
Accurate models vs. accurate estimates: A simulation study
of Bayesian single-case experimental designs

Prathiba Natesan Batley1 & Larry Vernon Hedges2

Accepted: 11 December 2020
# The Author(s) 2021

Abstract
Although statistical practices to evaluate intervention effects in single-case experimental design (SCEDs) have gained promi-
nence in recent times, models are yet to incorporate and investigate all their analytic complexities.Most of these statistical models
incorporate slopes and autocorrelations, both of which contribute to trend in the data. The question that arises is whether in SCED
data that show trend, there is indeterminacy between estimating slope and autocorrelation, because both contribute to trend, and
the data have a limited number of observations. Using Monte Carlo simulation, we compared the performance of four Bayesian
change-point models: (a) intercepts only (IO), (b) slopes but no autocorrelations (SI), (c) autocorrelations but no slopes (NS), and
(d) both autocorrelations and slopes (SA). Weakly informative priors were used to remain agnostic about the parameters.
Coverage rates showed that for the SA model, either the slope effect size or the autocorrelation credible interval almost always
erroneously contained 0, and the type II errors were prohibitively large. Considering the 0-coverage and coverage rates of slope
effect size, intercept effect size, mean relative bias, and second-phase intercept relative bias, the SI model outperformed all other
models. Therefore, it is recommended that researchers favor the SI model over the other three models. Research studies that
develop slope effect sizes for SCEDs should consider the performance of the statistic by taking into account coverage and 0-
coverage rates. These helped uncover patterns that were not realized in other simulation studies. We underline the need for
investigating the use of informative priors in SCEDs.
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Single-case experimental designs (SCEDs) involve manipulat-
ing an independent variable by applying an intervention to eval-
uate intervention effects by repeated, systematic measurements
of an outcome variable (Horner et al., 2005; Kratochwill &
Levin, 2014). Thus, SCEDs are forms of interrupted time-
series designs, which are often used to evaluate intervention
effects in various fields ranging across education (e.g.

Lambert, Cartledge, Heward, & Lo, 2006), psychology (e.g.
Shih, Chang, Wang, & Tseng, 2014), and medicine (as n-of-1
designs, Gabler, Duan, Vohra, & Kravitz, 2011). The impor-
tance and necessity of SCEDs in experimental designs where
randomization is often impossible or inappropriate (e.g. low
incidence disabilities, rare diseases, comorbid health conditions)
has been discussed at length in SCED literature (e.g. Gast &
Ledford, 2014; Kratochwill et al., 2010; Kratochwill & Levin,
2014; Shadish, 2014).

Often, visual analyses are conducted to analyze SCED data.
These analyses are supplemented with reporting phase means,
medians, percentages, and effect sizes such as standardized
mean differences or indices based on the amount of data over-
lap between phases (Parker, Hagan-Burke, & Vannest, 2007).
Although visual analysis has definite advantages with analyz-
ing SCED data, studies have shown that the presence of auto-
correlation can confound the results of visual analysis. For
instance, in data with autocorrelation, it is difficult to decom-
pose patterns due to trends (slopes) versus patterns due to
autocorrelated errors. Autocorrelation is almost impossible to
detect by visual analysis alone (Kazdin, 2011; Thyer &Myers,
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2011). The presence of autocorrelation increases type I errors
(Matyas & Greenwood, 1990) and decreases interrater reliabil-
ities (Brossart, Parker, Olson, & Mahadevan, 2006) in visual
analysis. In fact, Jones, Weinrott, and Vaughn (1978) found
that in data with moderate-high autocorrelations, visual analy-
sis results were reduced to nearly chance levels. Therefore,
there is increasing emphasis for more objective methodologies
for analyzing SCED data and determining causal inferences.
Many organizations (American Speech-Language-Hearing
Association, 2004; Cook et al., 2014; Kratochwill et al.,
2013) have worked on reaching professional consensus on
the methodological standards for SCEDs. One such standard,
the U.S. Department of Education’s What Works
Clearinghouse (WWC) pilot standards for single-case designs
(Kratochwill et al., 2010) advocates that researchers evaluate
the difference in levels, trends, and variability across phases in
order to meet evidence standards for SCEDs. Therefore, it is
somewhat common to see models with intercepts and slopes
for each phase and the same autocorrelation for all phases being
fitted to single-case experimental designs (Solomon, 2013).
The multilevel model for SCEDs is an example of one such
model (e.g. Baek & Ferron, 2013; Ferron, Bell, Hess, Rendina-
Gobioff, & Hibbard, 2009; Ferron, Farmer, & Owens, 2010;
van den Noortgate & Onghena, 2003a, b).

However, it may not be wise to fit such complex models to
short time-series data. We hypothesize that this is because it is
difficult to separate howmuch of the trend in the data is due to
autocorrelation and how much is due to slope (i.e. a continu-
ous gain or fall in the outcome variable). When fitting com-
plex models to small sample data that are commonly found in
SCEDs, we still do not know which parameters will be affect-
ed and to what extent they would be affected. The purpose of
this simulation study is to investigate the performance of a
two-phase interrupted time-series model with first-order auto-
correlation in recovering the parameters of two-phase SCED
data. We fit and compare four statistical models to SCED data
with slopes and autocorrelations. The first model estimates
slopes (commonly known as trends in SCED literature), inter-
cepts (levels), and autocorrelations. The second model esti-
mates only slopes and intercepts while assuming there is no
autocorrelation. The third model estimates intercepts and au-
tocorrelations assuming that any trend displayed by the data is
due to autocorrelation and not slope. The fourth is the simplest
model that estimates intercepts only and assumes that no trend
is present, that is, there is no pattern due to autocorrelation or
slope. We investigated which model best captures the data
using diagnostics such as root mean squared errors (RMSEs)
of the posterior means of slopes, intercepts, autocorrelations,
and standard deviations; biases of slope and intercept effect
sizes; coverage rates of the credible intervals (CI) of slopes,
intercepts, and autocorrelations; and 0-coverage rates (that is,
the percentage of CIs that contain 0) of slopes and autocorre-
lations. Bayesian estimation was used for all models because

