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Distributed Auxiliary Particle Filtering with
Diffusion Strategy for Target Tracking: A Dynamic

Event-Triggered Approach
Weihao Song, Zidong Wang, Jianan Wang, Fuad E. Alsaadi and Jiayuan Shan

Abstract—This paper investigates the particle filtering prob-
lem for a class of nonlinear/non-Gaussian systems under the
dynamic event-triggered protocol. In order to avert frequent
data transmission and reduce the communication overhead, a
dynamic event-triggered transmission mechanism is adopted to
decide whether the data should be transmitted or not. We first
consider a scenario where all sensor nodes selectively transmit
their newly obtained measurements to a central node, and a full
likelihood function at the central node is derived by fusing the
transmitted measurements and the information embodied in the
non-triggered measurements. Based on the derived full likelihood
function, a centralized auxiliary particle filtering algorithm is
proposed to select those particles that are more likely to match the
current measurement information. Next, based on the diffusion
strategy, a distributed auxiliary particle filtering algorithm is
further developed, where the local measurements and the local
posteriors (approximated by the Gaussian mixture models) are
exchanged among neighboring nodes under the dynamic event-
triggered communication strategy. Finally, the effectiveness of
the proposed filtering schemes is demonstrated via Monte Carlo
simulations in a target tracking problem with received-signal-
strength sensors.

Index Terms—Distributed particle filtering, auxiliary particle
filtering, dynamic event-triggered mechanism, diffusion strategy,
nonlinear/non-Gaussian systems

I. I NTRODUCTION

Over the past few decades, the target tracking problem
has been of great significance in both military and civilian
applications with examples including ballistic missile tracking
[53], mobile phone user tracking [59], and the speaker tracking
[60]. A crucially important task of the target tracking problems
is the state estimation whose primary purpose is to make
statistical inference about the state of the target by using the
incoming measurements (e.g., range and bearing) obtained
from sensors [12], [30], [32], [38], [51]. As a popular state
estimation approach, the Bayes filtering algorithm aims to
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obtain the state estimate by means of recursively updated
posterior probability density function (PDF) of the target’s
state [26].

For the Bayes filtering method, the integrations over the
state space are involved in the recursive propagation, which
renders substantial difficulties in deriving the closed-form
expression for the posterior PDF. An exception that needs
to be mentioned is the linear systems with additive Gaus-
sian noises, where the posterior PDF is Gaussian and its
parameters (i.e. mean and covariance) can be updated via the
well-known Kalman filtering scheme [39]. To deal with the
filtering problem for the frequently encountered nonlinear/non-
Gaussian systems in practical applications, a variety of filter-
ing approaches have been developed based on different ap-
proximation techniques. Among others, we mention extended
Kalman filtering [37], cubature Kalman filtering [2], unscented
Kalman filtering [28], and sparse-grid quadrature filtering
approaches [27]. Apart from these Gaussian-assumption-based
filtering methods, the Monte-Carlo-based particle filtering al-
gorithm [3], [36], [58] has recently attracted ever-increasing
attention due mainly to its distinctive capability of handling
nonlinearity/non-Gaussianity.

With the continuous revolution of smart sensor and wireless
communication technologies, it becomes a rather common
practice to detect and track a target of interest by a large
number of sensor nodes capable of sensing, communicating,
storing and processing data [57]. When it comes to the
state estimation problems, the main idea of the traditional
centralizedapproach is that all local sensor nodes transmit
their raw or quantized measurements to a central node and
then the central node processes all the measurements simul-
taneously to obtain a global estimate, see e.g., [13], [14].
Clearly, with such a centralized approach, the entire system is
prone to fault/failure of the central node and/or the unbearable
computational burden. As such, a more preferable approach by
industry is to developdistributedalgorithms without having to
rely on the central node, where each sensor node only needs
to communicate with its neighboring nodes [45], [50].

In the past few decades, the distributed state estimation
problems have drawn a recurring research interest with a great
many results available in the literature [5], [8], [13], [15],
[48]. For example, a distributed particle filtering algorithm
has been developed in [15] by using the parametric model
to approximate the global likelihood function, and another
algorithm has also been proposed based on the quantized
measurements to reduce the communication overhead. In [48],
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a distributed particle filter has been developed for target
tracking on the basis of the distributed resampling with non-
proportional allocation method, which is able to conduct the
resampling step in a parallelized way. From the perspective
of parallel implementation, the total set of the particles has
been divided into sub-sets (referred to as islands) in [56], and
similarly, a cooperative filtering algorithm has been proposed
in [43] to simultaneously achieve the state estimation and
model selection, where a series of particle filters have been
used to match the candidate models and each particle filter
has been allocated a portion of the total number of particles.

Roughly speaking, there have been two mainstream schemes
in the context of distributed state estimation, namely, the
consensus-based scheme [5], [21], [34], [44] and diffusion-
based scheme [11], [24]. For the former, a kind of distributed
particle filtering algorithm has been proposed in [23], where
each local particle filter uses the global likelihood function
(calculated in a distributed manner based on likelihood con-
sensus) to update the importance weights. In [20], the local
likelihood function has been approximated by a Gaussian
distribution, and only the mean and covariance have been
propagated among the adjacent sensor nodes to calculate
the global likelihood. In [8], the distributed particle filtering
algorithms based on the quantization schemes have been
proposed to reach a consensus on weights. Note that the
consensus-based schemes ensure the consensus via iterative
internode communication between two successive updates,
while the diffusion-based ones are capable of processing the
measurements in a more efficient way [24] and outperform
the former over adaptive networks [55]. Accordingly, the
diffusion-based state estimation problems have been paid
considerable research effort in recent years. For example, a
diffusion-based distributed interacting multiple model Kalman
filtering algorithm has been proposed in [33] for Markov jump
linear systems. In [10], a random exchange diffusion particle
filtering algorithm has been developed and further extended to
the case with unknown sensor model parameters. Furthermore,
in [17], some light has been shed on the Bayesian explanation
of diffusion estimation for a class of models with exponential
family of distributions.

