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Abstract: Milling operations in various production processes are among the most important factors
in determining the quality, stability, and consumption of energy. Optimizing and stabilizing the
milling process is a non-linear multivariable control problem. In specific processes that deal with
natural materials (e.g., cement, pulp and paper, beverage brewery and water/wastewater treatment
industries). A novel data-driven approach utilizing real-time monitoring control technology is
proposed for the purpose of optimizing the grinding of cement processing. A combined event
modeling for feature extraction and the fully connected deep neural network model to predict the
coarseness of cement particles is proposed. The resulting prediction allows a look ahead control
strategy and corrective actions. The proposed solution has been deployed in a number of cement
plants around the world. The resultant control strategy has enabled the operators to take corrective
actions before the coarse return increases, both in autonomous and manual mode. The impact of the
solution has improved efficiency resource use by 10% of resources, the plant stability, and the overall
energy efficiency of the plant.

Keywords: coarse return; prediction; deep learning; cement; milling and grinding process; event
modeling; optimization; data-driven methods; artificial intelligence

1. Introduction

The cement manufacturing process is comprised of a number of sub-operations such
as quarrying, crushing, raw milling, burning, cooling, and cement grinding. The control of
cement grinding is an essential part of the process of cement production. It has remained a
challenging problem for years because of the existing model uncertainties, nonlinearities,
variation in the feedstock, and multi-factor interdependencies. Modeling, optimization,
and control of integrated grinding circuits are some of the major challenges in the efficiency
and productivity of cement production systems. Minimizing energy consumption while
simultaneously improving product quality and process efficiency would be a major contri-
bution to the cement industry, and reduce global energy consumption and greenhouse gas
emissions [1–5]. However, the large non-linear nature of the process poses major challenges
for creating feasible control tactics to maintain process stability and increase efficiency and
productivity. Therefore, in our experience of more than 20 years in dealing with cement
production, predicting the events that affect the production process is highly desirable, and
with the recent technological advancements in real-time data acquisition and analytics be-
comes achievable in practice. This predictive capability to look ahead to the quality-related
variables in the milling plant will allow the use of corrective control policies in order to
improve the stability of the system. In our view, such capabilities can be deployed in any
industrial setting that has a similar closed-loop controlled milling process regardless of the
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raw material (e.g., pulp and paper, beverage brewery and water/wastewater treatment
industries).

Figure 1 shows a schematic of a closed-loop cement grinding process control system [6].
Inside the rotating ball mill, the feed flow supplies raw material (natural stones of various
sizes and humidity) to be ground by steel balls. A bucket elevator is used to transport the
mill product into the separator where depending on adjustable airflow rate and speed,
it is divided into a flow of rejected oversized particles (named coarse return), which are
returned to the mill inlet to be ground again (grinding mostly is performed in closed circuit)
and a flow of fine particles, which forms the final product.
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In the cement grinding process, coarse return is one of the main parameters of the
process, representing the product quality output. It has a major role in setting the opti-
mization and control objective function of the closed-loop process. Measurement of coarse
returns allows for better control of process efficiency as variations in the performance of the
grinding circuit occur over time. Understanding the basic and interaction effects of the mill
and separator variables on coarse return is an essential factor of the process improvement
and is the motivation of this study. In particular, if the coarse returns flow rate increases,
then the production flow needs to be reduced so as to not aggravate the increased quality
problem. Predicting coarse return helps with stabilizing the process by controlling the con-
trollable system’s parameters such as fresh feed and/or separator’s speed. Nevertheless,
grinding is an unstable and complex process whose variables have coupling, time-varying
delay, and non-linear characteristics caused by natural variation, mill load, and fluctuation
of the raw material hardness and grindability. It leads to obstruction of the mill and inter-
ruption of the grinding process. The phenomenon is known as ‘plugging’ which increases
the complexity of process control and optimization by conventional multivariable data
analytics and machine learning methods.

