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Abstract

In this report, a detailed description of the 3-D version finite element pro-
gram FESTER is given. This includes: 1. A brief introduction to the package
FESTER; 2. Preparing an input data file for the 3D version of FESTER;
3. Principal stress and stress invariant analyses;, 4. 2D joint element (surface
contact) characterisation and its mathematical formulation; 5. Formulations
of the 3D stress-strain analyses for both isotropic and anisotropic materials,
plane of weakness and cracking criteria; 6. 3D brick elements, infinity elements
and their corresponding shape and mapping functions; 7. Large-displacement
formulations; 8. Modifications to the subroutines INVAR, JNTB, TMAT,

MOD?2 etc; 9. Numerical examples,; and 10. Conclusions.

§1. An introduction to FESTER

In this section, we present a brief introduction to the finite element package FES-

TER (Finite Element Simulation of Tunnelling & Excavation in Rocks).
1.1. Development of FESTER

The computer program FESTER was originally developed on an SERC/British
Coal co-funded research project at the Oxford University Computing Laboratory between
1985 and 1986. Since the end of 1986, it has been continuously developed at the De-
partment of Mathematics and Statistics of Brunel University under the support of SERC
(current grant is to finish in 1992) and British Coal (finished in 1988). The program
structure is based on the linear elastic finite element package FINEPACK developed at
the Department of Civil Engineering of University College Swansea [13,20,21,etc.] FES-

TER is developed to model the deformation and stresses in the rock mass surrounding
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underground openings and to predict the failure behaviour of rock masses. It uses elasto-

viscoplastic theory for the nonlinear analysis. The detailed theory and features including

a user's guide can be found in a previous report [32]. Some of the work involved in
the development of the program was also reported in several published papers by the
main developer Reed [30-34 ]. Since 1989, the program has been further developed to
incorporate a few other features based on the co-operative research work at the Rock
Mechanics Research Group of Imperial College [22-27].

Since July 1990, FESTER has been developed to cope with 3-D stress-strain anal-
yses for both isotropic and anisotropic rocks. It is mainly aimed at analysing deep-level
excavations using 3-D finite elements, including infinite elements and joint elements (2D
contact). This work includes the introduction of 8-noded and 20-Noded brick elements,
an infinite element, 2-D joint element, 3-D rock mass strata modelling, the numerical
algorithm for 3-D stress-strain analyses for elasto-viscoplastic rock models etc.

1.2. Mathematical models in 3-D FESTER

The 3-D version of the program FESTER is an (3-D) elasto-viscoplastic finite
element model for analysis of rock and rock mass behaviour. It is developed from its
previous 2-D version which is described in detail in [20,27,32,34]. The theory and nu-
merical algorithm are almost the same but the formulations may be different. The main
features of the analyses, in addition to that described in [34], are as follows:
A. 3D Element types:

The following types of element are used in FESTER:
(1). the 8-noded linear brick element for representing the rock mass;
(i1). the isoparametric 20-noded quadratic brick element for representing the rock mass;
(i11). the 12-noded mapped infinite element for representing far field boundary, and

(iv). the 16-noded joint element for discontinuities in displacements and shear strains.
B.  Nonlinear techniques:

Incremental (tangent stiffness) approach with the stable implicit (3 <6<1) or

explicit (=0) time integration algorithm. Use of a non-symmetric frontal method.

Options for large deformation analysis with Updated Lagrangian formulation.
C. Rock mass models:

Orthotropic elasticity; elastic joint interface (2-D); brittle/strain softening fail-

ure or yield with Mohr-Coulomb, Drucker-Prager or Hoek-Brown 3-D surface; asso-
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ciated/nonassociated flow rule with Drucker-Prager or the extended Hoek-Brown flow
function. Options for two other failure modes: tensile crack and fracture along the plane

of weakness in the orthotropic case.
D. Types of loading:

Point loads; edge loads, distributed surface loads (restricted to Normal Loads only),
body forces; gravity and other in situ stress fields; incremental loading; two ways of
simulating excavation (opposite nodal forces or reduction of stress and stiffness) which

can be combined without any restriction.
E.  Boundary conditions:

Infinite elements to model far field boundary conditions; prescribed values of dis-

placement or pressure at the boundary element nodes, edges or surfaces.
F. Sliding between two rock strata

2D joint elements to tackle the problems of discontinuous displacements, stresses
and strains between two rock strata, and in the plane of weakness for orthotropic rock

masses.
§2. Input data file formats and variable names

The 3-D version of the program FESTER is based on its 2-D version and hence
it can also be used to solve 2-D and axisymmetric problems. The structure of the input
data file is the same as in the 2-D case which is described in Reed and Lavender [34] and
Naylor [20]. In this section, we give the detailed order and formats of the input data file
since the file can be prepared by hand, in case that a 3-D preprocessor for FESTER is
not available. In the following descriptions of the formats and the variables to be read,
the order and their names in parenthesis, i.e., G2, B1 and P2 etc., of the "Data Cards"
are also listed. It should be pointed out that the variable LCARD in the following list is
a "flag" which is used to terminate a read loop (i. e., to terminate a data subset) when
its value is 1. Otherwise, it should be set to 0 or left blank. An example input file will

be given in §9.
2.1. Input data file formats

In an input file, there are at most twenty Data subsets which are to be read into

FESTER described by twenty Read format Statements. There may be fewer, depending
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on loading processes, boundary conditions and default values etc. for the particular
problem to be analysed. The formats and variables to be input to FESTER are listed
in the following table.

A typical input data file

No. | Type Input Format Variables Read
1 TITLE [11,A50] IPOST,TITLE
2 Cl [12I5] NPOIN,NELEM,NFIXV,MSTYP,NDIME,
NODEM,NDOFM,NGAUS ,NSTRE,NLAPS,
NEXCANCALL
3 C2 [12I5] NPROS,NPROP,NOUT,NBDRY,NGRIS,
LDTYP,NINCS,NITER,NBSET,NPSET,
spare,spare
4 C3 [S8E10.3] TOLER,DTINT, TAUFT,FTIME,YDMIN,
ALLOW,TIMEX,FLOWC
5 Gl [11,14,1315] LCARDNSIDE,LNUM,LNODS(LNUM,I),
(I=1,NNODE)
6 G2 [11,14,15,3E10.3] LCARD,NDOFN,N,COORD(N,]),
(I=1,3)
7 G3 [11,19,1415] LCARD,KODE,NO.-of-Node
8 LM [11,14,1515] LCARD,LMTD,LMT,
NO.-of-Element
9 M1 [11,14,1515] LCARD,NSET,NO.-&-
Value-of-Componants
10 M2 [11,14,12,13,1415] LCARD,NSETD,LN,NSET,
NO.-of-Elements
11 W [11,14,1315] LCARD,NO.-of-Nodes
12 S1 [3E10.3] YDATS,UNWTS, HVRAT
13 S2 [6E10.3] XSTRO,YSTRO,TSTRO,ZSTRO,XZSTR,
YZSTR
14 LD [11,14,15,6(11,F9.3)] LCARD,LD,NODE,NO,-&-
Value-of-Degree-of-Freedom
15 Bl [11,14,3X.15,612,6F10.3] LCARD,NSET,NO.-&-
Value-of-Degree-of-Freedom
16 B2 [11,14,12,13,1415] LCARDNSETD,LN,NSET,
No.-&-Value-of-Degree-of-Freedom
17 Pl [11,14,3X,612,6F10.3] LCARD,NSET,NO-&-
Value-of-Degree-of-Freedom
18 P2 [11,14,15,8(13,12)] LCARD,NSET,No-&-
Value-of-Degree-of-Freedom
19 AD [11,F9.3,2012] LCARD,NO.-of-Increaments
20 EX [11,14,15,F10.3] LCARD,NO.-of-Increament,

No.-of-Material-

Property-Set,Excavation-Factor
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Remark. In preparing aa input file, one should ensure that the Data Cardsets are in
the right order, and some of them may be omitted. The following list gives the details

about the "Optional Data sets".

