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Abstract—This paper is concerned with the set-membership
filtering problem for a class of linear time-varying systemswith
norm-bounded noises and impulsive measurement outliers. Aew
representation is proposed to model the measurement outlie
by an impulsive signal whose minimum interval length (i.e. he
minimum duration between two adjacent impulsive signals) ad
minimum norm (i.e. the minimum of the norms of all impulsive
signals) are larger than certain thresholds that are adjusable
according to engineering practice. In order to guarantee sa
isfactory filtering performance, a so-called parameter-dpendent
set-membership filter is put forward that is capable of geneating
a time-varying ellipsoidal region containing the true sysem state.
First, a novel outlier detection strategy is developed, ba&sl on a
dedicatedly constructed input-output model, to examine whther
the received measurement is corrupted by an outlier. Then,
through the outcome of the outlier detection, the gain matrk
of the desired filter and the corresponding ellipsoidal regdn
are calculated by solving two recursive difference equatios.
Furthermore, the ultimate boundedness issue on the time-vging
ellipsoidal region is thoroughly investigated. Finally, asimulation
example is provided to demonstrate the effectiveness of our
proposed parameter-dependent set-membership filtering sitegy.

Index Terms—Set-membership filtering; Impulsive measure-
ment outliers; Time-varying systems; Parameter-dependeirfilter;
Boundedness analysis.

. INTRODUCTION

under denial-of-service attacks. The recursive filterirapiem
has been studied in [28] for time-delayed nonlinear stdihas
systems with missing measurements, uniform quantization
and Round-Robin protocol scheduling. In [29], a distriloute
H.-consensus filter has been designed for discrete time-
varying systems subject to multiplicative noises and cetso
measurements over sensor networks. Among others, the set-
membership filtering (SMF) scheme is particularly suiteble
time-varying systems with unknown-but-bounded noises

The original idea of SMF dates back to 1968 in [30] where
a confidence regiorcontaining the true system state (rather
than a concrete state estimate) is generated at each time
instant. Compared with theointwisefilters (e.g. the mini-
mum mean-squared-error filté,, filter and moving-horizon
estimator), the set-membership filter utilizes ihervalbased
techniques. So far, the SMF problem has gained an ongoing re-
search interest for various systems, e.g. [31]-[35] andehe
erences therein. For example, in [33], a so-called prolgbil
guaranteed set-membership filter has been designed for time
varying systems with incomplete measurements, where the
estimation error is contained in an ellipsoidal set with a
given probability. The distributed SMF problem has been
studied in [31] for linear time-varying systems with dynami
event-triggered transmission scheme. Among various SMF
approaches, the recursive linear matrix inequality (RLMI)

The past few decades have witnessed a surge of reseafigforithm has proven to be popular, with which the filter

interest in a filtering problem that serves as a core topic
control and signal processing communities [1]-[14]. So dar
variety of filtering techniques have been developed andhéurt

parameter is recursively computed to confine the filtering
error into a time-varying ellipsoidal region in the stapase.
The RLMI-based approach is particularly suitable for oalin

applied in many practical areas such as system guidangplications. Nevertheless, thdtimate boundednessf the
and navigation, target tracking, process control, andtfatime-varying ellipsoidal region remains to be apen yet

detection. In general, the extensively studied filterimgtsgies

crucial issue in quantifying the filtering performance. Asls,

can be divided into five categories, namely, minimum meaf-is of practical importance to develop new SMF techniques
squared error filtering (e.g. the well-known Kalman filtgyin with a special focus on analyzing the ultimate boundedness.

and extended Kalman filtering) [15]-[17} . filtering [18],
[19], ultimately bounded filtering [20], [21], moving-hann

Up to now, almost all SMF-related results have been ex-
clusively concerned wittbounded disturbancesvhere the

estimation [22]-[24] and set-membership filtering (or sesize of the corresponding ellipsoidal region (containihg t