It is worth noting that, in most available results con-
cerning distributed particle filtering problems, the periodic
communication mechanism has been adopted under which the
data transmission is conducted with a fixed interval, see the
survey [22], [61] and the references therein. Such atime-
triggered communication scheme often leads to unnecessary
data transmissions, and is therefore unsuitable for wireless
sensor networks with limited communication capacity, where
the most energy-consuming operation is known to be the
data transmission [4], [7], [52]. In search of an alternative
communication mechanism that saves limited resources, the
event-triggeredcommunication mechanism (ETCM) has e-
merged as an excellent candidate which aims to schedule data
transmissions, thereby reducing the resource consumption [6],
[16], [54].

In the context of event-triggered mechanisms, thestatic
ETCM uses a fixed triggering threshold regardless of the
degree of necessity of event-triggering. Therefore, the static

ETCM is still conservative in reducing unnecessarily frequent
data transmissions, and this situation has led to the emerging
research interest on thedynamic ETCMwhose threshold
parameters are adjusteddynamicallythrough the medium of
a dynamic auxiliary variable, thereby further improving the
resource utilization. Up to now, the dynamic ETCM has started
to gain some initial attention with respect to the distributed
state estimation problems for linear systems or nonlinear
systems with special nonlinearities [19], [31]. Nevertheless,
the corresponding ETCM-based distributed state estimation
problem has not been adequately addressed yet for general
nonlinear/non-Gaussian systems, and this constitutes the main
motivation of our current investigation.

Based on the above discussions, a natural yet fundamental
research topic is to develop a distributed particle filtering
scheme for nonlinear/non-Gaussian systems under the dynam-
ic ETCM, which is deemed to be a fairly challenging topic
with the following essential difficulties: 1) how to develop
the dynamic event-triggered particle filters where the dynamic
ETCM is dedicatedly integrated for energy-saving purposes?
2) how to examine the effect from the dynamic ETCM on the
performance of the proposed filtering schemes? and 3) how to
exploit the information from the non-triggered measurements
to assist in selecting the candidate particles and updating
weights? In the current study, we are set to answer the above-
mentioned questions.

In this paper, we investigate the distributed auxiliary par-
ticle filtering problem for a class of general nonlinear/non-
Gaussian systems with the dynamic ETCM under which the
data transmissions are governed in a dynamical way. The main
contributions of this paper can be highlighted as follows.
1) A distributed implementation of the auxiliary particle filter

based on the diffusion strategy is proposed for a class of
general discrete-time nonlinear/non-Gaussian systems.

2) The dynamic event-triggered mechanism is introduced in
the framework of particle filtering to reduce the frequency
of data transmission and save energy consumption, which
is more effective than the static counterpart.

3) The information from the non-triggered measurements is
fully taken into consideration to help select the most
promising particles and update the importance weights.

The remainder of this paper is outlined as follows. In
Section II, the filtering issue is formulated for a class of
nonlinear/non-Gaussian systems under the dynamic ETCM
and the auxiliary particle filtering algorithm is briefly re-
viewed. In Section III, the centralized auxiliary particle filter-
ing algorithm is firstly designed (where the transmissions of
measurements are scheduled by the dynamic ETCM), and then
extended to the distributed setting via the diffusion strategy.
A practical application to the target tracking problem with
received-signal-strength sensors is provided in Section IV to
show the effectiveness of the proposed algorithms. Finally,
some concluding remarks are drawn in Section V.
Notation. The notation used in this paper is fairly stan-

dard.Rn denotes then-dimensional Euclidean vector space.
The superscriptT represents the operation of transpose.px(·)
stands for the PDF of a random variablex, i.e. x ∼ px(·).
N(x;µ,Σ) represents the Gaussian PDF of random variable
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x with mean µ and covarianceΣ. E(x|y) stands for the
mathematical expectation ofx conditional ony. ‖x‖W ,

(xTWx)1/2 refers to the weighted norm of vectorx. xi:j

denotes the trajectory ofx from time instanti to time instant
j. Other notations will be given as required.

II. PROBLEM FORMULATION

Consider the following discrete-time nonlinear system

xk+1 = f(xk) + ωk, (1)

which is observed by a wireless sensor network comprising
N sensor nodes described by

yik = hi(xk) + νik, i = 1, 2, . . . , N (2)

where xk ∈ R
n and yik ∈ R

m are, respectively, the state
of the target plant and the measurement output of theith
sensor node at time instantk. f(·) : R

n 7→ R
n and

hi(·) : R
n 7→ R

m denote, respectively, the state transition
function and the measurement function of theith sensor node.
ωk ∈ R

n represents the process noise satisfyingpωk
(·) and

νik ∈ R
m is the measurement noise on theith sensor node

satisfyingpνi
k
(·).

The following three assumptions are made to further clarify
the considered system.

Assumption 1:The knowledge about the initial statex0 is
summarized by a known prior densitypx0

(·).
Assumption 2:The process noiseωk and the measurement

noises{νik}
N
i=1 are mutually independent and also independent

of the initial statex0.
Assumption 3:The nonlinear functionsf(·) and hi(·) as

well as the PDFspωk
(·) andpνi

k
(·) are all known.

Remark 1: It is noteworthy that Assumption 3 has been
widely adopted in a large body of literature regarding the
recursive state estimation problems, not only for the particle-
filter-related problems (see e.g., [3], [35], [62]), but for
the Kalman-filter-related problems (see e.g., [27], [33]). In
practice, the statistical properties of noises can be learned
from historical data or the simulation experiments. Recently,
there have been some reported results whose focuses are on
developing the adaptive filters to deal with the problems with
unknown or partially unknown noise parameters using the
variational Bayesian approximation [49], which would be one
of the possible extensions of the current investigation.

