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Abstract—This paper is concerned with the set-membership
filtering problem for a class of linear time-varying systemswith
norm-bounded noises and impulsive measurement outliers. Anew
representation is proposed to model the measurement outlier
by an impulsive signal whose minimum interval length (i.e. the
minimum duration between two adjacent impulsive signals) and
minimum norm (i.e. the minimum of the norms of all impulsive
signals) are larger than certain thresholds that are adjustable
according to engineering practice. In order to guarantee sat-
isfactory filtering performance, a so-called parameter-dependent
set-membership filter is put forward that is capable of generating
a time-varying ellipsoidal region containing the true system state.
First, a novel outlier detection strategy is developed, based on a
dedicatedly constructed input-output model, to examine whether
the received measurement is corrupted by an outlier. Then,
through the outcome of the outlier detection, the gain matrix
of the desired filter and the corresponding ellipsoidal region
are calculated by solving two recursive difference equations.
Furthermore, the ultimate boundedness issue on the time-varying
ellipsoidal region is thoroughly investigated. Finally, asimulation
example is provided to demonstrate the effectiveness of our
proposed parameter-dependent set-membership filtering strategy.

Index Terms—Set-membership filtering; Impulsive measure-
ment outliers; Time-varying systems; Parameter-dependent filter;
Boundedness analysis.

I. INTRODUCTION

The past few decades have witnessed a surge of research
interest in a filtering problem that serves as a core topic in
control and signal processing communities [1]–[14]. So far, a
variety of filtering techniques have been developed and further
applied in many practical areas such as system guidance
and navigation, target tracking, process control, and fault
detection. In general, the extensively studied filtering strategies
can be divided into five categories, namely, minimum mean-
squared error filtering (e.g. the well-known Kalman filtering
and extended Kalman filtering) [15]–[17],H∞ filtering [18],
[19], ultimately bounded filtering [20], [21], moving-horizon
estimation [22]–[24] and set-membership filtering (or set-
valued filtering) algorithms [25], [26]. For instance, in [27], a
distributed resilient filter has been proposed for power systems
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under denial-of-service attacks. The recursive filtering problem
has been studied in [28] for time-delayed nonlinear stochastic
systems with missing measurements, uniform quantization
and Round-Robin protocol scheduling. In [29], a distributed
H∞-consensus filter has been designed for discrete time-
varying systems subject to multiplicative noises and censored
measurements over sensor networks. Among others, the set-
membership filtering (SMF) scheme is particularly suitablefor
time-varying systems with unknown-but-bounded noises.

The original idea of SMF dates back to 1968 in [30] where
a confidence regioncontaining the true system state (rather
than a concrete state estimate) is generated at each time
instant. Compared with thepointwisefilters (e.g. the mini-
mum mean-squared-error filter,H∞ filter and moving-horizon
estimator), the set-membership filter utilizes theinterval-based
techniques. So far, the SMF problem has gained an ongoing re-
search interest for various systems, e.g. [31]–[35] and theref-
erences therein. For example, in [33], a so-called probability-
guaranteed set-membership filter has been designed for time-
varying systems with incomplete measurements, where the
estimation error is contained in an ellipsoidal set with a
given probability. The distributed SMF problem has been
studied in [31] for linear time-varying systems with dynamic
event-triggered transmission scheme. Among various SMF
approaches, the recursive linear matrix inequality (RLMI)
algorithm has proven to be popular, with which the filter
parameter is recursively computed to confine the filtering
error into a time-varying ellipsoidal region in the state-space.
The RLMI-based approach is particularly suitable for online
applications. Nevertheless, theultimate boundednessof the
time-varying ellipsoidal region remains to be anopen yet
crucial issue in quantifying the filtering performance. As such,
it is of practical importance to develop new SMF techniques
with a special focus on analyzing the ultimate boundedness.

Up to now, almost all SMF-related results have been ex-
clusively concerned withbounded disturbances, where the
size of the corresponding ellipsoidal region (containing the
true system state) is largely dependent on the bounds of the
underlying noises, which implies that the filtering performance
would deteriorate if the amplitudes of external disturbances
are out of a normal range. Note that, in many practical ap-
plications, the system measurements might suffer from large-
amplitude disturbances, leading to the so-calledmeasurement
outliers. Compared with other extensively investigated noises,
the measurement outliers have their own characteristics ofi)
occasional/intermittent/probabilistic occurrences andii) unex-
pectedly large amplitudes. Till now, some initial results have
been reported in the literature on the filtering problem with
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outliers, e.g. [36]–[42] and the references therein.
There are generally two frameworks for dealing with the

filtering problem subject to outliers, namely, the passive
robustness-based framework and the active detection-based
framework. In the passive resistance-based framework, the
filter is designed by selecting suitable filter parameters based
on statistical tests or on-line adaptive adjustment such that
the filtering performance is less sensitive to abnormal noises
(outliers) in a statistical/saturated sense [38], [40], [43]. For
example, in [44], [45], some robust filters have been devel-
oped to reduce the sensitivity of the filtering performance to
outliers. In [38], a so-called stubborn state observer has been
constructed by using the saturated innovation in the observer
design, under which the effects induced by the possible outliers
would be restrained. Nevertheless, the passive robustness-
based schemes cannot guarantee the complete elimination of
the effects induced by the measurement outliers in the filtering
process. In the active detection-based framework, the filter
is designed with dedicatedly proposed structure with hope to
cancelthe innovations corrupted by outliers. For example, in
[37], a novel moving-horizon estimator has been developed to
cope with the estimation problem subject to outliers, wherea
special leave-one-out method has been employed to identify
the “harmful measurements” possibly contaminated by out-
liers. Unfortunately, to the best of the authors’ knowledge, the
SMF problem subject to measurement outliers has not gained
adequate research attention yet, despite the critical importance
of mitigating the outlier-induced effects. It is, therefore, the
main motivation of this paper to fill such a gap.

Summarizing the discussions made thus far, there is a
practical need to deal with the SMF problem for time-varying
systems with measurement outliers. Some essential difficulties
we have to face are identified as follows: 1) how to establish
reasonable model for the measurement outlier according to
engineering practice; 2) how to distinguish the measurement
outputs contaminated by outliers from those normal mea-
surements? 3) how to design the set-membership filter that
prevents the filtering performance from being degraded by the
measurement outliers? and 4) how to deal with the ultimate
boundedness analysis issue on the time-varying ellipsoidal
region containing the true system state?

