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A B S T R A C T

Commonly, fracture toughness tests on deeply cracked specimens are used to assess defects in
large-scale components. The paper presents a method for selection of test specimen type, size
and crack length in order to obtain fracture toughness estimates relevant to defects in cracked
pipes. The method uses available closed-form 𝑇 -stress, stress intensity factor and limit load
solutions to determine the required specimen dimensions. The paper reports elastic–plastic finite
element analyses for single edge notched bend (SENB) and single edge notched tension (SENT)
specimens and cracked pipes which demonstrate good agreement of the matching approach,
although care is needed in selecting the appropriate limit load solution for SENT geometries.

. Introduction

SENB or compact tension (CT) specimens with deep cracks (𝑎∕𝑊 = 0.5, where a is the crack length and 𝑊 is the specimen
eight) are usually used to measure fracture toughness of steels. These specimens represent high constraint at the crack tip and are
sed in standard fracture toughness determination methods [1]. Surface defects such as corrosion cracks, welding cracks, defects
ormed in the manufacturing process and in service of pressure pipelines and vessels often have lower crack-tip constraint. The use
f fracture toughness obtained from deeply cracked specimens with high constraint in a design or a life assessment of pipes is then
onservative [2]. Therefore, results obtained from high constraint specimen configurations cannot be directly transferred to provide
n accurate assessment of a low constraint condition, for example, a pressurised pipeline experiencing longitudinal strains [3].
ot only crack initiation, but also crack growth toughness depends on constraint. This highlights the importance and relevance of
onstraint in fracture mechanics field.

In leak before break (LBB) analysis, to obtain the crack growth (𝐽–𝑅) or crack tip opening displacement (CTOD) resistance curves,
tandard fracture toughness specimens, such as SENB specimens with deep cracks, are also used to ensure high crack-tip constraint.
he constraint influences the ductile tearing resistance of the material and therefore the resulting𝐽–𝑅 curves affect the predicted
BB behaviour [4]. For the same material, high constraint configurations yield relatively low resistance curves, while shallow
ENB and predominantly tension loaded configurations develop a higher resistance to ductile tearing and larger toughness values
t similar amounts of crack growth. Consequently, the issue of the transferability of experimentally measured fracture resistance
ata to structural piping components remains important for accurate predictions of LBB, in-service residual strength and remaining
ife [5,6].

From an experimental point of view, the SENT specimen configuration has been shown to provide a more representative crack
ip constraint and a better characterisation of the resistance curve behaviour than SENB or CT specimens for low constraint
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Nomenclature

𝑎 crack depth of SENB, SENT and CT specimen or FCC pipe
𝐵 SENB or SENT specimen thickness
𝐸 Young’s modulus
𝐻 specimen or pipe length
𝐽 𝐽 -integral
𝑀 pure bending moment
𝑚 Load parameter
𝑛 parameter for R-O material
𝑃 applied load
𝑄 elastic–plastic constraint parameter
𝑇 𝑇 -stress
𝑡 wall thickness of TWC pipe
𝑊 height of SENB, SENT and CT specimen or wall thickness of FCC pipe
𝛼 relative crack depth
𝛽𝑇 normalised constraint parameter
𝜖 elastic-plastic strain
𝜖0 strain at 𝜎𝑦
𝜑 angular position at the crack tip
𝜇 parameter for R-O material
𝜈 Poisson’s ratio
𝜙 plastic zone size parameter
𝜎𝑦 yield strength
𝜃 half crack angle in TWC pipe
𝐴2 elastic-plastic constraint parameter
𝑎𝑒 effective crack length
𝐸′ plain strain Young’s modulus
𝑓𝛼 non-dimensional stress intensity factor function
𝑓𝐿 non-dimensional limit load function
ℎ1 parameter for 𝐽𝑝𝑙
𝐽𝑒𝑙 elastic 𝐽 -integral
𝐽𝑝𝑙 elastic–plastic 𝐽 -integral
𝐾𝐼 stress intensity factor for fracture mode-I
𝐿𝑟 ratio of applied load to limit load
𝑀𝐿 limit bending moment
𝑃𝐿 limit load
𝑅𝑒 external radius
𝑅𝑖 internal radius
𝑅𝑚 mean radius
𝑟𝑦 plastic zone size
𝑇𝑧 out-of-plane constraint parameter
2D two-dimensional
3D three-dimensional
CT compact tension specimen
CTOD-R crack tip opening displacement resistance curve
EPH elastic–plastic with hardening material
EPP elastic perfectly plastic material
FAD failure assessment diagram
FCC pipe with fully circumferential internal crack
FEA finite element analysis

conditions [3,7,8]. It has been found that the crack-tip constraint of the SENT specimen is similar to that of a full-scale pipe
containing a surface crack under longitudinal tension or internal pressure [9–11]. More specifically, compared to the single edge
notched tensile clamped (SENT(C)) specimen, the crack-tip constraint of a single edge notched tension pin-loaded (SENT(P))
2
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𝐽–𝑅 crack growth resistance curve
LLB leak before break
MPC multi-point constraint
R-O Ramberg–Osgood material
SENB single edge notched bend specimen
SENB-c corrected SENB specimen size
SENT single edge notched tension specimen
SENT(C) single edge notched clamped tensile specimen
SENT(C)-c corrected SENT(C) specimen size
SENT(P) single edge notched pin-loaded tensile specimen
SENT(P)-c corrected SENT(P) specimen size
SSY small-scale yielding
TWC circumferentially through-wall cracked pipe

specimen is closer to that of axially cracked pipes [2,12]. Hence the use of resistance curves determined from SENT specimens
can lead to more accurate assessments of pipelines containing cracks.