(1). The W Cards (set 11), only needed if NBDRY > 0.
(2). The SI Cards (set 12), only needed if NGRIS I > 1.
(3). The S2 Cards (set 13), only needed if NGRIS = 2.
(4). The B1 Cards (set 15), only needed if NBSET > 0.
(5). The B2 Cards (set 16), only needed if NBSET > 0.
(6). The P1 Cards (set 17), only needed if NPSET > 0.
(7). The P2 Cards (set 18), only needed if NPSET > 0.

2.2. Descriptions of the variable names

Now we give a brief description of some important variable names used in FESTER
with their default values. The variable names are the same as that in the 2-D version but
their default values may be different. The default value in the 3D version is the number in
the parentheses following the variable. More detailed descriptions of the variable names

and their default values for 2-D FESTER can be obtained in [13,20,21].
2.2.1. The mesh and load variables

NPOIN(-): No. of Nodes in mesh.

NELEM(-): No. of Elements in mesh.

NFIXV(-): No. of Fixed degrees of freedom in mesh.
MSTYP(3): Problem type, set to 3 for 3D problems.
NDIME(3): No. of Dimensions (also set to 3).
NODEM(20): Max. No. of nodes in an element.
NDOFM(3): Max. No. of degrees of freedom per node.
NGAUS(2): Order of Gauss quadrature rule.
NSTRE(6): No. of stress components.

A S AR R e

10. NLAPS(I): Type of analysis: 1 =: for small displacement analysis, 2 =: for
large displacement analysis.

11. NEXCA(-): Type of loading; 1 = Nodal Loads, 2 = Stress Removal and 3 =
Excavation.

13. NPROS(-): No. of material property sets.

14. NPROP(19): Max. No. of material property components in a sets.
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16. NBDRY(-): No. of nodes around the tunnel Boundary.

17. NGRIS(0): Type of in situ stress: 0 =: none, 1 =: gravity only and 2 =: gravity
& uniform stress.

19. NINCS(1): No. of load increments.

20. NITER(1): Max. No. of timesteps per load increment.

21. NBSET(0): No. of body force sets.

22. NPSET(0): No. of surface traction load sets.

These variables are stored in an array NCONS of length 24 and the integers in front

of the variables listed above indicate their positions in the array. For example, NCONS(8)

= NGAUS.
2.2.2. The computing control parameters (real)

1. TOLER(0.10): Tolerance control parameter.

DTINT(0.01): Initial timestep Aty .

TAUFT(0.0l): Timestep size control parameter T.

FTIME(1.20): Timestep size control parameter F.

YDMIN(0.00): Yield surface tolerance parameter Y pin.

ALLOW(10.0): Max. timestep control parameter.

TIMEX(0.00): Time integration parameter 6, € = 0 explicit, 0 <0 <1 implicit.

S e B

FLOWC(0.00): The visco-plasticity flow constant c.

These variables are stored in an array CMISC of length 8 and the integers in front of

the variables listed above indicate their positions in the array. For example, CMISC(2)

= DTINT. The physical meaning of them are given in [34].
2.2.3. Some other variables

1. LTYPE(-): The element type array. In the 3-D version program:
LTYPE(l) = 62: The ID quadratic joint element;
LTYPE(2) =31: The linear (2D) element;
LTYPE(3) = 33: The linear (2D) element;
LTYPE(4) = 44: The linear (2D) element;
LTYPE(5) = 63: The quadratic triangular (2D) element;
LTYPE(6) = 54: The infinite quadratic (2D) element;
LTYPE(7) = 84: The 8-noded quadratic (2D) element;
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LTYPE(8) = 86: The 8-noded brick (linear,3D) element;
LTYPE(9) =206: The 20-noded brick (quadratic,3D) element;
LTYPE(0) = 162: The 2D quadratic joint element;
LTYPE(11) = 126: The 3D infinite (quadratic) element (Type a);
LTYPE(12}= 34: The doubly infinite (2D) element;
LTYPE(13) = 76: The 3D infinite (quadratic) element (Type b);
LTYPE(14) = 46: The 3D infinite (quadratic) element (Type c).

2. LMT(2): The Material type indicator:
LMT = 1: Linear elastic structure (no in situ stress);
LMT = 2: Isotropic linear elastic material;
LMT = 3: Orthotropic linear elastic material;
LMT = 4: Isotropic Mohr-Coulomb linear elasto-visco-plastic material;
LMT = 5: Isotropic Hoek-Brown linear elasto-visco-plastic material;
LMT = 6: Isotropic Mohr-Coulomb linear elasto-visco-plastic material;
LMT = 7: Isotropic Hoek-Brown linear elasto-visco-plastic material;
LMT = 8: Isotropic Drucker-Prager linear elasto-visco-plastic material;
LMT = 9: Elastic joint element material.

3. YDATS(-): The depth below the surface Z = 0 mesh datum plane.

4. UNWTS(-): The unit weight of the material (rock).

5. HVRAT(): The lateral stress ratio K [27,34].

6. PROPS(-): The material sets and their property parameters which is explained

in details in [27,34].

7. SCONV(-1.0): The Sign Convention for both stresses and strains: SCONV
= -1.0 means that compression stresses are defined as positive
values.

The meaning of some other variable names employed in the program FESTER can

be obtained in [13,20,21].

§3. Principal stress and stress invariants analyses

In this section, we derive the formulae for the computation of stress invariants and

their first and second derivatives which are used in the program FESTER. Some other
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related formulae are also provided.

First, the stress tensor o is described as a vector of length six:
0'.'=(0' c,0.,T.,,T.,T )’ (3,1}
= x?2 2y iz Yy Y xz Y yz 4
and the strain tensor € is defined similarly, which will be given explicitly in §5. The prin-
cipal stresses and strains are denoted by o,,0,,0,,(c, >0, >0,) and €,,¢,,€,,(€,>

&,2¢&,) respectively. Then the stress invariants ;,/5/3 and the deviatoric stress in-
variants J, and J; are given by [8,18,29]:

11 J= O-X+O-y +O—z’
12 '=-00,-00,-0,0, + ij + sz + sz,
I,:=00,0 —-07.+0,1.+0.7.,, (3,2)
Jo=t(0,~0, ) +(0,~0. ) +(0,~0. ) +2} +1l +1l,
=1, +L17,

Jy =1, +L1,0,+ %15
Hence, the characteristic equation (stress) is thus given by
oc'-10'-1,0-1,=0. (3.3)

For convenience, we introduce another invariant, an angle @, which is equivalent to
the Lode Angle [21]:

cos(30) = , 0<6<Z%. 3.4)

It should be stressed that this & is different from the 0, defined in Owen & Hinton [21].
They are related by:
0 =0, +7%. (3.5

