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Abstract
Electronic healthcare record data have been used to study risk
factors of disease, treatment effectiveness and safety, and to
inform healthcare service planning. There has been increas-
ing interest in utilizing these data for new purposes such
as for machine learning to develop predictive algorithms to
aid diagnostic and treatment decisions. Synthetic data could
potentially be an alternative to real-world data for these pur-
poses as well as reveal any biases in the data used for algorithm
development. This article discusses the key requirements of
synthetic data for multiple purposes and proposes an approach
to generate and evaluate synthetic data focused on, but not
limited to, cross-sectional healthcare data. To our knowledge,
this is the first article to propose a framework to generate and
evaluate synthetic healthcare data with the aim of simultane-
ously preserving the complexities of ground truth data in the
synthetic data while also ensuring privacy. We include find-
ings and new insights from synthetic datasets modeled on both
the Indian liver patient dataset and UK primary care dataset to
demonstrate the application of this framework under different
scenarios.
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1 INTRODUCTION

Electronic healthcare record (EHR) data are a rich source of clinical symptoms, diagnoses,
investigations, and treatments. The recent development of intelligent applications makes these
data attractive for the application of various data mining and machine learning algorithms. For
example, in Khalid et al.’s work, the data are used to yield new insights into drug use patterns1

and Ravizza et al. proposed an application for diagnosis and prediction of diseases.2 However,
there is a need for developing a synthetic dataset that would complement such rich real-world
data for various reasons outlined below.

(1) Ease of access—Access to individual record level real-world data, even in pseudonymized
format with strong personal identifiers removed, tends to be strictly regulated to control the risk
of inadvertent patient reidentification according to Sebastian et al.’s work.3 Moreover, the legal
bases for sharing of these routinely collected data may present restrictions on use that need to
be monitored by data controllers. The ability to streamline data access approvals with synthetic
datasets could increase the speed of research innovation.

(2) Cost-efficiency—In the context of healthcare data collection, using a synthetic data gener-
ation model for benchmarking and validation is significantly more cost-efficiency than expanding
the population coverage of real-world data due to the cost of scaling-up collection and processing
pipelines.

(3) Test efficiency—Lee and Whalen’s work identified that using a synthetic data generation
model can efficiently improve algorithms or functions in an information system4 by generat-
ing desired data on-the-fly. For example, one typical scenario could be to test the scalability and
robustness of an algorithm.

(4) Patient privacy protection—The social-demographic and health-related content in the
healthcare data makes patient identification more likely and therefore a fully synthetic approach
can better mitigate this risk according to Park and Ghosh.5

(5) Completeness—It can be difficult to conduct unbiased data research if there are inherent
biases in the data. Nowok et al. argue that synthetic data can supplement real data by either
filling gaps or enlarging a subgroup dataset.6 In addition, Wu et al. discovered that anonymization
measures for real data may compromise data utility due to information loss.7

(6) Benchmarking and validation capabilities—This is useful when comparing different
machine learning methods against a standardized dataset while focusing on a specific set of dis-
eases (e.g., cardiovascular diseases). Synthetic data could be generated to be intentionally distinct
from real data to reveal biases in algorithmic performance.

Despite all the advantages outlined above, there is no synthetic data generation and evaluation
approach that can be applied to healthcare data to ensure that the generated data preserves key
ground truth characteristics (such as sensible biological relationships between variables) while
ensuring privacy.

In this article, we propose a framework to focus on synthetic data generation ensuring
data utility, that is, clinically meaningful, and the preservation of patient privacy. The follow-
ing four additional key requirements are envisioned to be critical for making synthetic data
usable:

Preservation of biological relationships. The chosen data variables and target studies
should preserve the correct underlying biological relationships (e.g., female specific diseases
should not include male patients) or well-established clinical symptom-diagnosis pairs should be
preserved (e.g., excessive thirst because of diabetes).
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Univariate distance. Each concerned variable in the synthetic data should have similar fun-
damental aggregated statistics to the ground truth (e.g., similar distributions) for both continuous
variables and categorical variables.

Multivariate distance. Data with multiple dimensions often have correlated structure
between data variables. Retaining such correlational structure in synthetic data is crucial to
ensure that it is a truthful representation of the real world. In some studies, initial knowledge
(e.g., clinical expertise or familiarity with real-world distributions) may be required to inform the
development but this would only be feasible when the number of concerned variables is relatively
small. However, when the variable numbers are large such as in Ravizza et al.’s work,2 a manual
approach will be extremely resource-intensive and challenging.

Preservation of patient privacy. Privacy might be a concern even in the case of fully syn-
thetic data. This can occur when synthetic data generation produces a very similar dataset in
terms of aggregated characteristics to real-world data. For example, a small number (i) of rare dis-
ease cases in the synthetic data occur in patients with similar ages living in the same geographical
region. Thus, when i is sufficiently small, there is a chance that these outliers can be identified
from the data. Essentially, this occurs when a synthetically generated patient shares the same (or
similar) characteristics as a real patient purely by chance. As a result, it is important to consider
mechanisms which can be put in place to protect against such a scenario.

The article is organized as follows. Section 2 reviews existing approaches and challenges to
generating synthetic datasets, privacy concerns relating to generated data and multidimensional
complexities in EHR. Section 3 presents the proposed framework followed by two case studies in
Section 4, and Section 5 concludes the article by discussing the use and outlook of synthetic data.

2 RELATED WORKS

There are researches concerning synthetic data generation, while preserving privacy in the data.
There are also many studies that address the complexities of healthcare data such as in Mandal
et al.8 and Chen et al.’s works.9 The objective of this section is to review previous work in these
areas and to discover the lessons learned that can contribute to the proposed framework.

2.1 Synthetic data generation methods

In general, synthetic data generation methods can be categorized into three groups.

2.1.1 Group 1: Generating synthetic data based on some statistical
properties of the real-world data

This approach is useful when real data are difficult to access, for example, the data are tran-
sient and difficult to collect, or the data are scarce such as in the case of rare diseases, or the
distribution of events is highly imbalanced, such as in the case of outliers in Robnik’s work.10

In Ruscio and Kaczetow’s work,11 data are sampled from the population distribution. In another
practical example showcased by Lee et al., the velocity property is used to generate synthetic
data for various tactical moving objects in the military context.12 In Buczak et al.’s work,13

care patterns discovered from real patients are used for synthetic patients whereas Riano and



4 WANG et al.

Fernandez-Perez14 incorporate both statistical information and rules based on expert knowledge
to simulate episodes of care.