In [5], it was found that SENB and SENT samples in certain 𝑎∕𝑊 regimes demonstrate similar crack tip constraint. Shallow
racked SENB specimens with crack sizes in the range of 0.1 ≤ 𝑎∕𝑊 ≤ 0.2 exhibit levels of crack-tip constraint similar to clamped
ENT(C) specimens having crack sizes in the range 0.2 ≤ 𝑎∕𝑊 ≤ 0.4. Also, 𝐽–𝑅 curves for the SENB specimens depend rather
trongly on crack size, particularly for a/𝑊 ≤ 0.3. In contrast, 𝐽–𝑅 curves for clamped SENT(C) specimens display little sensitivity
o a/W ratio. Shallow cracked SENB specimens with crack sizes in the range 0.1 ≤ 𝑎∕𝑊 ≤ 0.2 provide fracture response in terms
f𝐽–𝑅 curves in good agreement with the corresponding fracture behaviour of circumferentially cracked pipes.

Tests on specimens with shallow, edge cracks provide elevated values of fracture toughness measured by the 𝐽 -integral when
ompared with those obtained from standard deeply cracked high constraint specimens. This increase in toughness occurs because
hallow-edge cracked geometries impose a relatively low level of crack-tip constraint [13]. A single fracture mechanics parameter,
tress intensity factor or 𝐽 -integral, cannot explain constraint and the variation in fracture toughness due to different constraint
evels. The aim of some research has therefore been to find a second parameter that can characterise constraint, so that results from
ne test geometry can be transferred to another geometry [14]. There have been analytical, numerical and experimental studies
o attempt to describe fracture in terms of the 𝐽 -integral and a second parameter [15,16]. The second parameter provides further
nformation concerning how the structural and loading configuration affects the constraint conditions at the crack-tip.

Two-parameter approaches, K-T, J-Q and J-𝐴2, have been developed to address the constraint effect [17]. The K-T approach is
ased on the elastic asymptotic expansion where 𝑇 -stress is proportional to the applied load. However, the higher order terms in the
lastic–plastic material vary non-linearly with the applied load. These terms are taken into account by Q or 𝐴2 parameters. There
s a relationship between 𝑇 -stress and the Q parameter. For power law materials it has been derived from plain strain modified
oundary layer analysis and presented by a cubic polynomial [18]. For perfectly plastic materials the relationship is simplified to
= 𝑇 ∕𝜎𝑦, when −0.5 < 𝑇 ∕𝜎𝑦 ≤ 0 and 𝑄 = 0.5𝑇 ∕𝜎𝑦, when 0 < 𝑇 ∕𝜎𝑦 < 0.5 [18]. The two-parameter approaches, K-T, J-Q and J-𝐴2,

ere derived for two dimensional stress fields to address in-plane constraint. The stress distribution at the crack tip of a real crack is
hree dimensional and the stress state varies through the thickness of the specimen. The third parameter, which takes into account
ut-of-plane constraint, 𝑇𝑧, was added to already existing two-parameter methods. They became extended for three dimensional
tress states in the form of 𝐽 − 𝐴2 − 𝑇𝑧 or J-Q-𝑇𝑧 [19–22].

The 𝑇 -stress is an elastic parameter which quantifies crack tip constraint. 𝑇 -stress is the constant stress acting parallel to the
rack flank in an elastic analysis [23]. Positive 𝑇 -stress is characteristic of high constraint and negative 𝑇 -stress of low constraint
eometries. The 𝑇 -stress affects the size of the plastic zone [24] and also influences the crack growth path [25]. For instance, crack
ath deviations up to 50◦ have been observed when testing low constraint shallow cracked SENT(C) samples [26]. Negative values
f the 𝑇 -stress serve to reduce crack-tip constraint and so increase measured fracture toughness [13].

In order to obtain representative fracture toughness data for structural components using laboratory specimens, the constraint
evels in both specimen and component should be as similar as possible. Therefore, constraint corrections can be applied and these
re described in R6 [27] and BS 7910 [28,29]. The elastic constraint parameter, 𝑇 -stress, is used for constraint correction when the
pplied load is less than or equal to the limit load. One of the difficulties with the constraint correction procedures described in R6
r BS 7910 is that a number of specimens with different crack lengths are generally required to generate a function describing the
ependence of fracture toughness on constraint [28]. The function generated is then used to construct a constraint modified failure
ssessment diagram (FAD).

The work presented in this paper aims to develop further an alternative single specimen constraint correction method initially
ntroduced in [30,31]. The approach has the potential to reduce conservatism in both crack initiation and crack propagation
oughness measurement procedures. The method has also been summarised in [32] where the main idea was highlighted and
ompared with the constraint correction procedure in R6. The method is based on three fracture parameters: stress intensity factor,
3
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Fig. 1. Three-point SENB specimen - SENB: (a) schematic drawing, (b) finite element model of SENB with 𝛼 = 0.45 (see also Table 1), (c) crack tip zone with
highlighted path for strain extraction.

and amount of plastic work, being the same as for a cracked component. It is assumed that when both the 𝑇 -stress and stress
intensity factor elastic parameters of a specimen and a component are matched, the plastic 𝐽 -integral should follow a similar path
up to the limit load. Elastic–plastic finite element analyses are presented in this paper to assess this hypothesis.

2. Method

In this section the simplified constraint correction approach presented in [30,31] is described qualitatively. Section 3 then
presents the information required to apply the method for some particular geometries while later sections illustrate the results
of applying the approach by comparison with finite element solutions for the geometries addressed in Section 3.