valued filtering) algorithms [25], [26]. For instance, in7[2a
distributed resilient filter has been proposed for powetesys
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true system state) is largely dependent on the bounds of the
underlying noises, which implies that the filtering perfamae
would deteriorate if the amplitudes of external disturlemnc
are out of a normal range. Note that, in many practical ap-
plications, the system measurements might suffer frometarg
amplitude disturbances, leading to the so-caltle@hsurement
outliers Compared with other extensively investigated noises,
the measurement outliers have their own characteristiés of
occasional/intermittent/probabilistic occurrences @hdnex-
pectedly large amplitudes. Till now, some initial resules/é
been reported in the literature on the filtering problem with
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outliers, e.g. [36]-[42] and the references therein. ment outliers is introduced and the corresponding PDSM filte
There are generally two frameworks for dealing with thstructure is proposed. In Section Ill, the detection sgratef
filtering problem subject to outliers, namely, the passivihe measurement outlier is developed, and the desired time-
robustness-based framework and the active detectiordbagarying filter gain matrix is calculated by solving two resive
framework. In the passive resistance-based framework, tiéference equations. Then, the boundedness analysiseof th
filter is designed by selecting suitable filter parameteseta constraint matrices concerning the ellipsoidal regioraisied
on statistical tests or on-line adaptive adjustment suelt tlout. A numerical simulation example is given in Section IV to
the filtering performance is less sensitive to abnormale®isdemonstrate the correctness and effectiveness of our gedpo
(outliers) in a statistical/saturated sense [38], [40B][4or PDSM filtering scheme. Finally, we present the conclusion of
example, in [44], [45], some robust filters have been devehis work in Section V.
oped to reduce the sensitivity of the filtering performanze t Notations: The notation used here is fairly standard except
outliers. In [38], a so-called stubborn state observer le@nb where otherwise state®”™ and R"*™ denote, respectively,
constructed by using the saturated innovation in the oleserthe n dimensional Euclidean space and set of nallx m
design, under which the effects induced by the possiblésositl real matricesN™ is the set of positive integers. The notation
would be restrained. Nevertheless, the passive robustne¥s > Y (X > Y), where X and Y are real symmetric
based schemes cannot guarantee the complete eliminatiomatrices, means thaf — Y is positive semi-definite (positive
the effects induced by the measurement outliers in theifiier definite). A/ represents the transpose of matr%. If A
process. In the active detection-based framework, the filie a matrix, A\pnax{A} (Amin{A}) stands for the maximum
is designed with dedicatedly proposed structure with hope minimum) eigenvalue of4, andtr{A} denotes the trace of
cancelthe innovations corrupted by outliers. For example, id. 0 represents zero matrix of compatible dimensians.
[37], a novel moving-horizon estimator has been developedrepresents arV dimensional row vector with all ones. The
cope with the estimation problem subject to outliers, wteren-dimensional identity matrix is denoted &s, or simply I if
special leave-one-out method has been employed to identiky confusion is caused. The shorthahidg{- - - } stands for a
the “harmful measurements” possibly contaminated by ouitock-diagonal matrix and the notatieliag,, {e} is employed
liers. Unfortunately, to the best of the authors’ knowlede to stand fordiag{e,--- ,e}. Given a vectorr, ||z| describes
SMF problem subject to measurement outliers has not gained Hn’_’
adequate research attention yet, despite the criticalitapce the Euclidean norm of. Matrices, if they are not explicitly
of mitigating the outlier-induced effects. It is, theredpithe specified, are assumed to have compatible dimensjoissthe
main motivation of this paper to fill such a gap. Kronecker product of matrices. The Kronecker delta furrctio
Summarizing the discussions made thus far, there isd&) is a binary function that equalsif « = 0 and equalg)
practical need to deal with the SMF problem for time-varyingtherwise.
systems with measurement outliers. Some essential difésul
we have to face are identified as follows: 1) h_ow to esta_\blish Il. PROBLEM EORMULATION AND
reasonable model for the measurement outlier according to PRELIMINARIES
engineering practice; 2) how to distinguish the measurémen
outputs contaminated by outliers from those normal meA- Impulsive measurement outliers

surements? 3) how to design the set-membership filter thajy this work, we consider the case where the measurements
prevents the filtering performance from being degraded By tBf the sensors could be corrupted by certain outliers.
measurement outliers? and 4) how to deal with the UIt'mateObviously, an outlier occurs at one of the sampling instants

boundedness analysis issue on the time-varying ellipoidgy therefore the number of occurred outliers should be
region containing the true system state? .. accountable. In this sense, leti) (i € N*t) denote the

In response to the identified difficulties, the contribuion,.rrence moment of théth measurement outlier. Based
of this paper are highlighted as follows: 1) the measuremegli the sequencét(i)};> of the occurrence moments, the
outlier is modeled by an impulsive signal with itsterval  neasurement outlien, (i.e., the outlier occurring at the

length (i.e. the minimum duration between two adjacent iMsgmpling instantt) can be modeled by the following form
pulsive signals) andhinimum norm(i.e. the minimum of the ¢ impulsive signals:

norms of all impulsive signals) determined by engineering
practice; 2) the SMF problem is, for the first time, investigh s e
for time-varying systems with measurement outliers where Ok = Z‘S(k_t(l))oi @)
a novel detection method is developed to examine whether =0
the current measurement output is corrupted by an outljer;\8here 6; represents the amplitude (a vector to be defined
a dedicatedly designed parameter-dependent set-mernberktier that corresponds to the system measurement) of the
(PDSM) filter is employed to “discard” the measurementisth measurement outlier. For presentation convenienee, th
corrupted by outliers; and 4) the ultimate boundedness ngeasurement outlies;, described in (1) is referred to as an
investigated for the time-varying ellipsoidal region caining impulsive measurement outlier (IMO). Moreover, by defining
the true system state. the interval lengthl’; as

The remainder of this paper is organized as follows. In
Section 11, the time-varying system with impulsive measure T = t(i) —t(i — 1)
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for i+ € Nt with initial value T, = ¢(0), the occurrence = Assumption 2:There exist positive constanis a, b, b ¢
moment¢(i) can be rewritten as(i) = Z;:O T;, which andc such that the following conditions hold for all tte> 0:

implies that _
P a’l < A AF < @I, VI < BpBY <V,
1 2 T =2
00 i I <CLC;. <c°l.
on=Y06k=>1;] 0. @) g
i=0 j=0 Remark 2:1t is worth noting that Assumption 2 guarantees