2.1.2 Group 2: Adding noise

This approach based on adding noise to a small sample of data, which is particularly useful when
only part of the real-world data needs to be regenerated such as in Syahaneim et al.,15 Iftikhar
et al.,16 and Cano and Torra’s works.17 A relevant technique often used is data imputation, which
addresses missing values in the data such as in Kontopantelis et al.18 and Caiola and Reiter’s
works.19

2.1.3 Group 3: Using machine learning techniques
to generate/extend the dataset using prediction and inference

These techniques can be applied to generate both semisynthetic data and fully synthetic data. In
Yang et al.’s work,20 a hidden Markov model is used to discover the hidden properties of data and
generate the semisynthetic medical process data. In Patki et al.’s work,21 generative models are
used to create both semi- and fully synthetic data in relational databases in replace of real data.

Despite the available methods, generating synthetic healthcare data requires additional con-
sideration due to its longitudinal nature and long data format (e.g., selecting a set of variables
from the whole dataset for a specific study) before using these approaches.

2.2 Privacy preservation

Privacy concerns have heightened with the advent of the General Data Protection Regula-
tion (GDPR) within the EU especially when sensitive patient data are involved.22 A range
of approaches to mitigate the risk of patient privacy disclosure such as perturbation, con-
densation, randomization, and fuzzy based methods have been described in Langarizadeh
et al.’s work23 to eliminate links between identifiable data and the data subject defined by
ISO (International Organization for Standardization)24 and ICO (Information Commissioner’s
Office).25

However, anonymization of data can compromise its utility according to Wu et al.7 if impor-
tant information is removed. In addition, the anonymized data may still present a residual
risk to privacy. In Sweeney’s work,26 it was found that 87% of the population in the United
States had reported characteristics that made them unique based only on five-digit ZIP, gen-
der, and date of birth. About half of the population are likely to be uniquely identified by only
gender, date of birth, and city/town/municipality in which the person resides.26 In Narayanan
and Shmatikov’s work,27 a robust algorithm is further proposed to deanonymize large sparse
datasets.

A fully synthetic dataset can effectively tackle the privacy issue in a sense that all data values
can be completely different from real-world data. However, in the context of clinical studies it
may be necessary to rely on a restricted set of values to ensure clinical meaningfulness. The risk
of privacy disclosure might still exist when outliers in synthetic data are the same as those in
real-world data by chance.
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2.3 Complexity in electronic healthcare data

Complexity can come from two levels: first, access to heterogenous data sources according
to Bache et al.’s work28 and second, the complex relationships inherent in the data. The
term “heterogenous” in this context, is more about data representations. This could mean
cross-sectional data in which each record summarizes a longitudinal history versus the lon-
gitudinal data in which each time-stamped record forms the history of a healthcare path.
Cross-sectional data are often favored by researchers. However, the conversion from longitu-
dinal to cross-sectional is often a complicated data processing task. The term “relationships”
can be defined as relationships within the data model of different entities such as patient
entity, clinical observation entity, drug record entity, and so on, and of different variables within
each entity, and therefore the complexity is partially a result of not isolating these relation-
ships. As a result, a comprehensive data model is required to take multiple variables into
account.

In Pedersen and Jensen’s work,29 an example is given to demonstrate a multidimensional
model and nine requirements of data modeling on patient diagnosis episodes, for example, com-
monly occurring many-to-many relationships between patients and diagnoses should be handled
by the model. In addition, the underlying many-to-many biological relationships are derived from
empirical studies and observations, for example, a predefined set of variables such as cardio-
vascular risk factors described in Hippisley-Cox et al.’s work.30 Learning these many-to-many
relationships within and across the data entities remains a challenge so that the fidelity of the
clinical information can be retained.

3 SYNTHETIC DATA FRAMEWORK

3.1 Overview

A synthetic data framework is proposed with the objective of enabling the synthesis of
healthcare data while ensuring a high degree of similarity (i.e., biological relationships
and biological values) between ground truth and the synthetic data as well as preserving
privacy.

The framework (see Figure 1) outlines a set of processes including the ground
truth selection process as input, the synthetic data generation process, the evaluation
process, and ultimately the generation of the sensible synthetic data selection as an
output.

The ground truth selection process entails two linked tasks which are a privacy sensitive vari-
able identification task and a biological relationship definition task. The results from these two
tasks can contribute to the study data model definition, which in turn determines the suitable
synthetic data generation model.

The synthetic data generation process aims to produce a set of synthetic data candidates and
ensure the data quality, that is, data values and format of the resultant data are consistent. The
evaluation process focuses on assessing the four key criteria between the selected ground truth
and the generated synthetic datasets: biological relationship preservation, univariate distance,
multivariate distance, and privacy preservation.

The sensible synthetic data selection is a recursive process which ends when all evaluation
criteria are met.
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F I G U R E 1 Synthetic data framework overview [Color figure can be viewed at wileyonlinelibrary.com]

3.2 Ground truth selection process

The ground truth is closely dependent on the study context. In this process, the selected vari-
ables need to go through two tasks: namely privacy sensitive variable identification and biological
relation definition.

In most cases, each variable alone may not cause privacy issues, but a combination of variables
(tuple) may present an increased risk of reidentification. However, without knowing the distribu-
tions of these tuples it is usually impossible to identify these variables. In these cases, referencing
relevant official guidance and standards from bodies like the UK’s Information Commissioner’s
Office (ICO*) to predefine a set of sensitive variables can be a good solution.

http://wileyonlinelibrary.com
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Once the individual sensitive variables are listed, the researchers can further define variable
combinations among them that are deemed to be privacy sensitive. Examples of variables defined
as sensitive patient data include familial relationships, marital and occupational status, sexuality,
eligibility for social benefits.

Well-established biological relationships between variables and the study target also need
to be defined at this stage. For example, the condition lupus can be relevant when studying
hypertension.

3.3 Synthetic data generation process considerations

In this work we also propose some of the considerations for using previously described synthetic
data generation approaches in Section 2.1 with respect to (a) the identification of biological rela-
tionships between variables and (b) the privacy sensitive nature of variables as well as (c) the
number of variables.

Adding noise can be a good solution when full synthetic data are not required, that is, most
of the real-world data can be released. A common challenge for state-of-the-art methods such as
differential privacy31 is mainly on how to balance the added noise with the utility of the data.
More noise usually means less privacy risk, but also means less utility on the data. Preserving
biological relationships between variables may not be a concern when a small amount of noise is
added. However, a large amount of noise will require additional checks if the original correlations
between variables are preserved to ensure the data utility.

An expert-driven approach is especially useful and efficient when data are difficult to access.
Given key statistical information for each variable, synthetic data can be created by combining the
randomly generated data for each variable based on statistical metrics such as probability distri-
bution functions and maximum/minimum values. These can often be extracted from the existing
literature. When the data can be accessed, an algorithm such as Copula32 can be an effective syn-
thetic data generation method as it can effectively capture the dependencies between multiple
variables. However, when the total number of variables becomes large this may not be able to
capture the hidden patterns among variables.

