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Diffusion Strategy for Target Tracking: A Dynamic
Event-Triggered Approach
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Abstract—This paper investigates the particle filtering prob- obtain the state estimate by means of recursively updated

lem for a class of nonlinear/non-Gaussian systems under the posterior probability density function (PDF) of the target’s
dynamic event-triggered protocol. In order to avert frequent state [26].

data transmission and reduce the communication overhead, a For the B filteri thod. the int fi th
dynamic event-triggered transmission mechanism is adopted to or the bayes fiitering method, the integrations over he

decide whether the data should be transmitted or not. We first State space are involved in the recursive propagation, which
consider a scenario where all sensor nodes selectively transmitrenders substantial difficulties in deriving the closed-form
their newly obtained measurements to a central node, and a full expression for the posterior PDF. An exception that needs
likelihood function at the central node is derived by fusing the 1, o mentioned is the linear systems with additive Gaus-
transmitted measurements and the information embodied in the . . h th terior PDE is G . d it
non-triggered measurements. Based on the derived full likelihood sian n0|ses,.w ere the pos e“OT IS saussian an_ Its
function, a centralized auxiliary particle filtering algorithm is ~ parameters (i.e. mean and covariance) can be updated via the
proposed to select those particles that are more likely to match the well-known Kalman filtering scheme [39]. To deal with the
current measurement information. Next, based on the diffusion filtering problem for the frequently encountered nonlinear/non-

strategy, a distributed auxiliary particle filtering algorithm is  55.,ssian svstems in practical applications. a variety of filter-
further developed, where the local measurements and the local . Y P PP ' y

posteriors (approximated by the Gaussian mixture models) are ing approaches have been developed based on different ap-

exchanged among neighboring nodes under the dynamic event-Proximation technigues. Among others, we mention extended
triggered communication strategy. Finally, the effectiveness of Kalman filtering [37], cubature Kalman filtering [2], unscented

the proposed filtering schemes is demonstrated via Monte Carlo Kalman filtering [28], and sparse-grid quadrature filtering
simulations in a target tracking problem with received-signal- approaches [27]. Apart from these Gaussian-assumption-based
strength sensors. filtering methods, the Monte-Carlo-based particle filtering al-
_ Index Terms—Distributed particle filtering, auxiliary particle  gorithm [3], [36], [58] has recently attracted ever-increasing
filtering, dynamic event-triggered mechanism, diffusion strategy. - ayention due mainly to its distinctive capability of handling
nonlinear/non-Gaussian systems . . L
nonlinearity/non-Gaussianity.

With the continuous revolution of smart sensor and wireless
communication technologies, it becomes a rather common

Over the past few decades, the target tracking problgimactice to detect and track a target of interest by a large
has been of great significance in both military and civilianumber of sensor nodes capable of sensing, communicating,
applications with examples including ballistic missile trackingtoring and processing data [57]. When it comes to the
[53], mobile phone user tracking [59], and the speaker trackigtate estimation problems, the main idea of the traditional
[60]. A crucially important task of the target tracking problemsentralizedapproach is that all local sensor nodes transmit
is the state estimation whose primary purpose is to makeeir raw or quantized measurements to a central node and
statistical inference about the state of the target by using tinen the central node processes all the measurements simul-
incoming measurements (e.g., range and bearing) obtainadeously to obtain a global estimate, see e.g., [13], [14].
from sensors [12], [30], [32], [38], [51]. As a popular stateClearly, with such a centralized approach, the entire system is
estimation approach, the Bayes filtering algorithm aims fsrone to fault/failure of the central node and/or the unbearable