In response to the identified difficulties, the contributions
of this paper are highlighted as follows: 1) the measurement
outlier is modeled by an impulsive signal with itsinterval
length (i.e. the minimum duration between two adjacent im-
pulsive signals) andminimum norm(i.e. the minimum of the
norms of all impulsive signals) determined by engineering
practice; 2) the SMF problem is, for the first time, investigated
for time-varying systems with measurement outliers where
a novel detection method is developed to examine whether
the current measurement output is corrupted by an outlier; 3)
a dedicatedly designed parameter-dependent set-membership
(PDSM) filter is employed to “discard” the measurements
corrupted by outliers; and 4) the ultimate boundedness is
investigated for the time-varying ellipsoidal region containing
the true system state.

The remainder of this paper is organized as follows. In
Section II, the time-varying system with impulsive measure-

ment outliers is introduced and the corresponding PDSM filter
structure is proposed. In Section III, the detection strategy of
the measurement outlier is developed, and the desired time-
varying filter gain matrix is calculated by solving two recursive
difference equations. Then, the boundedness analysis of the
constraint matrices concerning the ellipsoidal region is carried
out. A numerical simulation example is given in Section IV to
demonstrate the correctness and effectiveness of our proposed
PDSM filtering scheme. Finally, we present the conclusion of
this work in Section V.

Notations: The notation used here is fairly standard except
where otherwise stated.Rn and R

n×m denote, respectively,
the n dimensional Euclidean space and set of alln × m
real matrices.N+ is the set of positive integers. The notation
X ≥ Y (X > Y ), where X and Y are real symmetric
matrices, means thatX −Y is positive semi-definite (positive
definite). MT represents the transpose of matrixM . If A
is a matrix, λmax{A} (λmin{A}) stands for the maximum
(minimum) eigenvalue ofA, and tr{A} denotes the trace of
A. 0 represents zero matrix of compatible dimensions.1N

represents anN dimensional row vector with all ones. The
n-dimensional identity matrix is denoted asIn, or simplyI if
no confusion is caused. The shorthanddiag{· · · } stands for a
block-diagonal matrix and the notationdiagn{•} is employed
to stand fordiag{•, · · · , •

︸ ︷︷ ︸

n

}. Given a vectorx, ‖x‖ describes

the Euclidean norm ofx. Matrices, if they are not explicitly
specified, are assumed to have compatible dimensions.⊗ is the
Kronecker product of matrices. The Kronecker delta function
δ(a) is a binary function that equals1 if a = 0 and equals0
otherwise.

II. PROBLEM FORMULATION AND
PRELIMINARIES

A. Impulsive measurement outliers

In this work, we consider the case where the measurements
of the sensors could be corrupted by certain outliers.

Obviously, an outlier occurs at one of the sampling instants
and therefore the number of occurred outliers should be
accountable. In this sense, lett(i) (i ∈ N

+) denote the
occurrence moment of thei-th measurement outlier. Based
on the sequence{t(i)}i≥0 of the occurrence moments, the
measurement outlierok (i.e., the outlier occurring at the
sampling instantk) can be modeled by the following form
of impulsive signals:

ok =
∞∑

i=0

δ(k − t(i))ôi (1)

where ôi represents the amplitude (a vector to be defined
later that corresponds to the system measurement) of the
i-th measurement outlier. For presentation convenience, the
measurement outlierok described in (1) is referred to as an
impulsive measurement outlier (IMO). Moreover, by defining
the interval lengthTi as

Ti = t(i)− t(i− 1)
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for i ∈ N
+ with initial value T0 = t(0), the occurrence

moment t(i) can be rewritten ast(i) =
∑i

j=0 Tj, which
implies that

ok =

∞∑

i=0

δ



k −
i∑

j=0

Tj



 ôi. (2)

Next, we introduce the following assumption on the pro-
posed IMOs.

Assumption 1:For ∀i ∈ N
+, the interval lengthTi satisfies

Ti ≥ T where T is a known positive constant, and the
amplitudeôi satisfies‖ôi‖ > o whereo is a known constant.
We denoteT ando as the lower bounds of the interval length
and amplitude, respectively.

Remark 1: It is worth mentioning that Assumption 1 is
fairly reasonable in real-world applications. In many practical
systems, sensor measurements might suffer from a special
class of perturbations which, different from conventional
noises, occur on an occasional basis with relatively large
amplitudes as compared to the noises. Such occasionally
occurred large-amplitude perturbations are modeled as IMOs
in this paper whose interval length and amplitude are greater
than certain known constants/thresholds that are identifiable
from engineering practice or statistical tests. Such outliers are
sometimes referred to as “isolated outliers” [46], [47], which
means that the outliers appear independently. Obviously, our
proposed model (1) is consistent with the description about
the isolated outliers. Similar assumption has been adoptedin
[37], where the moving-horizon estimation problem subject
to measurement outliers has been considered and the interval
length of two adjacent outliers is assumed to be great than
the window/horizon length of the moving-horizon estimation
scheme. Obviously, the lower bound of the interval length
(i.e. T ) is an important index to characterize the occurrence
frequency of the IMO. A typical example of such an index can
be found in the failure model of a repairable system, where an
important index named the time between failures is adopted
to model the failure frequency [48], [49].

B. Problem formulation: plant and filter structure

Consider a discrete linear time-varying system of the form
{

xk+1 = Akxk +Bkωk

yk = Ckxk + νk + ok
(3)

wherexk ∈ R
n andyk ∈ R

m are, respectively, the system s-
tate and the measurement output;ωk ∈ W , {ω : ωTR−1ω ≤
1;ω ∈ R

r} andνk ∈ V , {ν : νTS−1ν ≤ 1; ν ∈ R
s} denote,

respectively, the process and measurement noises whereR
andS are known positive definite matrices with appropriate
dimensions; and the parametersAk, Bk, Ck are real-valued
time-varying matrices of appropriate dimensions. Here, the
vectorok ∈ R

m is the IMO of the form (2).
Before proceeding further, we first introduce the following

assumptions which are necessary to design a filter for the plant
(3).

Assumption 2:There exist positive constants̄a, a, b̄, b, c̄
andc such that the following conditions hold for all thek ≥ 0:

a2I ≤ AkA
T
k ≤ ā2I, b2I ≤ BkB

T
k ≤ b̄2I,

c2I ≤ CkC
T
k ≤ c̄2I.