The approach requires that a normalised constraint parameter 𝛽𝑇 , a limit load solution and a stress intensity factor solution
are known for two geometries: the cracked component being assessed and the test specimen being used to generate the fracture
toughness data. The method then consists of three steps.
4
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Fig. 2. Single edge notched tension specimen (SENT): (a) schematic drawing, (b) Finite element model of SEN(C) for 𝛼 = 0.426 (see also Table 6), (c) Finite
element model of SENT(P) for 𝛼 = 0.336 (see also Table 5)

In step 1, the normalised constraint parameter 𝛽𝑇 for the two geometries has to be matched. It will be seen from the solutions
presented in Section 3 that once a test specimen geometry has been selected (e.g. SENT), the parameter 𝛽𝑇 only depends on 𝑎∕𝑊
ratio and therefore this step involves selection of 𝑎∕𝑊 in the test specimen. This step ensures that the two geometries although
different in size and having different crack sizes experience the same constraint level (e.g. 𝑇 -stress) for the same ratio of applied
load to limit load. Thus, loading the two geometries up to their respective limit loads results in similar amount of plasticity and
constraint.

Step 2 of the method is to choose an applied load equal to the limit load, which essentially results in the ratio of applied load
to limit load, 𝐿𝑟, being equal to 1.0. The parameter 𝐿𝑟 is the measure of proximity to plastic collapse. Completion of steps 1 and
2 ensures the same level of constraint and the same amount of plasticity introduced in the two geometries. In principle, any load
level can be chosen in step 2 provided that the values of 𝐿𝑟 in the specimen and component are equal as this does not affect step 3.

In step 3, the stress intensity factor in the specimen is matched to that in the component by varying the specimen size (W) but
keeping the ratio of applied load to limit load set in step 2 and also keeping the 𝑎∕𝑊 ratio set in step 1.

3. Closed form stress intensity factor, T-stress and limit load solutions

To apply the method of Section 2, stress intensity factor for opening mode 𝐾𝐼 , 𝑇 -stress and limit load solutions are required. The
solution normalisations are summarised here for selected specimen and pipe geometries, with algebraic details of the solutions given
in an Appendix. The specimen geometries include three-point SENB and SENT specimens. The pipe geometries include pipes with
through-wall circumferential (TWC) and fully circumferential internal cracks (FCC). The solutions are taken from [27,29,33,34].
The geometries considered are shown schematically in Figs. 1–4.

In the Appendix, the stress intensity factor solutions are generally presented as a function of the relative crack depth, 𝛼 = 𝑎∕𝑊
in terms of a non-dimensional function 𝑓𝛼 while the limit load solutions are presented in terms of a non-dimensional function 𝑓𝐿,
evaluated using the von Mises yield criterion. The 𝑇 -stress is presented in normalised form in terms of the parameter 𝛽𝑇 defined
by:

𝛽𝑇 = 𝑇 ∕𝐿𝑟𝜎𝑦 (1)

where 𝐿 is the ratio of applied load, 𝑃 , to the limit load 𝑃 defined for a perfectly plastic material with yield stress 𝜎 .
5
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Fig. 3. Circumferentially through wall cracked (TWC) pipe with 𝛼 = 0.22 (Table 6): (a) schematic view of pipe under pure bending moment, (b) pipe cross-section,
(c) mesh view from inner surface, (d) mesh view from A-A direction.

Fig. 4. Pipe with fully circumferential internal crack (FCC) with 𝛼 = 0.6 (Table 8): (a) schematic view of pipe subjected to tension load, (b) pipe cross-section,
(c) finite element model of 1∕4 pipe segment, (d) cross-section mesh view.
6
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Fig. 5. Comparison of results from elastic finite element analyses with solutions from the literature [27,33,35,36]: (a) normalised stress intensity factor, (b)
normalised constraint parameter.

4. Finite element models

ABAQUS 2018 was used to run the simulations. The finite element model of the SENB specimen is shown in Fig. 1(b). Both support
and load rollers were modelled as analytical surfaces including surface-to-surface type contact between them and the corresponding
surfaces. No friction or damping was introduced in contact definition.

Clamping for the SENT(C) geometry (Fig. 2(b)) was implemented by creating a reference point in the middle of the cross section
at the end of the specimen. Rigid constraint links were applied via the multi-point constraint (MPC) option in ABAQUS between the
reference point and the end surface of the specimen. Rotation of the linked surface was restricted, therefore it remained perpendicular
to the load vector. A concentrated force was then applied on the reference point. This type of constraint and loading results in
uniform displacement of all nodes at the linked surface.

Pin-loading creates an uniform stress distribution along the W edge of the SENT specimen. This type of loading was simulated
by applying a constant pressure directly at the end surfaces of the specimen. Rotation of the end surfaces was not restricted and
therefore the end surfaces did not remain perpendicular to the load vector (Fig. 2(c)).

The bending moment on the through-wall circumferentially cracked pipe was applied via a reference point placed on the pipe
axis at the end of the pipe. The reference point was connected with the pipe end surface using rigid constraint links via the MPC
constraint option in ABAQUS. Two cuts through symmetry planes were applied to simplify the model (Figs. 3(c) and 3(d)).

For the pipe with a fully circumferential internal crack the axial load was applied via an equivalent pressure acting on the end
surface of the pipe. Three cuts through symmetry planes were applied to simplify the model (Figs. 4(c) and 4(d)).

4.1. Elastic analysis

The finite element models were validated against available elastic solutions from the literature in terms of stress intensity factor
and the 𝛽𝑇 parameter. Results for stress intensity factor are summarised in Fig. 5(a) and those for 𝛽𝑇 in Fig. 5(b). All specimens
were simulated in a three-dimensional state using C3D20 elements. Plane strain was implemented by applying boundary conditions
on side surfaces of the sample suppressing lateral (out-of-plane) displacement (X-axis direction in Fig. 1(b), Figs. 2(b) and 2(c)).
One element per thickness was used in plane strain models. For three-dimensional cases, these boundary conditions were released
and more elements added in thickness direction. It is apparent from Fig. 5 that very close agreement between reference solutions
and FEA results is obtained in all cases.

