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Nonlinear Systems with Innovation Constraints
over Sensor Networks
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Abstract—In this paper, the distributed filtering problem is
investigated for a class of nonlinear systems. Each indivigal
sensing node provides the state estimate by using not onlsiown
measurements but also its neighbors’ information propagatd
according to the communication topology. With the purpose b
mitigating the effects from possible abnormal data during he
signal transmission, an innovation constraint with adaptvely
determined threshold is imposed on the transmitted innovabn
during the filter process. The aim of the addressed problem is
to design a distributed filtering algorithm which is capable of
1) confining all the estimation errors within certain ellipsoidal
regions with prescribed probability; and 2) achieving the required
average disturbance attenuation specification. By virtue foconvex
optimization method, sufficient conditions are derived for the
existence of the requested filtering algorithm and the desad
filtering parameters are then obtained by iteratively solving
the corresponding matrix inequalities. Within the establshed
framework, two optimization problems are put forward to
seek locally optimal filtering parameters. Finally, an illustrative
numerical example is provided to demonstrate the applicabity
of the proposed filtering paradigm.

Index Terms—Distributed filtering, set-membership filtering,
innovation constraints, probability-guaranteed filtering

I. INTRODUCTION

military detection, target location, and so forth [7], [1F19],
[30], [31].

The filtering/estimation problem is well recognized as a
fundamental research topic that plays a vitally importaie r
in many engineering applications. Along with the recentsdev
opment of sensor networks, the distributed filtering/eation
issues have attracted a particular research interest riackixig
the true signal from the possibly noisy measurement data
collected by sensing nodes. According to their structures,
the sensor-network-based filter algorithms can be gemerall
divided into two categories (namely, centralized apprceauth
distributed approach), each with their own merits and dé@mer
The centralized approach adopts a central unit to calctiate
state estimate by using the measurement information &thm
sensing nodes [13], [25]. Apparently, such a technique @oul
impose high demands upon the capabilities of the central
unit (e. g. storage capacity and processing speed), efipecia
when the scale of the network becomes large. In contrast, the
distributed algorithm deploys local filter at each indivadu
node and provides the state estimate by using not only the
local measurements but also the information propagated by
the neighbors. In comparison to the centralized approach,
the distributed algorithm possesses certain advantagbsasu

Sensor networks, built of a group of individual sensinfexibility of deployment and robustness against distudesn

nodes, have recently stirred intensive research atteffrtoon

etc. Thus, in recent decade, the distributed filtering is$iave

both industry and academy in the disciplinaries includingeen garnering considerable interest within systems seien
communication, system science and signal processing.eThaad signal processing communities [10], [12], [14], [15].
sensing nodes are spatially dispersed with each individualSo far, the distributed filtering problems have been exten-
node having the basic abilities of information processirgjvely investigated from different perspectives. Accargito
such as collection, computing and transmission. Thanks gemoperties of disturbances, several distributed filteriagh-