A. Dynamic event-triggered communication mechanism

Under the dynamic ETCM, the measurement output of the
sensor nodei is transmitted to the central node or its neigh-
boring nodes only when the pre-defined triggering condition is
satisfied. The event generator functiong(rik, ̺

i
k, θ

i
k) on sensor

nodei is defined as [40]:

g(rik, ̺
i
k, θ

i) = ‖rik‖
2
Si − σi −

1

θi
̺ik (3)

whererik = yik− ȳik denotes the difference between the current
measurementyik and the latest transmitted measurementȳik of
the ith sensor node,σi is a given positive scalar representing

the triggering threshold,Si is a known weighting matrix and
̺ik is an auxiliary variable that evolves as

̺ik = χi̺ik−1 − ‖rik−1‖
2
Si + σi (4)

whereθi andχi are both given parameters and̺i0 > 0 is the
initial value.

The data transmission is executed if and only if the condi-
tion g(rik, ̺

i
k, θ

i
k) > 0 is satisfied. Before proceeding further,

to describe whether or not the sensor nodei sends its current
measurement to the fusion center or its neighboring nodes, an
indicator variableγi

k is introduced as follows:

γi
k =

{

1, g(rik, ̺
i
k, θ

i
k) > 0;

0, g(rik, ̺
i
k, θ

i
k) ≤ 0.

(5)

Then, the actually available measurement informationzik can
be denoted as

{

zik = yik, when γi
k = 1;

zik ∈ Yi
k, when γi

k = 0,
(6)

whereYi
k = {yik|g(r

i
k, ̺

i
k, θ

i
k) ≤ 0}.

Remark 2:For the dynamic ETCM described by (3)-(5),
if the parametersθi and χi are selected asθi ≥ 1

χi and
0 < χi < 1, then the auxiliary variable̺i

k is always nonneg-
ative [19]. Consequently, the equivalent triggering threshold
under the dynamic ETCM (i.e.,σi + 1

θi̺
i
k) will never be less

than that in the static counterpart (i.e.,σi). In other words, the
triggering times under the dynamic ETCM will be reduced
and the communication burden will be relaxed. It should be
noted that the equivalent triggering threshold decreases with
the increase of the value ofθi. If θi → ∞, the dynamic event
generator function (3) degenerates tog(rik) = ‖rik‖

2
Si − σi,

which corresponds to the traditional static event-triggered
mechanism. Furthermore, it is worthwhile to mention that
the auxiliary variable̺ i

k can be adjusted in real time using
the measurement information. In practice, considering the
limited network bandwidth and energy resource, the threshold-
related parametersθi, χi andσi are preset in advance by the
designer or engineer to cater for the real-world engineering
specifications.

B. Auxiliary particle filtering

Given the measurementsz1:k, the minimum mean-square
error (MMSE) estimate of the statexk, denoted byx̂k, is
defined as

x̂k = E{xk|z1:k} =

∫

xkp(xk|z1:k)dxk. (7)

Generally speaking, the closed form of the posterior
p(xk|z1:k) is difficult to obtain due to the existence of multidi-
mensional integrals in the Bayesian recursion. A numerically
efficient method is to approximate the posteriorp(xk|z1:k) by
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a set of weighted particles{xm
k ,Wm

k }Mm=1, and then we have

x̂k =

∫

xkp(xk|z1:k)dxk

=

∫

xk

M
∑

m=1

Wm
k δ(xk − xm

k )dxk

=

M
∑

m=1

Wm
k xm

k

(8)

where δ(·) is the Dirac delta function,xm
k is drawn from

a proposal distributionq(xk|xm
k−1

, zk) and its corresponding
weightWm

k is calculated by

Wm
k = Wm

k−1

p(zk|xm
k )p(xm

k |xm
k−1

)

q(xm
k |xm

k−1
, zk)

. (9)

Note that the importance weights need to be normalized, i.e.,
Wm

k is reassigned according toWm
k /
∑M

n=1
Wn

k .
A widely used proposal distribution isq(xk|xm

k−1
, zk) =

p(xk|xm
k−1

) which corresponds to the bootstrap particle filter.
It should be noted that the current measurement information
is not considered in the sampling stage, which may lead to
certain performance degradation. To deal with such an issue,
the so-called auxiliary particle filter is put forward in [47] by
incorporating the knowledge of the newly obtained measure-
ment before the sampling stage. This additional operation can
increase the compatibility of the sampled particles with respect
to the newly obtained measurement.

The main steps of the standard auxiliary particle filter are
summarized as follows:

1) obtain the indicesindm according to the probabil-
ities proportional to Wm

k−1
p(zk|λm

k ), where λm
k ∼

p(xk|xm
k−1

);
2) draw the new particlexm

k from p(xk|x
indm

k−1
);

3) calculate the corresponding weight according to

Wm
k =

p(zk|xm
k )

p(zk|λ
indm

k )
.

The purpose of this paper is to develop a distributed
auxiliary particle filtering algorithm based on the diffusion
strategy for the general nonlinear/non-Gaussian systems under
the dynamic ETCM.

III. A LGORITHM DESIGN AND DISCUSSION

In this section, to facilitate the presentation, a central
particle filtering algorithm under the dynamic ETCM is first
derived. We assume that the transmission channels in the
considered system are perfect, that is, theonly cause for
untransmitted/unreceived measurements is the failure to meet
the triggering condition. Meanwhile, we also assume that the
central node has the knowledge of the triggering condition
on each sensor node. Immediately after the development of
the centralized algorithm where the central node needs to si-
multaneously process all the measurements, a diffusion-based
distributed implementation is proposed that only requires the
internode communication within the local neighborhoods.

A. Centralized auxiliary particle filtering under the dynamic
event-triggered mechanism

In the centralized filtering framework, all sensor nodes
should send their observations to a central node to infer the
posterior PDF. However, due to the effect of the dynamic
ETCM, each sensor node will transmit its current observation
to the central node only when the corresponding triggering
condition is satisfied.