This paper proposes a fully connected deep neural network (FCDNN) model to predict
the upcoming coarse return in the cement grinding process up to 15 [min] ahead. The
choice of FCDNN is for the reason that deep learning has a stronger model expression
ability to produce a good fit for highly non-linear system behavior and the associated data
of the complex interactions of the grinding system and, consequently, better prediction
accuracy. Our further experience in practice validates and verifies its ability to capture the
complexity of the grinding process accurately in the plant that the model was evaluated.
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This will be proved by the comparison of the results with other NN methods in the industry.
In the following, we will review the existing literature on the cement grinding process
prediction and optimization.

Related Works

Modeling and simulation of the cement grinding process are efficient tools for pre-
dicting and optimizing the process [7]. Modeling grinding circuits should consider several
grinding operational variables such as the mill and separator details to name a few. In
recent years, many strong grinding process simulation models have been developed to
date. These models of industrial grinding circuits can be considered robust and highly accu-
rate [8,9]. The majority of the proposed models reported in the literature are a combination
of physical laws of conservation of energy state and empirical correlations. Using empirical
methods, an inferential model was necessary for many models as the real physics behind
the phenomena is not very clear. This brings the necessity of constructing end-to-end model
mapping of the inputs and the outputs of a grinding plant, possibly needing a grey box or
black box method approach to solve the problem. One efficient solution to these problems
is building data-driven dynamic models for integrated grinding circuits [2,7]. These models
are trained only on data collected from inlet and outlet streams of the grinding circuit and
result in multiple-input-multiple-output (MIMO) system identification models.

For advanced modeling of complex and non-linear dynamics process operations
where an accurate mathematical model cannot be established, intelligence-based advanced
methods have drawn the increasing attention of researchers [10]. Availability of a large
amount of acquired data as an outcome of the deployment of advanced instruments,
sensors, and novel networking technologies, which was not usually possible in the past,
also justify this attention. Therefore, studying intelligence-based advanced methods by
combining a large amount of production process data along with empirical knowledge of
operators is an effective way to solve the advanced control problems in complex industrial
applications where accurate mathematical models are difficult to establish [11].

The main characteristic of artificial intelligence (AI) technologies and machine learning
(ML) techniques is their ability to emulate human reasoning through data and knowledge
while avoiding human subjectivity and arbitrariness. Thus, with the growth in the develop-
ment of AI and ML techniques in the recent past, the interest has shifted towards studying
these techniques, and they have been widely used to deal with modeling and control
problems of complicated industrial processes. Deep neural networks (DNNs) are examples
of data-driven ML methods that have the characteristics of quick response and complex
non-linear approximation to process with characteristics of nonlinearity, time-varying delay,
and coupling. Therefore, DNNs are widely applied for non-linear problems in regressive
prediction and show good performance in solving non-linear problems [3,12–14]. For ex-
ample, the recurrent neural networks (RNNs) (which is a type of DNN) methodologies are
used to compete with prominent system identification tools, such as wavelet networks to
model time series data [15,16]. Long short-term memory (LSTM) networks are RNN-based
methods capable of extracting features shared over an extended range of time and can be
used with ML methods such as the regression method [17,18]. However, although RNNs
including LSTMs were used for modeling sequential data for a few decades, their success
in system identification was limited due to their inability to capture significantly long-time
delays in-process data. Moreover, these are heuristic methods, and their performance is
highly dependent upon the experience of users and they are challenging to implement [19].

Another NN method widely used in system identifications of complex non-linear
processes is the modeling method based on the radial basis function (RBF) NN due to
its simple structure, straightforward training, and fast learning convergence, and ability
to approximate arbitrary non-linear function. However, its time consuming and slow
application is its main disadvantage in real-time applications [20].