computational burden. As such, a more preferable approach b
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a distributed particle filter has been developed for targ&TCM is still conservative in reducing unnecessarily frequent
tracking on the basis of the distributed resampling with nowlata transmissions, and this situation has led to the emerging
proportional allocation method, which is able to conduct theesearch interest on thdynamic ETCMwhose threshold
resampling step in a parallelized way. From the perspectigarameters are adjustelynamicallythrough the medium of
of parallel implementation, the total set of the particles has dynamic auxiliary variable, thereby further improving the
been divided into sub-sets (referred to as islands) in [56], argkource utilization. Up to now, the dynamic ETCM has started
similarly, a cooperative filtering algorithm has been proposéd gain some initial attention with respect to the distributed
in [43] to simultaneously achieve the state estimation arsthte estimation problems for linear systems or nonlinear
model selection, where a series of particle filters have begystems with special nonlinearities [19], [31]. Nevertheless,
used to match the candidate models and each particle filtlee corresponding ETCM-based distributed state estimation
has been allocated a portion of the total number of particlegroblem has not been adequately addressed yet for general
Roughly speaking, there have been two mainstream schemeslinear/non-Gaussian systems, and this constitutes the main
in the context of distributed state estimation, namely, thwotivation of our current investigation.
consensus-based scheme [5], [21], [34], [44] and diffusion-Based on the above discussions, a natural yet fundamental
based scheme [11], [24]. For the former, a kind of distributegsearch topic is to develop a distributed particle filtering
particle filtering algorithm has been proposed in [23], whergheme for nonlinear/non-Gaussian systems under the dynam-
each local particle filter uses the global likelihood functioic ETCM, which is deemed to be a fairly challenging topic
(calculated in a distributed manner based on likelihood cowith the following essential difficulties: 1) how to develop
sensus) to update the importance weights. In [20], the log¢hk dynamic event-triggered particle filters where the dynamic
likelihood function has been approximated by a Gaussi@TCM is dedicatedly integrated for energy-saving purposes?
distribution, and only the mean and covariance have be2hhow to examine the effect from the dynamic ETCM on the
propagated among the adjacent sensor nodes to calcufzteformance of the proposed filtering schemes? and 3) how to
the global likelihood. In [8], the distributed particle filteringexploit the information from the non-triggered measurements
algorithms based on the quantization schemes have béenassist in selecting the candidate particles and updating
proposed to reach a consensus on weights. Note that vimights? In the current study, we are set to answer the above-
consensus-based schemes ensure the consensus via itenadrgioned questions.
internode communication between two successive updatedn this paper, we investigate the distributed auxiliary par-
while the diffusion-based ones are capable of processing tie filtering problem for a class of general nonlinear/non-
measurements in a more efficient way [24] and outperfor@aussian systems with the dynamic ETCM under which the
the former over adaptive networks [55]. Accordingly, thelata transmissions are governed in a dynamical way. The main
diffusion-based state estimation problems have been paghtributions of this paper can be highlighted as follows.
considerable research effort in recent years. For examplel)aA distributed implementation of the auxiliary particle filter
diffusion-based distributed interacting multiple model Kalman based on the diffusion strategy is proposed for a class of
filtering algorithm has been proposed in [33] for Markov jump general discrete-time nonlinear/non-Gaussian systems.
linear systems. In [10], a random exchange diffusion partick) The dynamic event-triggered mechanism is introduced in
filtering algorithm has been developed and further extended to the framework of particle filtering to reduce the frequency
the case with unknown sensor model parameters. Furthermorepf data transmission and save energy consumption, which
in [17], some light has been shed on the Bayesian explanationis more effective than the static counterpart.
of diffusion estimation for a class of models with exponentid) The information from the non-triggered measurements is
family of distributions. fully taken into consideration to help select the most
It is worth noting that, in most available results con- promising particles and update the importance weights.
cerning distributed particle filtering problems, the periodic The remainder of this paper is outlined as follows. In
communication mechanism has been adopted under which 8extion I, the filtering issue is formulated for a class of
data transmission is conducted with a fixed interval, see thenlinear/non-Gaussian systems under the dynamic ETCM
survey [22], [61] and the references therein. Suclinae- and the auxiliary particle filtering algorithm is briefly re-
triggered communication scheme often leads to unnecessatigwed. In Section ll, the centralized auxiliary patrticle filter-
data transmissions, and is therefore unsuitable for wirelaag algorithm is firstly designed (where the transmissions of
sensor networks with limited communication capacity, wheraeasurements are scheduled by the dynamic ETCM), and then
the most energy-consuming operation is known to be tlegtended to the distributed setting via the diffusion strategy.
data transmission [4], [7], [52]. In search of an alternativa practical application to the target tracking problem with
communication mechanism that saves limited resources, tkeeived-signal-strength sensors is provided in Section IV to
event-triggeredcommunication mechanism (ETCM) has eshow the effectiveness of the proposed algorithms. Finally,
merged as an excellent candidate which aims to schedule dsdee concluding remarks are drawn in Section V.
transmissions, thereby reducing the resource consumption [6]Notation. The notation used in this paper is fairly stan-
[16], [54]. dard.R™ denotes then-dimensional Euclidean vector space.
In the context of event-triggered mechanisms, #tatic The superscripf’ represents the operation of transpgsg-)
ETCM uses a fixed triggering threshold regardless of thgtands for the PDF of a random variabtei.e. x ~ p.(-).
degree of necessity of event-triggering. Therefore, the stali€z; i, ) represents the Gaussian PDF of random variable
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x with mean p and covariance®. E(z|y) stands for the the triggering threshold$® is a known weighting matrix and
mathematical expectation of conditional ony. ||lz|w = o} is an auxiliary variable that evolves as
(zTWx)'/? refers to the weighted norm of vectar. x;;
denotes the trajectory af from time instant to time instant 0h = x'0h_1 — |ITh 1|z + o' 4)
4. Other notations will be given as required.
whered® and '’ are both given parameters ap§l > 0 is the
Il. PROBLEM FORMULATION initial value.
The data transmission is executed if and only if the condi-
tion g(ri, 0}, 0;) > 0 is satisfied. Before proceeding further,
Tpr1 = flxr) + wr, (1) to describe whether or not the sensor nedends its current

o . ~_measurement to the fusion center or its neighboring nodes, an
which is observed by a wireless sensor network comprisifgicator variabley! is introduced as follows:

N sensor nodes described by

Consider the following discrete-time nonlinear system

yi = hi(zp) +vi, i=1,2,...,N 2) . )1 glrk, 0, 05) > 0; (5)
: . 00 gt h0) <.

wherez;, € R™ andy; € R™ are, respectively, the state

of the target pIanF and_ the measuremer:lt outputnof ithe Then, the actually available measurement informatiprcan

sensor node at time instarkt. f(-) : R® — R” and be denoted as

hi(-) : R® — R™ denote, respectively, the state transition

function and the measurement function of itiesensor node. P h i
wr € R™ represents the process noise satisfyjng(-) and {Z’? =Yk when 7 =1 (6)
vi € R™ is the measurement noise on tita sensor node 2, € Yy, when 7j =0,
satisfyingp, ; (). S
The following three assumptions are made to further clarifyherey;, = {y;|g(r}, 0}, ;) < 0}.
the considered system. Remark 2:For the dynamic ETCM described by (3)-(5),
Assumption 1:The knowledge about the initial statg is if the parameter$’ and x' are selected ag’ > . and
summarized by a known prior densiby., (-). 0 < x* < 1, then the auxiliary variable; is always nonneg-