Remark 2: It is worth noting that Assumption 2 guarantees
that the matrixAk is invertible andCk is of full row rank. In
a great number of real applications, the discrete time-varying
system (3) represents the discrete analog of a time-varying
continuous-time system subject to certain sampling period. In
this case,Ak is the state transition matrixwhich is a time-
varying yetinvertiblematrix. Moreover,Ck is a full row rank
matrix if the system outputs are measured without redundancy.
The conditionBkB

T
k ≥ b2I means that the matrixBk is of full

row rank. Actually, this condition does not lose any generality
because, in case it does not hold, we can always apply the
following equality to the matrixBk

Bkωk = B1,kB2,kωk

where B1,k is a full row rank matrix andB2,kωk can be
regarded as a new bounded noise satisfying certain ellipsoidal
constraint. On the other hand, it is obvious that the system
parameters are constrained by certain upper limits in almost
all the practical applications. As such, it is quite reasonable
to assume that the matricesAkA

T
k , BkB

T
k and CkC

T
k are

constrained by certain upper and lower bounds.
Next, let us consider the filter structure for the system

(3).We aim to design a recursive set-membership filter for the
system (3) where the time-varying filter gain parameter is cal-
culated recursively by certain on-line algorithm. In this paper,
the IMO represents the abnormal signal which might result
from sensor malfunctions, wrong replacement of measures or
large non-Gaussian noises. Note that the filtering performance
of the conventional SMF scheme is largely dependent on the
bounds of the external inputs (including the outlier signal).
Clearly, the addressed IMO is very likely to beunboundedand
therefore the conventional SMF scheme would be inapplicable
in this case. In order to restrain the filtering performance
from being degraded by the outliers, we adopt the following
parameter-dependent set-membership (PDSM) filter:






x̂k+1|k = Akx̂k|k

x̂k+1|k+1 = x̂k+1|k + Lk+1(θk+1)
(
yk+1 − Ck+1x̂k+1|k

)

x̂0|0 = 0
(4)

wherex̂k|k is the estimate ofxk at time instantk with x̂0|0 =
0, andx̂k+1|k is the one-step prediction at time instantk. The
PDSM filter parameterLk+1(θk+1) is set to be

Lk+1(θk+1) =

{
Kk+1, if θk+1 = 0
0, if θk+1 = 1

whereθk+1 is a binary function to be designed which takes
values of1 and0. The matrixKk+1 is the time-varying filter
parameter to be determined.

Obviously, in the above PDSM filter, the filtering dynamics
is largely dependent on the value ofθk+1, which determines
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whether the current innovation should be adopted in calcu-
lating the state estimatêxk+1|k+1. More specifically, when
θk+1 = 1, the value of the state estimatêxk+1|k+1 would be
decoupled from the innovationyk+1 − Ck+1x̂k+1|k. In this
paper, we aim to design the binary functionθk+1 such that
the “harmful innovations” (i.e. the innovations contaminated
by IMOs) would be removed. In doing so, the binary function
θk+1 should be designed such thatθk+1 = 1 if there exists an
integeri ∈ N

+ satisfying the conditiont(i) = k + 1.
For presentation convenience, we introduce the following

definition.
Definition 1: For the time-varying system (3) with filter (4),

let the sequence of the constraint matrices (ellipsoid matrices)
Pk|k ∈ R

n×n (k ∈ N
+) be given. The filtering errorek|k ,

xk − x̂k|k is said to satisfy thePk|k-dependent constraint if
the following set of inequalities

eTk|kP
−1
k|kek|k ≤ 1 (5)

holds fork ∈ N
+.

Now, we are ready to state the main objectives of this paper
as in the following threefold.

1) Design the binary functionθk such that the condition
θk = 1 holds if and only if ok 6= 0 (i.e. there is an
outlier occurring at time instantk). In other words, the
designed PDSM filter (4) is capable of removing the
innovations contaminated by IMOs.

2) Find a sequence of constraint matrices{Pk|k}k≥0 such
that the filtering errorek|k satisfies thePk|k-dependent
constraint, and then minimize the trace of the matrix
Pk|k by appropriately choosing the filter parameterKk

whenθk = 0.
3) Analyze the ultimate boundedness of the matrix

{Pk|k}k≥0.

III. MAIN RESULTS

Before proceeding further, let us introduce the following
definition and assumption in order to deliver the main results.

Definition 2: [50] Consider the time varying matricesAk,
Ck and let the Observability Gramian be given by

Mk+N,k =

k+N∑

i=k

ΦT
i,kC

T
i CiΦi,k

for the integer N > 0 with Φk,k = I and Φi,k =
Ai−1Ai−2 · · ·Ak for i > k. The matricesAk, Ck are said
to satisfy the uniform observability condition if there aretwo
positive numbersr and r̄ such that the following inequality
holds for the integerN > 0:

rI ≤ Mk+N,k ≤ r̄I.

Assumption 3:The time-varying matricesAk andCk sat-
isfy the uniform observability condition for allk > 0 with the
integerN and two positive numbersr, r̄. Furthermore, the
minimum interval lengthT of the IMOs satisfiesT > N +1.

A. Design of the functionθk

In this subsection, we intend to develop a detection method
capable of identifying whether the received measurement
contains an outlier. First, we would like to establish the input-
output model of the plant (3) which is to be used when
proposing the outlier detection approach. It is easy to see that

ȳkk−N ,








yk−N − ok−N

yk−N+1 − ok−N+1

...
yk − ok








= Fkxk−N +Gkω
k−1
k−N + νkk−N

where

ωk−1
k−N ,








ωk−N

ωk−N+1

...
ωk−1







, Fk ,








Ck−NΦk−N,k−N

Ck−N+1Φk−N+1,k−N

...
CkΦk,k−N







,

νkk−N ,
[
νTk−N νTk−N+1 · · · νTk

]T
,

Gk ,











0 0 · · · 0

G1,1
k 0 · · · 0

G2,1
k G2,2

k · · · 0
...

...
. . .

...
GN,1

k GN,2
k · · · GN,N

k











,

Gi,j
k , Ck−N+iΦk−N+i,k−N+jBk−N+j−1.

According to Assumption 3, it is clear that the matrices
Ak andCk satisfy the condition

∑k+N

i=k ΦT
i,kC

T
i CiΦi,k ≥ rI.