Then, the principal stresses can be written in a simple formula in terms of these invariants
[21,34]:

o, cos(6) 1
o, = % cos(@—22) |+ 241, (3.6)
o, cos(6 + %) 1

From these equations and by use of the chain rule, we can obtain the partial deriva-
tives of these invariants and principal stresses {o,},i =1,2,3 with respect to the stress

components ¢ ,0,......,, Which will be used in the yield and crack criteria and the flow
rules:

%:%[cos(&% ei)"’gf—\/zsin(m 91-)2_;}‘%2%] (3.7

where 6, = 0,0, :==%and 0, =3~
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From equations in (3.2), the first derivatives of the invariants, with respect to the
stress vector o, could be derived:

- =(1,1,1,0,0,0)",

a

2=—(0,+0,,0,+0,,0,+0,21, -2t 21 ),

ol
3—(66—’5 6.6.—1T GG—’C 26,1, +21 1

yz? xz? xy? Xz )z’)

-26,1,, +21,,1 ), (3.,8)

xy yz’ Xy U xz

(20,1, +21

0Ny 7Iz ol
oo _6\/3(3 211 UO')

S =98 +31 431, S+ 217

0 _ 6J3 aJ,
do 4s1n(36)\/7( 2 do 3J3 66)

In the implicit visco-plastic algorithm used in FESTER the second derivatives
(Hessian Matrices) of invariants /,,,//,,J; and @ are needed to calculate the matrix

H. Hence, for completeness, we write out the formulae for the computation of these
values for the Drucker-Prager (DP) [21,40] and the Hoek-Brown (HB) [14,22,34] plastic
potentials which are defined by the following equations:

0(0)pp = \/J—z —od,
m 3 \/gm
0(00) ==L+ 4= =5

C

(3.9)

where o and m’' the empirical parameter and the dilation parameter respectively. From
(3.8), we can obtain

011 0 0 0
101 0 0 0
L, |1 1.0 0 0 O
Myg 2 =22 = 3,10
7% o000 -2 0 o0 (3:10)
000 0 -2 0
000 0 0 -2

and
M\teff a a (6 J2 )t + 1 Mconst (31 1)
,/Jz 0o 0Oc 64/,

where Mcongt 1S @ constant matrix

2 -1 -1 0 0 0
-1 2 -1 0 0 O
-1 -1 2 0 0 0
Mcomt = (312)
‘ 0 0 0 6 0 0
0O 0 0 0 6 0
0O 0 0 0 0 6
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The Hessian matrices of /3, J3 and 6 are given by

0 o, o, 0 0 -2t
o, 0 o, 0 A 0
M _| o o, 0 -2t 0 0 (3.13)
var I3 = 0 0 _ 2’ny _ 2'[2 217)}2 2‘cxz , .
0 -2t 0 2r, -20, 21,
21, 0 0 21, 2rxy -20,
Ml)arJ3 = Mnar13 +l Mvarl2 al a] +— al al 4 I 81 al (3 14)
3 OQ OQ o0 aQ 9 'o0 8Q

and

v V3 82J3_cos30%{%J

“* " 2sin30y)l 0°c  sin36 dc| oo

— (3.15)
2J;sin30| 0c| Oo 0c | 0o

N YA [a\/J_2 J N 0,7, (ag J

>sin30 o0’c

6\/_ 3J, oI, a\/_ 331, U,
2J '
For the Drucker-Prager plastic potential, the flow vector bpp and its derivatives Vpp are

given by
b = 0Qpp _ 047>
DP *— -

= o ,
oo oo oo
(3.16)
_0by, 9T,
e T g

For the Hoek-Brown plastic potential plastic potential, the flow vector by and its derivatives vyp are
given by

oo 30c o, Oc 2 oo’

80, 8L oI 6, a@[a@] 3w 0T,
HB "~ -

0’c c, 0'c o, 0o | Oc 2 9o

y 00y _ m ol 647, 037, PR A
HB *— A _ A~

(3 17)

c — c

Finally, for computational purposes, we give the formulae of the Hessian matrices (second order

derivatives with respect to the Cartesian stress components {o, ,0,,...}) of the principal stresses

{o,},i=123. These formulae come from (3.6) and (3.7) directly.

62 A 62 IJ a,[J t 6“] t
o 2 cos(¢9+0i)—2—sin(6’+0i - (6_9} +6_6’ g (3.17)
- 3 0%c 0o \Oo oo| Oo
2
+%sin(0+9i)aazz_,i=l,2,3.

All these invariants and their derivatives are programmed in the 3D version FES-

TER subroutine INVAR. Modifications to other related subroutines are also made
consistently.
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§4. 2D joint element (surface contact)

A 2D joint element (surface contact) is introduced in the 3D version of FESTER to simulate
the sliding and fracturing (with or without gaps) of rock movement during tunnel excavation. This
joint element is similar to the 1D/2D/3D joint element described in [2,12,28,35] in theory.
However, it has zero thickness and allows opening. In FESTER the ID joint element is
constructed from a pair of 3-noded bar elements; by contrast, the 2D-joint element consists of a pair
of 8-noded quadratic is oparametric element5(see Figure 4.1). Hence a 2D joint element in FESTER

has sixteen nodes. Other joint elements with more or less nodes can also be formulated similarly.

4.1, Formulation of the 2D joint element-surface contact modelling

The mathematical formulation of the (element) "stiffness matrix" and "B—matrix",
(i.e., the strain-displacement relation matrix) of the 16-noded joint element without
opening, (or bonded element) is as follows. The opening problem will be discussed in
the next subsection. For simplicity, we first consider a special case of joints—the joint
element is parallel to the x-y plane during the process of deformation. The general
sliding cases, in which the joint element deforms arbitrarily, will be studied at the end

of this subsection.

First, we need some notation. Let d := (u,v,w)’ denote the displacement at any
point in the joint element, d?. be the displacement of the j-th node, j = 1,2,..., 16; and

As denote the relative displacement (slip) at any point on the upper side of the joint
element, and As’; denote the slip at the i-th node on the Upper Side of the element (see
Figure 4.1), i = 1,2,...,8. That is,

As) = d)—d) (4.0)

The functions, ¢.,i=12,..,8, are the (isoparametric) shape functions of the (2D) 8- noded

quadratic elements (In general 2D joint elements, we shall use 2n to denote the number nodes in
the element. Hence, in our special case, n = 8.). Furthermore, we assume, just as in finite
element methods that
As =D As'g, = NAS,, 4.1)
i=l1

where, I is the 3x%3 identity matrix and

N=(¢LlL..41) eR”, (4.2)
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Figure 4.1. A 2D joint element parallel to the x-y plane.

and
AS, = (AS],AS],..,AS?)" eR”. (4.3)

Then the virtual External Work, OE,, is given by [2,12]:

t

OE,, = SAS(A, (4.4)

where Ap is the Nodal Force vector of length 3n. While the Virtual Strain Energy (Shear
Work), 0Espy, 1s given by [2,12,28,35]:

SE,, = a’ [ ' SAsdQ, (4.5)
Q
where, 7 is the stress vector in the joint element (the contact surface). Here, 7 := ( Tx, Ty, T )"

e R’ since other stress components of 7 are definitely zeros. The contact region is denoted by Q and

o is a material constant. By assuming the following stress-slip relations, which comes from experiments
[2,12,28,35]:
r =GAs, G eR™,, (4.6)

for some diagonal matrix G = diag(K;:, K5y, K..), here K, and K, are the elastic
(friction) moduli in the x and y directions (or in general, two directions in the tangent

plane) (K. and K, are assumed to have the same value in the program FESTER) and
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K,. is the normal elastic modulus of the joint element (K,. is set to be 10%° in FESTER
for convenience, the details of these values will be discussed in the next subsection), then

we have:
O, =a*| ' oAsdQ)
Q

= a2j5As’GAsdQ
Q
= 2’85, ([ N'GNaQ s, 4.7)

From the Virtual Work Principle:0E;,, = 0E.x;, we have, in the state of equilib-

rium:
A, =2*([N'GNaQs, =K A8, (4.8)
where, K;,; is a kind of element stiffness matrix defined by
K, = [N'GNdQ eR™ (4.9)

Now, let D,e R®**" denote the vector of displacements at the sixteen nodes (2n)

of the joint element, then we can easily find that there is a difference matrix Z e R*™

such that (4.0) can be written
ASy = ZD,, (4.10)

where, the matrix Z is characterized by Z3;+7.3:i+7 = 1,Z3i+71 3n+3i+1,=-1Vi20
and theother elements = 0. Therefore, we can obtain the following Force-Displacement

relation for the joint element:
Ap =Ky ZDy @.11)
However, we can formulate the 60E,.,, in the following way:
3E,, =38S,Ap =3D,P, (4.12)

where, peR® is the nodal force vector at the sixteen nodes (2n) of the joint element.

Combining this with (4.10), one obtains

p=2'Ap. (4.13)
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From equations (4.8), (4.10) and (4.13), the following Nodal Force—Nodal Displace-
ment relation can be derived:

p = Z' KsoZDy = Ky Do, (4.14)
with the stiffness matrix Kjnt of the joint element given by
Kint := Z' KsoiZ. (4.15)

Furthermore, we can also form the B-matrix, B;,;, and the D-matrix, D;,, for the joint

element:
Bjn:=NZ (4.16)
=(ALAL b L=pL=4,1,..~4,L)
and
K, 0 0
D, =G=| 0 Kg 0 (4.17)
0 0 K

Therefore, the stiffness matrix for the joint element can also be written in the following
form:
K, =[ B),D,B,d2 (4.18)

Jjnt

In general, we can also formulate in a similar way that the B-matrix and D-matrix

for 2D joint elements in space (cf. Figure 4.2) is given by:

B, =Q'(N-N)=Q'NZ, (4.19)
and
Kst] 0 0
D, =0 KS’z 0 (4.20)
0 0 K

where, K, and K, are the elastic (friction) moduli in two orthogonal directions in the

tangent plane, and K, is elastic modulus in the normal direction of the joint element.

For isotropic materials, we have

K, =K_,K, =K _,K_=K_. 4.21)

st sz Sty sy ns nz

This is assumed in FESTER for convenience. More about the D-matrix will be given

later.
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The matrix Q in (4.19) is an orthogonal (rotation) matrix that transforms the orig-

[ -}

inal coordinates system xyz to a cartesian coordinates system x'y'z’ with the new z’
axis in the direction of the surface normal at that point (i.e., the Frenet frame). More
explicitly, the rotation matrix Q is given by:

Q:=( q1,92,93)- (4.22)

The vector q3 is the (unit) normal vector of the joint element surface at the point (x, y, z)
(local coordinates (&,7,4)) and qq1 and q2 are (unit) vectors in the tangent plane of the

element:
q1 = V4 X Q3,
qQ2 == q1 X qs. (4.23)

The vector v4 is defined as either (1,0,0)" or (0,1,0)’, which depends on the normal
direction of the contact surface at that point. More explicitly,

= (I’O’O)I’ l_'fv] ¢(1,0,0)I,
Y {(0,1,0)2 if v, =(10,0), (4.24)
where
v, = (6_ o gj’
S aEa f’ (4.25)
v. | X Oz
* \on on on
and
I o (4.26)

3 * .
||V1 X V2||

The element stiffness matrix, Kjnt, 1s still given by (4.18) together with the B-matrix
and D-matrix given by (4.19) and (4.20).

In formula (4.26), the vector q3 is the unit normal vector of the joint surface. In
general, the vector is unique at any point on the joint element so that the vectors v; and
v, cannot vanish at any point. Hence, (2.26) is always meaningful.

Remark 4.1. Although the B-matrix and stiffness matrix for 16-noded 2D-joint elements
are formulated here, the results obtained in this section could be generalised to other 2D
joint elements. For example, by changing the node number »n and the shape functions
{¢},i = 1,2, ...,n, then its corresponding stiffness matrix and B-matrix are given by

(4.18) and (4.16) respectively.

Remark 4.2. In FESTER the 1D and 2D joint elements are treated as special 2D and
3D elements respectively. Since there is no extra node introduced in the mesh, that is,
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no node in the mesh belongs to a joint element only, the global stiffness matrix can be
assembled from element stiffness matrices directly. Hence, the displacement, vector can

be obtained by solving the system of equations of equilibrium.

Figure 4.2. A general 2D joint element in the x-y-z system.

4.2. Gaps in joint elements and control parameters

In this subsection, we discuss another characteristic of joint elements: convergence
and separation. This property of joint elements could be used to simulate discontinuities
in rock masses and other materials. As in Beer's formulation for general joint (shell)
elements [2], it can be shown that the B-matrix and the element stiffness matrix for the
2D joint element are still given by (4.16) (or (4.19) in general) and (4.18) respectively.
This can be derived by the standard procedure of minimising the total potential energy
[2]. Hence, we only state here some of the parameters used in dealing with joint elements

and their physical background..
A. D-matrix for joint elements: Djnt

The matrix Djn¢ in (4.20) characterises the sliding and separation/convergence prop-

erties of joint elements. Its diagonal elements have a very clear physical explanation.
K,and K, are the elastic (friction) moduli in two orthogonal directions in the tan-
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gent plane of the contact point, and K,. is elastic modulus in the normal direction of
the joint element (the convergence and separation control). For isotropic materials, we

have, compared with (4.17):
K, =K, =K, =K. (4.27)

The actual values of these elastic muduli depend on the material. This special form of
D-matrix is a simplification (linearisation) of the stress-strain relation in joint elements.
In fact, the relations between the shear stresses and the slips are quite complicated [12]

and we will not discuss it further.

B. The convergence /separation control parameter: K,

A convergence and separation option of the 2D joint element is provided by the
control parameter: K,,. Here, convergence means that the two sides of the element
moves closer to each other since it can be treated as a thin shell element [2] with zero
thickness while separation just means that they move further away from each other. This
type of element can be used to model the deformation of the joining of two rock strata
in the following two ways. One is a "convergence" modelling K, .=, in FESTER,
K, = 1020), i.e., the two rock strata remain in contact during the process of deformation,
which is quite restrictive to model the natural rock contact problem. The other is a
"separation" modelling (0 < K,; < o) that is, the two rock strata can move arbitrarily,
which is a natural modelling of rock joint deformation in practice. The latter is more
difficult to be applied in practice than the first one since it allows discontinuities to occur
in a continuum which cannot be dealt with by ordinary Finite Element Methods (FEM).
This difficulty can be overcome by using some techniques such as Discrete-Finite Element
Methods (DFEM). Here, we will not discuss DFEM further.