of its advantages with small sample data, especially SCEDs
(e.g., Natesan Batley, 2020; Natesan Batley, Contractor, &
Caldas, 2020; Natesan Batley, Minka, & Hedges, 2020;
Natesan Batley, Shukla Mehta, & Hitchcock, 2020; Natesan,
2019; Natesan & Hedges, 2017; Rindskopf, 2014; Shadish,
2014; Shadish, Rindskopf, Hedges, & Sullivan, 2013).
Readers are directed to the aforementioned references for fur-
ther discussion of the role and advantages of Bayesian in
estimating SCEDs.

Literature review

In SCEDs, the intervention effect can manifest itself as change
in level (Crosbie, 1995; Tryon, 1982) or change in trend
(Crosbie, 1995; van den Noortgate & Onghena, 2003a, b) or
a combination of both (Baek & Ferron, 2013). Thus, there are
many ways of detecting intervention effects in SCEDs. These
may utilize single-level or multilevel models. In the single-
level model framework, Campbell and Stanley (1966) and
Mood (1950) recommended testing whether the first observa-
tion of the intervention phase lay in the confidence interval of
the predicted or extrapolated value at that time point assuming
no intervention effect. If the true value of the first observation
of the intervention phase lay in the confidence interval of the
predicted value, a researcher may conclude that there was no
intervention effect, whereas intervention effect may be tenta-
tively inferred if otherwise. However, this procedure is weak
because it does not make use of all data points (Campbell &
Stanley, 1966). Therefore, another option is to compare the
intercepts and slopes of the regression lines of both phases. If
the intercepts and slopes are the same, the null hypothesis that
the treatment is not effective cannot be rejected (Campbell,
1967). Algina and Swaminathan (1977) showed that the test
statistic for testing the intervention effect in single-group qua-
si-experimental time-series designs for linear trends follows
the F-distribution. However, this is confounded by autocorre-
lation because the measurements are obtained on an individual
across time. Ignoring autocorrelations will lead to biased pa-
rameter and standard error estimates, which in turn, hinders
the validity of statistical inferences (Pankratz, 1983).

All the aforementioned procedures ignore autocorrelation.
Trend in data with autocorrelations leads to under- or
overestimated treatment effect sizes (West & Hepworth,
1991). The presence of autocorrelations biases error variances,
confidence intervals, t values, and type I error rates (Glass,
Willson, & Gottman, 1975; Gottman, 1980; Gottman &
Glass, 1978; McCain & McCleary, 1979). Gottman and
Glass (1978) showed that the type I error of a t test with alpha
level = 0.05, when the autocorrelation is 0.5, is 0.2584.
Similarly, Hibbs (1974) concluded that the type I error rate
is inflated by 265% when the autocorrelation is 0.7. Huitema,
McKean, and McKnight (1999) showed that ordinary least

1783Behav Res  (2021) 53:1782–1798



squares estimates of slopes have higher type I errors for larger
values of positive autocorrelation, especially for large sample
sizes. This is because the variance of the slope is
underestimated in the presence of positive autocorrelations.
This in turn affects the slope change parameters whose error
rates were unacceptably high for autocorrelations greater than
0.20. Finally, positive autocorrelations were associated with
higher type I error rates for estimates of slope change than for
estimates of level change. Therefore, Huitema, McKean, and
McKnight (1999) concluded that large sample theory overes-
timates the harmful effects of autocorrelation of type I error in
small samples.

Glass , Wi l l son, and Got tman (1972) adopted
autoregressive (AR) and autoregressive integrated moving av-
erage (ARIMA) processes for testing intervention effects in
time-series data. Simonton (1977) outlined a procedure for
comparing the regression lines of an interrupted time-series
model assuming first-order autocorrelations. However, this
procedure requires the number of individuals to be greater
than the number of measurement occasions. Obviously, this
requirement is almost impossible to fulfill in single-case ex-
perimental designs. Other researchers have suggested that a
minimum of 50 observations is required to obtain sufficiently
accurate estimates for a first-order autoregressive model (Box
& Pierce, 1970; Glass, Willson, & Gottman, 1975; Ljung &
Box, 1978).

Huitema and McKean (2000) studied the two-phase
interrupted time-series model and recommended that indi-
vidual slopes and intercepts be estimated for each phase.
However, this study was conducted in the absence of auto-
correlation. McKnight, McKean, and Huitema’s (2000)
double bootstrap method had a bias in autocorrelation esti-
mate ranging from 0.018 to 0.2 for a time-series length of
20. The bias decreased with increase in time-series length.
However, SCED data are often even shorter in length. In
fact, in a systematic literature review by Shadish and
Sullivan (2013) of the SCED articles published in 2008,
excluding alternating treatments design, only 54.7% of the
563 articles had more than five data points in the baseline
phase. The median number of total data points in 809 stud-
ies was 20, and 90.6% had fewer than 50 data points in
total. This leaves fewer than 25 data points per phase if
the designs only had two phases, and even fewer data points
in designs with more than two phases. Approximately 70%
of the studies had fewer than 30 data points in all.