Then, we have

xk−N =
(
FT
k Fk

)−1
FT
k

(

ȳkk−N −Gkω
k−1
k−N − νkk−N

)

= Ak−N−1xk−N−1 +Bk−N−1ωk−N−1 (6)

and therefore

F̄k ȳ
k
k−N −Ak−N−1F̄k−1ȳ

k−1
k−N−1

= Ḡkω
k−1
k−N + F̄kν

k
k−N −Ak−N−1Ḡk−1ω

k−2
k−N−1

−Ak−N−1F̄k−1ν
k−1
k−N−1 +Bk−N−1ωk−N−1 (7)

where

F̄k ,
(
FT
k Fk

)−1
FT
k , Ḡk ,

(
FT
k Fk

)−1
FT
k Gk.

By defining

~Gk , ḠkI1 −Ak−N−1Ḡk−1I2, I1 ,
[
0 IN ⊗ Ir

]
,

~Fk , F̄kI3 −Ak−N−1F̄k−1I4, I2 ,
[
IN ⊗ Ir 0

]
,

I3 ,
[
0 IN+1 ⊗ Im

]
, I4 ,

[
IN+1 ⊗ Im 0

]
,

we derive the following equality:

F̄k ȳ
k
k−N −Ak−N−1F̄k−1ȳ

k−1
k−N−1

= ~Gkω
k−1
k−N−1 +

~Fkν
k
k−N−1 (8)

Note that

ȳkk−N = ykk−N − okk−N
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whereykk−N ,
[
yTk−N yTk−N+1 · · · yTk

]T
and okk−N ,

[
oTk−N oTk−N+1 · · · oTk

]T
. As such, we have the follow-

ing input-output model for the plant (3)

~Fky
k
k−N−1 = ~Gkω

k−1
k−N−1 +

~Fkν
k
k−N−1 + ~Fkō

k
k−N−1. (9)

Next, let us consider the design problem of the binary
function θk. Based on the input-output model (9), we have
the following proposition.

Proposition 1: Under Assumptions 1-3, define the sequence
of {t̂(i)}i≥0 as follows:

t̂(i) =

{
min{k|k ≥ T , f(k) > f̄}, if i = 0
min{k|k ≥ t̂(i− 1) + T , f(k) > f̄}, otherwise

(10)

where

f(k) ,
∥
∥ ~Fky

k
k−N−1

∥
∥, f̄ , r

√
r̄(1 + ā)(ḡ + h̄),

ḡ ,







c̄b̄‖U1‖
√

|N − (N + 1)ā2 + ā2(N+1)|
|1− ā2| , ā 6= 1

c̄b̄‖U1‖
√

N(N + 1)

2
, ā = 1

,

h̄ ,
√
N + 1‖U2‖, ~f , r̄−1aNc,

and Ui (i = 1, 2) are the factorizations ofR = U1U
T
1 and

S = U2U
T
2 , respectively. Then, the condition̂t(i) = t(i) holds

for all i ≥ 0 if ~fo > 2f̄ .
Proof: The proof of this proposition is performed by

mathematical induction as follows.
Initial step.Consider the functionf(k). It can be observed

that, for allN + 1 < T ≤ k ≤ t(0)− 1, we have

f(k) =
∥
∥ ~Fky

k
k−N−1

∥
∥ ≤

∥
∥~Gkω

k−1
k−N−1

∥
∥+

∥
∥~Fkν

k
k−N−1

∥
∥

It follows from the definition ofGk that

∥
∥Gkω

k−1
k−N

∥
∥ =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥











0
∑1

j=1 G
1,j
k ωk−N+j−1

∑2
j=1 G

2,j
k ωk−N+j−1

...
∑N

j=1 G
N,j
k ωk−N+j−1











∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥












0
∑1

j=1 G
1,j
k ωk−N+j−1

0
0
...
0












+












0
0

∑2
j=1 G

2,j
k ωk−N+j−1

0
...
0












+ · · ·+












0
0
0
0
...

∑N

j=1 G
N,j
k ωk−N+j−1












∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

≤
N∑

i=1

∥
∥
∥
∥
∥

i∑

j=1

Gi,j
k ωk−N+j−1

∥
∥
∥
∥
∥
≤

N∑

i=1

i∑

j=1

∥
∥Gi,j

k ωk−N+j−1

∥
∥

(11)

Moreover, it is known from [51] that there exist two vectors
zi,k (i = 1, 2) satisfyingωk = U1z1,k andνk = U2z2,k with
‖zi,k‖ ≤ 1, whereUi (i = 1, 2) are the factorizations ofR =
U1U

T
1 and S = U2U

T
2 , respectively. Then, it is concluded

from (11) that

∥
∥Gkω

k−1
k−N

∥
∥ ≤

N∑

i=1

i∑

j=1

c̄āi−j b̄‖U1‖ = ḡ (12)

Then, by using (12), we derive that
∥
∥~Gkω

k−1
k−N−1

∥
∥ ≤ r

√
r̄(1 + ā)ḡ (13)

Similarly, we have‖νkk−N‖2 ≤ (N + 1)‖U2‖2 and
∥
∥~Fkν

k
k−N−1

∥
∥ ≤ r

√
r̄(1 + ā)h̄. (14)

Hence, we havef(k) ≤ f̄ for all T ≤ k ≤ t(0)− 1.
On the other hand, under Assumption 1, it is concluded that

ō
t(i)
t(i)−N−1 =

[
0(N+1)m×1

ot(i)

]

,

which implies

~Ft(i)ō
t(i)
t(i)−N−1 = F̄t(i)

[
0Nm×1

ot(i)

]

=
(
FT
k Fk

)−1
FT
k

[
0Nm×1

ot(i)

]

=
(
FT
k Fk

)−1
ΦT

k,k−NCT
k ot(i).