Let us define an indicator setΓk = {γi
k}

N
i=1, whereγi

k is
introduced in (5), and useIk to denote the set of the sensor
nodes that transmit their current measurements to the central
node at time instantk. It is worthwhile to point out thatγi

k is
known in the filtering process. Motivated by [62], bearing in
mind the fact that all the local measurements are independent
given the statexk, the full likelihood function for the central
node is described as

p(Γk, {y
i
k}i∈Ik

|xk)

=

∫

p(Γk, {y
i
k}i∈Ik

, {yik}i∈N\Ik
|xk)d{y

i
k}i∈N\Ik

=

∫

p(Γk|xk, {y
i
k}i∈N )p({yik}i∈N |xk)d{y

i
k}i∈N\Ik

=

∫ N
∏

i=1

p(γi
k|xk, y

i
k)p(y

i
k|xk)d{y

i
k}i∈N\Ik

=
∏

i∈Ik

p(γi
k = 1|xk, y

i
k)p(y

i
k|xk)

∏

i∈N\Ik

p(γi
k = 0|xk)

=

N
∏

i=1

[p(yik|xk)]
γi
k [p(γi

k = 0|xk)]
1−γi

k

(10)

where N \ Ik denotes the complement ofIk in the set
{1, 2, . . . , N}. Note that the first equality means to successive-
ly integratep(Γk, {yik}i∈Ik

, {yik}i∈N\Ik
|xk) with respect to

each elementyik in the set{yik}i∈N\Ik
. It is clear that the term

p(yik|xk) in (10) is directly determined by the measurement
model (2), but the calculation of the termp(γi

k = 0|xk) is,
unfortunately, non-trivial. In what follows, we are devoted to
the derivation of an explicit formula for calculating the term
p(γi

k = 0|xk) induced by the dynamic ETCM.
According to (5),γi

k = 0 implies thatg(rik, ̺
i
k, θ

i
k) ≤ 0,

i.e.,

‖rik‖
2
Si ≤ σi +

1

θi
̺ik. (11)

Due to the fact that the auxiliary variable̺ik for the ith
sensor node is unavailable to the central node, it is impos-
sible to use (11) directly. Therefore, the following lemma is
introduced.

Lemma 1:Under the dynamic ETCM described by (3)-(5),
the following inequality holds for allk > 0:

‖rik‖
2
Si ≤ Ξi

k (12)

where

Ξi
k =

(χi)k

θi
̺i0 +

[1− (χi)k]σi

(1 − χi)θi
+ σi.

Proof: Recalling (4) and noticing that‖rik−1
‖2Si ≥ 0, one

has
̺ik ≤ χi̺ik−1 + σi. (13)
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Substituting (13) into (11) yields

‖rik‖
2
Si ≤

χi

θi
̺ik−1 +

σi

θi
+ σi

≤ · · · ≤
(χi)k

θi
̺i0 + [

k−1
∑

m=0

(χi)m]
σi

θi
+ σi

=
(χi)k

θi
̺i0 +

[1− (χi)k]σi

(1− χi)θi
+ σi,

(14)

which completes the proof.
Based on Lemma 1, it is inferred fromγi

k = 0 that the
untransmitted measurement satisfies (12), i.e.,

p(γi
k = 0|xk) = p(‖rik‖

2
Si ≤ Ξi

k|xk). (15)

As a consequence, the full likelihood function for the central
node is rewritten as

p(Γk, {y
i
k}i∈Ik

|xk)

=
N
∏

i=1

[p(yik|xk)]
γi
k [p(γi

k = 0|xk)]
1−γi

k

=
N
∏

i=1

[p(yik|xk)]
γi
k [p(‖rik‖

2
Si ≤ Ξi

k|xk)]
1−γi

k .

(16)

Now, the implementation of the proposed centralized auxil-
iary particle filtering under the dynamic event-triggered mech-
anism is summarized in Algorithm 1.

Remark 3: It is worth mentioning that the analytical ex-
pression of the probabilityp(‖rik‖

2
Si ≤ Ξi

k|xk) can only be
obtained in some special cases. For example, let us consider
the case where the measurement output of theith sensor node
is a scalar and the measurement noiseνik follows a Gaussian
distribution with meanµi

k and variance(ρik)
2. Then, we have

p(‖rik‖
2
Si ≤ Ξi

k|xk)

=p(−
√

Ξi
k/S

i ≤ rik ≤
√

Ξi
k/S

i|xk)

=p(ȳik −
√

Ξi
k/S

i ≤ yik ≤ ȳik +
√

Ξi
k/S

i|xk)

=p(νik ≤ νik ≤ νik|xk)

=Φ(
νik − µi

k

ρik
)− Φ(

νi
k − µi

k

ρik
)

(17)

where

νik = ȳik − hi(xk)−
√

Ξi
k/S

i,

νik = ȳik − hi(xk) +
√

Ξi
k/S

i

andΦ(·) denotes the cumulative distribution function of the
standard normal distribution. However, the above-mentioned
method is not applicable when it comes to the case of vector
measurement. Similar to [35], a Monte Carlo-based method
is used to calculate the probabilityp(‖rik‖

2
Si ≤ Ξi

k|xk)
approximately. To be more specific, for each particlexm

k ,
we drawL samples denoted as{yi,m,l

k }Ll=1. Then, from the
densityp(yik|x

m
k ), the probabilityp(‖rik‖

2
Si ≤ Ξi

k|x
m
k ) can be

approximated as

p(‖rik‖
2
Si ≤ Ξi

k|x
m
k ) =

1

L

L
∑

l=1

1{‖ri,m,l

k
‖2

Si
≤Ξi

k
} (18)

Algorithm 1 Centralized auxiliary particle filtering under the
dynamic event-triggered mechanism

Step 1.Particle initialization
Draw particles{xm

0 }Mm=1 from the prior densi-
ty p(x0) and the associated importance weights
{Wm

0 }Mm=1 are all set as1

M . In addition, the max-
imum recursive time instant is set asK.