Assumption 2:The process noisg;, and the measurementative [19]. Consequently, the equivalent triggering threshold
noises{v} };*, are mutually independent and also independenhder the dynamic ETCM (i.eq’ + ;o) will never be less

of the initial statex. than that in the static counterpart (i.e?). In other words, the
Assumption 3:The nonlinear functionsf(-) and h*(-) as triggering times under the dynamic ETCM will be reduced
well as the PDFg,, () andp,, (-) are all known. and the communication burden will be relaxed. It should be

Remark 1:It is noteworthy that Assumption 3 has beemoted that the equivalent triggering threshold decreases with
widely adopted in a large body of literature regarding théae increase of the value 6f. If §° — oo, the dynamic event
recursive state estimation problems, not only for the particlgenerator function (3) degeneratesdgo) = ||ri|% — o,
filter-related problems (see e.g., [3], [35], [62]), but fowhich corresponds to the traditional static event-triggered
the Kalman-filter-related problems (see e.g., [27], [33]). Imechanism. Furthermore, it is worthwhile to mention that
practice, the statistical properties of noises can be learrtbé auxiliary variablepi can be adjusted in real time using
from historical data or the simulation experiments. Recentl)e measurement information. In practice, considering the
there have been some reported results whose focuses ardirited network bandwidth and energy resource, the threshold-
developing the adaptive filters to deal with the problems witielated parameter®, x* ando® are preset in advance by the
unknown or partially unknown noise parameters using thliesigner or engineer to cater for the real-world engineering
variational Bayesian approximation [49], which would be ongpecifications.
of the possible extensions of the current investigation.

A. Dynamic event-triggered communication mechanism  B. Auxiliary particle filtering

Under the dynamic ETCM, the measurement output of the Given the measurements.;,, the minimum mean-square
sensor nodé is transmitted to the central node or its neigherror (MMSE) estimate of the state,, denoted by, is
boring nodes only when the pre-defined triggering condition ¢&fined as
satisfied. The event generator functigp?, 0%, 6% ) on sensor

nodei is defined as [40]: i = E{ap|zin) = /xkp(xklzl;k)dxk. @)

9(ri,» 01,0) = Ikl — 0" = 70 ©)

Generally speaking, the closed form of the posterior
Wherer}'C = y};—gj}c denotes the difference between the currep{xz|z1.,) is difficult to obtain due to the existence of multidi-
measuremeny;, and the latest transmitted measuremgnof mensional integrals in the Bayesian recursion. A numerically
the ith sensor nodeg' is a given positive scalar representingfficient method is to approximate the posteniog|z1..) by
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a set of weighted particle§z, W;"}*_, | and then we have A. Centralized auxiliary particle filtering under the dynamic

m=1"
event-triggered mechanism
T, Z/:vkp(ivk|21;k)dwk In the centralized filtering framework, all sensor nodes
Y should send their observations to a central node to infer the
_ /:vk Z Wms(zy, — 2 dzx ( posterior PDF. However, dL_Je to the_ (_effect of the dynarr_uc
— ETCM, each sensor node will transmit its current observation

M to the central node only when the corresponding triggering
— Z Wiy condition is satisfied. . .

el Let us define an indicator s&y, = {~i}Y,, where~; is
introduced in (5), and usg; to denote the set of the sensor
nodes that transmit their current measurements to the central
node at time instant. It is worthwhile to point out that; is
known in the filtering process. Motivated by [62], bearing in
p(zklzy )p(y |z ) mind the fact that all the local measurements are independent
(9) given the stater;, the full likelihood function for the central

node is described as

Note that the importance weights need to be normalized, i.e., i
W is reassigned according 1"/ M Wy PATk i ez, o)

A widely used proposal distribution ig(zx|z} |, 2k) = :/p(Fk,{y}C}iezk,{y,@}ieN\Ik|xk)d{y}€}ieN\Ik
p(ak|z} ) which corresponds to the bootstrap particle filter.
It should be noted that the current measurement information= [ p(Ty|zx, {y} bien)P({Y} ien |2k)d{y} Hienz,
is not considered in the sampling stage, which may lead to
certain performance degradation. To deal with such an issue, N i i i i (10)
the so-called auxiliary particle filter is put forward in [47] by — / Hp('Yk'xk’ Y )P(Yklor)diyy tienz,
incorporating the knowledge of the newly obtained measure- =t _ _ _
ment before the sampling stage. This additional operation car= | | P(v = Lz, yi)p(wiler) T[ Ok = Olzk)

where 6(-) is the Dirac delta functiong}* is drawn from
a proposal distributiony(z|z}" ., 2x) and its corresponding
weight V" is calculated by

len = ngzl

(@7, 2x)

increase the compatibility of the sampled particles with respect *€Zx i€EN\Tj,
to the newly obtained measurement. N _ _

The main steps of the standard auxiliary particle filter are:H[P(yﬂka)]”[P(% = Ofay)]' 7%
summarized as follows: =1

1) obtain the indicesind,, according to the probabil- Where N\ I, denotes the complement of; in the set
ities proportional to W™, p(zx|A7"), where A"~ {1,2,..., N}. Note that the first equality means to successive-

plaglzy)); ly integrate p(T'x, {9 }iez,, {vi. bienz, [2x) With respect to
2) draw the new particle!” from p(kazrid{n); each eler_nerpj,@ in the_ Set{yi}z‘ezv\zk_- It is clear that the term
3) calculate the corresponding weight according to plyj|zx) in (10) is directly determined by the measurement
model (2), but the calculation of the terpiy; = 0|xy) is,
m_ peklzy’) unfortunately, non-trivial. In what follows, we are devoted to
N p(zk|)\2ndm). the derivation of an explicit formula for calculating the term