There has been considerable effort in developing methods
and effect sizes for SCED data with trend (e.g. Allison &
Gorman, 1993; Center, Skiba, and Casey, 1985-86; Gorman
& Allison, 1997; White, Rusch, Kazdin, & Hartmann, 1989).
Researchers van den Noortgate and Onghena (2003a)
discussed procedures for meta-analyses with linear trends.
Parker, Vannest, and Davis (2011) developed a method to con-
trol positive baseline trend within data non-overlap. However,

this procedure ignores the presence of autocorrelation and
capitalizes on overlap indices, which are known to have
many drawbacks in addition to ignoring the distances
between data points and being sensitive to outliers. Parker,
Vannest, Davis, and Sauber (2011) developed an effect size
that combined trend and autocorrelation in SCED data. Cobb
and Shadish (2015) and Sullivan, Shadish, and Steiner (2015)
used semi-parametric regression models to analyze SCED data
with linear and nonlinear trends. Beretvas and Chung (2008)
used the difference inR2 (ΔR2) as an index of effect size, which
is an indicator of change in both intercepts and slopes for
single-case designs with trends. Their results showed that
ΔR2 has acceptable statistical properties only in the absence
of autocorrelation and has poor performance in the presence
of autocorrelation, especially for few cases and few time points.
Specifically, for large values of autocorrelations, the type I error
rate, that is, rejecting the null hypothesis that there is no inter-
vention effect based onΔR2, was high.Whether this is because
the autocorrelations ended up being estimated as slopes is un-
known. Solanas, Manolov, and Onghena’s (2010) and
Manolov and Solanas’ (2009) model with slope and autocorre-
lation eliminates baseline trend from SCED data to estimate
slope and level changes. However, they diagnosed the perfor-
mance of the models only using biases, which do not shed light
on whether the trend in the data was appropriately decomposed
into autocorrelations and slopes. Without examining the inter-
val estimates of slopes and autocorrelations, it is impossible to
tell if there is an indeterminacy problem, that is, whether some-
times slope is estimated as autocorrelation and vice versa. This
is important because autocorrelation is not considered as part of
the intervention effect, whereas change in slopes is usually
attributed to the intervention effect in SCEDs. In sum, although
parametric approaches based on regression have great promise
for meta-analysis of SCEDs, we are yet to know the full extent
of their weaknesses and strengths.

Although the performance of models that estimate trends
and autocorrelations have been investigated using the multi-
level modeling (MLM) framework, the present study is a de-
velopment over these studies because they had some limita-
tions. For instance, Ferron, Farmer, and Owens (2010) studied
MLM for multiple-baseline designs and compared different
approaches to show that estimates and coverage rates im-
proved with phase length and effect size. Similarly, Ferron,
Bell, Hess, Rendina-Gobioff, and Hibbard (2009) showed that
although the treatment effect estimates were relatively accu-
rate in the presence of autocorrelation, the point estimates
were biased. However, the aforementioned studies (i.e.
Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009;
Ferron, Farmer, & Owens, 2010) are applicable only to
multiple-baseline designs and required at least eight
participants for robust estimation of parameters. Moeyaert
et al. (2015) demonstrated multilevel meta-analysis of results
from various types of SCEDs. Petit-Bois, Bark, Van den
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Noortgate, Beretvas, and Ferron (2016) conducted a simula-
tion of meta-analysis of 10 or 30 studies and used sample sizes
of four and seven. Thus, they had much larger data. Although
Ugille, Moeyaert, Beretvas, Ferron, and Van den Noortgate
(2012) showed that MLM can be applied to datasets with as
few as four participants, and a time-series length of 10 series
per SCED study, this still places greater burden on the re-
searcher in terms of data collection. This is because a mini-
mum of three participants and five data points per phase are
required to meet the WWC design standards. Fewer than 63%
of the studies reviewed by Shadish and Sullivan (2013) had 20
or more data points in total. What the present study solves is a
much more basic problem when considering any multiphase
design for one participant using the simpler, single-level mod-
el where MLM is not applicable. The advantage of our ap-
proach is that the findings from our study are applicable to a
wider set of SCEDs such as the ABAB design the changing
criterion design, the multiple-baseline design, or the alternat-
ing treatments design. Moreover, although some of the
abovementioned studies examined the coverage rates of auto-
correlations, none of them examined 0-coverage of autocorre-
lation. Examining 0-coverage is important because it tells us if
the estimated value of autocorrelation is incorrectly computed
as 0 (i.e. being nonexistent). On the contrary, coverage rates
only tell us if the true value is contained in the interval
estimate.

In data that exhibit both slopes and autocorrelations, a
model that neglects slope is expected to produce strongly
autocorrelated residuals (Shadish, Rindskopf, & Hedges,
2008). This may be because the pattern in the data due to
the slopes is estimated as the pattern in the data due to auto-
correlation. Thus, Simonton (1979) questioned the specific
advantages that accrue from augmented complexity in short
time-series data. Huitema, McKean, and McKnight (1999)
also seconded this opinion and asked whether complex ap-
proaches are necessary when modeling the dependency struc-
ture of observations in time-series designs. Specifically, the
question remains as to whether it is prudent to fit models with
slopes and intercepts that vary by phase and an autocorrelation
that is common to all phases for SCED data, which are short
time-series data, let alone develop effect sizes, and multi-level
models. Simpler models generally have greater statistical
power and are simpler to interpret. However, the sensitivity
of these models to violation of assumptions such as indepen-
dence of observations needs to be studied further before they
can be recommended for general use. This forms the impetus
for the present study.

Models

A continuous, normally distributed dependent variable with
slope and autocorrelation was considered as the outcome

variable in the present study. Four single-level Bayesian
models were fitted to the data as shown in Table 1. These
models varied based on whether slopes and autocorrelations
were estimated in the model or not.