their distinctive merits (e.g., low cost, easy deployapili

niques have been proposed in the literature with respective

convenient maintenance), sensor networks have found witmpes of applicability. For instance, the Kalman filtering
applications in many areas such as environment survedlantechnique has been applied in [5], [20], [21] to cope with the
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distributed state estimation issues for systems with Gawiss
noises. As the standard Kalman-like framework is no longer
applicable in the case of non-Gaussian disturbances, many
alternative methods have been developed with examples in-
cluding, but are not limited to, th& ., technique presented to
deal with energy-bounded noises (see e.g. [24]) and the set-
membership filtering theory exploited to handle the unknown
but-bounded (UBB) noises (see e.g. [11]). Recently, a con-
sensus nonlinear information filter has been designed in [9]
where the sensors’ measurements are subject to a sort of non-
Gaussian disturbances. It should be emphasized that, due to
the wide appearance of UBB noises in practical applications
especially in electrical and electronics engineering, ské
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membership filtering technique has recently attractedwede iv) The proposed algorithm is capable of guaranteeing the
interest, and some representative publications can balfun ellipsoidal constraint with a predetermined probabilitather
[14], [29] and the references therein. than the usual 100% confidence). Such a probabilistically
In practical control engineering, it is often unnecessand( design method could provide much extra flexibility by reigxi
also impossible) to guarantee the performance requireamecgrtain stringent yet unnecessary performance conssaimt
with probability 1 in a strict yet persistent way. This is particreal-world applications.
ularly true when the target plant undergoes severe stachast Notation The notation used here is fairly standard except
noises. Actually, in certain situations, it is usually iraptical where otherwise statedR™ denotes then-dimensional Eu-
to achieve the desired objectives with 100% confidence. Fdidean spacel,, denotes amn:-dimensional column vector
instance, in the maneuvering targets tracking problems it vith all ones.I,, and0,, denote the identity matrix and zero
generally satisfactory if the radar can track the targeth wimatrix of n dimensions, respectively. The notatidh > Y
a 90% success probability. Another quintessential examifespectivelyX > Y), whereX andY are symmetric matri-
that should be mentioned is that, in the missile control, wees, means thak’ — Y is positive semi-definite (respectively
often require the standard deviation error be confined wishi positive definite). For matricesl € R™*"™ and B € RP*9,
25m-radius-circle with an 80% probability. Such enginegri their Kronecker product is a matrix iR™?*"? denoted as
practice gives rise to the idea of designing controlletefil A® B. The superscript“T” denotes the transpose. The symbol
capable of meeting the performance with an acceptable probd stands for the corresponding entry of the matrix can be
bility [23], [26], [28]. Obviously, such a probability-guanteed obtained by symmetrical property. For a veatot|a| = aTa.
scheme could reduce the conservatism stemming from unnad¢A] means the trace of matri® and diad Fy, Fs, ..., F,}
essarily stringent design requirements, thereby progidixira denotes a block diagonal matrix whose diagonal blocks are
freedom for other essential indices as well as reducing th&en by F1, F, ..., F,,. The notationdiag, { A;} represents
design expense. As a result, it is of significance to establithe block diagonal matridiag{ A;, Ao, ..., A, } andcol, {z;}
the probability-guaranteed framework for system analgsig denotes the column vector? 2T ... zI]T. P{A} means
synthesis, and such an issue has not yet received adeqtlaeoccurrence probability of the event’
research attention.
In practical systems, it is quite desirable to design filters Il. PROBLEM FORMULATION
that satisfymultiple performance requirements. Motivated by In this paper, it is assumed that the sensor networkMas
the above discussions, in this paper, we endeavor to stuiggnsor nodes which are distributed in the space accordiag to
the probability-guaranteed distributed filtering probldor  specific interconnection topology characterized by a tiec
general time-varying nonlinear systems subject to innovaraph¥ = (7,&,.Z), where?’ = {1,2, ..., N} denotes the
tion constraint with simultaneous consideration of mutip set of sensing nodeg; C 7 x 7 is the set of edges, and
performance indices.This appears to be a challenging tagk= [0;;]nx iS the nonnegative adjacency matrix associated
because of some fundamental difficulties identified asvedlo with the edges of the graph, that i, > 0 if and only if
1) For general nonlinear time-varying systems, it is iraly edgei,j) € & (i.e. there is information transmission from
arduous to propose appropriate performance indices traat-qusensor; to sensor). If (i, j) € &, then nodej is called one
tify transient dynamical characteristics and yet fadiitéhe of the neighbors of nodé Also, we assume thdt; = 1 for
subsequent investigation by utilizing existing methodas. all i € ¥ and, therefore(i, i) can be regarded as an additional
2) The nonlinear and time-varying nature of the addressedge. The set of neighbors of node 7 plus the node itself
system gives rise to significant difficulties in analysis anig denoted by#; £ {j € ¥|(i,j) € &}.
synthesis with respect to the proposed multiple requireésnen Consider the following nonlinear system defined on the
3) The innovation constraint imposed on the transmitted iRorizon [0, T7:
formation among sensing nodes constitutes another kind of
nonlinearities thgt compl?cates the filter design evenhfeit {ka =/ (@e) + Brvi + (@) + DivicJw
It is, therefore, the main purpose of this paper to deal with Yik =CikTr + Ei kpik
the identified challenges by launching a major study on théhere z, € R"= and y;, € R™ represent, respectively,
addressed probability-guaranteed multi-objective ithisted the system state and measurement output on-thesensing
filtering problem. node;wy, is a zero-mean Gaussian white sequence with unitary
The novelties of this paper can be summarized as fourfolghriance;v, € R™ and p, € R™ are the process and mea-
i) The model of the target plant under consideration isurement noised3;, Dy, C; . andE; ; are known real-valued
comprehensive that caters for nonlinearities, stochégtand matrices of compatible dimensiong(z;.) : R"» — R"= and
time-varying effects. ii) In order to better characterizeet 5 (zy): R"» — R"= are two nonlinear functions.
performances in the finite horizon, two transient perforegan Assumption 1The noise sequenceg and y; satisfy the
indices, namely, averagl ., criterion and probabilistic ellip- constraints
soidal constraint are proposed from different perspe&ivi) { vk €V 2 {u : ngk—lyk <1

1)

In order to mitigate the effect of abnormal measurements,(e. B (2)
: : e pu € Un = {pn i Uy g < 13

outliers, attacks, etc.), a saturation function is imposed k™ k =

the innovations and the saturation level is adaptively atid whereV;, > 0 andU}, > 0 are positive matrices with suitable

at each time step according to previous estimation errordimensions.
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For each sensing node(i = 1,2,..., N), the local filter when the innovations become larger (which is indicative of
to be designed is of the following form: larger differences between measurement output and estimat
. B . . output), we know from (4) that; 5, will be larger accordingly
Tikr1 = Figlik + Z 0ijHij 1Sato, . (Yjk — Ujk) S0 as to relax the limitations on the transmitted signals¢iwvh

et @3 is in accordance with the engineering practice.
whereg; vy C; xdi s is the estimated output on nodeF; ; Def|n|t|on 1 A bound_ed ellipsoid&(c, X) of R™ with a
and H,, . are filtering parameters to be designed. Here, for@nempty interior is defined by
vectora € R™= with (*) denoting itss-th entry, the nonlinear A T o1
. . . ! = "o — —c) <
function Sat,,_, (a) is defined as CleX)Z{zeR" (@ - X (-0 <1} ()

Sat (a(l)) wherec € R™ is the center of¢(¢,P) and P > 0 is a
T3,k . - . g . .
Sat,, , (a(2)) pqsmve_defmlte matrix that specifies the ellipsoid’s shand
Sat,,  (a) £ ' orientation.
: By defining the estimation errok; j L gL — Tk, We are
Sat,, , (a("“)) now ready to present the design objective. In this papes, it i

where Sat,, , (a'¥) £ sign(a®) - min {|a®)], 0, }. Fur-

thermore, in this paper, we employ the following function t
dynamically govern the saturation lewe|; for nodei:

our aim to determine the filtering parametdrs;, and H;; i
1 (3) such that the following two requiremenkd) and R2)
are met simultaneously.