that the matrixA4,, is invertible andC}, is of full row rank. In
Next, we introduce the following assumption on the prog great number of real applications, the discrete timeiugry
posed IMOs. system (3) represents the discrete analog of a time-varying
Assumption 1:ForVi € N*, the interval lengti7; satisfies continuous-time system subject to certain sampling petiod
T; > T whereT is a known positive constant, and thehijs case,A; is the state transition matrixwhich is a time-
amplitudeo; satisfies||o;|| > o whereo is a known constant. varying yetinvertible matrix. Moreover(y, is a full row rank
We denotel’ ando as the lower bounds of the interval lengthmatrix if the system outputs are measured without redundanc
and amplitude, respectively. The conditionB;, B > b*I means that the matri®, is of full
Remark 1:1t is worth mentioning that Assumption 1 isrow rank. Actually, this condition does not lose any gerigral
fairly reasonable in real-world applications. In many pieal because, in case it does not hold, we can always apply the
systems, sensor measurements might suffer from a spegbowing equality to the matrix3;,
class of perturbations which, different from conventional
noises, occur on an occasional basis with relatively large Brwi, = B1,x B2, kwi
amplitudes as compared to the noises. Such occasional
occurred large-amplitude perturbations are modeled assiM
in this paper whose interval length and amplitude are grea
than certain known constants/thresholds that are idduitfia

from engineering practice or statistical tests. Such erdlare all the practical applications. As such, it is quite reagdea

sometimes referred to as “isolated outliers” [46], [47],igth to assume that the matrice$, A7, B, B! and C,.CT are

means that the outliers appear independently. Obviously, o . .
. . : - constrained by certain upper and lower bounds.
proposed model (1) is consistent with the description abou . )
: . o : : Next, let us consider the filter structure for the system
the isolated outliers. Similar assumption has been addpted

[37], where the moving-horizon estimation problem subjeg’)'we aim to design a recursive set-membership filter fer th

to measurement outliers has been considered and the ihte?%?tem ®) whgre the t|me—\{ary|ng filter gain paramet_er Is ca
ated recursively by certain on-line algorithm. In theppr,

length of two adjacent outliers is assumed to be great th%I . . .
. : . : .. the IMO represents the abnormal signal which might result
the window/horizon length of the moving-horizon estimatio .
. . from sensor malfunctions, wrong replacement of measures or
scheme. Obviously, the lower bound of the interval length . . o
rge non-Gaussian noises. Note that the filtering perfaoma

(i.e. T) is an important index to characterize the occurren ) .
frequency of the IMO. A typical example of such an index ¢ the conventional SMF scheme is largely dependent on the
: unds of the external inputs (including the outlier signal

_be found in the failure model _of a repairable s_ystem_, where (I]early, the addressed IMO is very likely to baboundedind
important index named the time between failures is aOIOIOtﬁ1erefore the conventional SMF scheme would be inapplkcabl

to model the failure frequency [48], [49]. in this case. In order to restrain the filtering performance
from being degraded by the outliers, we adopt the following

|I){ere By is a full row rank matrix andB; jw; can be
[ggarded as a new bounded noise satisfying certain ellipkoi
constraint. On the other hand, it is obvious that the system
parameters are constrained by certain upper limits in almos

B. Problem formulation: plant and filter structure parameter-dependent set-membership (PDSM) filter:
Consider a discrete linear time-varying system of the form Tryape = ArZrk
Erg1jes1 = Tregre + Dir1 Orr1) (Yr1 — Chrr@rgain)
Tp+1 = Arxi + Brwy L
(3) Zojp =0
Yk = Crrp + v + o (4)

wherez, € R™ andy, € R™ are, respectively, the system swherez,;, is the estimate of;, at time instant with 24, =
tate and the measurement output;c W 2 {w: w’R~'w < 0, andi; ), is the one-step prediction at time inst@ntThe
LweR}}andy, € V2 {v: 7S~ < 1;v € R®} denote, PDSM filter parameter.;, ;(0;11) is set to be
respectively, the process and measurement noises where .
and S are known positive definite matrices with appropriate Lii1(Opi1) = { K1, 1,f O =0
: : etk 0 if 1 =1
dimensions; and the parametedg, By, C) are real-valued ’ k+1
time-varying matrices of appropriate dimensions. Here thyhered,, is a binary function to be designed which takes
vectoroy, € R™ is the IMO of the form (2). values ofl and0. The matrixK}; is the time-varying filter
Before proceeding further, we first introduce the followingarameter to be determined.
assumptions which are necessary to design a filter for thré pla Obviously, in the above PDSM filter, the filtering dynamics
3). is largely dependent on the value &f,;, which determines
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whether the current innovation should be adopted in calcf- Design of the functiofi,

lating the state estimatey .. More specifically, when  this subsection, we intend to develop a detection method
01 = 1, the value of the state estimatg |, would be  capaple of identifying whether the received measurement
decoupled from the innovatiopi1 — Cri1@kr1je- In IS contains an outlier. First, we would like to establish theuit
paper, we aim to design the binary functidp,, such that oyt model of the plant (3) which is to be used when

the “harmful innovations” (i.e. the _innovations _contam'erh_ proposing the outlier detection approach. It is easy to lsae t
by IMOs) would be removed. In doing so, the binary function

01 should be designed such that, ; = 1 if there exists an Yk—N — Ok—N

integeri € N* satisfying the conditiort(i) = k + 1. o a |YEN+1 T Ok-N41
For presentation convenience, we introduce the following Ye-N = :

definition. Y — O

Definition 1: For the time-varying system (3) with filter (4),
let the sequence of the constraint matrices (ellipsoid inesy
Py € R™™ (k € N*) be given. The filtering erroey, £ \where
x), — Iy, IS said to satisfy theP,,-dependent constraint if

k—1 k
Frrp_n + kak—N +vi_N

. . . — Cr-N®r_N
the following set of inequalities N C " Nq)k N
h1 WEk—N+1 N k—N+1®PEk—N+1,k—N
T 1 wka = . 5 Fk = . 9
ekaPk|kek|k <1 (5) : .
W1 Cr @k k—nN
holds fork € N+, W 4 T . VT}T
Now, we are ready to state the main objectives of this paper ¥~ k=N Tk=N+1 LR
as in the following threefold. ?1 ______ 0 o 0
1) Design the binary functioff;, such that the condition Gy 0 0