Step 2.Measurement collection
Collect the measurements and the indicator vari-
ables at time instantk, i.e.,{yik}i∈Ik

andΓk, under
the dynamic ETCM described by (3)-(5).

Step 3.Particle selection and update
Obtain the indicesindm according to the proba-
bilities proportional toWm

k−1p(Γk, {y
i
k}i∈Ik

|λm
k ),

whereλm
k ∼ p(xk|xm

k−1
) and p(Γk, {yik}i∈Ik

|λm
k )

is calculated by (16); Draw new particlexm
k from

the transition PDFp(xk|x
indm

k−1
) for m = 1, . . . ,M .

Step 4.Weight assignment
Assign the unnormalized weights{W̃m

k }Mm=1 ac-
cording to

W̃m
k =

p(Γk, {yik}i∈Ik
|xm

k )

p(Γk, {yik}i∈Ik
|λindm

k )
.

Step 5.Normalization
Normalize the importance weights asWm

k =

W̃m
k /(

∑M
n=1

W̃n
k ).

Step 6.State estimate update
Calculate the state estimatex̂k and estimation error
covariancePk as

x̂k =

M
∑

m=1

Wm
k xm

k ,

Pk =

M
∑

m=1

Wm
k (xm

k − x̂k)(x
m
k − x̂k)

T .

Step 7.If k < K, then setk = k + 1 and go to Step 2;
otherwise go to Step 8.

Step 8.Stop.

where
ri,m,l
k = yi,m,l

k − ȳik

and
1{‖ri,m,l

k
‖2

Si
≤Ξi

k
}

is the indicator function defined as

1{‖ri,m,l

k
‖2

Si
≤Ξi

k
} =

{

1, if ‖ri,m,l
k ‖2Si ≤ Ξi

k;
0, otherwise.

B. Distributed auxiliary particle filtering under the dynamic
event-triggered mechanism

Due to the limited network bandwidth and energy sup-
ply, the centralized particle filtering algorithm proposed in
Section III-A, which requires theall-to-one communication,
is clearly impractical in large-scale and wide-area sensor
network. For example, when the central node fails to work well
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Fig. 1: The system model of the distributed inference
problem.
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Fig. 2: Internode communication in the diffusion strategy
under the dynamic event-triggered mechanism.

(e.g., attacked by the adversaries) and becomes unavailable,
the whole system may be paralyzed. Hence, it is more desir-
able to develop a distributed filtering algorithm to eliminate the
dependence on the central node. The system model is depicted
in Fig. 1.

In this section, a distributed particle filtering algorithm
under the dynamic ETCM is proposed by utilizing the adapt-
then-combine diffusion strategy [9], [11], where each node
only communicates with its neighboring nodes and no central
node is required. The proposed algorithm is sketched in Fig. 2,
where the notationGMMi

k denotes the Gaussian mixture
model representation for the posterior PDF of sensor node
i at time instantk, see (27) for the definition. The detailed
algorithm is explained as follows.

1) Adaptation Stage:For sensor nodei, the available
measurement information at time instantk is denoted by

Zi
k = {yjk : j ∈ Ii

k},

Γi
k = {γij

k : j ∈ Ni}
(19)

whereNi stands for the set of sensor nodes connected to node
i and Ii

k ⊆ Ni represents the set of neighboring nodes that
transmit their current measurements to nodei at time instant
k. Note thatγij

k = γj
k if j ∈ Ni \ i, andγij

k = 1 if j = i.
It is worth mentioning thati ∈ Ii

k and i ∈ Ni. All available

measurement information up to time instantk is written by

Zi
1:k = {Zi

1, Z
i
2, · · · , Z

i
k},

Γi
1:k = {Γi

1,Γ
i
2, · · · ,Γ

i
k}.

(20)

In this stage, the statistical knowledge of sensor nodei is en-
riched by incorporating its neighboring nodes’ measurements.
Specifically, sensor nodei collects all available measurement
information and runs, independently, a local particle filter to
obtain a particle-based approximation of the posterior PDF
p(xk|Γi

1:k, Z
i
1:k).

Let the particles{xi,m
k−1

}Mm=1 and associated importance
weights {W i,m

k−1
}Mm=1 for node i at time instantk − 1 be

all known. At time instantk, the first step is to obtain
the indicesindi,m according to the probabilities proportion-
al to W i,m

k−1
p(Γi

k, Z
i
k|λ

i,m
k ), whereλi,m

k ∼ p(xk|x
i,m
k−1

) and
p(Γi

k, Z
i
k|λ

i,m
k ) is calculated by

p(Γi
k, Z

i
k|λ

i,m
k )

=
∏

j∈Ni

[p(yjk|λ
i,m
k )]γ

ij

k [p(γj
k = 0|λi,m

k )]1−γij

k

=
∏

j∈Ni

[p(yjk|λ
i,m
k )]γ

ij

k [p(‖rjk‖
2
Sj ≤ Ξj

k|λ
i,m
k )]1−γij

k .

(21)

Based on the indicesindi,m, the next step is to sample new
particles{xi,m

k }Mm=1 from the prior density, i.e.,

xi,m
k ∼ p(xk|x

indi,m

k−1
) (22)

and update the weights{W i,m
k }Mm=1 by

W i,m
k =

p(Γi
k, Z

i
k|x

i,m
k )

p(Γi
k, Z

i
k|λ

indi,m

k )
(23)

wherep(Γi
k, Z

i
k|x

i,m
k ) andp(Γi

k, Z
i
k|λ

indi,m

k ) are similarly cal-
culated according to (21). In view of (22) and (23), the particle
representation of the local posterior PDFp(xk|Γi

1:k, Z
i
1:k) is

obtained.
2) Combination Stage:In this stage, each sensor node

shares the local posterior PDF obtained in the adaptation
stage with its neighboring nodes and merges the information
received from the neighboring nodes to collaboratively im-
prove the estimation accuracy. As illustrated in [17], the fused
posterior PDF at sensor nodei (denoted aŝp(xk|Γi