R1) Probabilistic ellipsoidal constraint

P{zy € €(Zik, Br)} > P (6)

Oigr1 = Aik + Wi — Gig) Wilik — Gi) (4
where\ € [0,1) andW; > 0 is a given weighting matrix.
Remark 1:One of the distinct features of the distributegh;, equivalently,
filtering algorithm is that, at each individual sensing node
not only the local measurements but also the neighboring P{:Ezkm,;lczi7k <1}>p @)
information will be used to generate the state estimates Thi
requires the data exchange among sensing nodes, whichviigre B, > 0 is a prescribed matrix and the prespecified
realized via network-based communications. The tradifionPositive scalap satisfies) < p < 1.
form of distributed filters can be found in [24] and the R2) AverageH., specification
references therein. In our improved form of distributedefilt
(3), a saturation function is used to characterize the aidtr i]E {ZXT: & |2}
on the innovation vector by imposing an upper-bound on the N bk
absolute value of the transmitted data. Such a mechanism is - L
widely used in many engineering practice. For instance, in 2 2 2 2 4+ =T 17 =
electrical and electronics engineering, an amplitudetémis = Z (Hyk” el ) +7 N in’omx“o ®
usually implemented to constrain the signals (e.g., ctyren
voltage, etc) within certain allowable range to protectides. Wherell; > 0 are known weighting matrices.
Remark 2:It should be emphasized that the reason why we Remark 4:In practical systems, it is quite desirable to
propose such a saturation mechanism lies as twoféifdt, design filters that satisfy multiple performance requiratae
the transmitted data are innovations of neighboring nodé®r example, in the scenario of maneuvering target tracking
which we believe should be within certain range if the nodééa sensor networks, it is always required the trackingesyst
are in good condition. Accordingly, the saturation funstioshow simultaneously good tracking accuracy and distusbanc
is conducive to alleviate the impacts from possible owlieattenuation ability. On the other hand, for time-varying-sy
which usually occur especially to those nodes deployed fi@ms, it makes more sense to investiga@nsient perfor-
harsh environmentsSecongas is well known, the utilization mances over a time period of interest than the steady-state
of networks will face the threat from malicious attacks, angharacteristics over the infinite horizon. Note that, aligio
another advantage of the proposed filter structure is tHiyabithe design objectiveR1) and R2) are both proposed to depict
of mitigating the effects from possible attacks such asefal§ansient performances, they are actually put forward from
data injection which aims to deteriorate the performangkfferent perspectives. In the first place, inequality (®poses
by injecting false signals to the original ones during théhe probabilistic ellipsoidal constraint with respect tack
transmission. individual node at eaclsingletime step. In the second place,
Remark 3:Different from saturation functions with fixed inequality (8) measures the disturbance attenuation ievel
thresholds in most existing literature (see, e.g. [29]),fdter  collectiveway over thewholetime interval|0, 7.
structure adopts time-varying saturation thresholdsrédtar-
ized by o, ) that are determined iteratively and adaptively
according to the value of innovations, see (4). In compariso
the cases of fixed threshold, our proposed adaptive mechanis Before presenting our main results, we first introduce the
enables the saturation threshaig, to be adjusted appro- following definition and lemmas that are helpful in subsegue
priately along with the estimation performance. Specifjcal derivations.

i=1 k=0

k=0 i=1

IIl. MAIN RESULTS
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Definition 2:[1] Let & and &, be some real matrices with — — >~ 0;;H,; 1G1;Ej e — | 035Hijrdi(rjn) (19)
£ 2 & — R > 0. A nonlinearity ¢(-) is said to satisfy the jeM JEMN
sector condition with respect t8; and &, if For development brevity, denote
T
(o(y) — Ray) (6(y) — Ray) < 0. ©) & & coly{wr}, @ = coln{@in}, Tn 2 coln{Zinl,
In this case, the sector-bounded nonlinearity) is said to i & coln{f (i k) }, 2 coln{ei(rik)},
belong to the secto’;, Ks). hi, 2 coly{h(&ix)}, Gr 2 coln{iir},

Lemma 1:(S-procedure [2]) Let)o(:),¢1(-)....¥p(-) be N N
quadratic functions of the variable € R™: 1;(s) 2 ¢TXj¢ L B =1y ®AB’f’ Dr=1n® D:’ .
(j =0,...,p), whereXT = X;. If there existe; > 0, ..., Cr = diagy{Cix}, Fi = diagn{Fix}, & = diagn{Eix},
ep > 0 such thatX — >F_, ¢;X; <0, then the following is G 2 diag, {G1;}, £ 2 diagy{L:}, r 2 diagy{®ix},

true: A qe A 9.
Uy = diagny{¥; r}, X = diagy{3;},
P1(s) <0,...,9Pp(s) <0 = o(s) <0. (10) . witis} A L v{Z)
Al = dlagN{Ali}, AQ = dlagN{Agi},
Lemma 2: (Schur Complement Equivalence [2]) Given 0, 2 diag{0 0.1.0 0}
constant matrice§,, &,, &3 whereS; = &7 and0 < &, = o S I
&7, then&; + 616,65 < 0 if and only if il N
RL,i é (1]T\‘]®IL)®L17 L= {nzvnqanyvnE}-
&, &7 0 —6; G 0 11 _ _
S —6, B or (FCH <0 (11) Then, we have the following compact form of the dynamics

of the estimation error:
Lemma 3: [2] Let M =M™, $H and ¢ be real matrices of .