Machine learning algorithms can be an option when requirements on both data utility and
privacy are stringent while biological relationships between variables are numerous and com-
plex. This is because these algorithms are often good at discovering hidden patterns in the data.
Despite these advantages, choosing a good algorithm is often dependent on the requirements
on the transparency of the algorithm. When transparency is required, then the interpretation
of an algorithm’s model architecture and intermediary results become important. Building a
“black box” type machine learning model may result in synthetic data where the underlying logic
are not fully understood or trusted. As a recommendation, when there are alternatives, a more
transparent algorithm such as Bayesian networks33 should always be in considered first.

Once synthetic data are generated, a data quality check may be required for variables with
continuous values so that they are biologically plausible, Table 1 lists the common data quality
checks required and the corresponding actions proposed.

3.4 Evaluation process

As synthetic data generation models can produce a set of synthetic data candidates, the evaluation
process must be able to differentiate these candidates. Here, we use the “distance” to quantify
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T A B L E 1 Biological data quality checklist

Biological value checklist Actions

Negative biological values Remove instances, for example, glucose < 0

Minimum/Maximum value bound Remove instances beyond the bounds, for
example, age> 300

Decimal places Format to ground truth’s decimal places, for
example, 1 decimal place to BMI value

Minimum/maximum pairwise difference Remove instances beyond the bounds, for
example, systolic and diastolic difference> 100

the difference between synthetic dataset and the ground truth via a general function dis(Xs, Xg),
where the Xs and Xg represent the input spaces of synthetic data and ground truth, respectively.
In general, the closer the distance, more similar two datasets are.

3.4.1 Univariate distance

Univariate distance can be defined based on two types of variables: discrete variables D, the num-
ber of which is denoted by I and continuous variables C, the number of which is denoted by K.
For the discrete variables, the probability distribution p is used to represent the discrete ith indi-
vidual variable ds

i and dg
i , i = [1, I]; for the continuous variables, the density function f is used to

represent the kth individual variable cs
k and cg

k, k = [1, K]; The univariate distance can be defined
as two Equations (E1) and (E2):

E1 = dis(p(ds
i ),p(dg

i )),where {ds
i ,dg

i } ∈ D, (E1)

E2 = dis(f(cs
k), f(cg

k),where {cs
i , cg

i } ∈ C. (E2)

During the univariate distance evaluation, each variable is independently assessed and the dis
function needs to be consistent for a variable type. Here, the probability difference is used as a dis
function for E1, and a hypothesis test results, that is, p-value, for example, Kolmogorov–Smirnov
test (KS test), can be used as a dis function for E2.

3.4.2 Multivariate distance

The multivariate analysis is required to compare the interrelationship and patterns of data
instances within two datasets {ss

1, … , ss
i} ∈ Ss for synthethic dataset and {sg

1, … , sg
j } ∈ Sg for

ground truth dataset, where lowercase s represents the data instance, that is, total of i generated
synthetic data instances and total of j ground truth data instance used to generate the synthetic
data, and uppercase S represents the collection of data instances.

The purpose of the dis function in the multivariate distance test is to measure the Euclidean
distance in a, possibly transformed, input space X ∈Rk, where n dimensions can be reduced
and projected to shared k dimensions (0 < k<n) via f k

n and n is the total number of variables in
data space Rn. Existing multivariate analysis methods such as ordination techinques including
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nonmetric multidimensional scaling (NMDS) proposed by Kruskal34 can be used.
The multivariate distance function between two datasets thus can be defined as an
Equation (E3):

E3 = dis(f k
n (Sg ∈ R

n), f k
n (S s ∈ R

n)). (E3)

In addition, the dis function can also be a pairwise comparison measurement for continuous
variables. A correlation matrix hence can be used to compare ground truth and synthetic data.
Let the matrix Mg = [brg

ij], where brij is the correlation between ith and jth variables in the ground
truth. As a result, given the calculated correlation matrix Ms = [brs

ij] for the synthetic dataset. The
distance function can be also defined as Equation (E4)

E4 = dis
(

brg
ij,brs

ij

)
=

{
1 brs

ij ≠ brg
ij

0 brs
ij ≈ brg

ij

. (E4)

The researchers need to define≈ (almost equal) or≠ (not equal), in the form of some threshold
value. Here is an example to showcase how E4 can be used:

Given two variables A and B, where the correlation coefficient between them in ground
truth data is 0.5, and in the synthetic data is 0.4. The difference between the correla-
tions is 0.1. If a researcher defines the correlation difference range to be [0, 0.3] to assume
almost equal correlations and beyond this range to be considered unequal, then for A
and B the distance will be 0 according to Equation (E4) because 0.1 falls into the range
of [0, 0.3].

3.4.3 Privacy preservation

Privacy preservation is needed when both of the following conditions are met at the same time:

1. both datasets (ground truth and synthetic dataset) have some identical data instances and
2. some or all these data instances are “rare” in the ground truth, that is, outliers.

The sensitive variables or their possible combinations can be identified in the ground truth
selection process from the input spaces. For a set of sensitive variables in the synthetic dataset,
Ss

k = {s1, … , sk} ∈ Rk, where 1≤ k≤ total number of variables for a data instance. The distance
function here is to calculate the distances among targeting data instances of sensitive variable(s)
sn to the other ŝn in space Rk; the ones with larger distance to the rest groups of the data instances
are viewed as outliers using Equation (E5).

E5 = dis(sn, ŝn),where 1 ≤ n ≤ k, si U ŝi = Ss
k. (E5)

Density-based clustering approaches, such as DBSCAN proposed by Martin et al.,35 can
be used in this test. Once the outliers from synthetic data and ground truth are identi-
fied, then an exhaustive comparison among these outliers can be carried out to test if same
data instances exist. If no identical instances are found, then we consider the privacy to be
preserved.
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3.4.4 Clinical evaluation

One of the coauthors (P.M.) has a clinical background and reviewed the graph structures repre-
senting the relationships learned to assess whether the learned relationships between variables
were recognized in medical research or if were clinically plausible. We undertook a further clin-
ical evaluation test whereby two independent medical assessors reviewed a sample (n = 100)
containing randomly selected records for equal number of synthetic and real patients. The asses-
sors were blinded to which records related to synthetic data patients and which related to real
patients. Assessors were asked to select at least 20 patient records from this test dataset and cate-
gorize them as synthetic or real based on the clinical characteristics. Assessors were free to either
use a random selection approach or select patients that stood out because of their clinical char-
acteristics. The research team then calculated the percentage of total records, synthetic patient
records and real patient that were correctly classified by each assessor.

3.5 Sensible synthetic data selection process

Based on the evaluation methods, we here define a sensible synthetic dataset(s) as that which meets
all the evaluation criteria, that is, univariate distance comparison, multivariate distance compar-
ison, and privacy preservation. In order to achieve this, the following algorithm (see Table 2) of a
set of sequential and recursive steps is provided to enable this decision process given the input of
synthetic and ground truth datasets.