1:k, Z
i
1:k))

can be written as

p̂(xk|Γ
i
1:k, Z

i
1:k) ∝

∏

j∈Ni

[p(xk|Γ
j
1:k, Z

j
1:k)]

βij , (24)

which is the one that minimizes the weighted average
Kullback-Leibler divergence

∑

j∈Ni

βijDKL{p
′(xk|Γ

i
1:k, Z

i
1:k)‖p(xk|Γ

j
1:k, Z

j
1:k)} (25)

over all the candidatesp′(xk|Γi
1:k, Z

i
1:k), where DKL{·‖·}

stands for the Kullback-Leibler divergence between two distri-
butions, and the weightβij represents the belief degree of node
i in the information of nodej and satisfies

∑

j∈Ni
βij = 1.
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In practice, by taking both the information of the commu-
nication topology and the effect of the dynamic ETCM into
consideration, the weightβij can be selected as

βij =

{

1

|Ii
k
|
, if j ∈ Ni andγij

k = 1 (i.e., j ∈ Ii
k);

0, otherwise,
(26)

where|Ii
k| denotes the cardinality ofIi

k.
Remark 4:Note that, in the combination stage, the sensor

nodei needs to share its local posterior PDF with its neigh-
boring nodes, which requires the transmission of particles and
their respective importance weights. In this case,(n + 1)M
real numbers (i.e.,nM numbers for particles andM numbers
for weights) are required to be transmitted for each node
at each time instant (if triggered). With the increase of the
particle numbers, the communication cost will become con-
siderably high. Hence, it is often preferable to present and
broadcast the local posterior PDF in a parametric fashion.
Notice that additional estimation errors might be induced
by using the single Gaussian distribution to approximate the
non-Gaussian posterior PDF. Therefore, the more accurate
Gaussian mixture representation has been widely used in the
literature [1], [10]. With the Gaussian mixture representation
of the local posterior, each sensor node only needs to transmit
G(1 + n + n2) numbers, whereG is the average number
of Gaussian components in the Gaussian mixture models.
Then, the maximum communication load under the diffusion
strategy isO(N(N − 1)(G(1 + n + n2) + m)), wherem is
the measurement dimension. In fact, the communication load
can be further reduced by considering the symmetry of the
covariance matrices.

In this paper, the local posterior PDF for sensor nodei is
represented by aGi-component Gaussian mixture model

p(xk|Z
i
1:k,Γ

i
1:k) =

Gi
∑

g=1

agN(xk;µg,Σg) , GMMi
k (27)

where N(xk;µg,Σg) denotes thegth component withag
being its weight. To obtain a Gaussian mixture representation
for the posterior PDF required in the combination stage,
the weighted expectation-maximization algorithm detailed in
[1] is employed. Moreover, it should be noticed from the
combination rule (24) that the fusion of Gaussian mixture
models with non-integer exponents is involved. In this paper,
the weighted mixture importance sampling method [29] is
adopted to realize such a fusion.

The proposed distributed filtering scheme is subsequently
outlined in Algorithm 2, where only the operations conducted
by sensor nodei are displayed.

Remark 5:Since the filtering process has similar computa-
tional burden among different algorithms, we only focus on
the most computation-intensive operations, i.e., the Gaussian
mixture representation learning for the local posterior in the
adaptation stage and the fusion of local posteriors in the
combination stage. Note that even though the dynamic ETCM
is introduced to schedule the data transmission among sensor
nodes, we consider the worst case in the analysis, i.e., each
sensor is able to connect withN neighbors (including itself).

Algorithm 2 Diffusion-based distributed auxiliary particle
filtering under the dynamic ETCM (executed on sensor node
i)

Step 1.Particle initialization
Draw particles{xi,m

0 }Mm=1 from the prior densi-
ty p(x0) and the associated importance weights
{W i,m

0 }Mm=1 are all set as 1

M . In addition, the
maximum recursive time instant is set asK.

Step 2.Measurement collection
Sensor nodei assimilates the available measure-
ments from its neighboring nodes at time instant
k, i.e., {yik}i∈Ii

k
andΓi

k, and broadcasts its current
measurements to its neighbors under the dynamic
ETCM.

Step 3.Particle selection and update
Select particlesxindi,m

k−1
based on (21) and propa-

gate particlesxindi,m

k−1
to xi,m

k for m = 1, . . . ,M
according to (22).

Step 4.Weight assignment
Assign the unnormalized weights{W̃ i,m

k }Mm=1 ac-
cording to (23).

Step 5.Normalization
Normalize the importance weights asW i,m

k =

W̃ i,m
k /(

∑M
n=1

W̃ i,n
k ).

Step 6.Gaussian mixture model representation
Construct the Gaussian mixture modelGMMi

k

based on the weighted particles{xi,m
k ,W i,m

k }Mm=1

by using the weighted expectation-maximization
algorithm.

Step 7.Local posteriors sharing
Sensor nodei shares its local posterior represented
by GMMi

k with its neighbors according to the indi-
cator variableγi

k, and receives the local posteriors
from its neighbors.

Step 8.Combination
Utilize the weighted mixture importance sampling
method to merge the Gaussian mixture models
according to (25), and extract the state estimatex̂i

k

as

x̂i
k =

M
∑

m=1

W i,m
k xi,m

k

where{xi,m
k ,W i,m

k }Mm=1 are newly sampled from
the merged Gaussian mixture model.

Step 9.If k < K, then setk = k + 1 and go to Step 2;
otherwise go to Step 10.

Step 10.Stop.
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Similar to [29], it can be concluded that the main computation-
al complexity of the proposed distributed filtering algorithm
executed on each sensor node isO(K(N + I)MGn2), where
I denotes the number of learning iterations in the weighted
expectation-maximization algorithm, andG is the average
number of Gaussian components in the Gaussian mixture
models.