Hence, we have
∥
∥~Ft(i)ō

t(i)
t(i)−N−1

∥
∥ ≥ r̄−1aNco = ~fo (15)

Substituting (15), (13) and (14) into the definition off(k),
we have

f(t(i)) =
∥
∥~Ft(i)y

t(i)
t(i)−N−1

∥
∥

=
∥
∥~Gt(i)ω

t(i)−1
t(i)−N−1 +

~Ft(i)ν
t(i)
t(i)−N−1 +

~Ft(i)ō
t(i)
t(i)−N−1

∥
∥

≥ ~fo−
∥
∥~Gt(i)ω

t(i)−1
t(i)−N−1

∥
∥−

∥
∥ ~Ft(i)ν

t(i)
t(i)−N−1

∥
∥

≥ ~fo− r
√
r̄(1 + ā)(ḡ + h̄) > f̄ (16)

As such, it follows immediately from (16) that

t̂(0) = min{k|k ≥ T , f(k) > f̄} = t(0),

which indicates that the assertiont̂(i) = t(i) holds for i = 0.
Inductive step.Now that the assertion is true fori = 0.

Next, given that the assertion is true fori = j (i.e. θt(j) = 1),
we aim to show that the same assertion is true fori = j + 1.

Similar to the previous deduction, we havef(t(j+1)) > f̄ .
On the other hand, for anyt(j) + N + 1 < t(j) + T ≤ k ≤
t(j + 1)− 1, we haveōkk−N−1 = 0, which implies that

f(k) =
∥
∥ ~Fky

k
k−N−1

∥
∥ ≤

∥
∥~Gkω

k−1
k−N−1

∥
∥+

∥
∥~Fkν

k
k−N−1

∥
∥ ≤ f̄ .

(17)

Moreover, we have

o
t(j+1)
t(j+1)−N−1 =








ot(j+1)

0
...
0







,
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which means that

f(t(j + 1)) =
∥
∥~Ft(j+1)y

t(j+1)
t(j+1)−N−1

∥
∥

=
∥
∥
∥ ~Gt(j+1)ω

t(j+1)−1
t(j+1)−N−1 +

~Ft(j+1)ν
t(j+1)
t(j+1)−N−1

+ ~Ft(j+1)ō
t(j+1)
t(j+1)−N−1

∥
∥
∥

≥ −
∥
∥
∥~Gt(j+1)ω

t(j+1)−1
t(j+1)−N−1 +

~Ft(j+1)ν
t(j+1)
t(j+1)−N−1

∥
∥
∥

+
∥
∥
∥~Ft(j+1)ō

t(j+1)
t(j+1)−N−1

∥
∥
∥

≥ − f̄ + ~fo > f̄ (18)

As such, it can be immediately known from (17) and (18) that

t̂(j + 1) = min{k|k ≥ t̂(j) + T , f(k) > f̄}
= min{k|k ≥ t(j) + T , f(k) > f̄} = t(j + 1).

Hence, by the induction, we conclude that the assertiont̂(i) =
t(i) is true for i = 0, 1, · · · . The proof is now complete.

Remark 3: In Proposition 1, we have established a method
to derive the sequence of the occurrence moments of outliers
based on the input-output model (9). Considering the condition
~fo > 2f̄ , it is easy to conclude that the method proposed
in Proposition 1 is effective for “large outliers”. In practical
applications, the approach presented in Proposition 1 can be
utilized to obtain the sequence of the occurrence moments for
large outliers while the “small outliers” can be regarded asa
class of norm-bounded noises. Obviously, the corresponding
measurements contaminated by small outliers would not dra-
matically deteriorate the filtering performance even if these
measurements are involved in the filtering process, which
implies that the constructed PDSM filter (4) is still effective
to guarantee the desired filtering performance by selectingthe
suitable filtering parameter.

By means of Proposition 1, we propose an algorithm (i.e.
Algorithm 1) to compute the sequence{t̂(i)}i≥0.

Algorithm 1:
Step 1. Initialization: let i = 0. According to Proposition 1, compute

the value off̄ . If the current time instantk < T , wait for the
next time instant. Otherwise, go to the next step.

Step 2. Based on the received measurement outputs{yj}k−N−1≤j≤k ,
compute the value of the functionf(k).

Step 3. If f(k) > f̄ , set t̂(i) = k. Let i = i+ 1 and go to the next step.
Step 4. If the current time instantk < t̂(i− 1) + T , wait for the

next time instant. Otherwise, go toStep 3.

By employing Algorithm 1, the sequence of the occurrence
moments of the outliers is derived by computing the values
of {t̂(i)}i≥0 recursively. Based on the acquired sequence
{t̂(i)}i≥0, the binary functionθk is designed as follows:

θk =

{
1, if {i ≥ 0|k = t̂(i)} 6= ∅
0, otherwise

(19)

which means that the conditionθk = 1 holds if and only if
ok 6= 0.

Remark 4:By now, we have completed the design of the
binary functionθk. By setting the values of{θk}k≥0 according
to Proposition 1, we are capable of identifying whether the
received measurement output contains an impulsive outlier,

which implies that the first objective of this paper is achieved.
The proposed design method ofθk is implemented based on
Assumption 1 and the condition~fo > 2f̄ , which indicates
that shortest occurrence period and the smallest amplitudeof
the impulsive outliers should be larger than certain thresholds
to ensure the identifiability of all IMOs. One of our future
research topics would be to extend the design method ofθk
to the intermittent outliers.

B. Design of the filter parameterKk

Now, let us consider the filtering error dynamics. Assuming
that the condition~fo > 2f̄ holds for allk ≥ 0, we denote the
one-step prediction error as

ek+1|k , xk+1 − x̂k+1|k.

Subtracting (4) from (3), we have

ek+1|k = Akek|k +Bkωk (20)

Similarly, the filtering error dynamics is given as follows:

ek+1|k+1 =

{
Kk+1ek+1|k −Kk+1νk+1, if θk+1 = 0
ek+1|k, if θk+1 = 1

(21)

whereKk+1 , I −Kk+1Ck+1.
In light of (20) and (21), the constraint matrices are calcu-

lated in the following theorem.
Theorem 1:Consider the one-step prediction error dynam-

ics (20) and filtering error dynamics (21). Suppose that the
initial state of the plant satisfiesxT

0 P
−1
0|0 x0 ≤ 1 whereP0|0 is

a known positive definite matrix. Letε1 and ε2 be positive
scalars. Calculate two sequences of matrices{Pk+1|k}k≥0

and {Pk+1|k+1}k≥0 according to the following difference
equations:

Pk+1|k = (1 + ε1)AkPk|kA
T
k + (1 + ε−1

1 )BkRBT
k (22)

Pk+1|k+1

=







Pk+1|k, θk+1 = 1

(1 + ε2)Kk+1Pk+1|kKT
k+1

+ (1 + ε−1
2 )Kk+1SK

T
k+1,

θk+1 = 0
(23)