In [21,22], two research works have been conducted on the modeling of the fineness
of particles in the milling circuit to control a cement mill better. These research works
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have tried to explore the relationship between the particle size of cement produced (a
quality performance indicator) and various mill parameters and consequently provide a
model for predicting Blaine (fineness of particles). Different data-driven non-linear models
including LSTM and multilayer perceptron (MLP) results on a cement mill dataset have
been compared and concluded that predictive models’ accuracy highly depended on the
cement mill dynamics.

The contribution of this research lies first in the prediction of coarse return for process
control in cement plants which is not yet delivered in the literature. This study aims to
leverage recent advances in deep learning techniques to propose an FCDNN model to
predict the upcoming coarse return in a cement grinding process. In the next section, we
describe a real-world cement industry’s closed grinding circuit system use case and the
data collection campaign alongside the proposed FCDNN model. This will be followed
by a review of the deployed model’s behavior in the dynamics of the complex operations
and prediction results. Section 4 discusses the results and comparison and evaluation with
two other methods. Finally, this study is concluded by a conclusion and future research
direction.

2. Materials and Methods

In this section, the used materials, including the collected data, preparation, and use
case, will be explained. This will be followed by the proposed FCDNN techniques structure
and implementation.

2.1. Data Collection and Preparation (Sampling Campaigns)

A one-month data collection campaign was run in a real grinding process plant. A total
number of 45 process variables of the mill and separator were acquired through DataBridge
technology. DataBridge is a propriety Control Area Network (CAN) application to connect
the process control data acquisition and monitoring devices to the process optimizer. [23].
One of the main challenges during the sampling of a continuous process is choosing the
right sampling rates. The choice of a proper sample frequency may avoid information
annihilation (i.e., low frequency) or pre-process for data segmentation and aggregation due
to the collecting of similar data (i.e., high frequency). In [24] (p. 57), one of the methods
proposed for the sampling of continuous signals in system identification was:

T ≈ τmin/3 (1)

where τmin is the shortest process time constant, and T is sampling time.
In our experimentation, the study of process signals showed the shortest process time

constant was about three minutes. Then, according to Equation (1), the data sampling
rate of the system was set at a sample per minute. That meant a collection of about
43,000 samples in a month timeframe.

2.1.1. Filtering the Outliers

Any measurement out of the normal operation range had been filtered out as the
outliers. These ranges were acquired from operators.

2.1.2. Filtering out the Irrelevant Inputs

Event-Modeling is a technique for real-time input variable selection in large complex
systems [25]. This method is able to group and rank relevant input variables in order
of their importance and impact on the model output variable(s). It does not require
prior knowledge of the analytical or statistical relationship that may well exist between
system input and output variables. This method supports the time-critical dimensionality
reduction problem with limited computational resources, which made it suitable for feature
extraction and dimensionality reduction in this experiment.

The event-Modeler algorithm was based on evaluating the relationship between the
actual events (model’s output variables) to the triggered events’ cause (model’s input
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variables). The input/output pairs were used to generate the event-driven incidence
matrices (EDIM) element. The application of the ranking ordering clustering (ROC) method
resulted in clusters of the most relevant group of input event data (sensors and actuators)
against output event data (plant performance indicators). Event tracking, EDIM, and final
clustering matrix are presented in Figure 2. As shown in this example, the final clustering
table is the normalization of a single event clustering matrix over the sampling time frame.

Consequently, the algorithm clustered the input/output variables in two groups of
highly coupled clusters. i.e., input variables (TDs) 4, 6, and 7 had high impacts on output
variables (EDs) 1 and 4 and the same interpretation for the other cluster. A detailed
explanation of the event-modeling algorithm and the basic concept is discussed in [25,26].
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In this experiment, 33 collected process and environmental variables were considered
as the event-modeler input variables and coarse return as the output variable. The six
highest-ranked (coupled) input variables over output (coarse return) were considered as
the most important input variables following the industry expert’s approval. The event-
modeler correlation results between the input parameters and output (coarse return) are
shown in Table A1 in Appendix A. These six inputs were the following; the mill’s four
parameters of:

• Fresh feed (FRF): Measured the amount of material that was being fed to the mill
[ton/h].