Remark 6:So far, we have dealt with the distributed
auxiliary particle filtering problem for a class of general
nonlinear/non-Gaussian systems where the data transmissions
are triggered in a dynamical fashion. More specifically, we
have developed dynamic event-triggered particle filters where
the dynamic ETCM is subtly embedded for mitigating data-
intensive transmissions. We have also examined the effect
from the dynamic ETCM on the performance of the proposed
filtering schemes. Furthermore, we have made full use of the
information from the non-triggered measurements to assist in
selecting the candidate particles and updating weights.

Remark 7: In this paper, the proposed centralized and
distributed auxiliary particle filtering algorithms under the
dynamic ETCM have been, respectively, summarized in Algo-
rithms 1 and 2. It is clear from Algorithm 1 that each sensor
(if triggered) is required to transmit its current measurement to
a fusion center, and the fusion center runs a modified auxiliary
particle filter to obtain the state estimate. Such a scheme may
consume a large amount of communication resource and may
fail to function especially when the fusion center suffers from
critical failure. For the distributed counterpart described in
Algorithm 2, each sensor only needs to communicate with its
neighboring nodes on the basis of the dynamic ETCM, and the
fusion center disappears. Specifically, each sensor first receives
the triggered measurements from its neighbors and runs a
modified auxiliary particle filter to form the local posterior,
and then fuses the available local posteriors to extract the state
estimate.

Remark 8:For decades, the particle filtering algorithms
have been known to be capable of handling nonlinear/non-
Gaussian systems and a great deal of research attention has
been devoted to the applications on these algorithms to a
variety of engineering practice. Comparing to existing results,
the main results established in this paper stand out for the
following reasons: 1) a new distributed auxiliary particle filter
algorithm is developed based on the diffusion strategy for a
class of general discrete-time nonlinear/non-Gaussian systems;
2) a dynamic ETCM is, for the first time, introduced in the
particle filter design with hope to save energy consumption;
and 3) non-triggered measurements are properly taken into
account in order to further improve the performance of the
developed particle filter algorithm.

IV. N UMERICAL STUDY

In this section, the performance of the proposed centralized
and distributed auxiliary particle filtering algorithms under the
dynamic ETCM is demonstrated via the application in the
moving target tracking problem using received-signal-strength
measurements.

A. Target tracking

Assume that the target moves in a two-dimensional (2-
D) plane and its state vector is represented byxk =
[xt

k, ẋ
t
k, y

t
k, ẏ

t
k]

T , where(xt
k, y

t
k) and (ẋt

k, ẏ
t
k) denote the tar-

get’s 2-D position and 2-D velocity, respectively. The dynam-
ics of the moving target is described by the well-known white
noise acceleration model [18], i.e.,

xk+1 =









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1









xk + ωk (28)

whereT represents the sampling period andωk is the zero-
mean Gaussian white noise sequences with covariance matrix

Qk = Υ











T 3

3

T 2

2
0 0

T 2

2
T 0 0

0 0 T 3

3

T 2

2

0 0 T 2

2
T











(29)

whereΥ stands for the acceleration variance.
In the considered scenario, the moving target emits a radio

or acoustic signal and we employN passive received-signal-
strength sensors to measure the signal energy emitted by the
target. The measurement characteristic of theith received-
signal-strength sensor node located at(xs,i

k , ys,ik ) is modeled
by [18], [46]

yik =P0 − 10nr log10

(

‖[xt
k, y

t
k]

T − [xs,i
k , ys,ik ]T ‖

d0

)

+ νik, i = 1, 2, . . . , N,

where ‖ · ‖ stands for the Euclidean norm,P0 denotes the
received signal energy at the reference distanced0, nr repre-
sents the path loss exponent, andνik is the measurement noise.
For each sensor nodei, we assume thatνik is modeled by a
mixture of two Gaussian distributions, i.e.,

p(νik) = (1− πi)N(νik;µi,1, ǫ
2
i,1) + πi

N(νik;µi,2, ǫ
2
i,2)

whereπi is the glint probability.
As a popular measure of the filtering accuracy, the root

mean-square error (RMSE) on position and velocity estimates
are respectively calculated according to

RMSEPos,k =

√

√

√

√

1

NM

NM
∑

j=1

[

(xt,j
k − x̂t,j

k )2 + (yt,jk − ŷt,jk )2
]

,

RMSEVel,k =

√

√

√

√

1

NM

NM
∑

j=1

[

(ẋt,j
k − ˆ̇xt,j

k )2 + (ẏt,jk − ˆ̇yt,jk )2
]

where (xt,j
k , yt,jk ) and (ẋt,j

k , ẏt,jk ) denote the realization of
(xt

k, y
t
k) and (ẋt

k, ẏ
t
k) in the jth Monte Carlo run, and

their respective estimates are represented by(x̂t,j
k , ŷt,jk ) and

(ˆ̇xt,j
k , ˆ̇yt,jk ). NM is the total number of the Monte Carlo runs.
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B. Simulation setups

In each independent Monte Carlo run, the true state is ini-
tialized asx0 = [25m, 0.3m/s, 20m, 0.4m/s]T, the sampling
period and the acceleration variance are chosen asT = 1s and
Υ = 0.042m2/s4, respectively. Following [18], the position
components of the initial particles are sampled from a Gaus-
sian distributionN([25, 20]T , diag{302, 302}) and the velocity
components are sampled according to a Gaussian distribution
N([0.5, arctan(4/3)]T , diag{0.52, (5π/180)2}), which char-
acterizes the initial resultant velocity and the azimuth. Fur-
thermore, we haveN = 6 sensors deployed in the surveillance
areas to observe the target of interest. The sensors parameters
and other parameters related to the dynamic ETCM are listed
in TABLE I for clarity purposes.