4.2. Elastic–plastic analysis

The 𝐽 -integral is path-independent when the material is non-linear elastic. As such, path-independence of J holds in elastic–
plastic materials when the material response is governed by the deformation theory of plasticity or when flow theory mimics
deformation theory such as when proportional loading occurs at all points within the domain [37]. In general, the deformation
plasticity model is a non-linear elastic model with a limit state when all of a specimen or structure is responding plastically [38].
According to the deformation theory of plasticity the hydrostatic stress does not contribute to plastic strain [17]. The 𝐽 -integral
obtained with a deformation plasticity model exhibits contour independence (Fig. 6(b)). In any situation where a significant amount
of non-proportional loading occurs, it is expected that the 𝐽 -integral will not be path-independent.

The incremental plasticity option was chosen for elastic–plastic analysis in this work and therefore some non-proportional loading
and path dependence of the 𝐽 -integral may be expected. The path dependence of the incremental-theory calculations is sensitive to
the presence of 𝑇 -stresses [39]. Two material models with the incremental plasticity option were used in this work: elastic–plastic
7
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Fig. 6. 𝐽𝑝𝑙 values from incremental and deformation plasticity models: (a) stress–strain curves, (b) 𝐽𝑝𝑙 contour dependence curves of SENB and SENT specimens
from Sections 6.3 and 6.4 at 𝐿𝑟 = 1.0 for R–O and EPH materials.

with hardening (EPH) and elastic perfectly plastic (EPP), Fig. 6(a). The elastic–plastic 𝐽 -integral values, 𝐽𝑝𝑙, were output at 40
contours for each load increment to form a 𝐽𝑝𝑙 curve as a function of load. Fig. 6(b) shows the typical 𝐽 -integral path dependence
resulting from use of the EPH material, where the minimum value is reached before the 40th contour. For comparison, the 𝐽𝑝𝑙 curve
for the same geometry and load level with a Ramberg–Osgood (R–O) material is shown. Other 𝐽𝑝𝑙 − 𝐿𝑟 curves in this work were
constructed using the minimum value of 𝐽𝑝𝑙 except those in Fig. 7.

Within the incremental plasticity option, 𝐽𝑝𝑙 values might saturate relatively far away from the crack tip [40]. This could be an
issue for shallow cracks. For example, the radius of the outermost contour where 𝐽𝑝𝑙 values would saturate might be greater than the
crack depth. If the radius of the outermost contour is large enough, it might interact with the sample edge or the local strain field
originating from an applied load or boundary conditions. Therefore, it was decided to work with the minimum value of 𝐽𝑝𝑙. Based
on minimum 𝐽𝑝𝑙, both strain field and 𝐽𝑝𝑙 values can be matched in two geometries. The 𝐽𝑝𝑙 −𝐿𝑟 curves of EPH material in Fig. 6(a)
proves that the minimum value of 𝐽𝑝𝑙 is a reliable parameter for the strain matching purpose. The 𝐽𝑝𝑙 curves for EPH material are
of the same trend and have a minimum value of 𝐽𝑝𝑙. These curves represent different samples, SENB 0.1669, SENT(P) 0.294 and
SENT(P) 0.4416 (Sections 6.3 and 6.4), having very similar strain field at the crack tip (Fig. 13) and 𝐽𝑝𝑙 values (Tables 4–5). On
the other hand, for the matching exercise the absolute value of 𝐽𝑝𝑙 is not essential, as long as consistency in modelling details and
result extraction is maintained. All FEA cases were run under a small-strain formulation using C3D20 elements.

4.2.1. Validation against GE-EPRI solutions
Finite element elastic–plastic models under plane strain conditions were validated against the GE-EPRI handbook [41] for SENB

and SENT(P) geometries with 𝛼 = a/W = 0.25. GE-EPRI handbook solutions were derived for a R–O material as can be seen from
Eq. (2). Therefore, for validation against GE-EPRI solutions only, a R–O material model, which is implemented in Abaqus within
the deformation plasticity option, was used. Results are presented in Fig. 7. The elastic–plastic integral 𝐽𝑝𝑙 for both geometries is
calculated according to:

𝐽𝑝𝑙 =
[𝐾𝐼 (𝑎𝑒)]2

𝐸′ + 𝜇𝜎𝑦𝜖0(𝑊 − 𝑎)ℎ1
(

𝐿𝑟
)𝑛+1 (2)

where 𝐸′ = 𝐸∕(1 − 𝜈2) for plane strain, 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio, and 𝜖0 = 𝜎𝑦∕𝐸. The coefficients 𝜇 and 𝑛 are
parameters for the Ramberg–Osgood material model used:

𝜖
𝜖0

= 𝜎
𝜎𝑦

+ 𝜇
(

𝜎
𝜎𝑦

)𝑛
(3)

The values of 𝑛 = 10, 𝜇 = 2/3, E = 200 GPa, 𝜈 = 0.3 and 𝜎𝑦 = 300 MPa were used in FEA. The effective crack length, 𝑎𝑒, is
calculated taking into account the plastic zone size:

𝑎𝑒 = 𝑎 + 𝜙𝑟𝑦 (4)

where plastic zone size for plane strain is calculated from:

𝑟𝑦 =
1
6𝜋

[ 𝑛 − 1
𝑛 + 1

]

(

𝐾𝐼
𝜎𝑦

)2
(5)

and the function 𝜙 is:

𝜙 = 1
1 + 𝐿2

𝑟
(6)

For the SENB specimen, ℎ = 0.523 and for SENT(P), ℎ = 2.17 [41].
8
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Fig. 7. Comparison of finite element results with EPRI procedure: (a) SENB sample with 𝛼 = 0.25, (b) SENT(P) sample with 𝛼 = 0.25.

Table 1
Different size SENB specimens with fixed 𝐽𝑒𝑙 values.