7;, = 0lzy) induced by the dynamic ETCM.
According to (5),7; = 0 implies thatg(ri, oi,6:) < 0,

The purpose of this paper is to develop a distributep
auxiliary particle filtering algorithm based on the diffusio

strategy for the general nonlinear/non-Gaussian systems under 1

i |2 i 0
the dynamic ETCM. Ik llse < 0" + 7 0k- (11)
Due to the fact that the auxiliary variablg, for the ith
[1l. ALGORITHM DESIGN AND DISCUSSION sensor node is unavailable to the central node, it is impos-
sjble to use (11) directly. Therefore, the following lemma is

In this section, to facilitate the presentation, a centr
particle filtering algorithm under the dynamic ETCM is firs
derived. We assume that the transmission channels in m
considered system are perfect, that is, thdy cause for

] troduced.
Lemma 1:Under the dynamic ETCM described by (3)-(5),
& following inequality holds for alk > 0:

untransmitted/unreceived measurements is the failure to meet rillz: < =i (12)
the triggering condition. Meanwhile, we also assume that theh
central node has the knowledge of the triggering conditioh€"® ik 1— (v )*lg
. - _ (x") i [ (x")*o i
on each sensor node. Immediately after the development of Sk="pi ¢t A= )0 +o'.

the centralized algorithm where the central node needs to si-
multaneously process all the measurements, a diffusion-based Proof: Recalling (4) and noticing tha; ,||%; > 0, one
distributedimplementation is proposed that only requires thieas

internode communication within the local neighborhoods. 0t < xob | 4ot (13)
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Substituting (13) into (11) yields Algorithm 1 Centralized auxiliary particle filtering under the
i i dynamic event-triggered mechanism
(A= % k-1t % + o Step 1.Particle initialization
ik k-1 ; Draw particles {z*}M_, from the prior densi-
<< (X) ob+ (Xi)m]i + ot (14) ty p(xo) and the associated importance weights
A ) o' {WryM_| are all set ast;. In addition, the max-
(X)* . 1= (ke : imum recursive time instant is set &S.
=g + 01— o to, Step 2.Measurement collection

Collect the measurements and the indicator vari-
ables at time instark, i.e., {y. }icz, andTx, under
the dynamic ETCM described by (3)-(5).

Step 3.Particle selection and update

%i < E};ka). (15) Obtain the indicesnd,, according to the proba-

bilities proportional toW;™ ;p(Tk, {v}. }iez, [AF),
where i ~ p(xx|zp’ ) and p(I, {y}, biez, [AL")
is calculated by (16); Draw new particlg* from

which completes the proof. [ |
Based on Lemma 1, it is inferred from = 0 that the
untransmitted measurement satisfies (12), i.e.,

p(vi = Olax) = p(|ri

As a consequence, the full likelihood function for the central
node is rewritten as

Tk, {vhk Yiez, |zx) the transition PDRp(z|zi"%) form = 1,..., M.
N . . . . Step 4.Weight assignment ~
:H[p(yﬂxk)]%[p(y,g = 0fay)]t % Assign the unnormalized weight&§V;"}*_, ac-
i=1 (16) cording to
N .
. i . - i ~ F 7. m
= [TpGkloe (il 3 < Shlaw)) k. = Pl vidien i)
i=1 p(Lk, Ay biez, [A)
Now, the implementation of the proposed centralized auxil- Step 5.Normalization
iary particle filtering under the dynamic event-triggered mech- Normalize the importance weights a8, =
anism is summarized in Algorithm 1. wm /(M Wy
. .. . k n=1""k/"
Remark 3:1t is worth mentioning that the analytical ex- step 6.State estimate update
pression of the probability(||7}[|5. < =j|ax) can only be Calculate the state estimatg and estimation error
obtained in some special cases. For example, let us consider covarianceP, as
the case where the measurement output ofttheensor node "
is a scalar and the measurement noisdollows a Gaussian £ = Z Wimgm
distribution with meary}, and variance p},)2. Then, we have i L R

{Al=HETY

M
— — Pe=> Wi(ap — &) @q — )"
=p(—\/E}/S" <y, < \/BL/S k) =1

(
—i [ i i —i qi Step 7.1f k£ < K, then setk = k + 1 and go to Step 2;
= —1/= t< < = v
p(y]? , ’“/S, SURS T /5"l (17) otherwise go to Step 8.
=p(v), < v < Vilaw) Step 8.Stop.
7 vl —
Py, Pk

i,m,l i,m,l —q

vy, =g, — h'(zr) — 4/ 5,/ 57,
and
7 = g — hi(ay) + /2150 Lz, <=

and ®(-) denotes the cumulative distribution function of thés the indicator function defined as

standard normal distribution. However, the above-mentioned

method is not applicable when it comes to the case of vector 1y imi =iy = {

measurement. Similar to [35], a Monte Carlo-based method s

is used to calculate the probability(|r; |3 < Zj|zk) o _. S _

approximately. To be more specific, for each particg, B. D|str.|buted auxiliary Ipart|cle filtering under the dynamic

we draw L samples denoted ag/>""'}£ . Then, from the €vent-triggered mechanism

densityp(yj|z}"), the probabilityp(||ri||%: < Zi|zj) can be  Due to the limited network bandwidth and energy sup-

approximated as ply, the centralized particle filtering algorithm proposed in

L L Section IlI-A, which requires thaill-to-one communication,
P2 < B ™) = =S 1, imire e 18) Is clearly impractical in large-scale and wide-area sensor

