
SFF and SPF-IM.

RMSEVel (m/s)
o
=

and abbreviated as SPF-IM), tracking with the particle filte
only compensating for the effect of ROSSs (abbreviated as F % 10 20 3 a0 0 0 o 0 90 100
ROSS), and tracking with the patrticle filter only compensatir Time, k

for the effect of possibly failed measurement transmission. » ) )
(denoted as PF-EH), will be considered to show the trackin%'_g' 8: Position and velocny_R_MSEs of PF-ROSS-EH V.V'th
performance. Naturally, we expect that using the unaffecte ifferent occurrence probabilities of the sensor saturations.

measurements will obtain the best tracking performance a-

mong the three scenarios, while neglecting the effect of the . << (le.N — 2.4,6) are, respectively, displayed in
above-mentioned phenomena will lead to the worst trackirﬁgs. 8-9, which show ’th’at the ;)ccurrence p}obability of the
performance. - _ random sensor saturations and the number of sensors both
The evolutions of the RMSEs on the position estimate aighye notable effects on the tracking performance. Specifically,
velocity estimate are respectively given in Figs. 6-7. It cafje tracking performance degrades with the increase of the
be observed from Figs. 6-7 that the tracking performance gf.yrrence probability of sensor saturations, and improves as
our proposed PF-ROSS-EH approaches to that of the SKifs number of sensors increases. On the other hand, we denote

IM and is much better than that of the SPF, PF-ROSS, aggh transition probability matrix used beforeds and choose
PF-EH. This is reasonable since we have made much effgioiher transition probability matrii, as

to compensate for the effect of the ROSSs and the possible

missing measurements. 0.8 0.1 0.05 0.05

Next, we will conduct further simulations with different I, = 0.70.1 0.1 0.1
occurrence probabilities of the sensor saturations, different 06 02 01 0l
numbers of sensors and different transition probability matri- 05 02 02 01

ces in the energy harvesting process to analyze their respeciitie corresponding simulation results are illustrated in Fig. 10.
effect on the tracking performance. The simulation resullBom Fig. 10, we can see that the tracking performance of
with regard to different occurrence probabilities of the senstite proposed algorithm with transition probability matfix
saturations (i.e.7* = 0.2,0.5,0.8) and different numbers is superior to that withll,, which implies that the energy



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSP.2020.3042951, IEEE Transactions on Signal Processing

FINAL VERSION 10

: [
N=2
= ————N=4g
£ N=6
: 60 | |
w5 |
(%]
5 50
. L]
40 - 4
i True Trajectory
80 90 100 ’é\ 30 Estimated Trajectory
N

LENLY e 4
\--—"‘~ﬁ--.\_,-— .....

RMSEVeI(m/s)

50 60 70 80 90 100 Y(m) 0 o
Time, k

Fig. 9: Position and velocity RMSEs of PF-ROSS-EH withFig. 11: The true target trajectory and its estimate in the 3-D
different numbers of sensors. scenario.

T 18
Hl
----- Lo 16
PF-ROSS-EH
| 141 PF-ROSS
4 L
12 e
g i .\.\'\
w10 Sesie
4 S
s 8 T e
e
7 o
£ 1
: Rl oM —
(L})J .................................................................................
& ) A e it i i S
00 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 100 0 0 16 26 36 4‘0 56 66 76 86 96 1(;0
Time, k Time, k
Fig. 10: Position and velocity RMSEs of PF-ROSS-EH with  Fig. 12: Position RMSEs of PF-ROSS-EH, PF-ROSS,
different energy harvesting processes. PF-EH, SPF and SPF-IM in the 3-D scenario.

harvesting process has a non-negligible effect on the filteriMglocity are similarly defined. The initial state is Cf;OSGn
accuracy. In fact, the results are intuitively reasonable becawsery = [25m 0.3m/s 10m 0.4m/s 20m 0.3m/s]
the energy harvesting process with transition probability mand the initial particles are sampled from a Gaus-
trix II, is more likely to harvest zero energy and is easier ®an prior distribution with meanz, and covariance
incur missing measurement. diag{10%,0.32,10%,0.3%,102,0.1%}. In the simulation, the

In what follows, the 3-D moving target tracking scenari®iumber of sensors is set 5= 6 and the number of particles
is considered to further demonstrate the effectiveness of e = 1000. Other parameters are the same as those in the
proposed algorithm. Similarly, the dynamics of the target &D scenario.
represented by the white noise acceleration model [4] and thelhe simulation results in the 3-D scenario are displayed in

state of the target at time instakhtis represented by Figs. 11-13, which again verify the effectiveness of the pro-
. e 4 4 4 posed particle filtering algorithm in the simultaneous presence
Tk =[Sy ks Vg ks Sy Uy ko Szker Vi) s of the ROSSs and possibly failed measurement transmission.

where (s, st ., st ) and (v}, v} .0l ;) are the posi-

tion and velocity of the target's centroid, respectively. The

measurement model of thé&h RSS sensor is based on V. CONCLUSIONS

the distance between the moving target and fttie sen- In this paper, a particle filtering algorithm has been devel-
sor in the 3-D scenario. The RMSEs on the position araped to solve the filtering problem for a class of nonlinear/non-
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0.6
----- SPF-IM
SPF
05+ PF-ROSS-EH [g]
RTINS * PF-ROSS
I,v’ - B O PF-EH
— 04r I'; \'\.,. . oo Nrpmmn =t Nan
é ] T [10]
(L}f 03 (1]
>
@
0.2
[12]
0.1
[13]
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Time, k
. . [14]
Fig. 13: Velocity RMSEs of PF-ROSS-EH, PF-ROSS,
PF-EH, SPF and SPF-IM in the 3-D scenario. 5]
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