appropriate dimensions, an¥ satisfies||A|| < 1, then Tp1 =fi + OxTp + LALTy, + Brvg
+ (hg + ViZg + LAoZy + Divg)wi

M+ HAC + ¢TAnT <0 (12) A
— Frdr — HpGCr&h — HiGE(IN @ I, )11k
if and only if there exists a positive scalarsuch that F HLGChin — Hud (20)
T —1 4T
M+ehHH” +eCE<0. (13) where?H,, £ [Hinijyk]NxN. Obviously, sinced;; = 0 when
By resorting to the Taylor expansion technique, we caht -, Hx is a sparse matrix which is characterized by
express the nonlinear functiorf§x;,) andg(xy) as follows: Hi € T s (21)
flxr) = f(Zig) + Pipik + Lild1iZi g (14)  where Z,,xn, 2 {T = [I;] € RNwxNm |Ti; €

h(xg) = (&) + Wi ki + 2iloiTy k (15) Rm=xmv T, =0 if j & A;}.

where L, € R™ andX; € R™® are known matrices); € L L .
Rmuxne and Ay; € R™=%m: are unknown matrices such that™ EhiPsoidal constraint in probability
[An]] <1 and||Agy < 1; ®;, and ¥, , are calculated as ~ Defining

1
follows: P, £ E’ﬁk,
of (x oh(x
P, = ‘gi) s Vg £ ai) o (16) we present the following lemma that will be used in later
s e derivation.
Letting 7 x = y;.x — ¥;.k, there exist matriced < Gy; < Lemma 4If E{(xy — 2:x)" Py (o —24x)} < 1, then the
I < G55 such that following holds:

Sat; , (rjk) = Gk + ¢(rjK) (17) P{zi € E(Zsx,Br)} > P- (22)
where ¢;(r; ;) is a nonlinear vector-valued function which  Proof: Lemma 4 is easily accessible from Lemma 3 in
satisfies a sector condition withy; = 0 andf,; = G, (G; = [23], and its proof is therefore omitted here. u
Gaj — Gyj), i.e., ¢;(r; ) satisfies the following inequality: ~ Assumption 21 et

1
o5 (1) (0 (rjx) — Girjx) <O0. (18) Py = T—pro
From system (1) and filter (3), we acquire the followinge given with3, being a known positive definite matrix. The
dynamics of estimation error: system initial value and its estimates satisfy the follayin
. condition:
Tr+1 — Tjk+1
=f(&ik) + PixZik + LiA1iZi ) + Brve — F 1 &i i (0 — &10)" Py Mo — #40) < 1. (23)
+ (M(Zik) + Vi k@i g + Silosdik + Divi)wi Lemma 5:Let the filtering parameters; , and H,; be
_ 0, H;i 1G1:Ci nh + 0;:Hyi G Conis given. For a given sequence of positive definite matrices
J;/ i J;V FRREAT IR {P:}r>0 (with a factorization P, = Q,QF) and under
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the initial condition (23), if there exist sequences of non- Proof: Theorem 1 can be proved easily from Lemmas 3

negative scalar$gl1 He>0, {Qk2)}k>0, {Qk3)}k>0, {g (4) }k>0, and 5 by takingPy; = ﬁfmﬂ into account. [ |
{sz}k>0 , {Qlk}k>0 and sequences of scala{ﬁlk}po _
satlsfylng the followingN' recursive matrix inequalities: B. AverageH . requirement
T, QTRE . QTREM For derivation simplicity, we denote the following vectors
* —Pk+1 0 S 0 (24) W
2 | Vk a| 1 N
* * —Pk+1 19/@ - |: :| , Wk = |: ~ :| ) <k - 19]6 )
Hk Tk )

where k

and the following matrices

~ 1 . 0
1 £ o S diag{0, diagy {1} }, N £ { —Hy, } ’

Ty édiag{ Zg(l) @ _

(1) - 1 0
Qz 671 K2 Ql +Q n ,ZQ Qka A 2 |: ~ R :| ,
Z o ;( £+ )0l ST fe— Frie @ —HuGOy
—a[ 0 0
Z@Efg@m,uzyﬁi@nz,i, M = [ B —HiGE(n® 1) ] :
- - a0 0 - s[0 0
(2)‘/—1’0;3)[]—1 0} Ak = |: _}ka \Ijk :| 5 Mk = |: Dk 0 :| s
I2[0 1],Z72[1 0 0 0 0],
+Zglk~—*zk+zlﬁzk’rzka (25) 0 0
Z L 0
LY 26 ﬁé{o]ié[o},ié 0, =232,
Eik , (26) L b
2 * 2INny®ny,i 0 0
0 0 0
—diagy {QF CF.GT}0,, G2 [ Ay My Ni |, 2] A My 0],
= 2 8 : C2[0 gc ], Skz[o & (Ix ®1,,) |
0 Cik = diag{0,...,0,Cix,0,...,0} x [ 0 Inn, |,
_EEkG?R"yxl i—1 N—i
Wik 2[ 0 CikQiRu,i 0 0 0 Ey 0], (27) Eix2[0n, Eix], Cix 2] Cix Eix 0].
Y= EkWiWi,k Lemma 6:Let the filtering parameters; , and H;; ;. be
— diag{oy k41 — Adix,0,0,0,0,0,0}, (28) given. Under initial conditiorY; < II, the averagé/,, design

objective (8) is achieved if there exist a sequence of pasiti
definite matrice{Y} }x>1, sequences of non-negative scalars
“HiGE(AN @ 1n,) —Hi |, (29) {1 }is0, {prrtrs0, {p2steso and sequences of scalars