In the present version of FESTER, the value of the parameter K, is restricted
to o only. That is, K,, = 1020, which means that the element is rigid in the normal
direction and elastic in the tangent plane, neither further-convergence nor separation is
allowed, only sliding can occur. Other values of K,; will be considered and implemented

soon.

For completeness, we list the physical meaning of other values of this control pa-

rameter K,;.

1. 0 < K,, <10*°: the element is an elastic 3D element, sliding, separation, and

convergence (up to zero thickness of the element) as well, are allowed.

ii.  Small value of K,,;, means that the element is an elastic 3D element, which is very soft in

the normal direction, sliding, separation and convergence (up to zero thickness of
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the element) are allowed.

iii. Large value of K,; means that the element is an elastic 3D element, which is very
hard in the normal direction, sliding, separation and very small convergence (up to

zero thickness of the element) are allowed.
C. Remarks

Remark 4.3. In the present version of FESTER the ID and 2D joint elements always
have zero thickness, so further convergence or separation cannot happen, only sliding in

the joint is allowed.

Remark 4.4. To model the fracturing process of rock masses or other solid materials,
more general 1D/2D joint elements (non-linear elastic or plastic) should be introduced
which may allow "negative thickness" to model collisions between two elastic or elasto-
plastic objects. This generalisation of joint elements needs the theory and techniques of
DFEM which will not be discussed here.

Remark 4.5. In FESTER, the D-matrix for the 2D joint element given by (4.20) is
ated as a constant matrix during the process of deformation for simplicity. In fact,
D;,; depends not only on the materials, but also on the values of slips or shear stresses.
That is, for real materials, the relations between shear (friction) stresses and slips are
non-linear and quite complicated [12]. Hence, to increase accuracy, the non-linear terms
in the stress-slip relations should be considered, which may lead to the introduction of

non-zero off diagonal elements in D;,, This can be implemented easily to the 3D version
of FESTER.

Remark 4.6. For real materials, there are at least four independent joint parameters:
three elastic moduli of the joint K, (K, ) K, and the strength values of the joint

0., (normal strength, which may be negligible) and o, (o, ) (shear strength,

which depends on the angle of friction ¢, and the cohesion parameter C;,;) [12]. There
are many factors influencing these joint parameters: the contact area, the perpendic-
ular aperture distribution and amplitude, the roughness of the two sides of the joint,

inclination of apertures, cohesion due to interlocking etc.
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§5. Stress-strain analysis, plane of weakness and cracking

For each of the element types described in §2.2.3, one of the following material

models is associated (joint element is restricted to model 9 only):

1. Linear elastic structure (no in situ stress in gravity loading);

2. Isotropic linear elastic rock;

3. Orthotropic linear elastic rock;

4. Isotropic elastic-plastic rock with Mohr-Coulomb failure surface;

5. Isotropic elastic-plastic rock with Hoek-Brown failure surface;

6. Orthotropic elastic-plastic rock with Mohr-Coulomb failure surface;
7 Orthotropic elastic-plastic rock with Hoek-Brown failure surface;

8. Isotropic elastic-plastic rock with Drucker-Prager failure surface;

9. Elastic joint (2D) interface in rock.

The material property parameters (nineteen parameters in all) required for these
models are listed in table 2.1 in Pan & Reed (cf. [27]).

5.1. Stress-strain analysis of Orthotropic materials

The constitutive law for orthotropic materials, of which the orientation of the out-of-
plane-of-weakness-direction is in the z direction (see Figure 5.1), is given by the following
relations [17,21,40]:

o=De. (5.1)
where
£ = (5x,5yagza7/xy37xz’7y2)"
(5.2)
o= (Gxao-y’o-z’rxy’er’TyZ)t
and
C,(1-viC,) Cp(l+v,) C(vi+vi) 0 0 0
Cv,(1+v,) 1-v] Cv,(1+v,) 0 0 0
poo| Cvi+vi) Cui(l+v,) C(1-vic,) 000 (5.3)
0 0 0 31w, 0 0
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Figure 5.1. An orthotropic material and its (ortho-)coodinate system.

Here, E; ,v; are the Young's modulus and Poison's ratio in the plane of isotropy (which
is parallel to the x-y plane) and E, ,v, ate the corresponding property parameters in the
direction normal to the the plane (z direction), G, is the shear modulus in the normal

direction and the constant C, :=§—;. It should be noticed that in the strain vector ¢ the

shear strains y, ,y.,7,. are used, not ¢ ,¢

xy 2 xz?

¢,. They are related by
}/xy :Z‘C"xy’}/xz :Z‘C"xz’yyz :28}72‘ (54)
This will be used in the formulation of strain energy and stress (strain) transformation

For isotropic materials, the constitutive law is also given by (5.1)—(5.3) with the
property parameters satisfying

E

E=E =Ev=v,=v,G,=G= .
1 2 1 2 2 2(1+V)

(5.5)

In this case, the material has only two property parameters, the Young's modulus £ and

the Poisson's ratio v.

For inclined orthotropic materials, i. e., inclined rock strata, the strain-displacement

relation matrix, which is denoted by D' now, can be written in the following form [17,40]:
D'=TDT' (5.6)

where T is the strain transformation matrix satisfying:
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gorth() — Tt gxyz (57)

i.e., the matrix T is a coordinates transformation matrix for strain tensors which is

defined explicitly by

I; m; n; 2l,m, 2n,m, 2l,n,
I; m; n; 2l,m, 2n,m, 2l,n,
T I m; n; 2l;m; 2n,m, 2l;n, (5.8)
LI, mm, nmn, lm,+I,m, nm,+n,m, In,+Il,n,
LI, m,m; n,n, lm;+Im, n,m;+n,m, Il,n;+In,
LI, m,m; n,n, Im;+Im, nm;+nm, In;+In,
and the vectors x":= (I;, [, I3 ),y' := (m;, my, m3 ) and z' := (n;, n, n3 ), are the di-

rections (unit vectors) of orthotropy in the global coordinates system (x,y,z) as shown

in Figure 5.2, and &”™ and & denote the strain vectors (¢R’) in the orthotropic

coordinate system (local) and the xyz coordinate system respectively.

L)

Figure 5.2. An orthotropic material in the x-y-z coodinate system.

5.2. Plane of weakness in orthotropic materials and cracking

The plane of weakness arises from the laminated nature of the rock stratum, created
during sedimentation [3,4,6]. In the 3D case, the isotropic plane in the rock mass is,

in general, spanned by two orthogonal unit vectors, namely x':= (/;, [, I3 ) and y' :=
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(m;, my, m3 ). For convenience, the third unit vector, z' := (n;, ny, n; ), is introduced
so that x'-y’-z' forms a right-hand coordinate system which is called the orthotropic
coordinate system. From the above formulation in the previous sub-section, we can
easily obtain the normal and shear stresses along the plane of weakness (the x'-y’ plane):

o 2 2 2

: [5 m, n; 2l,m, 2nym, 2l,n,
T r=|LI mymy; n,ny lLymy+Im, nymy+nm, Ilng+1ln,|o.
_ LI, m,m; n,n, I[Imy;+Im  nm;+nm  ILn;+I[n,

yz

(5.9
Hence the resultant shear stress 7, and the normal stress o, on the plane of weakness

are given by

N e (5.10)