0, = 1 holds if and only ifo, # 0 (i.e. there is an Gy = Gytoart 0 ,
outlier occurring at time instarit). In other words, the : : . :
designed PDSM filter (4) is capable of removing the
innovations contaminated by IMOs. o
2) Find a sequence of constraint matrige; ; }x>o0 such G & CrNyi®r Nyik-N+jBr-Nyj1
that the filtering error,,, satisfies thel,,-dependent

N,1 N,2 N,N
Gk Gk Gk

According to Assumption 3, it is clear that the matrices

constraint, and .then minimize the trace of the matr%k and C,, satisfy the conditioanj,iV ‘I’EkCiTCi‘I’i,k > .
Py, by appropriately choosing the filter parametey Then, we have
whené,, = 0.

3) Analyze the ultimate boundedness of the matrix gz, y = (F,CTFk)lekT (g,’j_N — Grwi—y — y,’g_N)
{Pyji r>0-

=Ap N1ZTh-N-1+ Br-N_1wWp-N—1 (6)

l1l. MAIN RESULTS and therefore
Fuyr B N A Y
Before proceeding further, let us introduce the following RYk—N = Ak=N-18k=1Yk N1

~ k—1 ok ~ k—2
definition and assumption in order to deliver the main reasult =Grwp_y + 1_?1@’/1@—1\/ — Ap-N1Grw Ty
Definition 2: [50] Consider the time varying matrices, — Ak_N_le_lu’,jj}V,l + B N_1WE_N_1 @)
C}, and let the Observability Gramian be given by
where
kN 5 A (T \~lpT A b (pTp\—lpT
My Nk = Z o ,.ClCi®ip Fe £ (FeFe) “Fe, G = (FeFi) Fi Gre
i=k By defining
for the integer N > 0 with &,;, = I and ®;;, = ék LT — Apno1Gr1To, T 2 [0 In ® Ir} 7

A 1A;_o--- Ay for i > k. The matricesd,, C, are said S A = _ N
to satisfy the uniform observability condition if there aveo Fi 2 ATy = Ap-n1Fea Ty, L= [Ive I 0],
positive numbers: and 7 such that the following inequality Zs = [0 Int1 ® L], Zs = [Iny1®1, 0],

holds for the integerV > 0: we derive the following equality:

rl < Mpsng <71 Frgb v — Ao Fea 0y
_ A k=1 2ok
Assumption 3:The time-varying matricesl;, and C, sat- =G n_y T Frvg_n— (8)
isfy the uniform observability condition for alt > 0 with the Note that
integer N and two positive numbers, 7. Furthermore, the
minimum interval lengthl” of the IMOs satisfied” > N + 1. Ubon = Ui-N —Of_N
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whereyf 2 [yl y viya yk]T andof_, £ Moreover, it is known from [51] that there exist two vectors
[of N OF Ny - }T As such, we have the follow- zi,x (i = 1,2) satisfyingw, = Uiz1x andvy = Uzz i With
ing input-output model for the plant (3) 23,6/ < 1, whereU; (i = 1,2) are the factorizations of =

L - L . U,U and S = U,UT, respectlvely Then, it is concluded
Feyr-n1=GrwpZy + Frvn 1+ Frog-n 1o (9)  from (11) that
Next, let us consider the design problem of the binary
function 6. Based on the input-output model (9), we have ]ka vl < ZanZ Ib|Uy|| =g (12)
the following proposition. i=1 j=1
Proposition 1: Under Assumptions 1-3, define the sequencqp by using (12), we derive that
of {#(i)}i>o as follows:

0 { min{k|k > T, f(k) > f}, ifi=0 Hkak vl < rVr (1 +a)g (13)
1) = . - = _ ]
min{klk > t(i — 1) + T, f(k) > f}, otherwaeo) Similarly, we havel|v}_ || < (N + 1)||Us)? and
where |Fevk_ || < oVF(L +a)h. (14)
k) £ || Foyg FAryi(l+a)g+h Hence, we havef(k) < f for all T < k < t(0) — 1.
f(k) U kyk*N*lH’ fErVr(+a)g +h), On the other hand, under Assumption 1, it is concluded that
||V [l vIN — (N + D@2 + a2 0]
N - a2 ,a#1l 6tEi§ = [O(Nﬂ)mxl}
9= 5 t(2)—N— i ’
cb||U1||\/ N+1 L O1(3)

which implies
h VN ||U2|| f £ f*lgNg, F() ONmX1:| . (FTFk)leT [Omel]
=g k
and U; (i = 1,2) are the factorizations ok = U,U{ and (i) (i)
S = U,U{ , respectively. Then, the conditidti) = ¢(i) holds = (FEFk)71¢£k,NC,Zot(i).
forall i > 0 if fo>2f
Proof: The proof of this proposition is performed by