WL[Q, O £ 0 B

Q1 2f — Fud, _{ﬁi.,k}kz_o_ satisfying the following set ofV recursive matrix
Q1 é(q)k — HiGCL) Ok, inequalities: ) ) A
~ ~ T T
Qs h, UQr 0 % D, 0 0], (30) i}; A M), Z
. . . k _Yk_ 1 O O
then the following inequality holds " O+ vl o <0 (33)
E{(zrs1 — Eikr1) " Py (ngr — Zipg1)} < 1. (31) ZT 0 0o —J
Proof: See Appendix VI-A. | where
Theorem 1:Let the filtering parameterd; , and H;; —_— N _
be given. For a prespecified positive scajarand a se- Ay = —eréy —Zéi,k‘é,k + Ay, (34)
quence of positive definite matriceSPy }x>0, the design _ lzll -
objective (6) is satlsfled if there eX|st sequences of non- R 00 _?C,kT
negatlve Sca|ar$QZ k}k>0, {Qk )}k>0, {Qk )}k>o, {Ql k}k>o, S = : g _51516 ’ (35)
{Qlk}k>0, {gzk}k>0 and sequences of scalaf®; 1 }r>o0 A AT -
satlsfylng the foIIowmg set ofV matrix inequalities: ik =C; x WiCik
-y, QOIRT . QFRT . — diag{0i,k+1 — A0k, ONny, Onytn, s Onny, s (36)
Ny, Mg ,t r 1 3;
* —r P 0 <o0. (3@ | Yetydag{0s} 0 0
N N 1y A = 0 -4l 0 |, (37)
Tp T 0 0 0
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LE[L S pipZ pesIt ], (38) and this provides extra design flexibility by making tradeof
J 2diag{p1pl, porl, pril, p2il}. (39) among perf_ormance i_ndices. In this sub_se_ctio_n, in terms of
’ ’ two corollaries, we will propose two optimization problems
Proof: See Appendix VI-B. B (OPs), one is to minimiz&3, (in the sense of matrix trace)

Theorem 2:Let the filtering parameters; , and H;; . be for locally optimal filtering performance, and the other és t
given. Under initial conditiort < II, the averagéi, design minimize p at each time step to guarantee a local threshold
objective (8) is achieved if there exist a sequence of p@sitiprobability which indicates the minimal chance with which
definite matriceg Yy }1>1, Sequences of non-negative scalare errors can be confined within the desired ellipsoid.
{er}tr>0, {p1.r}r>0 @nd{p2 1 }r>0 and sequences of scalars Denoting a set by
{€i.kx}r>0 satisfying the following set ofV recursive matrix

. ™ a 1) (2 (3 (4 () (6
InequahtleS: yk ﬁ{Fkakvgq(;7]g)agl(g 792 )7Q1(',]g797(;7k)797(;7k)5

A %T ///];r K% ks €iks Pk P2,k ik

&fzc Vi1 0 0 <0 (40) and a function with respect tp and3;,1 by

///1; 0 Vi1 0 | I, QIRT OrRT

R 0 0 —J Ny i N i

» - Tk (P, Bry1) = ¥~ P 0 :

where the parametéf, contained inA; is updated recursively * * —ﬁm,ﬁl

according toy; = Y, .
Proof: The proof can be easily performed based
Lemma 6 and is therefore omitted here.

e present the following optimization problems.

0 o ; :

OPL Minimization of 9B, in the sense of matrix trace

with fixed p to seek the locally optimal filtering performance

_ ) subject to prescribed probability constraint.

C. Filter design Corollary 1: Let p be given. Under the conditions in
Theorem 3:Let the design specificationg)®, p,"Bx) be Theorem 3, a sequence of minimizé® }.>o (in the sense

given. Under initial conditiorYy < TI, if there exist a sequenceof matrix trace) is guaranteed if the following optimizatio

of positive definite matrices{);},>1, sequences of real- problem is solvable:

valued matrice§ 7 } x>0 and{Hr € T, xn, }r>0, SEQUENCES

. min trace 41
of non-negative scalar{o!})}i>0, {0\ }izo0. {0} }rso, (o Rysy (41)
4 5 6
(o0, {050+ {60 ks0, {extrzor {p1ateso, subject to (32) & (40)

{pa.x }r>0 and sequences of scalafs ;. } x>0 and {8 x }r>o o .
such that the inequalities (32) and (40) hold simultangousl Next, assume thap is time-varying and denote by; the
then the design objectiveB1) and R2) are achieved at the Probability constraint at time instart By defining

same time, and the desired filtering parameters at each time A 1
instant can be computed via solving the corresponding ratri Sk = 1 P
inequalities. . S
Proof: Based on Theorems 1 and 2, we arrive at Thed® put forward the following optimization problem.