We now consider the circumstances in which sliding occurs along the plane of weak-

ness. From the theory of limiting friction [6,12,28,34], sliding occurs if the maximum
shear stress 7, in the plane satisfies the Mohr-Coulom-criterion:

T,q|20,tan(p;)+c; (5.11)

rst

where ¢, is the angle of friction and C; is the cohesion parameter associated with the

joining. Another criterion is that the rock cannot support a tensile stress across the
joints, i. e., the rock will break if ¢, < 0. These formulations are used in FESTER to
analyse orthotropic materials and joint element sliding. Thus, two more yield functions,

and their corresponding flow rules as well, are introduced in FESTER to deal with the
plane of weakness. The no-slip criterion has yield function F(o) and plastic potential

0, (o) defined by

Fi(o):=
Ql (Q-) =

2-rst - O-ntan(qo_/) - cj ’

—o,tan(y ;) (5-12)

z-rst

where v, is the angle of dilation. The no-tension criterion has yield function F,(o) and

plastic potential Q,(o) defined as
F,(0)=0,(0) =0, (5.13)

The conventional flow rule is still used in both no-slip and no-tension cases, i. e.,

A 00,(0)
&, =V; <DOF)>+ 3 , i=12 (5.14)

1%
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where v, is the fluidity parameter for the joining and the function notation < x >+ is

the standard truncated function:

X, x>0,
<x>4 = 0 £ <0 (5-15)

There are in all four independent yield criteria used in FESTER. One of them is
used for general rock masses which may be denned as isotropic rock while another two
are designed for the test on the plane of weakness. In FESTER, the rock cracks on the
plane of weakness if either of these two flow rules in (5.12) and (5.13) become active. This
cracking process is independent of the the plastic yield of the plastic rock mass. That
is, at a given Gauss point, the rock may have been cracked but not yielded plastically,
or vice versa, or neither, or both. The last yield criterion, for "isotropic rock masses",
used in FESTER to model realistic rock behaviour and to cure the instability of the
numerical results that may arise during computations is the limited-tensile yield rule,

with its plastic potential (associated flow), given by

F;en (Q-) = Qten (g) = O-ten - o-min’(D(F ) = F;

ten

(5.16)

en

where o, is a prescribed small tensile strength (negative value) and the fluidity param-

eter y,, is the same as for the plastic yield rulesy,.
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§6. 3D Shape and mapping functions

Five types of 3D elements and a doubly infinite 2D element are designed in the
3D version of FESTER. They are the 8-noded linear brick element, the 20-noded
quadratic brick element, the 12-noded quadratic infinite brick element (7ype a), the
7-noded quadratic doubly infinite brick element (7ype b), the 4-noded quadratic infinite
corner brick element (7Type c) and the 3-noded quadratic doubly infinite 2D element.

6.1. Shape functions of 3D finite elements

The shape functions, with local coordinates (s,z,0) €[-1,1]° and the numbering of
the nodes shown in Figure 6.1, for the 8-noded isoparametric brick elements (tri-linear)

are as follows:

¢, (s,t,0) = é( S—t+1)+st+t1)+stv),
Ll +s—t+v—st+tvo—st)

¢3(stv)=§(l+s+t+v+st—tv+stv),

$,(5,60) =L(1—s5+1+0— 5t —t0—510),

P (s,t,0) = %(l S—t—0+St+to— stv), 6.1

P (5,4,0) = %(l+s—t—v—st+tv+stv),

¢, (5,60) =L+ 5+t —v+st—to—stv),

¢8(stv)—%(l S+t—0—st—1tv+S)

The shape functions, with local coordinates (s,f,0) and the numbering of the nodes
shown in Figure 6.2, for the 20-noded isoparametric brick elements (tri-quadratic) are as
follows:
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¢ (stv)=5(1-s)1-D)(A-v)(=s—t-v-2),
b, (s.60) = £ (1= 57)1 = 1)1 -),

Py (s,tv)=1(1+s)1-)(1-0)(+s—t—-v-2),
i (s.,0) =5 (L+5)1-1")(1~0),

g (s,t0)=1(1+s)1+t)(1-0)(+s+t-0-2),
B (s,t,0) =5 (1=s")(1+1)(1-0),

¢, (s,t0) =5 (1=s)A+ )1 -v)(=s +t -0 -2),
By (s,6,0) =5 (1= 5)(1—1*)(1~),

By (5,0) =5 (1=s)1-0)(1-0"),

@, (s,1,0) = %(1+s)(1—t)(1—1)2), (6.2)
,(s,t,0) = 51+ 5)(1+0)(1-v%),

, (s,50) = (=) +0)(1-0?),

P (s,t0) =5 (1=s)A=)1+0)(=s -t +v-2),
s (s,60) = 5(1=5)1=0)(1+0),
Ps(s,t0)=1(1+s)1-t)A+0)(+s—t+v-2),
Bio (5,6,0) = L(1+5)1=£>)(1+0),

¢, (st0)=5(1+)A+)A+0)(+s+t+0-2),
s (5,6,0) = (1= 571+ )1 +0),

B (5,0) =5 (1=s)A+)A+0)(=s +t +v-2),
By (5,6,0) = 5 (1=5)(1=1*)(1 +v).

6.2. Shape and mapping functions of 2D and 3D infinite elements

Using the same notation as in §6.1, the shape functions {¢;} of the 12-noded infinite

brick elements, with the numbering of the nodes shown in Figure 6.3, are given by:
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¢ (stv)=5(1-s)1-D)(1-v)(=s—t-v-2),
#.(5,0) = L1 - 571~ 1)1 ~),

Py (s,t0) =+ 1+ s)1-1)1-v)(+s -t —0-2),
8,(5,6,0) = L1+ )(1—£7)(1 ~0),

Ps(s,t,0) =g (1+5)A+)A-v)(+s+t -0 -2),
B, (5,2,0) =4 (1=s)(1+ 1)1 -v),

¢, (s,t,0) =3 (1=s)1+ )1 -0v)(=s+t—-0v-2), (6.3)
@y (s,6,0) = (1= 5)(1—1*)(1~),

By (s,1,0) =5 (1=5)(1-0)(1-0%),

Bo(5,1,0) = L1+ 5)(1—1)(1—0),

¢, (s.t0) =L (1+s)1+0)(1-07),

b (5,1,0) = L1 =)L +1)(1—0),

and the corresponding mapping functions {y;} are given by:

v, (s,60) = $(1=5)(1 = 1)(=s =t —v—=2)/(1-v),
v, (s,60) = (1=s)(1-0)/(1-v),

wi(s,t0) =11+ s)1-t)(+s—t-0v-2)/1-0),
v, (st0) =31 +s)1-13)/(1-v),
ws(s,60)=1(1+s)A+0)(+s+t—v-2)/(1-0),
w(s,0) =3(1-s7)(1+0)/(1-0),

v, (s.4,0) = L (1= )1+ 0)(=s +1 —v—2)/(1-0), (64)
vy (st0) =21 -5)(1-1%)/(1-v),

Wy (s,60) = $(1=5)A=1)(1+0)/(1-v),
W1o(s,80) = $(1+5)(A=1)(1 +0)/(1-v),

v (s,60) =41+ )1+ )1 +0)/(1-v),

W1 (s,80) = S (1= 5)(1+ 1)1 +0)/(1-v),

The shape functions {@;} of the 7-noded infinite brick elements (7Type a),with the

numbering of the nodes shown in Figure 6.4, are given by:
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#(s,t,0) =+(1-5)1-)1-0v)(=s -t —v-2),
#,(s,4,0) =5 (1=57)(1-1)(1~v),
#,(s,t,0) =31+ s)1-)1-v)(+s—t—v-2),
B (s,0) =5 (1+5)1-1")(1~0),
bi(s.40) = L (=51 )1 -0),
B (s,0) =5 (1=5)(1-1)(1-0),
b, (5.40) = L1+ 5)1 D)1 -07),

(6.5)

and the corresponding mapping functions {\;} are given by:

v, (s,t0)=1(1-s)tv—4s-3t-30-T7)/(1-1)(1-0),
vy (s,60) =4(1-s7)/(1-1)(1 - ),

W, (s,t0)=1(1+s)(tv+4s -3t -30-7)/(1-1)(1-v),
vy(s.60) =1+ $)(1+0)/ (1)1 -v),

ws(s,tv) =(1-s)1+0)/(1-1)(1-0),

Ve(s.60) = (1=s)(1+v)/(1=1)(1 ~0),

v, (s,t,0) =(1+5)1+v)/A-1)1-v).