Model 1 (Intercepts, slopes, and autocorrelations – SA model)
The SA model estimates intercepts, slopes, and autocorrela-
tions. Consider a SCED with two phases: baseline and treat-
ment. Let the time points in the baseline phase be 1, 2, …, tb
and in the treatment phase be tb + 1, …, tn. Let us assume that
the observed value at the first time point (yp1) in phase p
follows a normal distribution with the mean of byp1 and stan-

dard deviation of σε as shown in Eq. 1.

yp1∼norm byp1;σ2
ε

� �
: ð1Þ

The predicted values in the following time points t are
distributed as:

yptjHpt−1;Θ∼norm byptj pt−1ð Þ;σ
2
e

� �
: ð2Þ

In Eq. 2, Hpt − 1 is the past history, Θ is the vector of pa-
rameters, and σe is the white noise created by a combination of
random error (σ2

ε ) and autocorrelation between adjacent time
points, ρ. The SA model and the serial dependency of the
residual (et) can be expressed as:

bypt ¼ β11 þ β21t þ εþ ρept−1; if t≤ tb
β12 þ β22 t−tbð Þ þ εþ ρept−1; otherwise

and

�
ð3Þ

ept−1 ¼ ρept−2 þ ε: ð4Þ

In Eq. 3, bypt is the probability of the predicted value of the

dependent variable at time t in phase p; β11 and β21 are the
intercept and slope of the linear regression model for phase 1,
respectively; β12 and β22 are the intercept and slope of the
linear regression model for phase 2, respectively; ept is the
error at time t in phase p; ρ is the autocorrelation coefficient
which stays the same across both phases; and ε is the inde-
pendently distributed error. The standard deviations of e, ε,
and ρ are related as shown in Eq. 5.

Table 1 Bayesian models fitted in the study

Slope

No Yes

Autocorrelation No IO (intercepts
only)

SI (slopes and intercepts
only)

Yes NS (no slopes) SA (slopes and
autocorrelations)
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σe ¼ σεffiffiffiffiffiffiffiffiffiffi
1−ρ2

p : ð5Þ

The intercept and slope β1p and β2p can be modeled as:

βip ¼ βi1; if t≤ tb
βi2; otherwise

�
; ð6Þ

where the terms refer to intercepts when i = 1 and slopes when
i = 2. Intercept effect size ES1 was defined as the standardized
mean difference between the two phases as given in Eq. 7.
Slope effect size ES2 was defined as the difference between
the estimated value at the midpoint of the intervention phase
assuming and not assuming an intervention effect as shown in
Eq. 8. If ti is the number of time points in the intervention
phase, then

ES1 ¼ β12−β11

σε
and ð7Þ

ES2 ¼ β12 þ tb þ ti
2

� �
β22

� �
− β11 þ tb þ ti

2

� �
β21

� �
: ð8Þ

Model 2 (Intercepts and autocorrelations but no slopes – NS
model) The NS model assumes that any trend in the data is
due to autocorrelation and not a slope parameter. Thus, the β21
and β22terms are dropped or equal 0 in Eqs. 3 and 6, and only
intercepts and autocorrelations are estimated. Thus, Eq. 3 be-
comes

bypt ¼ β11 þ εþ ρept−1; if t≤ tb
β12 þ εþ ρept−1; otherwise

�
and ð9Þ

Model 3 (Slopes and intercepts but no autocorrelation – SI
model) The slopes model assumes that the data are not
autocorrelated. Thus, the ρ term vanishes or equals 0, thereby
making Eqs. 1–6 represent a simple piecewise regression
model where only slopes and intercepts are estimated. The
model becomes

bypt ¼ β11 þ β21t þ ε; if t≤ tb
β12 þ β22 t−tbð Þ þ ε; otherwise

�
: ð10Þ

Model 4 (Intercepts only and no autocorrelations or slopes –
IOmodel)The IOmodel is the simplest of all models where no
trend is assumed. Therefore, both slopes and autocorrelations
are set to 0, and only intercepts are estimated. Thus, the var-
iability in the data is only due to random error as shown in Eq.
11.

bypt ¼ β11 þ ε; if t≤ tb
β12 þ ε; otherwise

and

�
ð11Þ

Priors The priors were the same for the parameters that were
common to all the models. We used weakly informative
priors, which purposely include less information than what
we actually have (Gelman & Jakulin, 2007). This allows the
parameters of the priors to be estimated from the data rather
than specifying them to have subjective information, especial-
ly for small sample data like those in the present study (Efron
& Morris, 1975; Gelman, 2006; James & Stein, 1960). The
intercepts and slopes of both phases were independent of each
other. The intercepts and slopes are drawn from normal distri-
butions with hyperpriors in order to reduce the impact of the
prior specification on the estimates as given in Eqs. 12–15.
The variances of the intercepts and slopes were independently
drawn from gamma distributions with mode and standard
deviations ranging uniformly between 0.01 and 1.1 We
chose the means of the intercepts to come from a distribu-
tion that uniformly ranged from 0 to 50 because we assume
that the mean of the dependent variable would not be out-
side these bounds based on the simulation design. Of
course, practitioners should choose appropriate priors for
their data depending on the scale of the outcome variable.
For instance, the mean of an outcome variable such as the
number of problem behaviors exhibited by a child with
autism during an observation period might range from 0
to an upper limit that makes substantive sense. The means
of the slope parameters were sampled from a unit normal
distribution because this value indicated change in the out-
come variable which might be positive or negative and in-
cluded all plausible values for means of the slopes based on
the simulation parameters.