rem 3 directly. Hence the proof is omitted here. ] OPZb: Mm(;mlz"f[‘::on Ofgkbv.\ll.':h flxedt‘ﬁ_k ;[0 tIOOk ;otr_ Ioc?m"é/t
In the following, an iterative algorithm is presented t(govéeorrolcl):r; 2(_)?_8&%0} a ILng?csnraSngere?r?e clgzitionz
compute the sequences of the filtering paramefét . : kyk>1 S )
P 9 gp eAeTS: ro in Theorem 3, the lower bound on probability constragtat

and {H;; » }r>o0 recursively. . . : . S
Aléorijthr}r1 1:Computational Algorithm for { Fi.x}x>0 and each time step is ensured if the following optimization peot

(Hij i biso is feasible:

1) Initialization: Setk = 0 and the maximum computation {,gil,?k} Sk (42)
step kmax. Set the triple(By, p, 7, II;) for 0 < k < 40
kmax. Then, by usingP, = ﬁ’ﬁk, factorize { P} (40)
appropriately to obtain the sequence of matri¢és.}. 1 <sp <+o0
Select the initial values of, and #;( satisfying (23). subject  to Ty QfRY . QrRE .
Thenio = coly{#; 0} is known. =SBt o | <o

2) With the obtained:;, and @y, solve the RLMIs (32) and % % ST LI

(40) for F;, andHy,. ThenF; ;, and H;; ;, can be obtained.
3) With the obtainedF;, and’H;, compute; ;1 according
to (3). Thenzy+1 = coln{Z; k+1} is obtained.
4) Setk =k + 1. If k> knax, exit. Otherwise, go t@).

The proofs of Corollaries 1 and 2 are straightforward based
on the previously obtained results and are therefore odnitte
here.

Remark 5:Notice that the RLMI algorithm proposed in
o this paper is based on LMI approach. As discussed in [2],
D. Optimization problems the computational complexity of an LMI system is bounded

Note that the desired distributed filtering parameters aby O(%?23log(% /<)) where & represents the row size?
quired by using Theorem 3, if they exist, could form a setands for the number of scalar decision variablésis a
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data-dependent scaling factor an relative accuracy set for
algorithm. For instance, let us now look at the aver&fig

performance criterion (as proposed in Theorem 2), where the

number of sensing nodesA§, the iteration time i§"+1 (since

the time interval i90, 7']) and the dimensions of variables are

known fromzy, € R™, y; 1, € R™, v, € R™, py, € R™ and
wy € R. Moreover, we assume that; € R"s, §;; € Rn™s1
and §,;, € R™2, The RLMI-based probabilistic ellipsoidal
performance criterion is implemented recursively for 1
steps and, at each step, we need to solve the LMI (40) w
P = N(l+2rgm+nq+n51 + ns2 + ny + ny + ny) rows
and Q = N(% + 7) scalar variables. Accordingly,
computational complexity of the proposed RLMI algorith
can be represented By((7' + 1)P Q).

IV. NUMERICAL EXAMPLE
In this section, a numerical simulation example is presént

to show the effectiveness of the algorithm proposed in thi

paper. We shall estimate the state of the Duffing equation
follows:
54 koz(1+kgz®) +c2=0

which is usually utilized to describe many practical phgsic

b
n}'Lk Wi

Set the filtering performance indices lpy= 0.9 and~ =
0.7, and the initial condition is given as follows:

0.2 . Jo1
IO - 05 I’ 171.,0 - 0 I
N 0.3 . 0.1
T2,0 = 0 ) I3.0 = 0.2 )

0'1_]0 = 0'2_]0 = 0'3_]0 = 025

'thln order to show the effectiveness of the proposed algorithm
{o mitigate the possible abnormal data, we here consider a
cyber attack scenario with signal injection. For nadé =

, the injected attack signals are generatedby = 3+
hereg; ;. are uniformly distributed random variables over
interval [0, 1] with the expectations; , = 0.5, & = 0.35
andgs , = 0.4. During the time interval20, 50], the attackers
injected ¢; ,, into the transmitted innovationg; , — ¥; » to
feteriorate the estimation performance.

SBy solving Corollary 1, the simulation results are obtained

iﬁ%igs. 3-6. To be specific, Figs. 3—4 plot the entnié]g and

x,(f) of x;, and their estimatesl(.}k) and:%fk), respectively. The
filtering errors Ofa:g) and ng) are, respectively, depicted in
Figs. 5—6. The occurrence of bias injection attacks are show

p6roc|esse§, such asl nonlinear V|brdat|(|)n qnhd n(;.nllnearngr% Fig. 2 where the success of injection attack is recorded fo
[6]. n oraer to apply our propose algorit m, Irst, W€ GISzach node at corresponding time step. It is easy to see that,
cretize the above differential equation and obtain thefihg ¢ o Figs. 3-6, despite the existence of bias injectionctta
difference equation: the proposed filtering algorithm can effectively estimdie t

(1) 4 (2 state of the target nonlinear system. Thus, the simulation
Ty + Ly

3

far) =
:C,(f) — T(koxg)(l + kd(xg))Q) + cng))

whereT is the sampling period;'" andz? are thelst and
2nd entries ofzy, representing the sample values:zoénd 2
at time kT, respectively.