(6.6)

The shape functions {y;} of the 4-noded infinite brick elements (7ype 6), with the

numbering of the nodes shown in Figure 6.5, are given by:

B (s.t0) =3 (1=5)1-t(1-v)(=s—t —v-2),

& (st0) =5 (1=5")1-1)(1~v),

By (s,tv) =1 (1-s)1-1*)(1-0), (6.7)
@ (st0) =5 (1=5)1-0)(1~0v"),

and the corresponding mapping functions {y;} are given by:

w,(5,60) =[(=s+st+sv+ 1w +5(-s — 1 —v) =11}/ (1—5)1 1)1 -v),

v, (s,t,0) =4(1+5)/(1=s)(1-1)(1~0),

v, (s,4,0) =4(1+1/(1-s)(1-1)(1-), (6.8)
w,(s,60) =4(1+0v)/(1-5)1-1)1-0).

The shape functions {¢;} of the 3-noded doubly infinite elements (2D) with the
numbering of the nodes shown in Figure 6.6, are given by:
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$(s,) =5 (1=s)(1=1)(=1=5~-1),
¢, (s,0) =5(1=s")(1-1), (6.9)
¢y (s,0) =3 (1=95)(1-1%),

and the corresponding mapping functions {y;} given by:

w,(s,0) =[st+3(=1-s-0)]/(1-s)(1~1),
w,(s,t)=2(1+5)/(1=s)1-1), (6.10)
wi(s,0)=2(1+1)/(1-s)(1-1),

For completeness, we also give the shape and mapping functions of the 2D 5-noded
singly infinite elements which are also used in FESTER (cf. [34]). The numbering of
nodes of this element is shown in Figure 6.7.

,(s,6) =L (1= s)(1=)(=1= 5 —1),

$,(s,0)=+(1=5>)1=1),

by (s.0) = L1+ )= 1)(=1+5—1), (6.11)
8, (s,0) =1+ 5)1—17),

s (s,0) = 5(1=s5)(1—-17),

The corresponding mapping functions {y; } are given by:

v, (s,0)=(1=s)(=1=s=1)/(1-1),

v, (s,t)=2(1=57)/(1-1),

wy(s,t) = (1+5)(=1+s=1)/(=1+5)1-1), (6.12)
wi(s,0) =51+ s)1+0)/A-1),

vs(s.0)=1(1=s)1+0)/(1-1),

Remark 6.1. It can be seen clearly that the mapping functions {y;} for any of the
above infinite elements do not form a partition of unity. That is

Dy (s,,0) =1, Y(s,t,0) e R’ (6.13)

This means that these mapping functions are dependent of the choice of the coordinate
system, i. e., they are not coordinate-free. This is because our assumption that at infinity
the displacements are zero.

Remark 6.2. Other infinite 1D/2D/3D elements which extend to infinity in one/two/three
direction(s) (cf. [19]) may also be introduced into FESTER similarly.
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Remark 6.3. In the description of 2D elements, the notation for the local coordinate

system used in [34] is (§,m), which is different from our notation (s,t).

Remark 6.4. The order of nodes in an element must be consistent with the order
showing on the standard elements in the Figures 6.1-6.7. Otherwise, negative Jacobian

determinants may occur which may cause incorrect results.
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§7. Large deformation analysis and its B—matrix

In this section, we present a formulation of the large deformation analyses in the 3D
version FESTER and the derivation of its B-matrix.

7.1. Large deformation formulation

The program is designed not only for small deformation analyses, but also for large
deformation analyses. For the large deformation problems (option NLAPS=2 in the
program), the second order terms, which are non-linear terms, are also considered in the
strain-displacement relations in order to obtain better approximations. That is, in this
case, the strain-displacement relation is defined explicitly by [1,8,11,26]:

€, 2
n 1 n 1 W1
g=1"1=| @ ( J " az] = j (.1)
Ve ou, . vn . Ou, + L oV, 8w ow,
Ve oy 8x 8x oy 8x 8y ox Oy

Ve ou, oOw, Ou, Ou, Ov, Ov, N ow, ow,

+ + +
0z ox ox 0z Ox 0z Ox Oz
ow, Ov, Ou, Ou, N ov, ov, Ow, Ow,

+— +
oy 0z 0z Oy 0z Oy Oz Oy |

wheree ,e ,€.,v,,,Y..,Y,. are the strain components and u,, v, w, are the displace- ments

at the time step ¢, (an incremental loading procedure is used in FESTER for nonlinear
problems).

Since the nonlinear terms are introduced, the (element) stiffness matrix, K, is thus
composed of two parts, Ky, and K,,,, i. e., K= K;,, + K,,,, Here, K;;, is the
contribution from the linear part and K,,, is that from the nonlinear part. In FESTER,
special subroutines, BMAT, MOD2, EMAT and GMAT, are designed to compute Kjy;,
and K,,, separately and then sum them up to obtain the total (nonlinear) stiffness
matrix K.

7.2. B-matrix formulation

To form the stiffness matrix for 3D stress-strain analyses, we first need to formulate
the strain-displacement relations, i.e., the B-matrix. Suppose the shape functions are
denoted by ¢, i=1,2,...,n and the nodal displacements by d;°%i = 1,2, ...,n, then the
displacement d at point (x,y, z) in the global coordinates syste ((&, 7, ¢) in the local
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coordinates system) is given by

S d0 ¢ (72)

The strains at this point are given by a similar formula to (7.1).
For small deformations, we can obtain, by suitable substitutions and arrangements:

Sin = szm,t d? (7.3)
i=1
where By;,,; 1s the linear part of the i-th strain matrix, which is given by
a i
@0 0
0 2 0
0
Blin,i = a (7.4)
oy ox
o, 8
> 0 2
ob; O
0z y
By defining:
Blin = (Blin,l’ Blin,2”"’Blin,n )’ (75)
d’ = (d?,dg,...,dg)‘,
we have
(7.6)

§lin = B do :

lin
Hence the global stiffness matrix (linear part) K;;, and the element stiffness matrix

Kiinij i,j = 1,2, ...,n are given by

lin,i, j
K =B’ DB :(K,in)l.'j),

lin lin lin

{K = B;in,iDBlin,j ) 1.7)

where D is the strain-stress matrix (constitutive law (5.1)).