The whole selection process is followed by the synthetic data generation process with a set of
predefined global variables:

SynGen = the synthetic data generation process that triggers the sensible synthetic data
selection process.

S = the output of SynGen, a list of generated synthetic datasets, total number≥ 1.
S′ = the ground truth, a single dataset.
Sc = the list of sensible synthetic data candidates, empty when initialized.
N = total number of variables in S′.

4 CASE STUDIES

Two case studies demonstrate the use of the proposed framework. Two different synthetic
dataset generation methods, that is, Copula and Bayesian networks, were applied followed by
the synthetic data selection processes based on the data generation methods. The potential ben-
efits of using synthetic data are also demonstrated which include data size enlargement, and
performance when used as alternative to ground truth in AI training, testing and prediction
applications.

4.1 Case study I: Indian liver patient dataset

The Indian liver patient dataset (ILPD) is a dataset that is open to be downloaded† and studied in
different researches such as in Venkata et al.’s work.36 While this is not sourced from EHR data,
the data representation reflects an EHR-sourced cross-sectional dataset. The purpose of this case
here is to demonstrate how the proposed synthetic data framework can be applied to this dataset
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T A B L E 2 Algorithm to select the sensible synthetic dataset

Step 1. Initialisation
SET S = the list of generated synthetic datasets, total number ≥1.
SET S′ = the ground truth, a single dataset.
SET Sc = the list to hold sensible synthetic data candidates, initialise to an empty list.
SET N = total number of variables in S′.

Step 2. Univariate comparison
SET C1 = minimum distance condition for discrete variables, i.e. probability difference, a number.
SET C2 = minimum distance condition for continuous variables, i.e. p-value threshold, a number.
SET C = total number of variables meeting distance conditions, initialise a value to 0.
FOR EACH s∈ S:

SET simun = outputs of E1 for a discrete variable and E2 for a continuous variable.
FOR EACH sim ∈simun:

IF sim is calculated from a discrete variable and sim ≤ C1
C = C+1.

ELSE
IF sim is calculated from a continuous variable and sim ≥ C2 (it could be sim ≤ C2 upon
hypothesis test)

C = C+1.
END IF

END FOR
IF C = N

Add s to Sc.
END IF
C = 0

END FOR
IF Sc is empty

CALL: SynGen
ELSE

RETURN Sc

END IF
Step 3. Multivariate distance comparison

SET C3 = minimum distance condition, a number upon a dimension reduction method, e.g. 0.2 for
NMDS.
SET C4 = minimum distance condition using correlation condition, a threshold value ∈ [−2,2].
SET C = total number of variables meeting distance conditions using E4, initialise a value to 0.
FOR EACH s∈ Sc:

SET simmu = outputs of E3 or E4.
IF simmu > C3 given using E3

Remove s from Sc

ELSE
IF using E4

FOR EACH sim ∈ simun:
IF sim = 0
C = C+1
END IF

END FOR
IF C! = N

Remove s from Sc

END IF
C = 0

(Continues)
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T A B L E 2 (Continued)

END IF
END FOR
IF Sc is empty

CALL: SynGen
ELSE

RETURN Sc

END IF
Step 4. Privacy preservation

SET pk
r = outliers found from each set from Sc , initialise to an empty list.

SET Pk′

r = outliers found from S′

FOR EACH s∈ Sc:
IF s ∈ (Pk′

r ∩ pk
r )

Remove s from Sc

END IF
END FOR
IF Sc is empty

CALL: SynGen
ELSE

RETURN Sc

END IF
Step 5. Output

RETURN Sc

for (1) generating synthetic data in which no ground truth should appear in these synthetic data
and (2) for showing how synthetic data can help scale data when there is a limited amount of data
and the impacts of such scaling on research.

4.1.1 Ground truth description

This dataset contains of a total of 583 people with 416 liver patient records and 167 nonliver patient
records. The dataset was collected from north east of Andhra Pradesh, India and it contains 441
male patient records and 142 female patient records. Table 3 summarizes the ILPD variables and
their statistics.

4.1.2 Using Copula to generate synthetic data

Copula is a multivariate cumulative distribution function that can be used to understand the
dependency structure among different variables and as a result is widely used to model multivari-
ate datasets when the underlying dependency is essential such as in Sklar’s work37 and Kao et al.’s
work.38 Since copula by default models correlation structure and the marginals/distributions for
each variable, part of the evaluation of the proposed synthetic data framework, that is, univari-
ate distance test (see Table 4), multivariate distance (see Figure 2) test using pairwise correlation,
can be done during the data generation process. In this case, the t-Copula39 is used to model the
data. Table 4 lists the approximated univariate distributions based on the skewness and kurtosis
estimated by bootstrap. Figure 3 shows the generated copulas visual representations based on the
ground truth single variable distributions and multivariate correlations.
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T A B L E 3 Variables used in ILPD study with summary statistics; the last variable is the dependent variable

#
Variables
(acronyms)

Variable type
(available values) Summary statistics

1 Age (age) Numeric Mean (SD): 44.7 (16.2)
Min<med<max: 4< 45< 90

2 Gender (gender) Categorical (0: female or
1: male)

0:24.4%
1:75.6%

3 Total bilirubin (tb) Numeric (1 decimal place) Mean (SD): 3.3 (6.2)
Min<med<max: 0.4< 1< 75

4 Direct bilirubin (db) Numeric (1 decimal place) Mean (SD): 1.5 (2.8)
Min<med<max: 0.1< 0.3< 19.7

5 Alkaline phosphatase (alp) Numeric (0 decimal place) Mean (SD): 290.6 (242.9)
Min<med<max: 63< 208< 2110

6 Alanine aminotransferase (alt) Numeric (0 decimal place) Mean (SD): 80.7 (182.6)
Min<med<max: 10< 35< 2000

7 Aspartate aminotransferase
(asat)

Numeric (0 decimal place) Mean (SD): 109.9 (288.9)
Min<med<max: 10< 42< 4929

8 Total proteins (tp) Numeric (1 decimal place) Mean (SD): 6.5 (1.1)
Min<med<max: 2.7< 6.6< 9.6

9 Albumin (alb) Numeric (1 decimal place) Mean (SD): 3.1 (0.8)
Min<med<max: 0.9< 3.1< 5.5

10 Albumin/globulin ratio (a/g) Numeric (2 decimal places) Mean (SD): 0.9 (0.3)
Min<med<max: 0.3< 0.9< 2.8

11 Liver patient (lp) Categorical (0: liver patient or
1: not liver patient)

0:71.4%
1:28.6%

4.1.3 Evaluation and sensible synthetic dataset selection

The Copula-based approach is based on univariate distribution (see Table 4) and multivariate
correlation (see Figure 2) obtained from ground truth and therefore, in this case the sensible syn-
thetic data selection stage will be mainly focused on ensuring there is no duplication between
synthetic data and ground truth. Figure 4 illustrates the generated synthetic ILPD pairwise vari-
able distributions using the copulas generated in Figure 3 versus ground truth pairwise variable
distributions, where no duplicated record exists between both datasets.