• Mill inlet fill (MIF): Measured the filling level on the first chamber of the mill [%].
• Mill outlet fill outlet (MOF): Measured the filling level on the second chamber of the

mill [%]
• Bucket elevator amperage (BEA): Transferred the mill outputs to the separator in

amperes [A].

Plus, two separator parameters of:

• Separator Amperage (SEA): This amperage was used by the separator; it was depen-
dent on the amount of incoming load [A].

• Separator Speed (SES): Defined the separator velocity (related with final cement
quality, manually set by operators).

Altogether, these six parameters were the model inputs. In addition, the model output
was:
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• Coarse return (COR) [ton/h].

The plots of each variable are shown in Figure 3. The plots are normalized for
confidential purposes.
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A schematic of the shortlisted mill and separator parameters, including the coarse
return feedback loop as presented in Figure 4.
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2.1.3. Delays Estimation

Delays interactions are a ubiquitous feature of many dynamical systems, including
the cement industry. Therefore, time delays played a fundamental role in our experiment.
Noteworthy, the time delay was non-linear and caused complex dynamic behavior, which
could not be explained by just looking at the constituents of a system. These delays were
between the mill and separator parameters and the coarse return. To simplify the non-linear
delays, a cross-correlation analysis time delays estimation [27] was conducted between the
mill and separator parameters and coarse return. This technique was used to determine
the temporal relationship between process variables. By finding the highest absolutes
cross-correlation for various lag times, an average delay time between the two variables
could be determined. For example, the time lag between mill parameters (i.e., FRF, MIF,
MOF, and BEA), and coarse return varied between 1 to 60 min, but in minute 23, the
cross-correlation was in the maximum. This time lag for separator parameters (i.e., SEA
and SES) and coarse return is almost null. Figure 5 shows the applied cross-correlation
technique results between the mill and separator parameters and coarse return variable
with different time lags.
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2.2. Fully Connected Deep Neural Networks

NN algorithms are extensively used by machine learning and data scientists for
solving different kinds of data regression and classification problems. Artificial NN (ANN)
has proven in many applications to be a robust data modeling tool capable of capturing
and representing complex input/output relationships. They are a human brain-inspired
programming paradigm that allows a computer to learn from observational data similar to
the brain.

Fully-connected deep neural networks (FCDNNs) is a member of a general class of
feedforward neural networks. An FCDNN takes in vector data as an input and outputs a
vector. An FCDNN is made up of several fully connected layers and each fully connected
layer consists of multiple nodes. Data enters the FCDNN via the input layer nodes. Each
node (excluding input layer nodes) is connected to all nodes in the earlier layer. The values
at each node are the weighted sum of node values from the previous layer. The weights are
the trainable parameters in FCDNN. The outputs of the hidden layer nodes typically go
through a non-linear activation function, e.g., exponential linear units, while the output
layer tends to be linear. The value at each output layer node typically represents a predicted
quantity. Therefore, FCDNNs allow the prediction of multiple quantities simultaneously.

Fully connected networks are a subcategory of deep neural networks. These net-
works are ‘Structure Agnostic’ and are fully connected networks [28]. The structure of the
proposed FCDNN developed for this study is represented as follows in Figure 6.
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2.2.1. FCDNN Structure

The FCDNN used in this study had a six-layer network structure, consisting of an
input layer, four hidden layers, and an output layer, each composed of a plurality of
neurons that could be calculated in parallel. The connection between the hidden layers and
between the first hidden layer and the input layer was connected by an activation function.
The details of the structure of the proposed FCDNN are as following:

(A) Fully-connected layer (or dense layer)

The fully connected layers were able to learn non-linear combinations of input features
considerably efficiently. Neurons in a fully connected layer have full connections to all
activations in the previous layer. Their activations can hence be computed with a matrix
multiplication followed by a bias offset [29]:

H(x) = Wx + b, (2)

where W ∈ R(K,n) is the weight matrix and b ∈ RK is the bias offset.