Plirklis: < ek’ L; Ulme™ W <=3} (18) network. For example, when the central node fails to work well

Lo ™ < S
0, otherwise
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measurement information up to time inst&nts written by

Zi:k:{ZLZ%v"' 7lec}a (20)
lezk = {1—‘11’1—‘%’ R 7ic}

In this stage, the statistical knowledge of sensor noideen-
riched by incorporating its neighboring nodes’ measurements.
Specifically, sensor nodecollects all available measurement
information and runs, independently, a local particle filter to
obtain a particle-based approximation of the posterior PDF
p('rk|rzlk’Zik) .

Let the particles{z;™, }»_, and associated importance
weights {W,i’f} M_, for nodei at time instantk — 1 be
all known. At time instantk, the first step is to obtain
) the indicesind; ,, according to the probabilities proportion-
Adaptation o al o WiTp(TL, ZEAY™), where A\p™ ~ p(axlzy™) and

p(Ti, ZL|AL™) is calculated by

x B : L ’Sensor

Fig. 1: The system model of the distributed inference
problem.

N U |
Sensor i Sensor j ( i Z]il/\i,m)
Vi T7 ‘ =TT ot Ixi™ 1 o = opxg™ )=
. . . JEN; (21)
Combination Dynamic event-triggered scheduler i i . i i1 atd
o ,~ =TT il ol g < ZRa™ %
Sensor i - Sensor j Based on the indicesud; ,,, the next step is to sample new
GMM; particles{z;™}_, from the prior density, i.e.,
o o 2" ~ plala ) (22)
Fig. 2: Internode communication in the diffusion strategy
under the dynamic event-triggered mechanism. and update the weightSV:"™}M_, by
m=

k - 3 ] i di,rn
p(TL, ZEIN)

(e.g., attacked by the adversaries) and becomes unavailable, @3)
the whole system may be paralyzed. Hence, it is more desir- . _
able to develop a distributed filtering algorithm to eliminate theherep(I';., Zi|z:™) andp(T%, Zi | L™ ) are similarly cal-
dependence on the central node. The system model is depictel@ted according to (21). In view of (22) and (23), the particle
in Fig. 1. representation of the local posterior PREx:|I ., Z].,.) is

In this section, a distributed particle filtering algorithnPbtained.
under the dynamic ETCM is proposed by utilizing the adapt- 2) Combination Stage:In this stage, each sensor node
then-combine diffusion strategy [9], [11], where each nod#ares the local posterior PDF obtained in the adaptation
only communicates with its neighboring nodes and no centgifge with its neighboring nodes and merges the information
node is required. The proposed algorithm is sketched in Fig.received from the neighboring nodes to collaboratively im-
where the notationGMM;, denotes the Gaussian mixturgorove the estimation accuracy. As illustrated in [17], the fused
model representation for the posterior PDF of sensor nopesterior PDF at sensor nodgdenoted ag(x|T'}.;., Z1.;))
i at time instantk, see (27) for the definition. The detailedcan be written as
algorithm is explained as follows. Sl 7 0 iy 24

1) Adaptation Stage:For sensor node, the available Pk [Thip, Z1k) o H [Pk [Ty 20170 (24)
measurement information at time instants denoted by JEN:

which is the one that minimizes the weighted average

Zzi = {yi ije I/i} (19) Kullback-Leibler divergence
. g ' 19
T __ 19 . 5 3 . .
b= g €N S B Dicedp (@[T Zillp(anll . 22,0} (25)
JEN;

where; stands for the set of sensor nodes connected to node

i andZ; C N represents the set of neighboring nodes thaver all the candidatep’(zx|I'%.,, Z}.;), Where Dy {-[|-}
transmlt their current measurements to ned# time instant stands for the Kullback-Leibler divergence between two distri-
k. Note thaty” =, if j € N;\i, andv;) = 1if j = 4. butions, and the weiglt;; represents the belief degree of node
It is worth mentioning that € Z; andi € N All available i in the information of nodg and satisfieijeM Bij =1
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In practice, by taking both the information of the commu-
nication topology and the effect of the dynamic ETCM into
consideration, the weight;; can be selected as

P { mr. ifjeN; andy’ =1 (ie., j € Ti); (26)
Y] o, otherwise Algorithm 2 Diffusion-based distributed auxiliary particle
filtering under the dynamic ETCM (executed on sensor node
where|Z; | denotes the cardinality ;. i)
Remark 4:Note that, in the combination stage, the sensor step 1.Particle initialization
nodez’ needs to s_hare |ts_IocaI posterior PDF with its neigh- Draw particles{z;"}M_, from the prior densi-
boring nodes, which requires the transmission of particles and ty p(zo) and the associated importance weights
their respective importance weights. In this cage+ 1) M {(WE™M_ - are all set as-. In addition, the
real numbers (i.enpM numbers for particles andff numbers maximum recursive time instant is set As
for weights) are required to be transmitted for each nodestep 2. Measurement collection
at each time instant (if triggered). With the increase of the Sensor node assimilates the available measure-
particle numbers, the communication cost will become con- ments from its neighboring nodes at time instant
siderably high. Hence, it is often preferable to present and k,i.e., {y.}.cr: andI, and broadcasts its current
broadcast the local posterior PDF in a parametric fashion. measurements to its neighbors under the dynamic
Notice that additional estimation errors might be induced ETCM.
by using the single Gaussian distribution to approximate thestep 3.Particle selection and update
non-Gaussian posterior PDF. Therefore, the more accurate i indi m -
Gaussian mixtu?e representation has been widely used in the Select pértldezléfi baisid on (21) and propa
gate particlesy, ;"™ to ;" form = 1,..., M