oo =t(d)
Fy()04(y—n—1

Hence, we have

mathematical induction as follows. HFt 1)0 | > 'aNeo= fo (15)
Initial step. Consider the functiorf (k). It can be observed t(” Nt T
that, forall N +1 < T < k < #(0) — 1, we have Substituting (15), (13) and (14) into the definition pfk),
_, we have
1) = [ Fege—nal| < 1Grk =N all + 1P | )
It follows from the definition ofG), that Fe(i _()||Ft(1)yt(z) Nl‘(’) "
t(i)—1 t(7 o =t(
0 = ||Gt(1)w (i) —nN—1 T L) Veiy—n—1 T Fe)0, (z)—N—lH
(i)—1 t(i)
D 1G Wh—N+j-1 >fO_HGtZ)wt(z) vl = HFH)V (i)~ N— !l
|Gty = ||| Zimr G i > fo— Vi1 +a)g+h) > f (16)
N NJ As such, it follows immediately from (16) that
Zj:l Gl " Wk-N4j-1 . ) _
r 0 1T 0 7 t(0) = min{k|k > T, f(k) > f} = £(0),
1 1,5 ~
i1 Gyl wk- N1 ) ) jO which indicates that the assertiof¥) = ¢(i) holds fori = 0.
- 0 n > i1 Gl wk—Nj—1 Inductive step.Now that the assertion is true far= 0.
- 0 0 Next, given that the assertion is true for= j (i.e. 6,(;) = 1),
: : we aim to show that the same assertion is trueifer; + 1.
0 0 Similar to the previous deduction, we haf&(j+1)) > f.

- On the other hand, foran@(g)+N+1<t()+T<k<
t(j + 1) — 1, we haveo}_,_, = 0, which implies that

o O oo

Fk) = || Faf_n—a || < [|Growp=h || + || Fevfn— 1H<(f

Moreover, we have

N N,j
1>, G lw ;
1 G " WEk—N+j-1] )
J= Ot(j+1)

_ 0
<ZZ||G wi-n-+j-1]| n-va=| . |

=1 j=1 .
(11) 0

i

ZG Whk—N—4j—1

N
33
=1
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which means that which implies that the first objective of this paper is aclkigv
FEG+1) = Hﬁ _ t(+1) H The proposed design method @f is implemented based on
(t( = G+ Y1) - N -1 Assumption 1 and the conditiofio > 2f, which indicates

_ G_’t(j+l)wt(j+l)_]1\] + ﬁt(j+1)yt(.7_'+1) v that shortest occurrence period and the smallest amplifide
B t(Jfl)f -t ' AR the impulsive outliers should be larger than certain thotgsh
+ Ft(ﬁl)aigiB_N_lH to ensure the identifiability of all IMOs. One of our future
- . - . research topics would be to extend the design metho@, of
> _\d.,. t(j+1)—1 B t(j+1) ; . .
= tGHD) W) -N—1 T FtG+D V(41— N1 to the intermittent outliers.
o St(j+1)
+ Ft(j+1)0t(j+1)fN71H

A - B. Design of the filter parametek’;,
=EARLES (18) Now, let us consider the filtering error dynamics. Assuming
As such, it can be immediately known from (17) and (18) th&#at the conditionfo > 2 holds for allk > 0, we denote the

. . _ one-step prediction error as
87 +1) = min{klk > i(j) + T, f (k) > f} , A
= min{k|k > t(j) + T, f(k) > f} = t(j + 1). Chtilk = Thtl — Lht1lk:

Hence, by the induction, we conclude that the assef{ign= Subtracting (4) from (3), we have

t(i) is true fori =0, 1,---. The proof is now complete. B ert1)k = Axerx + Brwi (20)
Remark 3:In Proposition 1, we have established a method

to derive the sequence of the occurrence moments of outlierss'm'larly’ the filtering error dynamics is given as follows:

based on the input-output model (9). Considering the crdit . _ ) Kre+1epq1p — Kr+1vet1, if Ogp1 =0
fo > 2f, it is easy to conclude that the method proposed * 1= 1 ¢, ., if Opp1 =1
in Proposition 1 is effective for “large outliers”. In prézl (21)

applications, the approach presented in Proposition 1 ean
utilized to obtain the sequence of the occurrence moments
large outliers while the “small outliers” can be regardedhas

class of norm-bounded noises. Obviously, the correspgndfﬁlteg in the f(?gowm% ther(])rem. dicti q
measurements contaminated by small outliers would not dra-T eorem 1.Consider the one-step prediction error dynam-

matically deteriorate the filtering performance even ifstae IS (20) and filtering error dynamics (21). Suppose that the

measurements are involved in the filtering process, whidfjtial state of the plant satisfies, Fopro <1 where Iy is
implies that the constructed PDSM filter (4) is still effeeti

a known positive definite matrix. Let; and ey be positive
to guarantee the desired filtering performance by seledtiag scalars. Calculate two sequences of matri¢eh . }r>o
suitable filtering parameter.

and {Py 1,41 }x>0 according to the following difference
By means of Proposition 1, we propose an algorithm (i_gguatlons:

b
wherey 1 £ — Kip41Ckt1.
In light of (20) and (21), the constraint matrices are calcu-