Specimen 𝛼 a, mm W, mm H, mm 𝑃𝐿, N 𝐽𝑒𝑙 , N/mm T, MPa 𝐽𝑝𝑙 , N/mm

SENB 0.1 0.1 1.04 10.4 41.6 4381 3.647 −175.8 6.84
SENB 0.2 0.2 1.63 8.15 32.6 2755 3.66 −95.45 5.18
SENB 0.45 0.45 4.29 9.54 38.16 1525 3.655 14.48 4.53
SENB 0.6 0.6 7.51 12.51 50.04 1057 3.654 49.25 4.44
SENB 0.7 0.7 11.41 16.3 65.2 775 3.658 65.58 4.43

It is apparent from Fig. 7 that close agreement between the current finite element analyses and the EPRI solutions is obtained,
giving confidence in the elastic–plastic analysis results.

4.2.2. Further validation using the load parameter m
For FEA reported in [42], the load parameter, m, as defined in Eq. (7) below, at which strict SSY conditions apply and there is no

constraint loss, depends on hardening coefficient and varies from 175 to 340 for plane strain SENB samples with 𝑎∕𝑊 = 0.5, with
essentially elastic response up to the limit load based on the yield stress. The FEA in Ref. [42] were carried out using a power-law
material model with modification of the non-linear part of the stress–strain curve starting at 0.95(𝜎𝑦∕𝐸). FEA analyses with a R–O
material (𝑛 = 20, 𝛼 = 0.1) for a plane strain SENB sample with 𝑎∕𝑊 = 0.5 have been performed to compare m values with those
from Ref. [42]. With a yield strength of 300 MPa used in the current work and m = 340 from Ref. [42], 𝐽𝑝𝑙 results in 4.41 N/mm
according to the relationship

𝐽𝑝𝑙 =
(𝑊 − 𝑎)𝜎𝑦

𝑚
(7)

The FEA under 𝐿𝑟 = 1.0 resulted in 𝐽𝑝𝑙 = 4.38 N/mm, which leads to m = 342, confirming the accuracy of the current modelling
in SSY conditions. Further, in the work the models were run with EPP and EPH materials to obtain larger levels of yielding.

5. The influence of T-stress on the development of plasticity and the J-integral

To assess the methodology of Section 2, a number of SENB specimens were chosen with different sizes and different crack
depths such that the values of elastic 𝐽 -integral, 𝐽𝑒𝑙, (obtained from the stress intensity factor solutions in the Appendix) would
be the same for loads equal to the corresponding limit load (again obtained from the solutions in the Appendix) in each case. The
selected geometries and loads are listed in Table 1. The table also lists values of the 𝑇 -stress at the limit load (𝐿𝑟 = 1.0) and it can be
seen that these are very different in different cases. In particular, SENB specimens were chosen to cover both negative and positive
𝑇 -stress values, Fig. 8(a).

Results from elastic–plastic analyses are shown in Fig. 8(b) for an EPH material model with the 𝐽𝑝𝑙 values at the limit load
listed in Table 1. The results show that for positive 𝑇 -stresses, the development of J with increasing load (increasing 𝐿𝑟) is largely
independent of 𝑇 -stress (constraint) when specimens are matched in the way selected. However, for negative 𝑇 -stress, i.e. low
constraint, there is a dependence of J development on constraint with the maximum value of 𝐽𝑝𝑙 obtained for the lowest constraint
case with 𝛼 = 0.1. This suggests that when using a failure assessment diagram method (i.e. using a constraint-independent curve to
estimate 𝐽𝑝𝑙∕𝐽𝑒𝑙) there may be reduced conservatism in the estimate of J for low constraint cases and this is explored further in the
remainder of this paper.
9
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Fig. 8. The influence of 𝑇 -stress on 𝐽𝑝𝑙 values in SENB specimens: (a) Different 𝑇 -stress values for a fixed value of 𝐽𝑒𝑙 = 3.6𝑁∕𝑚𝑚 at 𝐿𝑟 = 1.0; (b) 𝐽𝑝𝑙 curves
with EPH material for different constraint levels.

Table 2
Summary of analysis parameters for SENB-SENT(C) shallow cracks.

Parameter Specimen

SENB SENT(C) SENT(C)-c

𝛼 0.1078 0.1078 0.091
a, mm 1.078 1.9566 1.9656
W, mm 10 18.15 21.6
H, mm 40 90.75 108
B, mm 5 5 5
𝑃𝐿, N 4152 28048 33652
𝐿𝑟 1 1 0.99
𝐽𝑒𝑙 , N/mm (FEA) 3.65 3.67 3.66
T, MPa (FEA) −168.49 −168.03 −168.15
𝐽𝑝𝑙 , N/mm (FEA with EPH) 6.59 7.29 6.57
𝐽𝑝𝑙 , N/mm (FEA with EPP) 6.79 18.64 7.35

6. Development of plasticity in specimens in plane strain conditions

6.1. Shallow-cracked SENB-SENT(C)

It can be seen from Fig. 5(b), that 𝛽𝑇 values for SENB and SENT(C) samples are almost the same at 𝛼 = 0.1. Therefore, it was
decided to run a matching exercise at this intersection point. A SENB sample with dimensions of 10 × 10 × 40 mm was chosen
as the reference geometry and the size of the SENT(C) specimen was calculated to match the 𝑇 -stress and 𝐽𝑒𝑙 values of the SENB
specimen according to the method of Section 2. The selected dimensions for the SENT(C) specimen are given in Table 2. That the
𝑇 -stress and 𝐽𝑒𝑙 values are matched is confirmed by the results in Figs. 9(a) and 9(b).