literature [1], [10]. With the Gaussian mixture representation
of the local posterior, each sensor node only needs to transmi
G(1 + n + n?) numbers, where is the average number
of Gaussian components in the Gaussian mixture models.
Then, the maximum communication load under the diffusion
strategy isSO(N (N — 1)(G(1 + n + n?) + m)), wherem is

the measurement dimension. In fact, the communication load
can be further reduced by considering the symmetry of theStep 6.Gaussian mixture model representation

covariance matrices. . . ;
) . . Construct the Gaussian mixture mod€&MNM;,
In this paper, the local posterior PDF for sensor node i,m k

H : i,mY M
represented by &';-component Gaussian mixture model based on the weighted particigs,, ™, W

according to (22).
étep 4.Weight assignment .
Assign the unnormalized weigh{gV,"™}M_, ac-
cording to (23).
Step 5.Normalization _
Normalize the importance weights d§," =

W™/ (Sommy W),

m=1
by using the weighted expectation-maximization
Gi algorithm.
p(xy|Zi,, T, = ZagN(a:k; g, Sg) = GMM],  (27)  Step 7.Local posteriors sharing
g=1 Sensor nodé shares its local posterior represented
by GMM_, with its neighbors according to the indi-
cator variabley;, and receives the local posteriors
from its neighbors.
Step 8.Combination
Utilize the weighted mixture importance sampling
method to merge the Gaussian mixture models
according to (25), and extract the state estimigte
as

where N(zy; ug, Xy) denotes thegth component witha,

being its weight. To obtain a Gaussian mixture representation
for the posterior PDF required in the combination stage,
the weighted expectation-maximization algorithm detailed in
[1] is employed. Moreover, it should be noticed from the
combination rule (24) that the fusion of Gaussian mixture
models with non-integer exponents is involved. In this paper,
the weighted mixture importance sampling method [29] is M
adopted to realize such a fusion. i = Z W™

The proposed distributed filtering scheme is subsequently m=1
outlined in Algorithm 2, where only the operations conducted where {xzm’ Wé,m}%:1 are newly sampled from

by sensor nod§ are d'SP'ay_ed- o the merged Gaussian mixture model.
Remark 5:Since the filtering process has similar computa- Step 9.If k < K, then setk = k + 1 and go to Step 2;
tional burden among different algorithms, we only focus on otherwise go to Step 10. '

the most computation-intensive operations, i.e., the Gaussi%}ep 10.Stop.
mixture representation learning for the local posterior in the
adaptation stage and the fusion of local posteriors in the
combination stage. Note that even though the dynamic ETCM
is introduced to schedule the data transmission among sensor
nodes, we consider the worst case in the analysis, i.e., each
sensor is able to connect with neighbors (including itself).
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Similar to [29], it can be concluded that the main computatiorA. Target tracking
al complexity of the proposed distributed filtering algorithm
executed on each sensor nod€igK (N + I)MGn?), where
I denotes the number of learning iterations in the weight
expectation-maximization algorithm, and is the average
number of Gaussian components in the Gaussian mixt
models.

Remark 6:So far, we have dealt with the distribute

Assume that the target moves in a two-dimensional (2-
&t plane and its state vector is represented dy =
%k,ig,y};,y;]? where(z,yt) and (%, y.) denote the tar-
Lgr%t’s 2-D position and 2-D velocity, respectively. The dynam-
ics of the moving target is described by the well-known white

dwoise acceleration model [18], i.e.,

auxiliary particle filtering problem for a class of general 1 T 0 0
nonlinear/non-Gaussian systems where the data transmissions 01 0 0
are triggered in a dynamical fashion. More specifically, we Tet1= | o o 1 T | %k Twk (28)
have developed dynamic event-triggered particle filters where 0 0 0 1

the dynamic ETCM is subtly embedded for mitigating data-

intensive transmissions. We have also examined the effediereT represents the sampling period ang is the zero-
from the dynamic ETCM on the performance of the proposedean Gaussian white noise sequences with covariance matrix
filtering schemes. Furthermore, we have made full use of the

information from the non-triggered measurements to assist in T{ T; 0 O

selecting the candidate particles and updating weights. ” T; T 0 0 29
Remark 7:In this paper, the proposed centralized and Qk = o o I® 1 (29)

distributed auxiliary particle filtering algorithms under the o o =2 121

dynamic ETCM have been, respectively, summarized in Algo-
rithms 1 and 2. It is clear from Algorithm 1 that each sens@ihereY stands for the acceleration variance.