(B) ELU activation layer

Exponential Linear Unit (ELU) is a function that tends to converge cost faster and
generate more accurate results [30]:

ELU(x) =

{
α(ex − 1) i f x ≤ 0

x i f x > 0

}
(3)

ELU uses the activation function in order to achieve mean zero, as the learning can
be made faster. For the ELU activation function, an α value is picked; a common value
is between 0.1 and 0.3. Hence it is a good option against activation functions like ReLU
(Rectified Linear Unit) since it decreases the bias shift by pushing the mean activation
towards zero. Unlike ReLU, ELU can produce negative outputs.

(C) Dropout layer

Dropout is a sort of regularisation that randomly drops some proportion of the nodes
that feed into a fully connected layer. Dropping a node means that its contribution to the
corresponding activation function is set to zero, and therefore it prevents the network from
memorizing the training data (overfitting). With dropout, training loss will no longer tend
rapidly toward zero, even for extensive deep networks.
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(D) Linear activation layer

A linear activation function takes the form [28]:

A = cx, (4)

where c is a constant number and activation is proportional to the input. This way, it
provides a range of activations, so it is not binary activation.

2.2.2. Loss and Optimization Functions

In most learning networks, the error is determined as the difference between the actual
output and the predicted output [28]:

(w) = p− p̂, (5)

where J is a function of internal parameters of model, weights, and bias. The function that
is used to compute this error is known as the loss function.

Different loss functions will provide different errors for the same prediction, and
therefore have a considerable effect on the performance of the model. One of the most
widely used loss functions is the mean absolute error (MAE) that was used in this research,
which calculates the absolute of the difference between the actual value and predicted
value. Various loss functions are used to deal with different types of tasks, i.e., regression
and classification.

For accurate predictions, minimization of the calculated error functions is needed. In
a NN model, the weights and biases are modified using a function called the optimization
function. Some important first-order optimization functions are Adaptive Moment Estima-
tion (Adam), Stochastic Gradient Descent, and Adagrad [30]. It also calculates a different
learning rate. Adam works well in practice, is faster, and outperforms other techniques,
and was used in this paper with a learning rate set to 0.01.

2.3. The Proposed FCDNN Implementation

For this experiment, the proposed architecture was the application of an FCDNN
and several hyperparameters that had to be determined, including the number of fully
connected layers, the number of nodes in the fully connected layers, dropout, etc. The
presented network settings in Table 1 were set after several comparative experiments,
which showed that this combination produced the best performance for the network.
Hidden layers (dense layers) 1 to 4 were features extraction, the ELU layer was added at
the end of every dense layer for accelerating the training speed, and the dropout layer was
added after the third dense layer to avoid the extraction of redundant features and prevent
the over-fitting problem which regularly occurs in deep neural networks [31].

2.3.1. Model Structure.

There was about 43,000 min of data. Each data sample consisted of separator actual
speed, fresh feed, mill fill inlet, mill fill outlet, bucket elevator amperage, separator am-
perage, and coarse return variables. The input for each FCDNN was a vector (28× 1) of
current states (system parameters and coarse return) and three previous states.

The output vector dimension was (4× 1) which denoted the predicted coarse return
of the next 1, 5, 10, and 15 min, respectively.