From an elastic–plastic analysis with an elastic-perfectly plastic (EPP) material it was found that the 𝐽𝑝𝑙 curve of the SENT(C)
specimen with 𝛼 = 0.1078 increases rapidly at 𝐿𝑟 approximately equal to 0.98. This indicates that the limit load of the finite element
model is slightly lower than the theoretical limit load. The theoretical limit load solution was therefore reduced resulting in 𝐿𝑟 value
of 0.99 (Table 2) and the matching specimen size was recalculated with 𝐿𝑟 fixed to 0.99 leading to a specimen, SENT(C)-c, with
𝛼 = 0.091, i.e. a smaller relative crack length. Because of the limit load reduction parameter 𝛼 has to be reduced as well in order to
maintain the same level of constraint. Accordingly, specimen width, W, then has to be adjusted to ensure the same stress intensity
factor. After recalculation the limit load has changed from 28047.8 to 33652.3 N. In terms of crack tip constraint and stress intensity
factor SENT(C)-c with 𝛼 = 0.091 is identical to SENT(C) with 𝛼 = 0.1078 (Figs. 9(a) and 9(b)).

The adjustment of 𝐿𝑟 and specimen size recalculation for the reference SENB geometry was not performed as the SENB 0.1078
curve (Fig. 9(c)) did not show the rapid increase in 𝐽𝑝𝑙. However, in the case of the SENB sample, fully plastic conditions at the
crack tip can be reached at a slightly higher load than the theoretical limit load. The following example demonstrates it. Increasing
the calculated SENB 0.1078 limit load by 2% (from 4152.4 to 4235.5 N) and performing calculations up to this limit load then led
to a rapid change in the 𝐽𝑝𝑙 curve of the SENB 0.1078 𝐿𝑟 = 1.02 specimen at the modified limit load as is clearly visible in Fig. 9(c).
In this case the sample size for both limit load cases remained the same. Further in Section 6 limit load and specimen size was only
corrected for SENT specimens.

Analyses were then performed with the elastic–plastic hardening (EPH) model of Fig. 6(a) and results are shown in Fig. 9(d). It
can be seen that the development of J with normalised load for the two specimens is in very close agreement, even more so when
the corrected SENT(C)-c specimen is used. Thus the method of Section 2 can be used with an identical FAD for the two geometries.
10
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Fig. 9. SENB-SENT(C) matching for shallow cracks. (a) 𝑇 -stress values at limit load (b) 𝐽𝑒𝑙 values at limit load (c) 𝐽𝑝𝑙 values at limit load using EPP material
model (d) 𝐽𝑝𝑙 values at limit load using EPH material model.

Table 3
Summary of analysis parameters for SENB-SENT(C) deeper crack.

Parameter Specimen

SENB SENT(C) SENT(C)-c

𝛼 0.1669 0.5 0.4416
a, mm 1.669 3 3.11328
W, mm 10 6 7.05
H, mm 40 30 35.25
B, mm 5 5 5
𝑃𝐿, N 3665 5196 6478
𝐿𝑟 1 1 0.95
𝐽𝑒𝑙 , N/mm (FEA) 4.35 4.33 4.33
T, MPa (FEA) −118.97 −118.64 −118.77
𝐽𝑝𝑙 , N/mm (FEA with EPH) 6.64 8.41 6.66
𝐽𝑝𝑙 , N/mm (FEA with EPP) 6.72 16.58 7.47

6.2. Deeper-cracked SENB-SENT(C)

Guided by Fig. 5(b), matching specimens according to the method of Section 2 were chosen for SENB with 𝛼 = 0.1669 and
SENT(C) with 𝛼 = 0.5 (Table 3, Figs. 10(a) and 10(b)). Finite element analysis with an EPP material indicated that fully plastic
condition for the SENT specimen were reached at approximately 0.95𝐿𝑟 (Fig. 10(c)) and therefore the theoretical limit load solution
was reduced leading to 𝐿𝑟 of 0.95 (Table 3) and a corrected SENT(C)-c size with 𝛼 = 0.44 was obtained. The development of J for
this specimen is in almost perfect agreement with that for the SENB specimen (Fig. 10(b)), confirming as in Section 6.1 that the
method of Section 2 is valid without any modification to the FAD.

The SENB limit load solution was also checked by increasing the load by 3% to check whether fully plastic conditions occurred.
As in Section 6.1 for the SENB 0.1078 specimen the size of the SENB 0.1669 specimen was not modified. As can be seen from
Fig. 10(c), the 𝐽𝑝𝑙 curve of SENB 0.1669 𝐿𝑟 = 1.03 changes the slope severely. For the two SENB specimens, of Section 6.1 and
this section, the theoretical limit load of Appendix is slightly lower than that required to reach fully plastic conditions in the finite
element models.
11



Engineering Fracture Mechanics 247 (2021) 107609M. Gintalas and R.A. Ainsworth
Fig. 10. SENB-SENT(C) deeper cracks. (a) 𝑇 -stress values at limit load (b) 𝐽𝑒𝑙 values at limit load (c) 𝐽𝑝𝑙 values at limit load using EPP material model (d) 𝐽𝑝𝑙
values at limit load using EPH material model.

Table 4
Summary of analysis parameters for SENB-SENT(P) shallow cracks.

Parameter Specimen

SENB SENT(P) SENT(P)-c

𝛼 0.1078 0.1078 0.069
a, mm 1.078 1.9188 1.99
W, mm 10 17.8 28.84
H, mm 40 213.6 346.08
B, mm 5 5 5
𝑃𝐿, N 4152 27104 44750
𝐿𝑟 1 1 0.968
𝐽𝑒𝑙 , N/mm (FEA) 3.65 3.66 3.66
T, MPa (FEA) −168.49 −168.532 −167.38
𝐽𝑝𝑙 , N/mm (FEA with EPH) 6.59 8.78 6.53
𝐽𝑝𝑙 , N/mm (FEA with EPP) 6.79 9.87 6.72

6.3. Shallow cracked SENB-SENT(P)

The influence of pin-type loading has also been analysed for the SENT sample, by using the same reference SENB geometry as
in Section 6.1. The elastic matching exercise of Section 2 resulted in a sample width, W = 17.8 mm (Table 4), for the SENT(P)
geometry, slightly smaller than W = 18.15 mm for SENT(C) (Table 2).