TABLE I: Parameter settings

Parameters Values Parameters Values

P0 1 dBm d0 1 m
nr 2 πi 0.1
µi,1 0 dBm µi,2 0 dBm
ǫi,1 1.2 dBm ǫi,2 10ǫi,1 dBm
̺i
0

100 σi 2
θi 5 χi 0.9
Si 1 K 100
M 500 NM 20

In the simulation, the following five algorithms are evalu-
ated and compared: 1) CAPF-DETM: the proposed central-
ized auxiliary particle filter under the dynamic ETCM (see
Algorithm 1); 2) CAPF-DETM-WO: a centralized auxiliary
particle filter under the dynamic ETCM without utilizing the
information contained in the non-triggered measurements; 3)
CPF-DETM: the framework of the auxiliary particle filter in
Algorithm 1 is replaced by that of the sampling importance
resampling (SIR) particle filter; 4) DAPF-DETM: the proposed
diffusion-based distributed auxiliary particle filter under the
dynamic ETCM (see Algorithm 2); and 5) DAPF-DETM-OA:
a distributed auxiliary particle filter under the dynamic ETCM
using the adaptation-only scheme.

C. Simulation results

In Fig. 3, one realization of the true trajectory and its
estimate given by the CAPF-DETM, as well as the sensor
positions are depicted, which indicates that the proposed
CAPF-DETM is capable of achieving a satisfactory tracking
performance. Moreover, it can be seen from Fig. 4 that the
transmission times are significantly reduced under the dynamic
ETCM. The evolutions of the RMSEs with respect to the po-
sition and velocity estimates calculated by the CAPF-DETM,
CAPF-DETM-WO and CPF-DETM are respectively plotted in
Figs. 5-6. As expected, the proposed centralized algorithm has
the best tracking performance when compared with the other
two algorithms. The reason is that we have made full use of
the information contained in the non-triggered measurements,
which contributes to selecting the most promising particles.

In the following, we aim to examine the performance of our
proposed DAPF-DETM. The communication topology of the
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Fig. 3: The true target trajectory and its estimate obtained by
the CAPF-DETM in one run.
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sensor network modeled by an undirected graph is illustrated
in Fig. 3. The trajectories of RMSEs on the position and veloc-
ity estimates obtained from the CAPF-DETM, DAPF-DETM
and DAPF-DETM-OA are presented in Figs. 7-8. It should be
noted that in some instants, the DAPF-DETM can even perfor-
m better than the CAPF-DETM probably due to the reason that
when all sensors are not triggered, each sensor still has access
to its own measurements in the distributed implementation. On
the other hand, we can find that the DAPF-DETM-OA incurs
larger performance degradation when compared with DAPF-
DETM owing to the absence of combination step. In fact,
the adaptation-only scheme just updates the local estimates
by utilizing the neighbors’ measurements under the dynamic
ETCM, which fails to diffuse the estimates throughout the
whole network.

Further simulations are conducted to analyze the effect of
the parameterθi (the superscripti is omitted next for concise-
ness) in the dynamic ETCM on the transmission performance
and tracking performance. As an indicator of transmission
performance, the triggering rate is defined as the ratio of the
actual triggering times to the total length of the simulation
period. The average triggering rateR is the mean of the
triggering rate over theNM Monte Carlo runs. In addition,
the average RMSE on position (respectively, velocity), denoted
as EPos (respectively,EVel), is the mean of theRMSEPos,k

(respectively,RMSEVel,k) over the total simulation period.
The corresponding results of three representative sensors are
shown in TABLE II and Figs. 9-10.

From TABLE II, it appears that the average triggering rate
decreases as the parameterθ decreases. Recalling that the case
with θ = ∞ is equivalent to the static event-triggered mecha-
nism, we can naturally conclude that the dynamic ETCM can
schedule the data transmission in a more efficient way. On the
other hand, the results presented in TABLE II and Figs. 9-10
also imply that the choice of parameterθ is of great importance
for the filtering accuracy. It should be pointed out that as the
parameterθ decreases, the RMSEs will increase. Therefore,
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Fig. 7: Position RMSEs of CAPF-DETM, DAPF-DETM and
DAPF-DETM-OA.
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a trade-off between the communication cost and the filtering
performance can be achieved via the parameter adjustment,
which provides more flexibility to the practical applications.

V. CONCLUSIONS

In this paper, the diffusion-based distributed auxiliary par-
ticle filtering algorithm has been proposed to solve the
nonlinear/non-Gaussian filtering problem under the dynamic
ETCM. Compared with the traditional static event-triggered
mechanism, the dynamic counterpart can automatically adjust
the equivalent triggering threshold and has more potential to
reduce the communication energy consumption. A full likeli-
hood function has been firstly established in the centralized
auxiliary particle filtering algorithm by using not only the
transmitted measurements but also the information mined from
the non-triggered measurements, which contributes to select-
ing the most promising candidate particles and updating the
weights. In the distributed auxiliary particle filtering algorithm,
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TABLE II: The effect of the parameter on the average triggering rate and average RMSEs

Sensor 1 Sensor 3 Sensor 5
R EPos(m) EVel(m/s) R EPos(m) EVel(m/s) R EPos(m) EVel(m/s)

θ = 5 33.47% 2.5308 0.1354 33.42% 2.4306 0.1354 33.32% 2.5658 0.1369
θ = 15 40.99% 2.2445 0.1341 43.07% 2.2430 0.1346 41.14% 2.2493 0.1321
θ = ∞ 49.75% 1.8533 0.1280 52.03% 1.8543 0.1283 50.64% 1.8323 0.1277
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Fig. 9: Position RMSEs of DAPF-DETM with respect to
different parameters.
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Fig. 10: Velocity RMSEs of DAPF-DETM with respect to
different parameters.

the dynamic ETCM has been introduced in both adaptation
stage and combination stage, and the local posterior PDF has
been represented by the Gaussian mixture model to further
save the communication cost. Finally, the proposed algorithms
have been applied in the target tracking problem with received-
signal-strength sensors and compared with other schemes.
The simulation results have demonstrated the feasibility and
validity of the proposed filtering algorithms. To compress the
information contained in the samples into a reduced number

of summary samples, it is of great interest to explore the
extensions of the present results based on the compressed
Monte Carlo scheme [41], the herding algorithm [25] as well
as the group importance sampling strategy [42].
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