Algorithm 1) to compute the sequen¢&(i)}i>o. Peiae = (L+e)Ap Py AL + (1+e7")BRRB] (22)
Algorithm 1: Pk+1|k+1
Step 1 Initialization: leti = 0. According to Proposition 1, compute Pk+1|k, 9k+1 =1
the value off. If the current time instank < T, wait for the _ T
next time instant. Otherwise, go to the next step. (1+ Eg)lc,klﬂpwrl‘k’cﬁfl 041 =0 (23)
Step 2 Based on the received measurement outpytst,,— v —1<j<k» + (1 + & )Kk+1SKk+1=
compute the value of the functiofi(k). o o
Step 31f f(k) > f, seti(i) = k. Leti =i + 1 and go to the next step. The_n’ the fllterlng EITOBk S?.tISerS Fheoklk'dependem con-
Step 4 If the current time instank < £(i — 1) + T, wait for the straint subject to the constraint matricgl3; ;. }r.>0. Moreover,
next time instant. Otherwise, go ftep 3 when @1 = 0, the trace of the constraint matrii, ;1
is minimized by the following filter parameter:
By employing Algorithm 1, the sequence of the occurrence Kr1 =1+ EQ)Pk+1|kCE+1Q;i1 (24)
moments of the outliers is derived by computing the values N . .
of {#(i)}i>0 recursively. Based on the acquired sequen(‘ﬁéhereﬂkfl = (14 €2)Ch1 PryrjpCrpy + (1 +657)5.
{£(i)}i>0, the binary functiors; is designed as follows: Proof._ Th_e pro_of of this theorem is carried out by
- . mathematical induction.
0, — L, it {i>0k=1t()}#0 (19)  Initial step.For & = 0, it can be immediately known from
0, otherwise the initial condition of the plant that
which means that the conditioh, = 1 holds if and only if eOTpo—IoleO - xOTPo_|01x0 <1 (25)

o 0.

kRimark 4:By now, we have completed the design of the Inductive stepNow that the assertion is true fdr = 0.
binary functiondy,. By setting the values 9 } x>0 according Next, given t_ha}t the assertio_n is true for= i (i.e. the fiIt_ering
to Proposition 1, we are capable of identifying whether tH&Tor €;); satisfies the Cond't'oaiﬂﬁlei\i < 1), we aim fto
received measurement output contains an impulsive outlighow thateﬁwﬂpifl‘i“€i+1|i+1 <1l
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Since the conditiorazﬁiPi‘_ilem < 1 holds, we have matrices{ Py, } x>0 depends on the sequence of the occurrence
. moments of outliers (i.e{t(7)};>0), which is determined
{_1 €iji } <0 by the sequence of the interval lengths of the outliers (i.e.
x =Py {T’}i>0). In order to guarantee that the filtering algorithm is
which implies that non-divergent, we shall deal with the boundedness anatysis
" the constraint matrice$ P, }r>0 based on the assumption
eilieili < Piji (26)  on the outlier interval length (i.e. Assumption 1) in the hex

On the other hand, it follows from (20) and (26) that ~ Subsection.
eir1li€ip)i = (Aieqi + Biwi) (Aieg); + Biwi)T
= Aiei‘ieT»AiT + Bjww! BT + Aiei“wiTBiT + Bijwiel AT

ili ili

C. Boundedness analysis of constraint matrices
In this subsection, we would like to consider the bounded-

<(1+e)Aieqie]; A7 + (1+ 61 ") Biwiw] B ness of the constraint matricés,; }r>o0. First, let us give
<(1+e)AP;AT + (147" )BRBY the lower bound of Py }r>0- _ _ N
B Theorem 2:Under Assumption 2, there exists a positive
I O constantp such that the constraint matri%, ;. satisfies

Similarly, we have
Y Py > pl (30)

T T T
€it1)i+1€i1)i+1 < (L +e2)Kivreipieip:Kip

for everyk > 0, where
+ (L4 K1 SK]

¢ 2 (1+er ) Amin{RI,  p = min{e, ¢},

SPHlIiH N -1 -1 —1\—1 —1-2\—1
which implies that 9= (07 (Itea) 4 (14 )7 Qmin{S)) )
T 1 Proof: Let us consider the following two cases:
ei+1|i+1Pz'Jrl|z‘+1€i+1|i+1 =1 (27) Case 1:0k11 =0.

Hence, by the induction, it can be concluded that the filgerin In this case, it follows from (29) that
errorey,;, satisfies the?,,.-dependent constraint subject to the
constraint matriceg Py, } k0. kt1lk+1

Next, let us show that the filter gain given by (24) is optimar= (1 + €2) Pey1i — (14 2)? Prg1 i Cly 1 ot Crrt P
in the sense that it minimizes the trace of the constraintimat PR N AT e -1
Ppy1jk4+1 whenby 1 = 0. According to the equation (23), by - [(1 +e2) Pk+1|k +(14ey ) CenS O’““}

applying the “completing the square” technique, we have (31)
tr{ Py 1ks1} On the other hand, we have
=tr{(1 + €2)Khs1Pes1pKpq + (L +e3 K1 SKL ) Pepap = (L+e7)BeRBL > ¢I (32)
= tr{ Kp 1 Q1 Kjpy — (1+ 22) Kp1 Crpr P Then, one infers from (31) and (32) that
— (1 + €2) Peyr o CL Kby + (1 + €2) Py} p-1
= tr{ (K1 — (14 €2) Py Cign Ut 1) Qe (K S L1 _
T =(1+e9) 1P,€+11‘,€ + (1 +ey ) CE ST O,
_(1+52)Pk+1‘k0k+19k+1) +(1+52)Pk+1|k P ) _1I 1 1y N _1_21
— (14 2)* Py 1k Cirp1 i1 O 1 Pegaji } (28) so” Qe I+ +e )" CanlSh e

=¢ I (33)
Obviously, the trace of the constraint matri, ;1 is o

minimized by choosing the filter paramet&f,,; according Which implies Py .1 > 1.

to (24). In this case, the corresponding valueRpf, ;.11 is Case 2:0p11 = 1.

given as follows: In this case, we hav® .11 = Pyi1jp = &1
) P Summarizing the above discussions, it can be concluded that
Priijpsr = — (1 +62)" Poy1nCip1 Qi1 Ot Pry i Pyy1jer1 > pl. The proof is now complete. [
+ (1 +e2) Prgjp (29) Next, let us consider the upper bound{@?,; }>o. Before

Th £i let = proceeding further, we need to do some preparation in the
€ prootis now complete. following two propositions.