β1p∼norm μ1p;σ
2
int

� �
ð12Þ

β2p∼norm μ2p;σ
2
slope

� �
ð13Þ

μ1p∼unif 0; 50ð Þ; p ¼ 1; 2 ð14Þ
μ2p∼norm 0; 1ð Þ; p ¼ 1; 2 ð15Þ

Other prior specifications were as follows:

σε∼unif 0:1; 5ð Þ and ð16Þ
ρ∼unif −1; 1ð Þ: ð17Þ

Method

Data were simulated for the following conditions for an
interrupted time series model. Phase length (l): 5, 8, 10, 15;
standard deviation (σε): 1, 2, 5; intercept effect size (ES1): 0.5,

1 Specifying gamma distributions using mode and standard deviations is sim-
ply easier to visualize (see http://doingbayesiandataanalysis.blogspot.com/
2012/08/gamma-likelihood-parameterized-by-mode.html)
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1, 2, 5; slope effect size (ES2): 0, 0.3, 0.5, 1; and autocorrela-
tions (ρ): 0, 0.2, 0.5, 0.8. Therefore, this was a fully crossed
3 × 4 × 4 × 4 × 4, resulting in 768 conditions. One hundred
datasets were generated for each condition, yielding 76,800
datasets. Some of the data conditions such as phase length,
standard deviation, intercept effect size, and autocorrelations
were chosen based on previous literature (Natesan & Hedges,
2017; Natesan Batley, Minka, et al., 2020). The four models
discussed in the models section were each fitted to each
dataset. Root mean squared errors (RMSEs), mean relative
biases, and coverage rates of the intercepts, slopes, intercept
and slope effect sizes, autocorrelations, and standard devia-
tions were used to compare the performance of the models.
RMSEs are defined as the square root of the average squared
deviation of the estimated value from the true value over all
replications for a given data condition. Mean relative bias is
computed as the average of the ratio of the difference between
the true and the estimated value of a parameter. RMSE and
relative bias for a parameter x whose estimate in the ith repli-
cation is xi and true value is X over n replications is given in
Eqs. 18 and 19.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 xi−Xð Þ2
n

s
and ð18Þ

Relative bias ¼ 1

n
∑n

i¼1 xi−Xð Þ
X

: ð19Þ

Larger RMSEs and larger mean relative biases indicate less
accurate estimates. According to Hoogland and Boomsma
(1998), any relative bias greater than 0.05 was substantial in
covariance structure models. We note here that relative bias
was not computed for conditions where the true value was 0.
Coverage rates are defined as the percentage of interval esti-
mates that contain the true parameter value. 0-Coverage rates,
that is, the percentage of credible intervals (CI) that contained
0 were used to examine if there was indeterminacy between
estimating the slope and the autocorrelation. That is, when the
credible interval of the autocorrelation contains 0 when it is
not expected to, the trend in the data may be incorrectly or
inaccurately attributed to slope and the vice versa. This is
represented as 0-coverage and represented as the parameter
estimate followed by “−0” (e.g. ρ − 0). However, if both slope
and autocorrelation credible intervals contain 0, this signals
that in some iterations, autocorrelation takes more credit for
the trend in the data (while the slope is estimated to be 0), and
in some iterations slope takes more credit for trend in the data
(while the autocorrelation is estimated to be 0).

Adequacy of iterations and replications

The R computing environment was used for simulation and
data analysis (R, 2014). The package RunJAGS (Denwood,

2013), conveniently called JAGS (Plummer, 2003), runs par-
allel chains and iterates the model estimates until convergence
is indicated. Four parallel chains were run with starting values
independently generated for each chain from the prior distri-
bution. The first 100,000 iterations were discarded using the
burn-in procedure. Convergence was checked using two con-
vergence diagnostics: the multivariate potential scale reduc-
tion factor (MPSRF, Brooks & Gelman, 1998), and
Heidelberger and Welch’s (1983) convergence diagnostic. In
order to determine the adequacy of 100 replications (datasets)
per condition, RMSEs and coverage rates of intercepts, slopes,
intercept and slope effect sizes, autocorrelations, and standard
deviations of the most complex model (SA) were plotted
against the number of datasets generated. This procedure is
similar to the one proposed by Koehler, Brown, and Haneuse
(2009). When the RMSEs and coverage rates stopped fluctu-
ating wildly or appeared to converge, there was indication of
sufficient number of replications. This indicated that running
the simulation for more datasets would not contribute to better
diagnostic estimates such as RMSEs. In our study, 100 repli-
cations per data condition were deemed sufficient. The cumu-
lative RMSEs and the coverage rates appeared to stop fluctu-
ating significantly after the first 40 replications for all param-
eters. The cumulative RMSEs of all parameters fluctuated less
than 0.03 after the first 60 iterations, as shown in Fig. 1. The
pattern for coverage rates was similar. We also stopped at 100
replications because of the computationally intensive nature of
the estimation. It took 45 days to estimate all parameters of the
four models across all 76,800 datasets on six computers, each
with quad core processors. We used doParallel and foreach
(Weston&Calway, 2017) to parallelize the replications across
the processors. Independent ANOVAs were conducted to
measure the effect of the various data conditions on the
RMSEs and coverage rates of the parameters. The data con-
ditions were the independent variables. Eta-squared was com-
puted for all main and two-way interaction effects. Plots were
examined to understand the patterns in parameter recovery.

Results

Overall trends from the ANOVAs

The eta-squared effect sizes from independent ANOVAs are
given in Tables 2 and 3. These values give us a general pattern
of those data conditions that affected the RMSEs, mean rela-
tive biases, coverage rates, means, and mean posterior stan-
dard deviations.