(if triggered) is required to transmit its current measurement to|n, the considered scenario, the moving target emits a radio
a fusion center, and the fusion center runs a modified auxiliagy acoustic signal and we empldy passive received-signal-
particle filter to obtain the state estimate. Such a scheme ngbéngth sensors to measure the Signa| energy emitted by the
consume a large amount of communication resource and Mayyet. The measurement characteristic of tthe received-

fail to function especially when the fusion center suffers fromignal-strength sensor node |Ocated(ﬂgvi’yzvi) is modeled
critical failure. For the distributed counterpart described iy [18], [46]

Algorithm 2, each sensor only needs to communicate with its

neighboring nodes on the basis of the dynamic ETCM, and the [t yt]T — [xsai Sai]TH
y . . . . i _p 10m... 1 ko Yk ko Yk
fusion center disappears. Specifically, each sensor first receives ¥r =40 — 1Un, 10g;¢ do
the triggered measurements from its neighbors and runs a o
modified auxiliary particle filter to form the local posterior, +v, i=12,...,N,
and then fuses the available local posteriors to extract the state )
estimate. where || - || stands for the Euclidean nornk, denotes the

geceived signal energy at the reference distafiger, repre-
have been known to be capable of handling nonlinear/no gnts the path loss exponent, ands the measurement noise.

Gaussian systems and a great deal of research attention hoarseach Sensor node we assume thatj, is modeled by a

been devoted to the applications on these algorithms gomixture of two Gaussian distributions, i.e.,

variety of engineering practice. Comparing to existing results, i i i o i 2
the main results established in this paper stand out for the pv) = (1 = 7 )N pi1s €61) + 7N pi2, €6 5)
following reasons: 1) a new distributed auxiliary particle ﬁlte{}vherewi is the glint probability

algorithm is developed based on the diffusion strategy for aAs a popular measure of the filtering accuracy, the root

class of general discrete-time nonlinear/non-Gaussian systems; - : ;
) . ' . : . mean-square error (RMSE) on position and velocity estimates

2) a dynamic ETCM is, for the first time, introduced in the . .
; . . X . are respectively calculated according to
particle filter design with hope to save energy consumption;

and 3) non-triggered measurements are properly taken into

Remark 8:For decades, the particle filtering algorithm

R . N
account in order to further improve the performance of theR 1 [ tj st tj At
er to . MSEpos i = | < S a2+ -0
developed particle filter algorithm. Pos.k Ny ; (@ =) + (" = 97)
JRRAL
b At ti St
IV. NUMERICAL STUDY RMSEver,r = Nu {(%J — )2 + (9 — ykj)Q}
j=1

In this section, the performance of the proposed centralized o o
and distributed auxiliary particle filtering algorithms under thehere (z;”,y,”) and (i}”,7,;”) denote the realization of
dynamic ETCM is demonstrated via the application in ther},y;) and (i},y;) in the jth Monte Carlo run, and
moving target tracking problem using received-signal-strendtieir respective estimates are represented 4y, 9,7) and
measurements. (@37, 977). Nay is the total number of the Monte Carlo runs.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSP.2020.3042947, IEEE Transactions on Signal Processing

FINAL VERSION

B. Simulation setups

In each independent Monte Carlo run, the true state is it
tialized aszo = [25m,0.3m/s, 20m, 0.4m/s|*, the sampling
period and the acceleration variance are choséh asls and
T = 0.04’m?/s?, respectively. Following [18], the position
components of the initial particles are sampled from a Gat
sian distributionN([25, 20]7, diag{302, 30?}) and the velocity
components are sampled according to a Gaussian distribut
N([0.5, arctan(4/3)]T, diag{0.52, (57/180)%}), which char-
acterizes the initial resultant velocity and the azimuth. Fu
thermore, we havé/ = 6 sensors deployed in the surveillanct
areas to observe the target of interest. The sensors parame
and other parameters related to the dynamic ETCM are list
in TABLE | for clarity purposes.

TABLE I: Parameter settings

Parameters Values Parameters Values
Py 1 dBm do 1m

Ny 2 wl 0.1

i 1 0 dBm Mi,2 0 dBm

€1 1.2dBm €3,2 1061'71 dBm
96 100 U’L: 2

o0 5 % 0.9

S 1 K 100

M 500 N 20

In the simulation, the following five algorithms are evalu
ated and compared: 1) CAPF-DETM: the proposed centr:
ized auxiliary particle filter under the dynamic ETCM (ses
Algorithm 1); 2) CAPF-DETM-WO: a centralized auxiliary
particle filter under the dynamic ETCM without utilizing the
information contained in the non-triggered measurements;
CPF-DETM: the framework of the auxiliary particle filter in
Algorithm 1 is replaced by that of the sampling importanc
resampling (SIR) particle filter; 4) DAPF-DETM: the propose!
diffusion-based distributed auxiliary particle filter under thc
dynamic ETCM (see Algorithm 2); and 5) DAPF-DETM-OA:
a distributed auxiliary particle filter under the dynamic ETCM
using the adaptation-only scheme.

C. Simulation results

In Fig. 3, one realization of the true trajectory and it
estimate given by the CAPF-DETM, as well as the sens
positions are depicted, which indicates that the propos
CAPF-DETM is capable of achieving a satisfactory trackin
performance. Moreover, it can be seen from Fig. 4 that tl
transmission times are significantly reduced under the dynar
ETCM. The evolutions of the RMSEs with respect to the pc
sition and velocity estimates calculated by the CAPF-DETN
CAPF-DETM-WO and CPF-DETM are respectively plotted it
Figs. 5-6. As expected, the proposed centralized algorithm t
the best tracking performance when compared with the ott
two algorithms. The reason is that we have made full use
the information contained in the non-triggered measuremer
which contributes to selecting the most promising particles.F

In the following, we aim to examine the performance of our
proposed DAPF-DETM. The communication topology of the

Y(m)

90

9

Sensor 3 Sensor 4
80 *
True Trajectory
70+ Esti d Trajectory
60
50
40 Sensor 5 -*- """"""""""""""""" -*- Sensor 6
30
20 - . .
T *
Sensor 1 Sensor 2
0 I I I I I I I I |
0 10 20 30 40 50 60 70 80 90

Events

X(m)

Fig. 3: The true target trajectory and its estimate obtained b

the CAPF-DETM in one run.