Finite element analysis with an EPP material again indicated that fully plastic conditions for the SENT specimen were reached
at a load different from the theoretical limit load and a corrected SENT(P)-c size with W=28.84 mm, larger than the width of the
corrected SENT(C)-c sample, was obtained. In this case the shape of the 𝐽𝑝𝑙 curve for analyses with both EPP and EPH materials
does not perfectly match the 𝐽𝑝𝑙 curve of the SENB 0.1078 sample (Figs. 11(c), 11(d)), but at 𝐿𝑟 = 1.0 almost identical values of
𝐽 are obtained.
12
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Fig. 11. SENB-SENT(P) shallow cracks. (a) 𝑇 -stress values at limit load (b) 𝐽𝑒𝑙 values at limit load (c) 𝐽𝑝𝑙 values at limit load using EPP material model (d) 𝐽𝑝𝑙
values at limit load using EPH material model.

6.4. Deeper cracked SENB-SENT(P)

Another matching exercise using the SENT(P) sample was performed for the reference SENB 0.1669 geometry used in Section 6.2.
This resulted in an SENT(P) geometry with 𝛼=0.336 and width, W=7.35 mm (Table 5, Figs. 12(a), 12(b)). Again a limit load
correction was required leading to an increase in width to W=10.2 mm and a relative crack length change from 0.336 to 0.294,
Table 5. This led to a perfect match of 𝐽𝑝𝑙 curves for both EPP and EPH materials, Figs. 12(c), 12(d).

For the SENT(P) comparisons with the SENB specimens, it was decided to compare strains at the crack tip as well as J values.
Fig. 13 shows elastic–plastic strain values in the parallel and transverse directions with respect to the crack faces. Total strain values,
which are the sum of elastic and plastic strains, were taken at the nodes at the radius of 0.5 mm around the crack tip. In Fig. 13
the point with coordinate 𝜑 = 0◦ lays on the crack face line at 0.5 mm away from the crack tip (position "Start" in Fig. 1(c)). The
point with coordinate 𝜑 = 180◦ is located at 0.5 mm ahead from the crack tip (position "End" in Fig. 1(c)). It can be see that for the
corrected SENT(P) geometry of Section 6.3, strain values are much closer to those of the SENB sample than those for the uncorrected
SENT geometry, Fig. 13(a). Similar analyses for SENB 0.1669 and SENT(P)-c 0.294 specimens (Fig. 13(b)) showed almost identical
agreement. It is possible that the small differences in Fig. 13(a) are a result of the small differences in the J versus load curves of
Fig. 11(d).

7. Cracked pipes and matching specimens

7.1. Circumferentially through-wall thickness cracked pipe and plane strain specimens

A more general matching exercise was performed using a reference SENB specimen with 𝛼=0.156, both SENT(C) and SENT(P)
specimens and a through-wall cracked pipe. Circumferential cracks in pipes might appear due to high bending moment and develop
from surface to through-wall cracks. The TWC pipe geometry is a low-constraint geometry as was found earlier from finite element
analysis [34]. Fracture toughness obtained from TWC pipe would be different from that obtained from a standard specimen.
Therefore, the TWC pipe is a suitable geometry for which the approach can be demonstrated. The specimens were analysed in
plane strain and the dimensions of the matching specimens and pipe are given in Table 6. As in Section 6, corrections were made
for the SENT specimen limit loads. TWC pipes were also simulated under limit load which according to the experimental data
from [43] was load at fracture for 8-inch TWC pipes subjected to bending moment, while 16-inch pipes failed at 𝐿 < 1.0. The
13
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Table 5
Summary of analysis parameters for SENB-SENT(P) deeper cracks.

Parameter Specimen

SENB SENT(P) SENT(P)-c

𝛼 0.1669 0.336 0.294
a, mm 1.669 2.4696 2.9988
W, mm 10 7.35 10.2
H, mm 40 88.2 122.4
B, mm 5 5 5
𝑃𝐿, N 3665 7165 9914
𝐿𝑟 1 1 0.898
𝐽𝑒𝑙 , N/mm (FEA) 4.35 4.35 4.35
T, MPa (FEA) −119 −118.5 −118.7
𝐽𝑝𝑙 , N/mm (FEA with EPH) 6.64 9.91 6.66
𝐽𝑝𝑙 , N/mm (FEA with EPP) 6.72 11.44 6.88

Fig. 12. SENB-SENT(P) deeper cracks. (a) 𝑇 -stress values at limit load (b) 𝐽𝑒𝑙 values at limit load (c) 𝐽𝑝𝑙 values at limit load using EPP material model (d) 𝐽𝑝𝑙
values at limit load using EPH material model.

comparisons in Fig. 14(a) show similar agreement between the SENT and SENB specimens as obtained in the analyses in Section 6,
but the 𝐽𝑝𝑙 values of all plane strain specimens are lower than that of TWC pipe. The values of 𝐽𝑝𝑙 for the TWC pipe were taken on
the mid-plane of the wall. Fig. 14(b) shows very excellent matching of the 𝐽𝑝𝑙 curves for the three plane strain specimens, when limit
load corrections have been made, but still show an increased 𝐽𝑝𝑙 for the TWC pipe. As with the results in Section 5, this suggests
that when using a failure assessment diagram method there may be reduced conservatism in the estimate of 𝐽𝑝𝑙 for pipe geometries
than test specimens even when all are low constraint cases.

7.2. Circumferentially through-wall thickness cracked pipe and three-dimensional test specimen specimens

In practice, laboratory specimens are three-dimensional (3D) with a stress state between plane strain and plane stress conditions.
Therefore, the limit load is lower than the plane strain limit load but higher than that in plane stress. For example, the plane stress
limit load for the SENT(C) specimen is 1.154 times lower than the plane strain limit load [27]. In 3D specimens the stress intensity
14
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Table 6
Summary of analysis parameters for TWC pipe and plane strain samples.