Training a NN is the process of finding the values for the weights and biases. The
training of a NN model is most challenging because it requires solving two hard problems
at once: learning and generalizing. Learning the training dataset is to minimize the loss
function while generalizing the model performance is to make predictions on test examples
(validation dataset). If a model learns too well, it will generalize poorly (overfitting), and if
a model generalizes well, it may result in underfitting. One of the objectives in training a
NN is to obtain a good balance between these two problems.
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In this experiment, the existing approximate 43,000 sample data with a sampling rate
of 1 sample/minute were randomly split into a training dataset (typically 90 percent of the
data), a validation dataset (10 percent of data). After training was completed (5000 epochs),
the trained model’s weights and the biases were deployed and tested on the test dataset.
One of the significant difficulties when working with NNs is overfitting. Model overfitting
often occurs when the training algorithm runs too long. The validation helps identify when
model overfitting starts to occur by keeping the model parameters.

Table 1. FCDNN layer types, output shapes, and parameters number.

Layer (Type) Output Shape Parameters Number

Hidden layer 1 (Dense) (None, 30) 870
ELU 1 (None, 30) 0

Hidden layer 2 (Dense) (None, 90) 2790
ELU 2 (None, 90) 0

Hidden layer 3 (Dense) (None, 80) 7280
ELU 3 (None, 80) 0

Hidden layer 4 (Dense) (None, 70) 5670
ELU 4 (None, 70) 0

Dropout 1 (None, 70) 0
Output (Dense) (None, 4) 284

2.3.2. Training Dataset

The validation error was lowest during the training. Figure 7 shows the training
and validation data loss curve for predicting network parameters after 200 epochs. Our
results showed the proposed model could perfectly keep the balance between learning and
generalizing.
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3. Results

A test dataset was collected every minute for 108 h (i.e., 6500 samples). The collected
data had been pre-processed and the estimated time-delay (explained in Section 2.1) had
been conducted and then applied to the trained model. Figure 8 shows the test dataset of
input parameters. The objectives were the prediction of upcoming coarse return for 1, 5, 10,
and 15 min later. Table 2 presents the MAE and average deviation (MAE/average coarse
return) between the actual coarse return and its future predictions. These two comparison
methods were chosen due to their extensive applications in the comparison domain. Based
on the presented results, the coarse return for the next minute was predicted with 95%
overall accuracy, and then for the prediction for every single minute ahead, the accuracy
dropped by 1%, for example, for a quarter-hour ahead forecast, its accuracy was about 80%.
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Table 2. Mean absolute error (MAE) and average variation between the actual and predicted coarse
return on the test dataset.

Method/Prediction Time 1 min 5 min 10 min 15 min

MAE 4.78 8.82 13.68 18.06
Average deviation % 5.2 9.74 15 19.9

Noteworthy, the cement grinding process variables, as seen in Figure 3, had a complex,
non-linear and unstable process causing plugging phenomena. The extracted features
(6 inputs and single output) of the process control using the proposed techniques and
the trained model was successfully validated and verified in practice and by the cement
production engineers. The accuracy of the proposed method was also compared with the
single-layer NN and LSTM, to demonstrate its superior performance against two other
rival and relevant approaches.

Figure 9 presents the actual coarse return and those predicted for the next 15 min in a
single graph.
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4. Discussion

Due to the feedback loop in the process, the prediction of the future amount of coarse
return has more uncertainty because prediction errors would be accumulated in the next
time frame (minute here) prediction and so on. The certainty of the predictions depends
directly on the quantity and quality of the dataset used for the estimation of the models as
well as the applied technique. Two other widely used methods in the system identifications
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of the complex non-linear process have been applied to compare and validate the proposed
FCDNN method’s output. The chosen methods were the following two:

4.1. LSTM Method

Due to the LSTM capability of extracting features shared over an extended range of
time, LSTMs are known as a well-built technique for challenging sequence prediction prob-
lems. A stacked LSTM architecture is represented as an LSTM model involving multiple
LSTM layers with the multiple hidden LSTM layers piled one on top of another. Stacking
LSTM hidden layers makes the model deeper, more accurately earning the description as
a deep learning technique. In this research, we join four of the LSTM layers, each with a
dropout layer of value (0.2). In each layer, the number of units is set to 50, showing the
dimensionality of the output space. The final layer is the output layer which is a fully
connected dense layer.