The measurement matrices are selected as follows:

Cie=[0 1], Cor=[05 0],
Csrp=[06 05].
Other parameters are chosen as follows:

0
h = ,
(1) [ T2+ ka(2)?)
Bk:[ ; } Eig = 0.1,
Bay =0.15, Bs =0.12,
T =02, k=21,
ko =07, =04,
ky =0.5, ks = 0.3,
A=085 W, =Wy=Ws=0.0l.

Moreover, we select;, = 0.36 cos(k) and uy, = 0.4 sin(2k).
Then, setV} 0.35 and Uy = 0.4, we can verify that
Assumption 1 is satisfied.

Assuming the communication topology among sensor noc
are shown in Fig. 1, we obtain the corresponding adjacen
matrix . as follows:

f:

—_ = =
—_

1
0
0

results demonstrate the effectiveness and correctnessrrof o
developed algorithm.

In the following, with the purpose of further illustrating
the effectiveness of our algorithm, we carry out a compeati
simulation. For the target nonlinear system, under thetidain
attacks, we apply the traditional algorithm without a sation
constraint (i. e.g; , = o). Moreover, the proposed algorithm
and the traditional algorithm are noted by adaptive’ and
‘o —inf’, respectively. The comparative simulation results are
recorded in Figs. 7-10. Specifically, Figs. 7-8 derﬁﬁ and
ng) of z;, and their estimatesz(.’l,z and:&fk), respectively. The
estimation errors ofc,(gl) and :c,(f) are, respectively, described
in Figs. 9-10. It can be seen from Figs. 7-10 that the estima-

Fig. 1. The communication topology.
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tion errors are diverging under attacks, which indicatest th
the traditional distributed filtering algorithm cannot pide
satisfactory performance in such a case.

“* node 1 5 i
“  node 2
¢ mnode 3

3r QOO O X0 1
2r o oo« 1
-3 . . . . . .
0 10 20 30 40 50 60 70
b kR Wk %k A% 1

.
0 10 20 30 40 50 60

Time (k) Fig. 5. i;ﬁl) (o — adaptive).

Fig. 2. The bias injection attacks.

5 ! ! ! ! ! !
7

af (1) ()
T Tl GV

3l ]

2 10 20 30 20 50 60 70 ‘ ‘ ‘ ‘ ‘ ‘
Time (k) o 10 20 30 40 50 60 70
Time (k)
Fig. 3. xg) and :%(1]3 (o0 — adaptive).
> Fig. 6. % (o — adaptive)
g. 6. x, P -
8t 7*77422) 7$7’i§33
(2 ~(2
e o-
A
A | 12000 : : : : ‘ ‘
P
X (1 (1
2 f? 1 10000 - Sk 1(12 _o— 1(;2
8000 ]
@
I
6000 I ]
|
|
4000 ‘ 1
0 10 20 % 20 50 60 70 !
Time (k) 2000 - “ 1
|
: (2) d ~(2) danti ommmnéi 1
Fig. 4.z, and2;7 (0 — adaptive). ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70
Time (k)
V. CONCLUSION Fig. 7. =" andz(}) (o — inf).

In this paper, the distributed filtering problem has been
discussed for a class of nonlinear systems subject to inioova
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constraint. The innovation constraint has been imposed on
the transmitted innovation in order to mitigate the effects
from possible abnormal data during the signal transmission
among nodes. By resorting to recursive linear matrix inétyua
approach, sufficient conditions have been establishedhi®r t
existence of the desired distributed filter, ensuring thnet t
estimation error is confined within the prespecified elligab
areas with a guaranteed probability, and meanwhile, the pre
scribed averagél, criterion is satisfied. The desired filtering
parameters can be computed by solving the corresponding set
of matrix inequalities recursively from step to step. Withi
the established framework, two optimization problems have
been proposed to look for certain locally suboptimal fitigri
parameters. Finally, an illustrative numerical example lbeen
provided to verify the applicability of the proposed distried
filtering paradigm. One of our future research topics is to
extend the main results to more general systems with more
performance requirements [16], [18], [22], [27].
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VI. APPENDIX
Proof of Lemma 5

Proof: The proof of this lemma is carried out according to
principle of mathematical induction. First, we knowrfro

initial condition (23) that

E{(zo — #i,0)" Py '(w0 — #i0)} < 1. (43)

time stepk > 0:

E{(zg — @i0) " Py (wp — @a)} < 1. (44)

Then, it remains to verify that, at time stép+ 1, inequality
(31) is true under the condition given in this lemma. To this

end, since (44) is true, there exist vectgtg, € R™ (i

1,2,...,N) with E{g],qix} <1 such that

T = Ti g + Quai k- (45)

By denotinggs, = coln{q; 1} and Qy = diagy{Qx}, (45)
is described by

§k = T + Qnqi- (46)

It follows from (2) and (45) that the vectots i, v, and
satisfy

B{¢ rqin} <1, vp Vitun <1, pd Ut <1 (49)
which can be rewritten in terms of, as follows:
E {n, diag {-1,6,,.,,0,0,0,0,0} nx} <0
nidiag{—1,0,0,0,V,7*,0,0}m, <0 (50)

e diag{—1,0,0,0,0,U, ",0}n: <0

From definitions ob1; &, d2; , and by noting thaj A;|| <1
and ||Aq|l <1, we have

873 1010k — ¢k Q1 Qi <0

83; 102k — ¢ Q1 Quik <0 1)
which can be expressed in terms:gf as follows:
e diag{0, =0, ;9O Ok, O, .3, 0,0,0,0}m, < 0
{ i diag{0, —@n:iQ}f 01, 0,0,5.1,0,0,0} % < 0 (52)
Next, we rewrite (18) in terms afj, by
Me Ziknk < 0 (53)

where=z; , is defined in (26).
By considering that

Yik — Uik = Wi ki
where W, ;. is defined in (27), we describe the innovation

constraint (4) in terms ofy, as follows:

i Vi = 0 (54)

with Y, ;, defined in (28).