Autocorrelations Longer phase lengths yielded smaller RMSE
autocorrelations, indicating that longer time-series yield more
accurate estimates. However, phase lengths did not affect the
coverage rates of autocorrelations with the exception of high
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0-coverage rates for longer phase lengths combined with high
autocorrelations. The ρ RMSEs were always larger for the NS
model compared to the SA model, especially for larger values
of intercept effect size. The interaction effect between auto-
correlation and model accounted for 8.56% of the variation in
ρRMSE. This is shown in Fig. 2. Estimates from datasets with
longer phase lengths combined with larger autocorrelation
values covered 0 less frequently than those with smaller phase
lengths and smaller autocorrelation values, as shown in Fig. 3.
The NS model had lower 0-coverage rates but substantially
higher coverage rates of autocorrelation than the SAmodel, as
shown in Fig. 4. Even for an original autocorrelation value of
0.8, 60% of the SAmodel's CIs contained 0. Coverage rates of
autocorrelation increased with increase in true ρ value for both
NS and SAmodels, but the increase in coverage rate was more
rapid for the SA model. The NS model had narrower CIs than
the SA model, as shown in Fig. 5. The width of the CIs in-
creased with increase in phase length and decrease in
autocorrelation.

Slopes SI and SA models were compared for their recovery of
slopes and slope effect sizes. RMSE of the first phase slopes

(β12) decreased with increase in phase length and decrease in
standard deviation and autocorrelation, as shown in Fig. 6.
This makes intuitive sense because longer time-series, smaller
standard deviations, and lower autocorrelations all contribute
to clearer patterns, and hence, smaller slope RMSEs. The SA
model had slightly lower β12 RMSE than the SI model, but
this effect was very small. The RMSE of the second-phase
slope β22 was impacted most by variation in standard devia-
tion and phase length. β22 RMSE decreased with increase in
phase length and decrease in standard deviation.

Intercepts Standard deviation, autocorrelation, and their inter-
action explained most of the variation in the RMSE of the
intercept of the first phase β11. The RMSEs of β11 increased
with increase in standard deviation and autocorrelation which
is to be expected because increase in both these data condi-
tions leads to less clear data patterns. The RMSEs of the
second-phase intercept β21 increased with increase in standard
deviation and intercept effect size. The interaction effects be-
tween intercept effect size and standard deviation and inter-
cept effect size and model also had a substantial effect on
the RMSE of β21. For intercept effect sizes up to 2, β21
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RMSE was similar for all models but rapidly increased for
the IO model followed by NS, SI, and SA models, as shown
in Fig. 7. It might seem illogical that with increase in inter-
cept effect size, the β21 RMSE would increase because
larger intercept effect size would indicate a clearer pattern.
To understand this result more, we computed the mean rel-
ative bias of β21. The mean relative bias of β21increased
with increase in intercept effect size, as shown in Fig. 8.

However, the absolute value of mean relative biases were
less than 0.05 only for small values of intercept effect size
for only SI and NS models.

Slope and intercept effect sizes The mean bias of the slope
effect size (ES2), that is, the mean difference between the true
slope effect size and the posterior mean of the estimated slope
effect size, increased with increase in both intercept effect size

Table 2 Eta-squared effect sizes of ANOVAs of RMSEs and mean biases in %

Diagnostic statistic RMSE Mean bias Relative bias

Parameter ρ β11 β21 β12 β22 σε ES2 ES1 ES2 β21
Models compared NS vs. SA All All SI vs. SA SI vs. SA All SI vs. SA All SI vs. SA All

Effects Length 34.72 24.51 21.89

sigma 62.77 53.00 50.87 48.44 39.82 29.41 4.02

Int.es 17.78 46.05 6.82 88.74 6.54 29.56

Slope.es 4.91

rho 7.06 18.80 10.36 5.66

Model 18.13 30.09

Length × rho 16.30

sigma × int.es 9.92 11.58 9.97

Int.es × model 5.24 21.80 4.56

rho × model 8.56

rho × sigma 7.37

Length × sigma 6.61

Note: Only effect sizes larger than 4% are shown. NS is the no slopes but autocorrelations model. SA is the slopes and autocorrelations model. β11 and
β21 are the intercepts of the first and second phases, respectively. β12 and β22 are the slopes of the first and second phases, respectively

Table 3 Eta-squared effect sizes of ANOVAs of coverages and mean standard deviations (SDs) in %

Diagnostic statistic Coverage Mean SD

Parameter ρ−0 ρ ES2−0 ES2 β11 β21 β12−0 β22−0 β11 β21
Models compared NS vs. SA NS vs. SA SI vs. SA SI vs. SA All All Only SA Only SA All All

Effects Length 28.81 8.00 7.38

Sigma 69.26 65.92

Int.es 22.59 59.95

Slope.es

Rho 37.55 20.22 33.79 34.77 34.63 25.11

Model 5.94 62.03 28.54 27.36 26.97 38.52 16.43 15.95

Length × rho 14.47

Sigma × int.es

Int.es × model 13.76

Rho × model 15.67 19.42 19.7 22.33 5.14

Length × int.es 7.87

Rho × int.es 4.02

Note: Only effect sizes larger than 4% are shown. NS is the no slopes but autocorrelations model. SA is the slopes and autocorrelations model. SI is the
slopes and intercepts model. ES2 − 0 represents the 0-coverage rates of slope effect size. β11 and β21 are the intercepts of the first and second phases,
respectively. β12 and β22 are the slopes of the first and second phases, respectively
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and standard deviation together, except for a standard devia-
tion value of 1. This is probably because data patterns become
less clear with increase in standard deviation. Slope effect size
0-coverage was higher for the SA model than that of the SI
model, and its credible intervals contained 0more than 90% of
the time. Still, both models had overcoverage of 0. As expect-
ed, the 0-coverage of slope effect sizes decreased with in-
crease in autocorrelation, as shown in Fig. 9. However, the
absolute mean relative bias of slope effect size was greater
than 0.5 for all conditions. This is extremely high. The slope
effect size coverage rates were all above 95% for all condi-
tions, except the SI model only, for an autocorrelation value of
0.8. This situation seems to be exacerbated slightly by the

intercept effect size. The mean relative bias of the intercept
effect size (ES1) was largest for the IO model and lowest for
the SI model, yet the absolute mean relative bias values were
greater than the acceptable value of 0.05 for all conditions. For
IO and NS, ES1 increased with an increase in true intercept
effect size, but SA and SI models exhibited an opposite pat-
tern, as shown in Fig. 9.