In addition to the pairwise comparison, Nonmetric Multidimensional Scaling (NMDS) is also
used here to explore how data instances are clustered in the multidimensional space. Two datasets
with similar clusters are mapped to a 2-dimensional space (stress = 0.12) as shown in Figure 5.
The similarity value obtained from an analysis of similarity (ANOSIM) (p = .001) further suggests
that there is no significant difference between groups.

4.1.4 Synthetic dataset applications

Two experimental tasks are done here to demonstrate (1) synthetic data can help increase the data
size when more data are required.(2) Synthetic data can have similar performance in predicting
task as ground truth.
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#
Variables
(acronyms)

Estimated
distribution

Graphical
representation

1 Age (age) Normal (mean: 44.7,
SD: 16.2)

2 Gender (gender) Binomial (size = 1,
prob = 0.24)

3 Total bilirubin
(tb)

Negative binomial
(size = 0.30,
mean = 3.30)

4 Direct bilirubin
(db)

Gamma (shape = 0.28,
rate = 0.189)

5 Alkaline
phosphatase
(alp)

Gamma (shape = 1.43,
rate = 0.004)

6 Alanine amino-
transferase
(alt)

Gamma (shape = 0.20,
rate = 0.002)

7 Aspartate
aminotrans-
ferase
(asat)

Negative binomial
(size = 0.13,
mean = 109.94)

8 Total proteins
(tp)

Normal (mean: 6.5,
SD: 1.1)

9 Albumin (alb) Normal (mean: 3.1,
SD: 0.8)

10 Ratio albumin
and globulin
ratio (a/g)

Gamma (shape = 8.24,
rate = 8.76)

11 Liver disease
patient (lp)

Binomial (size = 1,
prob = 0.71)

T A B L E 4 ILPD
variable distribution
modeling with the estimated
distribution and graphical
representations
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F I G U R E 2 ILPD (583 people)
ground truth Spearman’s correlation
coefficients [Color figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 3 Generated ILPD (583 people) copulas visual representations with Spearman’s correlation
coefficients [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 4 Synthetic (top) versus ground truth (bottom) ILPD (583 people) pairwise variables distributions
visual representations
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F I G U R E 5 Representation of datasets in 2-dimension space using NMDS [Color figure can be viewed at
wileyonlinelibrary.com]

Scaling up the data size
This task is to enlarge population size by 10 times, that is, from 583 people to 5830 people without
duplicated results between two datasets. Figure 6 shows the generated copulas visual representa-
tions, which can be compared with copulas with 583 people in Figure 3, and also Figure 2 in terms
of correlation coefficients. Among the generated 5830 records, 4033 people are liver patients and
1797 people do not have liver disease. The results clearly show that the correlational direction
between variables is well preserved despite the scaled data size.

Predicting liver disease
Prediction is one of the most common objectives for many researches. Here, the task
is to predict if a patient has liver disease, so the outcome variable will be lp (see
Table 3).

The first experiment will use the multiple liner regression to formulate a linear relationship
between predictor variables and outcome variable. The result from using ground truth of original
583 patients is compared with the result from using 5830 synthetic patients. Table 5 shows the
coefficient of determination R2 for both datasets which indicate that in both cases, the multiple
linear regression does not fit the data well as R2 values are close to 0.

The second experiment uses linear discriminant analysis (LDA)40 with a leave-one-out
cross-validation (LOOCV) to predict liver patients by distinguishing people with liver disease
from healthy people. Tables 6 and 7 show the confusion matrices for ground truth and synthetic
data, respectively. From the tables, the accuracy of the prediction by applying the same LDA can

http://wileyonlinelibrary.com
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F I G U R E 6 Generated ILPD (5830 patients) copulas visual representations with Spearman’s correlation
coefficients [Color figure can be viewed at wileyonlinelibrary.com]

Dataset R2

Ground truth (583 people) 0.12

Synthetic (5830 people) 0.11

T A B L E 5 The coefficient of determination values for both
ground truth and synthetic data using multiple linear regression

Predicted (percent)

Actual Yes No

Yes 398 (0.957) 18 (0.043)

No 154 (0.922) 13 (0.078)

T A B L E 6 Confusion matrix of ILPD ground truth

be obtained, which is 71.51% for synthetic data and 70.32% for ground truth. As a result, the
performance of using two datasets is very similar.

4.2 Case study II: Cardiovascular disease prediction

A common epidemiological research area concerns cardiovascular disease (CVD). Here, for the
first time, we use 57,397 patient instances to demonstrate how the proposed framework can be

http://wileyonlinelibrary.com


WANG et al. 19

T A B L E 7 Confusion matrix of ILPD synthetic data Predicted (percent)

Actual Yes No

Yes 3874 (0.961) 159 (0.039)

No 1502 (0.836) 295 (0.164)

used to generate and evaluate the synthetic data for a CVD study from a longitudinal clinical
dataset sourced from the Clinical Practice Research Datalink (CPRD) Aurum database. This case
study represents a typical scenario where healthcare data access is restricted. CPRD Aurum is a
UK primary care database covering over 20% of the UK population as of May 2020 and includes
17,400 clinical event types across patients with 25% of the patient data tracing back at least
20 years. A detailed data specification can be found online on the CPRD website‡ and in the
published data resource profile.41

4.2.1 Ground truth selection and description

This case study focuses on cardiovascular risk factors which are well characterized in the
clinical research literature,30,42,43 widely applied in clinical practice§ as well as supported by
clinical guidelines. The variables used are listed in Table 8, the first 22 variables are defined
as independent/predictor variables and the last variable, that is, stroke/heart attack is the
dependent/outcome variable. We adopted variable definitions and code lists as described in the
literature30 with validation by a clinical expert.

For demonstration purposes, all variables are predefined as privacy sensitive vari-
ables because these variables in combination are thought to be more likely to identify a
patient than when only a few of them are used. For this case study we only included
patients over 16 years to reflect the typical epidemiological profile of cardiovascular disease
risk.

4.2.2 Variable selection process

The generation of the ground truth dataset goes through three procedures, that is, (1) medical
code mapping, (2) cohort selection and clinical records extraction, and (3) longitudinal data to
cross-sectional data conversion.

In the medical code mapping procedure, clinical categorical variables (exclude eth-
nicity, gender, and region) in Table 8 are mapped to a set of medical codes in CPRD
Aurum. Table 9 demonstrates the medical codes mapped to the chronic kidney disease
variable.