Remark 5:8(.) far, we have C_ompleted the .de_5|gn ISsue Proposition 2: Under Assumptions 2-3, we have
of the PDSM filter for time-varying systems with impulsive

measurement outliers. The computatiorff, ; is carried out _ N o -
by solving two discrete-time difference equations, whicha a v < Myp-N = Z UG GV, <71 (34)
suitable for online implementation. It is worth mentionitigt i=k—N

the values of the constraint matricg¢#®), ;. } x>0 are affected for all k > N, where¥,, , = I and

by the values of{0;},>0 that satisfy the conditio, = 1

for all o # 0. As such, the boundedness of constraint Wik =

k

1 4-1 -1 9N o _ - 2N
ATAL Ay y=ram Ty =Tam
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Proof: Obviously, it follows from the definitions of

My, x—n and My, ;. n that
Mk,k—N
=AINA v A M N AL A AL
which implies
ra NI < My p-n <7a*NT

and the proof is then complete. |

Proposition 3: Under Assumptions 2-3 and the proposed
PDSM filtering algorithm, there always exists a real conistan According to the inequality (39), for any> 1

0 < 8 < 1 such that

—1 —Tp—1 -1
P, 2 BAL P Ay

(35)
holds for allk > 0, where

hep Amax{R}I’a™, B2 (1+e+h+e'h)h

Proof: According to the difference equation (22), we

obtain
-1
Pk-i—l\k
= (14 e1) A Pup AT + (147 )ByRBY) ™
=A; (M +e)Pys + (14 a;l)A,;lBkRB,CTA,;T)”A,;l
(36)

Noting that
A'BRRBEALT < Amax{R}ba 1,
we haveA; 'ByRBF A, " < p~ ' Amax{R}b*a=2Py);.. Then,
it follows from (36) that
Pl = AT (L4 e+ ht e h)Pyy) AL
= BAT P Ay
which concludes the proof. [ |

=(1+e) ' Pl + (L4 e )OS O
(38)
Then, it follows from (35) and (38) that

Pl = BAT P AL + (465 ) T O ST G
(39)
Case 2:0y41 = 1.
In this case, we have
—1 —1 —T p—1 4—1
Pt = Popae 2 84,7 B4y, (40)
it can be
derived that
—1
Ly
> BATT P AL + (L4 ey )T OE ST Cyy 2 -+
"
ZE_Zﬁl\l}%ﬂ—i,lﬂlOI{+1—¢S_1OEH—i‘I/EHﬂ',EH
1=0
2 1, T —1
+ B 1 P pp Ve (41)

wherek £ t(i) — 2 andp £ k — t(i — 1). Noting thaty =
t(i) —t(i—1)—2 > N, we have

P 1y > BN A ST (42)
Then, it follows from (22), (10) and (42) that
-1 —-T —1 -1
Pt(i)|t(i) z ﬂAf(i)—l\t(i)—lPt(i)—l\t(i)—lAt(i)—1|t(i)—1
> BeBN Aa {Sa?1 (43)
Hence, we obtain
@2 A max{ S
Py ey < #I (44)

BepNy
for all « > 1. Similarly, it is easy to see that the inequality
(44) also holds fori = 0, which implies thatP, .y < pl

Now, we are in a position to establish the uniform uppggy all ; > 0.

bound of the constraint matricgs’; ;. }#>o-

On the other hand, for at(i) < k < t(i+1) (i =0,1,---),

Theorem 3:Let Assumptions 2-3 hold. Then, there exiSt§e have

a scalarp > 0 such that the constraint matricé$ ;. } x>0
satisfy the following condition:

Py < pl (37)
2 PAnax{S} 54
T8Ny T
min{FeBY Ao {S}ya?, BV p a7},
min{ﬁ‘&:BN)\r;;X{S}la_zv BN/\;ix{Pom}a_zN}v
p ]5_17]5_17 )‘max{PO\O}}-

(1+e)718, 62 1+,

"o D

> 1> >

S
=
)
54

AN

=

—1
Pk-i—l\k-i—l

k—t(4)
> Y B ik Cia—iS T OV i i
i=0
+ Bk*t(i)ﬂ‘I’tT(i).,chrlPtzil)lt(i)\Ijt(i)’kJrl
{ BB Naad Stya~?1 ,if k—t(i) > N

> 5 = .
BN\I}tT(i),kHPt(il)u(i)‘Ijt(i),kJrl , otherwise

Noting that

BN‘I’tT(i),kHPtEl)u(i)‘I’t(i)7k+1 > phptam,

Proof: To analyze the boundedness of the constraifjfe nave

matrices{ Py, } x>0, we consider the following two cases.
Case 1:0y4.1 = 0.
In this case, we have

Pl;r11|k+1 = ( —(1+ E2)2P/€+1IkaTJrlﬂl;ilO’“rlplwrllk

-1
+ (14 €2) Prtjr)

(45)

forall t(i) < k < t(i +1) (i = 0,1,---). Moreover, for
0 <k < t(0), it is easy to see that