Standard deviations The RMSE of the standard deviation
(sigma) only differed to the second decimal for all cases. For
the case of intercept effect size of 5, the SA model had high
sigma RMSE. The mean standard deviation of β11 was affect-
ed by standard deviation and the model. As expected, this
mean standard deviation increased with increase in standard
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deviation and model complexity. Models that estimated auto-
correlations had larger mean standard deviations than those
without. The same pattern was found for the mean standard
deviation of β21.

0-Credible intervals for autocorrelation and slope

In order to better understand the behavior of the SA model
with respect to 0-coverage, we investigated how many credi-
ble intervals of autocorrelation and slopes both contained the
value of 0. If both autocorrelation and slopes of the second
phase contained 0 in their credible interval when they should
not, this indicates a possible indeterminacy problem. That is,
some of the patterns in the data are sometimes interpreted as
only slopes with no credit given to autocorrelation, and some-
times as only autocorrelation with no credit given to slope.
The issue with this indeterminacy is that such an estimation
would lead to increased type II errors. That is, concluding that
there is no autocorrelation or slope when there truly is.

We investigated 0-coverage in datasets where neither the
true autocorrelation nor the true β22 values were 0. These were
43,200 in total. Figure 10 presents the histograms for the
number of datasets whose autocorrelation CIs and β22 CIs that
contain 0 and the histograms for the number of datasets where
both, either, or neither CIs contain 0. The histogram shows
that 66.24% of the datasets’ estimates contained 0 in CIs of
both parameters, 10.79% of the datasets’ estimates contained
0 in only the autocorrelation CI, and 20.9% of the datasets’
estimates contained 0 in only the β22 CI. Only 2.02% of the
datasets’ estimates did not contain 0 in both autocorrelation
and β22 CIs. Similarly, 66.9% of the datasets’ second-phase
slope CIs contained 0 90–100% of the time. In over half of the
data conditions, more than 80% of the datasets’ estimates

showed that both CIs contained 0 when they should not, as
shown in the histograms. This was the most prevalent case.
That is, the probability of type II error for both the autocorre-
lation and slope of the second phase was over 0.8 in more than
half of the data conditions.

Phase length (52.46%), intercept effect size (11.64%), au-
tocorrelation (19.11%), and the interaction between phase
length and autocorrelation (7.27%) explained variation in
credible intervals of both the second-phase slope and autocor-
relation containing 0. Data with longer phase lengths and larg-
er true autocorrelation values had fewer cases where both
credible interval estimates contained 0. Next, we considered
cases where the second-phase slope credible intervals
contained 0, but the autocorrelation credible intervals did
not. Data with longer phase lengths and higher true autocor-
relation values had more cases where the autocorrelation CIs
were estimated to contain 0. Only phase length (31.72%) ex-
plained cases where the second-phase slope CIs contained 0,
but the autocorrelation CIs did not. It was more common to
see autocorrelation CIs contain 0 and second-phase slope
not contain 0 for longer time-series and higher autocorrela-
tions. In cases where autocorrelation CIs contained 0, but
second-slope-phase CIs did not, intercept effect size
(56.86%) explained most of the variance followed by the
interaction of intercept effect size and autocorrelation
(7.24%), and phase length and autocorrelation (6.65%).
More autocorrelation CIs contained 0 when the intercept
effect sizes were large.

Finally, we considered only cases where the CI estimates of
both the second phase and autocorrelation did not contain 0
when they should not. Phase length (17.17%), intercept effect
size (19.6%), autocorrelation (7.27%), and the interaction ef-
fects between length and autocorrelation (6.34%), length and
intercept effect size (19.77%), and autocorrelation and effect
size (5.33%) explained most of the variation in these esti-
mates. Cases with longer time-series, large intercept effect
sizes, and large autocorrelations had more correct CIs, that
is, those where neither autocorrelation CI nor the second-
phase slope CI contained 0. This shows that in general, clearer
data patterns, that is, longer time-series with larger autocorre-
lations and intercept effect sizes, yield more power to identify
slope effect size and autocorrelation.

Conclusion

The question of which model needs to be fitted to data, in
general, and SCED data, in particular, has long been a prob-
lem of interest for researchers. Often then, the question is
whether we need to mimic the true model, that is, the model
from which the data are generated or whether we need to find
the simplest model that best explains our data. Statisticians
have tended to favor the Occam’s razor approach by leaning
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towards selecting the simplest model, which is evident in
many model fit indices such as the Akaike information crite-
rion (AIC) and the Bayesian information criterion (BIC),
which penalizemodels for complexity.We revisit the question
posed in the title of this study as to whether we should favor
accurate models or accurate estimates. This study tends to-
wards the latter because by selecting the “correct”model, that
is, the model that was used to generate the data, we obtain not
only incorrect estimates but also reach incorrect decisions and
potentially make type II errors. Additionally, when it comes to
whether the practitioner would be concerned more with
obtaining the accurate model or arriving at proper inferences

and conclusions, we would always favor the latter. Thus, our
recommendation is to lean toward simpler models that we can
expect to yield better estimates.