In the cohort selection and clinical records extraction, the cohort is randomly sampled from
the population. A total of 57,397 data instances (patients) are sampled, and the summary statistics
are described in Table 8. As one of the purposes of this study is to showcase an application of using
AI algorithms to predict the CVD risk within 10 years’ time, the baseline for each patient starts
from 10 years before his/her first stroke/heart attack incident, or 10 years before October 1, 2018,
that is, October 1, 2008, with no prior stroke/heart attack incident before this date throughout the
clinical record.
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T A B L E 8 Variables used in CVD study with their summary statistics; the last variable is the dependent
variable

#
Variables
(acronyms)

Variable type
(available values) Summary statistics

1 Age (age) Numeric Mean (SD): 71.7 (14.3)
Min<med<max: 26< 73< 109

2 Ethnicity (ethr) Categorical White or not stated: 28.4%
Indian: 1.5%
Pakistani: 0.6%
Bangladeshi: 0.2%
Other Asian: 0.9%
Black Caribbean: 0.7%
Black African: 0.3%
Chinese: 0.1%
Other: 67.2%

3 Gender (gender) Categorical (male or
female)

FEMALE: 51.4%
MALE: 48.6%

4 BMI (bmi) Numeric (1 decimal
place)

Mean (SD): 28.1 (6.1)
Min<med<max: 8.3< 27.2< 149.7

5 Cholesterol/HDL ratio
(choleratio)

Numeric (1 decimal
place)

Mean (SD): 3.8 (1.2)
Min<med<max: 0.1< 3.6< 9.9

6 Systolic blood pressure
(sbp)

Numeric (0 decimal
place)

Mean (SD): 133.9 (16.4)
Min<med<max: 62< 134< 240

7 Systolic blood pressure
SD (sbps)

Numeric (2 decimal
places)

Mean (SD): 14 (6.5)
Min<med<max: 0.4< 13.3< 70

8 Family history of CHD
(fh_cad)

Categorical (TRUE or
FALSE)

TRUE: 3.0%
FALSE: 97%

9 Smoking status
(smoking)

Categorical Nonsmoker/unknown: 67.7%
Ex-smoker: 21.9%
Light smoker: 4.4%
Moderate smoker: 3.9%
Heavy smoker: 2.1%

10 On hypertension
treatment (treathyp)

Categorical (TRUE or
FALSE)

TRUE: 6.1%
FALSE: 93.9%

11 Chronic kidney disease
(ckidney)

Categorical (TRUE or
FALSE)

TRUE: 11.1%
FALSE: 88.9%

12 Rheumatoid arthritis
(ra)

Categorical (TRUE or
FALSE)

TRUE: 5.7%
FALSE: 94.3%

13 Atrial fibrillation (af) Categorical (TRUE or
FALSE)

TRUE: 6.3%
FALSE: 93.7%

14 On atypical
antipsychotic
medication
(atyantip)

Categorical (TRUE or
FALSE)

TRUE: 0.3%
FALSE: 99.7%

15 Migraines (migr) Categorical (TRUE or
FALSE)

TRUE: 5.7%
FALSE: 94.3%

(Continues)
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T A B L E 8 (Continued)

#
Variables
(acronyms)

Variable type
(available values) Summary statistics

16 Systemic lupus
erythematosus (sle)

Categorical (TRUE or
FALSE)

TRUE: 0.1%
FALSE: 99.9%

17 Severe mental illness
(semi)

Categorical (TRUE or
FALSE)

TRUE: 10.3%
FALSE: 89.7%

18 Type 2 diabetes (type2) Categorical (TRUE or
FALSE)

TRUE: 15.3%
FALSE: 84.7%

19 Type 1 diabetes (type1) Categorical (TRUE or
FALSE)

TRUE: 1.4%
FALSE: 98.6%

20 On regular steroid
tablet (steroid)

Categorical (TRUE or
FALSE)

TRUE: 2.6%
FALSE: 97.4%

21 Region (region) Categorical London: 9.9%
East of England: 3.4%
North East: 7.4%
North West: 20.2%
Yorkshire and the Humber: 4.5%
East Midlands: 3.0%
South Central: 15.6%
South West: 8.3%
West Midlands: 14.4%
South East Coast: 13.3%

22 Erectile dysfunction
(impot)

Categorical (TRUE or
FALSE)

TRUE: 4.7%
FALSE: 95.3%

23 Stroke/heart attack
(strokeha)

Categorical (TRUE or
FALSE)

TRUE: 17.5%
FALSE: 82.5%

When converting the longitudinal data to cross-sectional data, the extracted clinical records
are “rolled up” for each variable so that for each patient’s 10 years of clinical data can be summa-
rized as a single record of the variables/columns defined in Table 8. For the variable “age,” each
patient’s baseline age was used, and an average value was used for variables “choleratio,” “sbp,”
and “sbps.” For the rest of the variables, each earliest value was used.

4.2.3 Using Bayesian networks to generate synthetic data

Bayesian networks (BNs) are a type of probabilistic graphical model that models the joint distri-
bution of a domain using a directed acyclic graph structure and local conditional distributions
associated with each node. Inference algorithms can be used to learn these graphical structures
and to predict variable values based on their posterior distributions given some evidence. In the
clinical study context, BNs are often used to discover new relationships among multiple fac-
tors such as in Fuster-Parra et al.’s work33 and to identify key factors that contribute to certain
outcomes in CVD studies as found by Multani et al..44

Figure 7 shows the inferred BN structure from the CVD data in the form of a directed acyclic
graph (DAG) between variables.
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Medical code Clinical term description

2773184015 Chronic kidney disease stage 3

304071000000115 Chronic kidney disease stage 3

304091000000116 Chronic kidney disease stage 4

304111000000114 Chronic kidney disease stage 5

557811000000119 Chronic kidney disease stage 3A

557831000000110 Chronic kidney disease stage 3B

595811000000117 Chronic kidney disease stage 3 with proteinuria

595871000000110 Chronic kidney disease stage 3 without proteinuria

595931000000116 Chronic kidney disease stage 3A with proteinuria

595991000000115 Chronic kidney disease stage 3A without proteinuria

596131000000114 Chronic kidney disease stage 3B without proteinuria

596261000000111 Chronic kidney disease stage 4 without proteinuria

T A B L E 9 Chronic
kidney disease medical
code mapping

The accompanying conditional probabilities for each interlinked variable are also learned
which serve the basis for making inference based on evidence and sampling new data, that is,
synthetic data from BNs learnt from the ground truth. Taking the smoking status for example,
a probability table for white male patients can be learned (see Table 10). Synthetic data can be
generated via random sampling from the learned Bayesian network.

4.2.4 Evaluation and sensible synthetic dataset selection

The evaluation starts by sampling the same number of patients from both synthetic data and
ground truth. In this case study, we considered a sample size of 800 with one set of ground truth of
800 patients, and five sets of synthetic datasets (800 sample in each set) as the candidate sensible
synthetic datasets. The following sections report the analysis processes of one of the candidate
datasets that best meets all our criteria, that is, (1) high similarity in terms of results of univariate
and multivariate analyses; (2) no duplicate records in ground truth and synthetic data in terms of
outliers in both datasets.