Then, the filtering errorek|k satisfies thePk|k-dependent con-
straint subject to the constraint matrices{Pk|k}k≥0. Moreover,
when θk+1 = 0, the trace of the constraint matrixPk+1|k+1

is minimized by the following filter parameter:

Kk+1 = (1 + ε2)Pk+1|kC
T
k+1Ω

−1
k+1 (24)

whereΩk+1 , (1 + ε2)Ck+1Pk+1|kC
T
k+1 + (1 + ε−1

2 )S.
Proof: The proof of this theorem is carried out by

mathematical induction.
Initial step. For k = 0, it can be immediately known from

the initial condition of the plant that

eT0 P
−1
0|0 e0 = xT

0 P
−1
0|0 x0 ≤ 1 (25)

Inductive step.Now that the assertion is true fork = 0.
Next, given that the assertion is true fork = i (i.e. the filtering
error ei|i satisfies the conditioneT

i|iP
−1
i|i ei|i ≤ 1), we aim to

show thateTi+1|i+1P
−1
i+1|i+1ei+1|i+1 ≤ 1.
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Since the conditioneT
i|iP

−1
i|i ei|i ≤ 1 holds, we have

[−1 eTi|i
∗ −Pi|i

]

< 0

which implies that

ei|ie
T
i|i ≤ Pi|i (26)

On the other hand, it follows from (20) and (26) that

ei+1|ie
T
i+1|i =

(
Aiei|i +Biωi

)(
Aiei|i +Biωi

)T

=Aiei|ie
T
i|iA

T
i +Biωiω

T
i B

T
i +Aiei|iω

T
i B

T
i +Biωie

T
i|iA

T
i

≤ (1 + ε1)Aiei|ie
T
i|iA

T
i + (1 + ε−1

1 )Biωiω
T
i B

T
i

≤ (1 + ε1)AiPi|iA
T
i + (1 + ε−1

1 )BiRBT
i

=Pi+1|i.

Similarly, we have

ei+1|i+1e
T
i+1|i+1 ≤ (1 + ε2)Ki+1ei+1|ie

T
i+1|iKT

i+1

+ (1 + ε−1
2 )Ki+1SK

T
i+1

≤Pi+1|i+1

which implies that

eTi+1|i+1P
−1
i+1|i+1ei+1|i+1 ≤ 1 (27)

Hence, by the induction, it can be concluded that the filtering
errorek|k satisfies thePk|k-dependent constraint subject to the
constraint matrices{Pk|k}k≥0.

Next, let us show that the filter gain given by (24) is optimal
in the sense that it minimizes the trace of the constraint matrix
Pk+1|k+1 whenθk+1 = 0. According to the equation (23), by
applying the “completing the square” technique, we have

tr{Pk+1|k+1}
=tr

{
(1 + ε2)Kk+1Pk+1|kKT

k+1 + (1 + ε−1
2 )Kk+1SK

T
k+1

}

=tr
{
Kk+1Ωk+1K

T
k+1 − (1 + ε2)Kk+1Ck+1Pk+1|k

− (1 + ε2)Pk+1|kC
T
k+1K

T
k+1 + (1 + ε2)Pk+1|k

}

=tr
{(

Kk+1 − (1 + ε2)Pk+1|kC
T
k+1Ω

−1
k+1

)
Ωk+1

(
Kk+1

− (1 + ε2)Pk+1|kC
T
k+1Ω

−1
k+1

)T
+ (1 + ε2)Pk+1|k

− (1 + ε2)
2Pk+1|kC

T
k+1Ω

−1
k+1Ck+1Pk+1|k

}
(28)

Obviously, the trace of the constraint matrixPk+1|k+1 is
minimized by choosing the filter parameterKk+1 according
to (24). In this case, the corresponding value ofPk+1|k+1 is
given as follows:

Pk+1|k+1 = − (1 + ε2)
2Pk+1|kC

T
k+1Ω

−1
k+1Ck+1Pk+1|k

+ (1 + ε2)Pk+1|k (29)

The proof is now complete.
Remark 5:So far, we have completed the design issue

of the PDSM filter for time-varying systems with impulsive
measurement outliers. The computation ofKk+1 is carried out
by solving two discrete-time difference equations, which are
suitable for online implementation. It is worth mentioningthat
the values of the constraint matrices{Pk|k}k≥0 are affected
by the values of{θk}k≥0 that satisfy the conditionθk = 1
for all ok 6= 0. As such, the boundedness of constraint

matrices{Pk|k}k≥0 depends on the sequence of the occurrence
moments of outliers (i.e.{t(i)}i≥0), which is determined
by the sequence of the interval lengths of the outliers (i.e.
{Ti}i≥0). In order to guarantee that the filtering algorithm is
non-divergent, we shall deal with the boundedness analysisof
the constraint matrices{Pk|k}k≥0 based on the assumption
on the outlier interval length (i.e. Assumption 1) in the next
subsection.

C. Boundedness analysis of constraint matrices

In this subsection, we would like to consider the bounded-
ness of the constraint matrices{Pk|k}k≥0. First, let us give
the lower bound of{Pk|k}k≥0.

Theorem 2:Under Assumption 2, there exists a positive
constantp such that the constraint matrixPk|k satisfies

Pk|k ≥ pI (30)

for everyk > 0, where

φ , (1 + ε−1
1 )λmin{R}b2, p , min{φ, φ},

φ ,
(
φ−1(1 + ε2)

−1 + (1 + ε−1
2 )−1(λmin{S})−1c̄2

)−1
.

Proof: Let us consider the following two cases:
Case 1:θk+1 = 0.
In this case, it follows from (29) that

Pk+1|k+1

=(1 + ε2)Pk+1|k − (1 + ε2)
2Pk+1|kC

T
k+1Ω

−1
k+1Ck+1Pk+1|k

=
[

(1 + ε2)
−1P−1

k+1|k + (1 + ε−1
2 )−1CT

k+1S
−1Ck+1

]−1

(31)

On the other hand, we have

Pk+1|k ≥ (1 + ε−1
1 )BkRBT

k ≥ φI (32)

Then, one infers from (31) and (32) that

P−1
k+1|k+1

=(1 + ε2)
−1P−1

k+1|k + (1 + ε−1
2 )−1CT

k+1S
−1Ck+1

≤φ−1(1 + ε2)
−1I + (1 + ε−1

2 )−1(λmin{S})−1c̄2I

=φ−1I (33)

which impliesPk+1|k+1 ≥ φI.
Case 2:θk+1 = 1.
In this case, we havePk+1|k+1 = Pk+1|k ≥ φI.
Summarizing the above discussions, it can be concluded that

Pk+1|k+1 ≥ pI. The proof is now complete.
Next, let us consider the upper bound of{Pk|k}k≥0. Before

proceeding further, we need to do some preparation in the
following two propositions.