The mean relative bias of intercepts and intercept effect
sizes show that the intercepts only (IO) model may not be
the best-suited model to estimate the parameters of a two-
phase SCED model with slopes and autocorrelations. This
is perhaps because there is a pattern in the datasets that is
unaccounted for when using the IO model. In fact, none of
the models had desirable mean relative bias for intercept
effect size and slope effect size. Although the slopes and
autocorrelations (SA) model had lower RMSE for

Fig. 5 Credibility intervals of NS and SA autocorrelation estimates showing shorter CIs for NS. Y-axes represent repetitions. Each horizontal line
represents the credibility interval obtained from a dataset. The intervals are ordered by widths
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autocorrelation than the no slopes but autocorrelations (NS)
model, it also had substantially higher 0-coverage rates and
lower coverage rates for autocorrelations with wider credi-
ble intervals and high probability of type II error rates. This
indicates that the precision of the autocorrelation estimates
obtained from the SA model is smaller than that of the NS
model. The NS model had slightly higher second-phase
intercept and intercept effect size mean relative biases than
the SA model.

The slopes and intercepts but no autocorrelations (SI)
model had fewer 0-coverage rates for slope effect size than
the SA model, although the RMSE of the second intercept
for the SA model was slightly better than that of the SI
model. It also had the lowest intercept effect size mean

relative bias, lower 0-coverage of slope effect size, and
lowest second-phase intercept mean relative bias of all
models. The main disadvantage of the SI model is that it
does not estimate autocorrelations. However, practitioners
are not interested in estimating autocorrelations other than
to eliminate their effects when computing effect sizes for
interventions. Rather, practitioners are most interested in
computing and interpreting the accuracy of intercept and
slope effect sizes and their credible intervals. This shows
that researchers are better off choosing the slopes and inter-
cepts model without estimating autocorrelations, rather
than using a model that includes intercepts, autocorrela-
tions, and slopes. This, of course, comes with the caveat
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that none of the models had desirable 0-coverage rates of
slope effect sizes. The best model of the four, the SI model,
still had 0-coverage rates ranging from 59% to 95%. This
overcoverage of 0 value, however, was accompanied by
adequate coverage of the true value. The 0-coverage has
implications for false decisions about the slope effect size
even when the effect size is large; however, these same
credible intervals also contained the true value of the slope
effect size. This implies that the credible intervals were
much wider than desired and represents an avenue for fur-
ther research. Perhaps more informative priors could lead to
narrower credible intervals. Still, these findings only fur-
ther make the case for future simulation studies to include

0-coverage rates because this diagnostic is very rarely re-
ported in simulation studies. Therefore, we do not know
how many studies that have adequate coverage rates of true
values still might have undesirable 0-coverage rates.

Finally, the question is whether it is better to fit a simpler
model such as the SI model even though it is not the “true”
model. The advantages of fitting a simpler model to yield
estimates that are more powerful outweigh the need to fit the
more accurate model (SA), as our results show. Although
Harrington and Velicer (2015, p. 176) noted that in single-
case designs, any analysis that ignores autocorrelations is “in-
defensible,”Allison and Gorman (1993) suggested that failure
to address and properly model trend can result in biased
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parameter estimates and inflated standard errors. On the other
hand, Shadish, Rindskopf, and Hedges (2008) reported that
modelling the trajectory of the data might reduce the inflation
of autocorrelation based on model misspecification. Our re-
sults shed additional light on these viewpoints mainly because
we consider credible intervals, coverage rates, and 0-coverage
of CIs. We have shown that researchers may want to choose
only one of these sources of trend, that is, slope in favor of
autocorrelation, in order to reduce 0-coverage and reduce
model complexity.

Our results also emphasize that in simulation studies, it is
not adequate to observe only RMSE, standard errors, and
biases as is common practice. Interval estimates and their
coverage and 0-coverage rates have a more complete and
sometimes even a different story to tell when evaluating the
accuracy of parameters (Jennings, 1986, 1987; Natesan,
2015). Coverage rates have nominal values against which
the performance of a model can be checked, unlike RMSE
and biases which are unbounded statistics. We have also
showed that in addition to examining coverage rates, exam-
ining 0-coverage rates is important because excessively in-
correct 0-coverage rates lead to incorrectly failing to reject
the null hypothesis about the parameter. Adequate coverage

rates along with excessively incorrect 0-coverage rates in-
dicate wider than necessary interval estimates.

RMSEs can only be used to compare one criterion against
another to conclude which criterion had lower RMSE.
Whether this low RMSE is desirable or substantially above
desirable is unknown unless the value is 0. We have shown
that investigating the performance of credible intervals of two
variables in tandem can be helpful in evaluating model per-
formance. In fact, in the present study, the best model in terms
of RMSE (SA) is not the best in terms of coverage.

We used weakly informative priors for the study. This al-
lows us to stay agnostic about the parameters and try to esti-
mate them. Of course, with small sample sizes such as the
ones encountered in SCEDs, researchers may find it helpful
to use informative priors based on previous research. Using
informative priors may yield better estimates. Again, the use
of informative priors in Bayesian estimation of SCEDs needs
more investigation.

The implications of our study are multi-fold: First, our
study informs authors of standards such as the WWC stan-
dards that estimating slopes and autocorrelations for SCED
data often yields inaccurate estimates and is not recommend-
ed. Researchers may incorrectly infer that their intervention
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did not have a statistically significant intervention effect as
shown by the confidence intervals of the trend of the data.
Second, there has been much effort spent on developing effect
sizes for slopes for SCEDs. The present study indicates that
any effect size that is a function of the difference between the
slopes severely underestimates slope effect size by often con-
taining 0 in its credible interval unless it ignores autocorrela-
tions. Therefore, future studies that develop slope effect sizes
for SCEDs should take 0-coverage as an important diagnostic
for testing the performance of these effect sizes. Given that
there is a need for statistics to be used in the domain of SCED
analysis, the present study is of interest because it informs
standards that should be developed that are standardized for
SCED researchers to use.
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