Univariate distance analysis
For continuous type variables, KS test is used (see Table 11). For discrete type variables, the proba-
bilities of available values are compared, and a probability difference smaller than 2% is acceptable
in this case (see Table 12).

Multivariate distance analysis
A correlation analysis is initially used to determine if the generated synthetic data cap-
tures the interrelationships as would be expected in the ground truth. Figure 8 shows the
test that can confirm that one of the synthetic datasets can capture the significant cor-
relations from ground truth. The correlation between BMI and weight in this case is the
only pair that is significantly correlated, that is, 0.82 for synthetic data and 0.86 for ground
truth.
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F I G U R E 7 Inferred
DAG of internal
relationships between
CVD variables (annotated
by acronyms from Table 8)
using BN structure
learning [Color figure can
be viewed at
wileyonlinelibrary.com]

T A B L E 10 Learned male and female
smoking status probability TABLE

ID Smoking status Male Female

1 Nonsmoker/unknown 0.30 0.36

2 Ex-smoker 0.28 0.16

3 Heavy smoker 0.04 0.02

4 Light smoker 0.04 0.04

5 Moderate smoker 0.04 0.04

Like the previous case study with NMDS, data are mapped to a 2-dimensional space
(stress = 0.18) as shown in Figure 9. Both datasets illustrate similarities in terms of clusters and
distribution such as a clear split of population horizontally in lower data dimension. The similar-
ity value from ANOSIM is p = .001, which suggests that there is no significant difference between
groups.

Outlier detection and comparison
Instead of doing an exhaustive pairwise comparison, the outlier approach can be an alternative
approach of eliminating duplicated outlier records which are sometimes important for a clin-
ical study yet with high privacy risks. Here, the DBSCAN35 is used to identify the outliers in
the dataset, 36 outliers are identified from ground truth, and 21 outliers from synthetic data,
respectively (see Figure 10).

http://wileyonlinelibrary.com
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Variable p-Value

Age .74

BMI .65

Cholesterol/HDL ratio .59

Systolic blood pressure (sbp) .72

Systolic blood pressure SD (sbps) .55

T A B L E 11 KS test for continuous variables

F I G U R E 8 The partial correlation matrix for both ground truth (left) and synthetic data (right), all other
insignificant correlations are removed (P> .05) [Color figure can be viewed at wileyonlinelibrary.com]

Clinical validation
The initial clinical evaluation of the BN learned variable relationships found that almost all rela-
tionships were well recognized in the medical research and where this was not the case, there
was a possible explanation for the observed relationships in the ground truth data. Expert 1 ini-
tially reviewed a random sample of 20 records and then chose another four records for patients
who had the outcome of interest (heart attack or stroke). Expert 2 reviewed a random sample of
25 records and another 19 records for patients who had the outcome of interest (heart attack or
stroke). The overall results indicate that while both experts could correctly identify at least 50%
of the sampled records (62.5% for expert 1 and 50% for expert 2) as being either synthetic or real,
the accuracy was markedly different for real records (92.8% for expert 1 and 84.2% for expert 2)
and synthetic records (20% for expert 1 and 6.7% for expert 2). Table 13 summarizes the clinical
evaluation results.

4.2.5 Synthetic dataset applications

Two experiments are carried out in the context of common research activities to demon-
strate (1) synthetic data can be an alternative to ground truth when data access is restricted
and (2) synthetic data can be a good alternative to machine learning training/testing
dataset.

http://wileyonlinelibrary.com
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T A B L E 12 Probability differences via probability of ground truth – probability of generated synthetic
data

Variable Probability difference (ground truth - synthetic)

Ethnicity (ethr) White or not stated: 1.2%
Indian: 0.8%
Pakistani: 0.2%
Bangladeshi: −0.1%
Other Asian: 0.2%
Black Caribbean: −0.2%
Black African: 0.1%
Chinese: 0%
Other: −2.2%

Gender (gender) TRUE: 1.4%
FALSE: −1.4%

Family history of CHD (fh_cad) TRUE: −0.4%
FALSE: 0.4%

Smoking status (smoking) Nonsmoker/unknown: −1.2%
Ex-smoker: 0.8%
Light smoker: 0.2%
Moderate smoker: 0%
Heavy smoker: 0.2%

On hypertension treatment (treathyp) TRUE: 0.02%
FALSE: −0.02%

Chronic kidney disease (ckidney) TRUE: 1.1%
FALSE: −1.1%

Rheumatoid arthritis (ra) TRUE: 1.3%
FALSE: −1.3%

Atrial fibrillation (af) TRUE: 0.4%
FALSE: −0.4%

On atypical antipsychotic medication (atyantip) TRUE: 0.5%
FALSE: −0.5%

Migraines (migr) TRUE: 1.4%
FALSE: −1.4%

Systemic lupus erythematosus (sle) TRUE: 1.1%
FALSE: −1.1%

Severe mental illness (semi) TRUE: 0.3%
FALSE: −0.3%

Type 2 diabetes (type2) TRUE: 1.5%
FALSE: −1.5%

Type 1 diabetes (type1) TRUE: 1.7%
FALSE: −1.7%

On regular steroid tablet (steroid) TRUE: 0.9%
FALSE: −0.9%

(Continues)
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T A B L E 12 (Continued)

Variable Probability difference (ground truth - synthetic)

Region (region) London: −0.4%
East of England: −0.2%
North East: −0.1%
North West: 1.2%
Yorkshire and the Humber: 0%
East Midlands: −0.8%
South Central: 1.3%
South West: 0.6%
West Midlands: −1.2%
South East Coast: −0.4%

Erectile dysfunction (impot) TRUE: 1.7%
FALSE: −1.7%

Stroke/heart attack (strokeha) TRUE: 1.5%
FALSE: −1.5%

F I G U R E 9 Representation of datasets in 2-dimension space using NMDS [Color figure can be viewed at
wileyonlinelibrary.com]

Alternative to ground truth
The cardiovascular disease (CVD) risk calculator30 is used to predict 10-year CVD risk based
on the features described in Table 8. It is applied to both ground truth and synthetic datasets.
Figure 11 shows the ROC curves for both ground truth and synthetic data. Figure 12 shows
the synthetic data ROC curve, and the difference between two ROCs is trivial (p = .52077).
In terms of the AUCs, there is 0.9% difference, that is, synthetic dataset is 0.9% higher (73.6%
vs. 72.7%). The best fit threshold values are 24.4 for ground truth and 20.5 for synthetic
dataset.

http://wileyonlinelibrary.com
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F I G U R E 10 The detected outliers in both ground truth (36 data instances) and generated synthetic data
(21 data instances). Darkest points are outliers [Color figure can be viewed at wileyonlinelibrary.com]