Proposition 2: Under Assumptions 2-3, we have

γI ≤ M̄k,k−N ,

k∑

i=k−N

ΨT
i,kC

T
i CiΨi,k ≤ γ̄I (34)

for all k ≥ N , whereΨk,k = I and

Ψi,k = A−1
i A−1

i+1 · · ·A−1
k−1, γ = rā−2N , γ̄ = r̄a−2N .
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Proof: Obviously, it follows from the definitions of
Mk,k−N andM̄k,k−N that

M̄k,k−N

=A−T
k−NA−T

k−N+1 · · ·A−T
k−1Mk,k−NA−1

k−1A
−1
k−2 · · ·A−1

k−N ,

which implies

rā−2NI ≤ M̄k,k−N ≤ r̄a−2NI

and the proof is then complete.
Proposition 3: Under Assumptions 2-3 and the proposed

PDSM filtering algorithm, there always exists a real constant
0 < β < 1 such that

P−1
k+1|k ≥ βA−T

k P−1
k|kA

−1
k (35)

holds for allk > 0, where

~ , p−1λmax{R}b̄2a−2, β , (1 + ε1 + ~+ ε−1
1 ~)−1.

Proof: According to the difference equation (22), we
obtain

P−1
k+1|k

=
(
(1 + ε1)AkPk|kA

T
k + (1 + ε−1

1 )BkRBT
k

)−1

=A−T
k

(
(1 + ε1)Pk|k + (1 + ε−1

1 )A−1
k BkRBT

k A
−T
k

)−1
A−1

k

(36)

Noting that

A−1
k BkRBT

k A
−T
k ≤ λmax{R}b̄2a−2I,

we haveA−1
k BkRBT

k A
−T
k ≤ p−1λmax{R}b̄2a−2Pk|k. Then,

it follows from (36) that

P−1
k+1|k ≥ A−T

k

(
(1 + ε1 + ~+ ε−1

1 ~)Pk|k

)−1
A−1

k

= βA−T
k P−1

k|kA
−1
k ,

which concludes the proof.
Now, we are in a position to establish the uniform upper

bound of the constraint matrices{Pk|k}k≥0.
Theorem 3:Let Assumptions 2-3 hold. Then, there exists

a scalarp̄ > 0 such that the constraint matrices{Pk|k}k≥0

satisfy the following condition:

Pk|k ≤ ~pI (37)

where

p̄ ,
ā2λmax{S}
βε̄β̄Nγ

, β̄ , (1 + ε2)
−1β, ε̄ , (1 + ε−1

2 )−1,

p̂ , min{βε̄β̄Nλ−1
max{S}γā−2, β̄N p̄−1ā−2N},

p̌ , min{βε̄β̄Nλ−1
max{S}γā−2, β̄Nλ−1

max{P0|0}ā−2N},
~p , max{p̄, p̂−1, p̌−1, λmax{P0|0}}.

Proof: To analyze the boundedness of the constraint
matrices{Pk|k}k≥0, we consider the following two cases.

Case 1:θk+1 = 0.
In this case, we have

P−1
k+1|k+1 =

(
− (1 + ε2)

2Pk+1|kC
T
k+1Ω

−1
k+1Ck+1Pk+1|k

+ (1 + ε2)Pk+1|k

)−1

=(1 + ε2)
−1P−1

k+1|k + (1 + ε−1
2 )−1CT

k+1S
−1Ck+1

(38)

Then, it follows from (35) and (38) that

P−1
k+1|k+1 ≥ β̄A−T

k P−1
k|kA

−1
k + (1 + ε−1

2 )−1CT
k+1S

−1Ck+1

(39)

Case 2:θk+1 = 1.
In this case, we have

P−1
k+1|k+1 = P−1

k+1|k ≥ βA−T
k P−1

k|kA
−1
k (40)

According to the inequality (39), for anyi ≥ 1, it can be
derived that

P−1
k̄+1|k̄+1

≥ β̄A−T

k̄
P−1
k̄|k̄

A−1
k̄

+ (1 + ε−1
2 )−1CT

k̄+1S
−1Ck̄+1 ≥ · · ·

≥ ε̄

µ
∑

i=0

β̄iΨT
k̄+1−i,k̄+1C

T
k̄+1−i

S−1Ck̄+1−iΨk̄+1−i,k̄+1

+ β̄µ+1ΨT
k̄−µ,k̄+1P

−1
k̄−µ|k̄−µ

Ψk̄−µ,k̄+1 (41)

where k̄ , t(i) − 2 andµ , k̄ − t(i − 1). Noting thatµ =
t(i)− t(i − 1)− 2 ≥ N , we have

P−1
t(i)−1|t(i)−1 > ε̄β̄Nλ−1

max{S}γI (42)

Then, it follows from (22), (10) and (42) that

P−1
t(i)|t(i) ≥βA−T

t(i)−1|t(i)−1P
−1
t(i)−1|t(i)−1A

−1
t(i)−1|t(i)−1

>βε̄β̄Nλ−1
max{S}γā−2I (43)

Hence, we obtain

Pt(i)|t(i) <
ā2λmax{S}
βε̄β̄Nγ

I (44)

for all i ≥ 1. Similarly, it is easy to see that the inequality
(44) also holds fori = 0, which implies thatPt(i)|t(i) < p̄I
for all i ≥ 0.