On the other hand, by resorting to the Schur complement
equivalence (Lemma 2), it can be seen that the set of matrix
inequalities (24) hold if and only if

QRY PR, i+ QPR PR, i — T <0,
(55)
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which, by taking into account the statistical property.gf, Defining a quadratic function by}, = @] Y, @, we have
implies that the following derivation:
E{(Qk + kak) R PkJrlR (Qk + kak)} —I'y <0. AV, éE{Vk+1|wk} - Vi
(56) :E{wg+1yk+1wk+1|wk} — @l Yy
By considering (25) and (48), inequality (56) is equivalent =E {¢f %Gl @ } (62)
o where
E{iiT.,kHPl;rllfi-,kH} ALY Ay =Y ALYep My ALY NG
A
— ngdiag{l,0,0,0,0,0,0}nk Y = * MEY My, MY N
* * NEY 1 NG,
- ZQZ i, diag{—1,0,,,i,0,0,0,0,0}n Taking into account the statistical property of random vari

ablew;., we have
—g,(c)nkdlag{ 1,0,0,0,V, 1, 0,0}mk

AVi =1 DG (63)

- Qé )nk dlag{_1707070707 Uk 170}7719 y

N where

4 . _ _ ~ ~

- Z nglzngdla‘g{ou _Gnq,igr]g Ok, Gnl,iu 0,0,0, O}ﬁk _ AEY]C+1'AI€ + AEY]CJFl'AkZ -Y;

i=1 a2 *

= (6), T T *
- Qz N dlag{o’ _@nq,iQk Qk,o,@n ,iaovoao}nk _ _ ~ ~ _

; ! . ALYt M + ALY My ALY N

N N ngk-i—le + ngk.g_l/\/lk ngk-i—lj\/k )
-> 95?1377551‘,1@7719 > Biwnt ik * N Y Ng

i=1 i=1 _/Zl a 1 0
<0. (57) P = Fedr @+ LA — HpGCh

It is now readily inferred from the S-procedure (Lemma 1) » [ 0 0
that: hi W+ XA

E{FF 1 Pl o } — nidiag{1,0,0,0,0,0,0} 7, < 0 Subsequently, adding zero terrgzlz, — VI U, —
(58) (% ZF &, —y*09k) to both sides of equation (63), we acquire

; 1
or, equivalently, AVi, = (FAWGr — (Ni;fifk — 29T, (64)
E{Z} 1 Pi T} < 1. (59)  where
The proof is now complete. [ | Ap 2 T + diag{%diag{o, I}, -1, 0}'
B. Proof of Lemma. 6 Iejju;r;?mg both sides of (64) with respectkdrom 0 to T'
Proof: First, the filtering error system (20) can be rewrit- " "

ten as follows: WT+1YT+1WT+1 — @y Yowo

Tht1 :fk + &I + LA1Ty + (}AL]C + Wi, + EAQ:%]C)OJ]@ = Z <k ApCr — Z (—xk Ty — 219T19k) (65)

— Frir — HrGCray — Hidn
+ [ Bi+Drwr —HiGE(N @ 1,,) |95, (60) Consequently,

which can be further expressed by the following augmented i <ii'Tjk B 7219T19k> 2 ix diag {1T: 1o
N k k N 0 N

system: £
w1 = Agwr + My + Niop (61) T

Where => G Al — @t Yrpwrg + g (Yo — o, (66)

k=0

A, & [ . Al . Next, it follows from (17) that
fr — Frur + hpwy . .
0 ] ¢; (rjx)bi(rix) — &5 (rjx)Girjx <0, (67)
Pp + LA = HrGCk + (Vi + ZAg)wp which is indicative of

. 0 0
M = [ B + Dywy, —Hkggk(].]v ®In“) :| ’ Cl;rgkck <0. (68)
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Moreover, it is inferred readily from (4) that
(i GG =0 (69)

with % 5, defined in (36).
Applying Schur Complement Lemma to inequality (33
leads to

Ae oAl
Ly _Yk;ll 0
M, 0 —qu_ll
—i—diag{piiﬁfr + ;I + p;iiiT + p2xI77,0,0} <0.
(70)

FINAL
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By resorting to Lemma 3, we know that the inequality (70) Prof. Wang serves (or has served) as the Editor-in-Chiefrf@rnational

is true if and only if
Ae T A7
L/ (A
JZk 0 —Y,;_ll
+LAT + (LAD)T + SAT + (2AT)T <0, (71)
Accordingly, it is obtained from inequality (71) that

NV A

g =Y 4 0 <0, (72)
M 0 _Yk_+11
which further implies that

N
Ap — eréy, — Zez‘,k(fz‘,k <0. (73)

i=1

According to Lemma 1, we have

Gr Ak <0, (74)

which, in combination with (66) and, < II, results in

T T
SEA S [l b <77 D0 Il + 775 dingy (T o,
k=0 k=0
(75)
Therefore, the averagél,, performance defined in (8) is
achieved. The proof is complete now. [ |
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