T T T T T T T

% Sensorl +  Sensor 2 O Sensor3
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5t
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Fig. 4: The triggering instants.
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04r 141
CAPF-DETM

CAPF-DETM DAPF-DETM-OA (Sensor 1)

035 F = = = CAPF-DETM-WO DAPF-DETM-OA (Sensor 2) DAPF-DETM-OA (Sensor 3)
CPF-DETM 12r DAPF-DETM-OA (Sensor 4) DAPF-DETM-OA (Sensor 5)
DAPF-DETM-OA (Sensor 6) === DAPF-DETM (Sensor 1)

0.3 DAPF-DETM (Sensor 2) ~ =weeeeeees DAPF-DETM (Sensor 3)
[ DAPF-DETM (Sensor 4) DAPF-DETM (Sensor 5)
== DAPF-DETM (Sensor 6)

RMSEVeI(m/s)
o
N
SEaTT

T Trind

¥ ES D
e iyreraccaprer™

VT

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Time, k Time, k
Fig. 6: Velocity RMSEs of CAPF-DETM, CAPF-DETM-WO Fig. 7: Position RMSEs of CAPF-DETM, DAPF-DETM and
and CPF-DETM. DAPF-DETM-OA.
0.6
sensor network modeled by an undirected graph is illustrat CAPF-DETM DAPF-DETM-OA (Sensor 1)
in Fig. 3. The trajectories of RMSESs on the position and velo osh AP DT oo 1 AP T O (oo o)
ity estimates obtained from the CAPF-DETM, DAPF-DETN ' DAPF-DETM-OA (Sensor 6) DAPF-DETM (Sensor 1)
and DAPF-DETM-OA are presented in Figs. 7-8. It should t | [ OAPE-DETM (omeor ) DADE DETM (Seneor o
noted that in some instants, the DAPF-DETM can even perfc I DAPF-DETM (Sensor 6)

m better than the CAPF-DETM probably due to the reason tr
when all sensors are not triggered, each sensor still has acc
to its own measurements in the distributed implementation. (
the other hand, we can find that the DAPF-DETM-OA incur
larger performance degradation when compared with DAP
DETM owing to the absence of combination step. In fac
the adaptation-only scheme just updates the local estims
by utilizing the neighbors’ measurements under the dynan
ETCM, which fails to diffuse the estimates throughout th

RMSEVel(m/s)
o
w

o
)

0.1

whole network. Time, k
Further simulations are conducted to analyze the effect big. 8: Velocity RMSEs of CAPF-DETM, DAPF-DETM and
the parametef’ (the superscript is omitted next for concise- DAPF-DETM-OA.

ness) in the dynamic ETCM on the transmission performance
and tracking performance. As an indicator of transmission
performance, the triggering rate is defined as the ratio of thetrade-off between the communication cost and the filtering
actual triggering times to the total length of the simulatioperformance can be achieved via the parameter adjustment,
period. The average triggering raf@ is the mean of the which provides more flexibility to the practical applications.
triggering rate over theV,; Monte Carlo runs. In addition,
the average RMSE on position (respectively, velocity), denoted V. CONCLUSIONS
as Epos (respectively,Ever), is the mean of theRMSEpos « In this paper, the diffusion-based distributed auxiliary par-
(respectively, RMSEve., ;) over the total simulation period.ticle filtering algorithm has been proposed to solve the
The corresponding results of three representative sensors @glinear/non-Gaussian filtering problem under the dynamic
shown in TABLE Il and Figs. 9-10. ETCM. Compared with the traditional static event-triggered
From TABLE II, it appears that the average triggering ratmechanism, the dynamic counterpart can automatically adjust
decreases as the paramételecreases. Recalling that the casthe equivalent triggering threshold and has more potential to
with 8 = oo is equivalent to the static event-triggered mechaeduce the communication energy consumption. A full likeli-
nism, we can naturally conclude that the dynamic ETCM cdrod function has been firstly established in the centralized
schedule the data transmission in a more efficient way. On thexiliary particle filtering algorithm by using not only the
other hand, the results presented in TABLE Il and Figs. 9-1fansmitted measurements but also the information mined from
also imply that the choice of parametkis of great importance the non-triggered measurements, which contributes to select-
for the filtering accuracy. It should be pointed out that as thieg the most promising candidate particles and updating the
parameterd decreases, the RMSEs will increase. Thereforeeights. In the distributed auxiliary particle filtering algorithm,
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TABLE II: The effect of the parameter on the average triggering rate and average RMSEs

Sensor 1 Sensor 3 Sensor 5
R Epos(m)  Evel(m/s) R Epos(m)  Evel(m/s) R Epos(m)  Evel(m/s)
0=5 33.47%  2.5308 0.1354 33.42%  2.4306 0.1354 33.32%  2.5658 0.1369
0=15 40.99%  2.2445 0.1341 43.07%  2.2430 0.1346 41.14%  2.2493 0.1321
=00 49.75%  1.8533 0.1280 52.03%  1.8543 0.1283 50.64%  1.8323 0.1277
. of summary samples, it is of great interest to explore the
6 =5 (Sensor 1) 6 =5 (Sensor 3) 0=5 (Sensor 5) extensions of the present results based on the compressed
.......... b e ) e e i o e Monte Carlo scheme [41], the herding algorithm [25] as well

as the group importance sampling strategy [42].
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