On the other hand, for allt(i) ≤ k < t(i+1) (i = 0, 1, · · · ),
we have

P−1
k+1|k+1

≥ ε̄

k−t(i)
∑

i=0

β̄iΨT
k+1−i,k+1C

T
k+1−iS

−1Ck+1−iΨk+1−i,k̄+1

+ β̄k−t(i)+1ΨT
t(i),k+1P

−1
t(i)|t(i)Ψt(i),k+1

≥
{

βε̄β̄Nλ−1
max{S}γā−2I , if k − t(i) ≥ N

β̄NΨT
t(i),k+1P

−1
t(i)|t(i)Ψt(i),k+1 , otherwise

Noting that

β̄NΨT
t(i),k+1P

−1
t(i)|t(i)Ψt(i),k+1 > β̄N p̄−1ā−2N ,

we have

Pk+1|k+1 ≤ p̂−1I (45)

for all t(i) ≤ k < t(i + 1) (i = 0, 1, · · · ). Moreover, for
0 < k < t(0), it is easy to see that

P−1
k|k ≥ β̄A−T

k−1P
−1
k−1|k−1A

−1
k−1 ≥ · · ·
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≥
{

βε̄β̄Nλ−1
max{S}γā−2I , if k ≥ N

β̄kΨT
0,kP

−1
0|0Ψ0,k , otherwise

which implies

Pk|k ≤ p̌−1I (46)

for all 0 < k < t(0). Hence, it follows from (45) and (46)
that the constraint matrices{Pk|k}k≥0 satisfy the following
inequality

Pk|k ≤ ~pI,

which is identical to (37). The proof is now complete.
Remark 6:So far, we have studied the SMF problem for

linear time-varying systems subject to impulsive measurement
outliers. Clearly, the following important factors contribute
much to the system complexity: 1) the time-varying system
parameters; 2) the noise information (characterized by the
matricesR and S); 3) the shortest occurrence period and
the smallest amplitude of the impulsive outliers; and 4) the
uniform observability condition of the plant. As expected,
all these factors are reflected in the main results concerning
the outlier detection scheme, filter parameter design, and
boundedness analysis of the filtering error.

Remark 7: In this paper, a systematic investigation is initi-
ated on the new yet challenging problem of set-membership
filtering for time-varying systems with measurement outliers.
The main novelties of this paper are outlined as follows: 1) the
established model of the measurement outlier is new that is in
accordance with the engineering practice; 2) a new algorithm
is proposed to distinguish the measurement outputs contami-
nated by outliers from those normal measurements; 3) a new
set-membership filter is designed to resist the measurement
outliers with guaranteed filtering performance; 4) a rigorous
analysis is carried out on the ultimate boundedness issue of
the time-varying ellipsoidal region containing the true system
state; and 5) the developed filter design algorithm is recursive
that is suitable for online applications.

IV. AN ILLUSTRATIVE EXAMPLE

A numerical example is provided in this section to illustrate
the effectiveness of the proposed filter design scheme.

To make our simulation nontrivial, we consider anunstable
linear time-varying system of the form (3) with the following
time-varying parameters:

Ak =

[
0 1.02 + 0.1 sin2(0.3k)

1.01 0

]

, Bk = I, Ck =
[
1 0

]
.

Then, it is easy to see that

AkA
T
k = diag

{(
1.02 + 0.1 sin2(0.3k)

)2
, 1.012

}
,

which implies that

1.012I ≤ AkA
T
k ≤ 1.122I.

Moreover, by settingN = 1, we have

I ≤ Mk+1,k =

k+1∑

i=k

ΦT
i,kC

T
i CiΦi,k ≤ 1.122I.

Meanwhile, it follows from the values ofBk andCk that

BkB
T
k = I, CkC

T
k = 1.

The process noise is selected as follows:

ωk =
1√
2

[
ω1,k

ω2,k

]

whereωi,k (i = 1, 2) is a random variable satisfyingω2
i,k ≤

1. The measurement noise is a random bounded disturbance
satisfyingν2k ≤ 4. Hence, we obtainR = I andS = 4. In
this illustrative example, we assume thatT = 4 andt(0) = 4.
Then, by applying Proposition 1, we have

f̄ = r
√
r̄(1 + ā)(ḡ + h̄) = 9.0902.

Let the lower bound of the impulsive measurement outlier
beo = 2f̄/ ~f +0.1. Based on the design method of the binary
function θk in Proposition 1, the impulsive measurement
outliers and the values of{θk}k≥0 are shown in Fig. 1. It can
be observed from Fig. 1 that our developed function{θk}k≥0

is capable of identifying whether the received measurement
contains an impulsive outlier.
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Fig. 1: The measurement outliers and the values of{θk}k≥0

Next, let us try to design the time-varying filter parameter
{Kk}k>0 based on the results in Theorem 1. Set the initial
system state asx0 =

[
7 8

]T
. The filtering simulation results

are given in Figs. 2-3, which depict the state trajectories
and their corresponding estimates. All the simulation results
confirm that the filtering performance is well achieved.

In order to show the correctness of the boundedness analysis
results about the constraint matrices, Fig. 4 plots the trajec-
tories of the maximum eigenvalues and minimum eigenvalues
of {Pk|k}k≥0, respectively.

Next, we would like to give a simulation comparison
between our developed PDSM filtering scheme and the normal
SMF without the outlier detection. The simulation results are
given in Fig. 5. It can be easily observed from Fig. 5 that our
developed PDSM filtering scheme performs much better than
the normal SMF.
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Fig. 2: The state trajectories ofx(1)
k and x̂(1)

k|k
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Fig. 3: The state trajectories ofx(2)
k and x̂(2)
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Fig. 4: The trajectories ofλmax{Pk|k} andλmin{Pk|k}

V. CONCLUSION

In this paper, the SMF problem has been studied for a class
of linear time-varying systems subject to IMOs, which have
been modeled by the additive impulsive signals. The interval
lengths of outliers (i.e. the times between each two adjacent
outliers) are assumed to be larger than certain threshold.
Moreover, different from the bounded additive disturbances,
the norm of the impulsive measurement outliers is supposed to
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Fig. 5: The trajectories of‖ek|k‖ under different filtering approach

be larger than certain known scalar. A special outlier detection
approach has been proposed to examine whether the received
measurement is corrupted by the impulsive outlier. Based
on our provided detection strategy, a PDSM filter has been
designed to remove the innovations with outliers. The time-
varying filter gain matrix has been derived recursively by
solving a class of difference equations. Then, the boundedness
analysis issue of the time-varying ellipsoidal region containing
the true system state has been studied. Finally, an illustrative
example has been provided to demonstrate the effectiveness
of our developed PDSM filtering scheme.

Further research topics would include the extension of the
main results to 1) the distributed SMF problem for linear
systems with IMOs [52], [53], and 2) the PDSM filtering with
intermittent measurement outliers [54].
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