Prgappr <p T

1< g4-T p—1 -1
Pk\k z ﬁAk—IPkak—lAk—l Z o
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- BEBN Apa{SYya™21 i k>N Meanwhile, it follows from the values aB;, andC), that
= ﬁk\IJOTykPO_‘OI\IIO_,k , otherwise

T T _
which implies ByB, =1, C.C, =1

Py <p ' (46) The process noise is selected as follows:
for all 0 < k£ < t(0). Hence, it follows from (45) and (46) 1 [wis
that the constraint matrice§P ;. }x>0 Satisfy the following WE = E LQ’J
inequality '
Py <71, wherew; ;, (1 = 1,2) is a random variable satisfyingﬁk <

1. The measurement noise is a random bounded disturbance
which is identical to (37). The proof is now complete. B satisfyingy? < 4. Hence, we obtairR = I andS = 4. In
Remark 6:So far, we have studied the SMF problem fothis illustrative example, we assume tlat= 4 and¢(0) = 4.
linear time-varying systems subject to impulsive meas@r@m Then, by applying Proposition 1, we have
outliers. Clearly, the following important factors coiuie
much to the system complexity: 1) the time-varying system f= Z\/%(l +a)(g + h) = 9.0902.
parameters; 2) the noise information (characterized by the
matrices B and 5); 3) the shortest occurrence period and [ et the lower bound of the impulsive measurement outlier
the smallest amplitude of the impulsive outliers; and 4) thes, — 27/ 7+ 0.1. Based on the design method of the binary
uniform observability condition of the plant. As expectedkynction 6, in Proposition 1, the impulsive measurement
all these factors are reflected in the main results conogmigytliers and the values i } >0 are shown in Fig. 1. It can
the outlier detection_ scheme_, fiIFer parameter design, agg opserved from Fig. 1 that our developed functfen} o
boundedness analysis of the filtering error. s capable of identifying whether the received measurement
Remark 7:In this paper, a systematic investigation is initizontains an impulsive outlier.
ated on the new yet challenging problem of set-membership
filtering for time-varying systems with measurement ouslie

The main novelties of this paper are outlined as followshg) t \ \ \ \ \
established model of the measurement outlier is new that is Ll Ve ¢ 9 i
accordance with the engineering practice; 2) a new algarith Zal ? ? " " ? ‘-3 oot ?
is proposed to distinguish the measurement outputs contar 2| 1y o non N A0
nated by outliers from those normal measurements; 3) a n m* .,_.m m . w Vb oah *M_ ,,,.
set-membership filter is designed to resist the measurem E0aaane D “‘”%WTES:)“ R
outliers with guaranteed filtering performance; 4) a rigmo
analysis is carried out on the ultimate boundedness issue | ‘ ‘ ‘ ‘ Te-a] |
the time-varying ellipsoidal region containing the trueteyn I A S S-S SRS SRS SN S S S S
state; and 5) the developed filter design algorithm is reegirs Zosl M n n
that is suitable for online applications. - oo noon o nn By
+ Looedbe0s.50s0d-Soes 36008 Seese-bos-bescs Sec0s-boeos Sos

IV. AN ILLUSTRATIVE EXAMPLE ime (k)

A numerical example is provided in this section to illustrat
the effectiveness of the proposed filter design scheme.

To make our simulation nontrivial, we consider amstable
linear time-varying system of the form (3) with the followin
time-varying parameters:

0 1.0240.1sin*(0.3k)
1.01 0

Then, it is easy to see that

Fig. 1: The measurement outliers and the value$éaf} >0

Next, let us try to design the time-varying filter parameter
{K}\}r>0 based on the results in Theorem 1. Set the initial
system state asy = |7 8]T. The filtering simulation results
are given in Figs. 2-3, which depict the state trajectories
and their corresponding estimates. All the simulation ltssu
confirm that the filtering performance is well achieved.

In order to show the correctness of the boundedness analysis
A AL = diag{(1.02 + O.lsin2(0.3k))2, 1.01%}, results about the constraint matrices, Fig. 4 plots thedraj
tories of the maximum eigenvalues and minimum eigenvalues
of { Py }r>0, respectively.

Ay = By =I1,C,=[1 0].

which implies that

1.01%7 < AR AT <1.12°1. Next, we would like to give a simulation comparison
. between our developed PDSM filtering scheme and the normal
Moreover, by settingV = 1, we have SMF without the outlier detection. The simulation results a
k+1 given in Fig. 5. It can be easily observed from Fig. 5 that our
I < Mgt1k = Z‘szcfpci@i,k < 1.12°1. developed PDSM filtering scheme performs much better than

i=k the normal SMF.
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V. CONCLUSION

10

lexje|| based on our PDSM filtering
lexx || based on set-membership filtering without outlier detection

“HH | | 1|

20
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4
;
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Fig. 5: The trajectories ofie, || under different filtering approach

be larger than certain known scalar. A special outlier ditac
approach has been proposed to examine whether the received
measurement is corrupted by the impulsive outlier. Based
on our provided detection strategy, a PDSM filter has been
designed to remove the innovations with outliers. The time-
varying filter gain matrix has been derived recursively by
solving a class of difference equations. Then, the bounekein
analysis issue of the time-varying ellipsoidal region edmihg

the true system state has been studied. Finally, an illisdra
example has been provided to demonstrate the effectiveness
of our developed PDSM filtering scheme.

Further research topics would include the extension of the
main results to 1) the distributed SMF problem for linear
systems with IMOs [52], [53], and 2) the PDSM filtering with
intermittent measurement outliers [54].
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