4.2. A Single Hidden Layer NN Method

A single hidden layer NN method with 100 hidden neurons and ReLU active transfer
function was used due to simplicity in its training and deployment.

Both methods applied to the same training dataset include the feedback loop like the
proposed FCDNN model. Outputs MAE between the actual and predicted coarse return
on the test dataset (presented in Figure 8) for the single-layer NN and LSTM are shown in
Table 3. In comparison with FCDNN, they perform worse. The single layer NN has the
worst performance in all scenarios, which is comprehensible, due to the more complex and
extensive architecture of the proposed approach and the LSTM. The LSTM has a better
performance than a single layer NN, but still worse than FCDNN. However, in the training
algorithm’s speed and computational complexity, the single-layer NN is on the top and
LSTM on the bottom of the table.

Table 3. MAE between the actual and predicted coarse return on the test dataset in long short-term
memory (LSTM) and single hidden layer neural network (NN) methods.

Method/Forecasting Ahead 1 min 5 min 10 min 15 min

A single layer NN 8.99 14.07 23.73 23.85
Stacked LSTM 8 11.16 15.88 20.16

5. Conclusions

The operation of a cement grinding circuit is a complex and non-linear process, which
makes it difficult to control, optimize and predict the outcome. Coarse return is one of the
process parameters which has a major role in the control and optimization of the process,
and its prediction is an essential factor of the process improvement. In this paper, an
FCDNN architecture for the prediction of the coarse return is proposed. The result of
the proposed model shows better accuracy in comparison with two widely used single
hidden layer NN and LSTM architectures in the cement grinding process. The LSTM has
a better performance than a single layer NN, but still not better than FCDNN. In future
works, the LSTM, due to its capacity to deal with long time series prediction, will be further
investigated and inserted into our prediction system.

A one-month data collection campaign was run over of a real grinding process plant.
The collected dataset contains the essential operating events capturing the variation of
the operating conditions of the grinding circuit during the process cycle. It allows the
prediction of the coarse return variables with high accuracy. The key variables affecting the
coarse return were determined through the event-modeler technique (feature extraction
technique), and the prediction model of the system was obtained by using an FCDNN
identification.

The proposed method is currently successfully being applied in a number of cement
plants, enabling the operators to take corrective actions before the coarse return increase
(both in autonomous and manual mode). The impact of the solution has improved efficiency
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resource use by 10% of resources, the plant stability, and the overall energy efficiency of
the plant. The prediction of coarse return in a long horizon is one of the ways to achieve a
better performance of cement plants. This is a clear example of the application of artificial
intelligence in the cement industry and how it can benefit overall production.
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Appendix A

Table A1. Event-Modeler output between the mill and separator parameters and coarse return.

Input Variables Event-Modeler’s Output Subjective Importance Level

SEA 92% High
SES 92% High
FEF 87% High
MIF 86% High
MOF 82% High
BEA 75% High

Separator Temperature 68% Medium
Mill Power 64% Medium

Mill Power Transducer 62% Medium
Fresh Feed Mill excs Setpoint 60% Medium

Fresh Feed Scada Setpoint 60% Medium
Separator Mill excs Setpoint 59% Medium

Separator Scada Setpoint 58% Medium
SURECAST Cement 57% Medium

Recycle Elevator Current 54% Medium
Cement Surface Area 52% Medium

Cement Residue 51% Medium
High Counter 49% Low
Low Counter 49% Low

High-Quality Counter 48% Low
Blaine minus one 48% Low
Previous Blaine 46% Low

Test Quality Counter 45% Low
Higher Blaine Counter 44% Low
Lower Blaine Counter 44% Low

Inlet objective 43% Low
Opc Cement 40% Low
Ubc Cement 40% Low
Out of Spec 36% Low

Current Max feed 33% Low
Total Charge 32% Low
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