T A B L E 13 Clinical evaluation results

Expert 1 results Expert 2 results

Type of records evaluated
Correctly
classified

Incorrectly
classified Correctly classified Incorrectly classified

Total records 15/24 (62.5%) 9/24 (37.5%) 17/34 (50%) 17/34 (50%)

Synthetic records 2/10 (20.0%) 8/10 (80.0%) 1/15 (6.7%) 14/15 (93.3%)

Real records 13/14 (92.9%) 1/14 (7.1%) 16/19 (84.2%) 3/19 (15.8%)

F I G U R E 11 ROC curves of ground
truth (GTQ3) and synthetic data (SYQ3) for
CVD risk calculator. The Delong45 method
is used to compare the AUC of both GTML
and SYML and the p-value is .52077. AUC
of GTQ3 is 72.7% and the associated best
fit threshold value is 24.4 [Color figure can
be viewed at wileyonlinelibrary.com]

Machine learning algorithms training/testing
The ground truth and synthetic datasets are compared in terms of the results when apply-
ing same sets of machine learning algorithms to predict CVD risk. In this experiment, stacked
ensembles46 is used for the purpose of showcasing how a combination of machine learning can
be applied in parallel to achieve similar results given this imbalanced clinical data, for example,
the True-to-False rate of stroke/heart attack is <20% and type 1 diabetes is <2%. Six algorithms
are included namely,

1. Least absolute shrinkage and selection operator (LASSO)47

2. Classification and regression training (CARET)48

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 12 ROC curve for synthetic
data. AUC is 73.6% and the best fit
threshold value is 20.5 [Color figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 13 ROC curves of
ground truth (GTML) and synthetic data
(SYML) with the same set of machine
learning algorithms. The Delong45

method is used to compare the AUC of
both GTML and SYML and the p-value
is .9668. AUC of SYML is 82.8% and the
associated best fit threshold value is 0.9
[Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 14 ROC curve for ground
truth. AUC is 82.7% and the best fit
threshold value is 0.9 [Color figure can be
viewed at wileyonlinelibrary.com]

3. Extremely randomized trees49

4. Feed-forward neural networks50

5. Nonnegative least squares51

6. Random forest52

Figure 13 shows the ROC curves for both ground truth and synthetic data, while Figure 14
shows the ground truth ROC curve, and the difference between two ROCs is trivial (p = .9668).
In terms of the AUCs, there is 0.1% difference, that is, synthetic dataset is 0.1% higher (82.8% vs.
82.7%).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Best fit threshold prediction value is at 0.9 for both datasets, we also can further obtain the
following results.

1. For synthetic dataset—true positive rate (TPR) = 78.9% and false positive rate (FPR) = 27%
2. For ground truth—TPR = 74.1% and FPR = 25.4%

5 CONCLUSIONS

A framework to generate and evaluate synthetic electronic healthcare data is proposed with the
aim of balancing synthetic data utility and preserving patient privacy. Our definition of data utility
is that it should be ultimately clinically meaningful.

5.1 Outcomes

These were assessed via two case studies to demonstrate the framework’s applicability to different
scenarios and capability to deal with heterogeneity by:

1. using an open cross-sectional dataset and a licensed longitudinal database as ground truth
data sources;

2. review of two different synthetic data generation methods including the copulas and inferred
Bayesian structure and review of the generated synthetic data by clinical experts in the author
team and project steering group;

3. comparison of (a) univariate and multivariate distance and (b) of performance of differ-
ent algorithms including machine learning in the ground truth and synthetic datasets as
presented in both studies.

For both studies, we included statistical tests as well as clinical tests with success in
the latter being defined as “the inability to distinguish between the ground truth and
synthetic data by a clinical expert.” In our clinical evaluation we were able to demon-
strate that while clinical experts were able to classify real patient records correctly with a
high degree of accuracy, they tended to misclassify synthetic records as being real. These
results strongly suggest that our synthetic data were able to reproduce clinically meaningful
relationships.

The studies suggest that the proposed synthetic data generation approach allows for a high
degree of fidelity between the synthetic and ground truth data, thus enabling the execution of
complex machine learning algorithms in the synthetic data as if in the ground truth. The lifecycle
of the synthetic data production from ground truth selection to synthetic data generation, evalu-
ation, and sensible synthetic data output can also be fit into the specific data generation methods
according to different privacy requirements.

5.2 Discussion and limitations

We have demonstrated the applicability of our proposed synthetic data generation and evaluation
framework using different healthcare datasets and scenarios. This framework is flexible enough to
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allow for different approaches to synthetic data generation while allowing researchers to demon-
strate that they have balanced data utility with patient privacy needs. There has been recent
interest in employing deep learning approaches of multilayer neural networks such as generative
adversarial networks (GANs)¶ for synthetic data generation with the belief that these may be well
suited to capture complex features in the data. These approaches could be applied within the pro-
posed framework; however, a unanimous voice from regulators and the public is that a more trans-
parent approach is required.53 This is partly because of the high sensitivity of the EHR data which
is usually represented by high risks, it is associated with in case of privacy being compromised or
wrong clinical outcomes. As a result, when choosing the data generation methods, we encourage
the use of more transparent instead of “black box” type algorithms because of the extra overhead
on interpretation model architectures and intermediary results. There are other challenges during
synthetic data generation such as data missingness, complex interactions between variables and
sensitivity analysis statistics from machine learning classifiers. These were addressed in our other
work.54

We have not included data management in our proposal to reshape the longitudinal ground
truth data from a long to a wide format, that is, converting the longitudinal data to cross-sectional
data (a process we refer to as data “roll-up”). However, it should be noted that data manage-
ment prior to synthetization means that the end users of the synthetic data, would have to rely on
assumptions made by the team generating the synthetic data. Additional methodological works
can be undertaken to explore whether the methods included in this work can be applied to lon-
gitudinal data source without the need for overt manual data management, while still preserving
clinical meaningfulness.

5.3 Outlook

In summary, among those benefits discussed at the beginning of this article, the authors believe
synthetic data can be an effective alternative to real-world data in different cases due to its unique
advantages: when access to the ground truth is restricted, for example, because of privacy issue,
and when the real data size is not “big” enough or when lacking of machine learning/AI train-
ing/testing datasets. Our case studies demonstrated that using the proposed framework, synthetic
healthcare data can be successfully generated for these scenarios. These results provide a success-
ful proof of concept which can be extended to many other clinical research scenarios. In addition,
the work here also provides a methodological template to encourage new insights on the use of
synthetic data in the age of AI.
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ENDNOTES
∗https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-
gdpr/lawful-basis-for-processing/special-category-data/.

†https://archive.ics.uci.edu/ml/index.php.
‡https://www.cprd.com/primary-care.
§https://www.qrisk.org/three/index.php.
¶https://datasciencecampus.ons.gov.uk/projects/generative-adversarial-networks-gans-for-synthetic-dataset-

generation-with-binary-classes/
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