For large deformations, the formulation is the similar but the nonlinear terms in

(7.1) are also considered in the formulation of .the strain matrices, that is, B; = By, ;7 +
1,2, ...,n, where By;,,; is given by (7.4) and B,,,,; 1s the non-linear part of

Bnon,i, l =
= 1,2, ...,n, By, 1s given by

the strain matrix. More explicitly, for i
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n
1 94; 0¢J 1 04, 0¢J 1 904 0¢j
2 i T luViTm 2 o
J=1 J=1 J=1
n n
1.9, % 19 % 104 %
2 iy 2w ZYiy 2 j o
j=1 Jj=1 i=1
1 94, 0¢/ 1 94, N 0¢/ 1 a¢i 6¢/
26z j oz 20z j oz 2 oz Z j oz
i=1 =1 =1
Bnon,i = fi i n] (78)
o4, o9, o4, 9, o4, 9;
72”1? WZV./E w2V
j=1 j=1 Jj=1
n n n
¢, o9, o¢; 9; ¢, 9;
—Z”,a— EZW? o 2.V
J=1 J=1 J=1
n n n
%Zu % %Zv 4 % w 9%,
oy J oz oy J oz oy Jj oz
j=1 Jj=1 Jj=1

Hence, the i-th total strain matrix, B, which is composed of the linear part B;;,; and

the non-linear part B,,,,;, is given by:
Bi = Blin,i + Bnon,i 1= 1,2,..., n. (79)
Similar to the formulation of linear strain-displacement relation, we have:

BZ:(Bl,Bz,...,Bn), (7. 10)
and

g=Bd". (7.11)

Hence the total global stiffness matrix K and the element stiffness matrix K;,i,j =
1,2, ...,n are given by

K,, =B!DB,,

Ly

(7.12)
K =BDB=(K,),

Since the matrices B,,,,:, i = 1,2, ...,n, depend on the displacement d°, (7.11) is
not a linear relation. In fact, from (7.8), it is obvious that ¢ is a quadratic function of

de.



36 Ruibin Qu and Martin B. Reed
§8. Other modifications to FESTER

In this part, we state some differences between the 3D version program of FESTER

and its 2D version.

8.1. Modifications to subroutines

In addition to many minor changes to almost all the subroutines in the 2D version
program to adapt it for 3D analyses, big changes were made to the following subroutines:
TMAT, BMAT, INVAR, JNTB, MOD2, MODJ.

A. Modifications to INVAR

The subroutine INVAR can be used to compute the following values; their mathe-

matical formulations are given in §3:

a. Stress/strain Invariants I; I, I3 J, J3 6,

b. The first derivatives of these invariants;

c. The second derivatives of these invariants;

d. The first/second derivatives of the principal stresses;

e. The b and a vectors for the HB/DP flow rules and the tensile cracking rule.

B. Modifications to BMAT

The subroutine BMAT generates the linear part of the the B-matrix, By;,, for both

small and large deformation analyses in 3D problems.

C. Modifications to JNTB

The subroutine JNTB produces the joint element B-matrix B;,, for both 1D and
2D joint elements. In the 2D case, it is restricted to the 16-noded quadratic element

only.

D. Modifications to MMAT and GMAT

Subroutines MMAT and GMAT produce the non-linear part of the the B-matrix,
Buon, for both 2D and 3D large deformation analyses. That is, the strain matrix B is
given by By, + Bpon (cf. §7).
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E. Modifications to MODJ

The subroutine MODJ produces the D-matrix for 1D and 2D joint elements.

F. Modifications to MOD2

The subroutine MOD2 produces the D-matrix for 2D and 3D orthotropic materials.
In the 3D case, the orientation of the orthotropic material should be provided by three
unit vectors: (v, Vi, Vi) in the reference coordinate system, with the plane of

weakness in the plane spanned by Vv; and v;.

G. Modifications to SFR

The subroutine SFR produces the shape functions of the 12 types of 2D and 3D
elements which are described in §2.2.3. The subroutine MAPFUN are modified similarly

to generate the three mapping functions of the 2D and 3D infinite elements.
8.2. Other modifications

There are some other changes to the 2D version program. The following list may be

helpful to understand the difference between the two versions.
A. Input and output formats

Since the brick elements are used in the 3D version, all formats concerning the input
and output of the elements, stress and strain vectors, loading, displacements etc. are
rewritten. The formats in the new version can also be used to analyse 2D and axial
symmetric problems with the same input and output formats as in the 2D version. For
3D problems, the stress output (at Gaussian points) is quite different from that produced
by its 2D version. The stress outputs include: principal stresses o, 62, o3 their directions
(principal directions) in R : a1, as, as and the yield indicator, which is the same as in
the 2D version. The displacement output differs only a little: the displacements are

vectors in R? instead of in R2.
B. Common block

A Common Block is designed in the 3D version program. The block is composed
of some constants which are frequently used in the program. The element type array,
LTYPE, is also stored in this block.
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C. New subroutines

Two subroutines are added to the program: MULTAB and CROSS. The subrou-
tine MULTAB multiplies two matrices and CROSS is used to find the Cross-Product

of two vectors.

D. Gauss quadrature rule

In order to increase the accuracy of computer results for 3D stress-strain analyses,
the order of the Gaussian quadrature which is used to obtain the stiffness matrix and
the nodal forces, is set to 3 even if the input value NGAUS # 3. In this way, some near-
singular cases can also be calculated by the program. Otherwise, there may be near-zero
pivot values. However, for the 3D 8-noded, 20-noded and infinite elements the default
number of Gaussian points of each element at which the stresses and displacements are

to be computed and output is 8.



3D- Version FESTER 39

§9. Numerical examples

Four numerical examples are given in this section to demonstrate some of the math-
ematical models employed in the 3D version of FESTER. They are the Large Displace-
ment, 3D Infinite Element and 2D Joint Element models. Two examples are also given

to show the program being used for solving practical problems.

Example 9.1. Large Displacement: 3D Cantilever Analyses. The results are shown in
Figures 9.1-9.4.

Example 9.2. Joint Element: Sliding between two Rock Strata. The results are shown

in Figures 9.5-9.8.

Example 9.3. A 3D stress distribution in a rock stratum. The results are shown in
Figures 9.9-9.10.
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§10. Conclusions

In this report, a detailed description of the nonlinear finite element program FES-

TER for 3D analyses is presented. The package is specially designed for deep-level tunnel
excavation analyses. The theory used to model the (3D) rock behaviour and numerical
method used in the 3D program are the same as for the 2D analyses. However, many
changes have been made to suit 3D applications. The main features of the 3D analyses
are as follows:

. The mapped 3D infinite elements are used to simulate the far field deformation;

. The 2D joint elements (surface contact) are used to model the sliding (discontinuous

displacements, stresses and strains) behaviour between two rock strata and in the
joints in rock masses;

. Special treatments are given (yield criterion, plastic potential, sliding and cracking

rule) to the plane of weakness in 3D for orthotropic materials (rocks);

. 3D large displacement problems can also be analysed (the second order terms in the

strain-displacement relations have been taken into account in the program);

. A variety of (3D) yield criteria and plastic potentials (Mohr-Coulomb, Hoek—Brown

and Drucker-Prager) for both associated and non-associated flow rules are employed;

. Different techniques to simulate the tunnel excavation process are used in the program:

incremental loading, stress and stiffness reduction and any combination of these two
processes.
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