Parameter Specimen TWC
pipeSENB SENT(C) SENT(C)-c SENT(P) SENT(P)-c

𝛼 = 𝜃∕𝜋 0.156 0.426 0.37 0.312 0.269 0.22
a, mm or 𝜃,◦ 4.134 7.23345 7.6775 6.3336 7.5724 39.6
W(𝑅𝑚), mm 26.5 16.98 20.75 20.3 28.15 10
H, mm 106 84.9 103.75 243.6 337.8 200
B(t), mm 5 5 5 5 5 2
𝑃𝐿, N or 𝑀𝐿, Nmm 9960 1688 21510 21042 29245 149818
𝐿𝑟 1 1 0.95 1 0.907 1
𝐽𝑒𝑙 , N/mm (FEA) 11.3 11.31 11.28 11.3 11.3 11.29
T, MPa (FEA) −127.3 −127 −127.6 −126.6 −126.3 −127.4
𝐽𝑝𝑙 , N/mm (FEA with EPH) 17.11 23.58 16.93 25.32 17.38 27.74

Fig. 13. Elastic–plastic strain distribution around the crack tip at the distance of 0.5 mm for SENB and SENT(P) samples: (a) SENB 0.1078, SENT(P) 0.1078
and SENT(P)-c 0.069, (b) SENB 0.1669, SENT(P) 0.336 and SENT(P)-c 0.294.

Fig. 14. TWC pipes and plane strain specimens using EPH material option: (a) 𝐽𝑝𝑙 values at limit load for plane strain specimens and TWC pipe, (b) 𝐽𝑝𝑙 values
for TWC pipe, SENB and corrected SENT(P)-c, SENT(C)-c.

factor and 𝑇 -stress also vary along the thickness as demonstrated in [44–46], where solutions for stress intensity factor and 𝑇 -stress
at the thickness mid-plane are provided.

To assess the effect of out-of plane conditions, three-dimensional analyses were performed with the boundary conditions
previously applied to create plane strain conditions removed. The applied loads remained the same as for the plane strain specimens
(Table 6). It was found that 𝐽𝑝𝑙 values increased drastically when 3D specimens were subjected to the limit load calculated for plane
strain conditions, as can be seen from Fig. 16(a), where the scale on the ordinate is an order of magnitude greater than that in
Fig. 14(a). The reason for high 𝐽𝑝𝑙 values for specimens in Fig. 16(a) is the small 𝐵∕𝑊 ratio. For instance, in the case of the 3D
SENB 0.156 sample, 𝐵∕𝑊 = 0.19 (Table 7), the stress state is more similar to that in plane stress conditions. Larger 𝐵∕𝑊 ratio
15
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Fig. 15. Limit load analysis of SENB 0.5 10 × 10 × 40 mm specimen when 𝜎𝑦 = 407 MPa: (a) 𝐽𝑝𝑙 curves under full plastic zone penetration into the ligament
for an EPP and EPH materials with yield point offset, (b) full plastic zone (grey contour with values > 407 MPa) penetration into the ligament.

reduces the plane stress effect. Specimens with 𝐵∕𝑊 = 1.0 or 𝐵∕𝑊 = 0.5 are usually used in fracture toughness testing [47,48].
Two cases from the literature are described next.

Pre-cracked Charpy V-notch specimens (𝐵 = 10 mm, 𝑊 = 10 mm, 𝑆∕𝑊 = 4) cut from A572 Gr 50 steel were tested for fracture
toughness at −20 ◦C temperature in the work [47]. For A572 Gr 50 steel, 𝜎𝑦 at −20 ◦ C is 407 MPa and Young’s modulus 𝐸 = 201
GPa. Fourteen specimens were tested in total (Table 4 in [47]) with initial crack length from 4.9 to 5.5 mm (average 5.12 mm).
The average fracture toughness obtained was 71.64 N/mm (from 40 to 107 N/mm). Measured load at fracture was approximately
4.12 kN at −20 ◦C for the specimens with 𝑎∕𝑊 = 0.5 (see Fig. 4b in [47]). The calculated plane strain limit load using Eq. (A.2)
and 𝜎𝑦 = 407 MPa is 3.58 kN, which is significantly lower than the experimental load of 4.12 kN at fracture. Finite element analysis
shows that in plane strain conditions with and elastic-perfectly plastic material and an elastic limit of 𝜎𝑦 = 407 MPa, the limit load
is reached at load 4% higher than 3.58 kN, which is in good agreement with Eq. (A.2). At this point the trajectory of 𝐽𝑝𝑙 curve
changes severely (Fig. 15(a)) and the ligament becomes fully plastically deformed (Fig. 15(b)) indicating that the limit load has
been reached [49]. The engineering stress–strain curve of A572 Gr 50 steel presented in Fig. 2a of [47] exhibits a yield plateau and
enters the hardening stage with hardening exponent n = 8.0 at a strain value of about 0.01. Plane strain FEA analysis with an EPH
material with a yield point offset, where 𝜎𝑦 = 407 MPa at 0.01 strain, resulted in 𝐽𝑝𝑙 = 48.31 N/mm at a load 20% higher than the
nominal limit load, 1.2 × 3.58 kN = 4.3 kN (Fig. 15(a)). For a 3D specimen, a lower load of 4.12 kN, equal to the experimental load
at fracture, resulted in a similar averaged across thickness 𝐽𝑝𝑙 value of 50.1 N/mm. This is higher than the minimum experimental
value of 40 N/mm, but lower than the average value of 71.64 N/mm. However, the maximum 𝐽𝑝𝑙 value of 59.13 N/mm at the
specimen’s mid-plane (Fig. 15(a)) is higher than the averaged across thickness value.

Fracture toughness data of SENB specimens with 𝐵∕𝑊 = 0.5 at 20 ◦ C temperature are given in [48]. Six specimens (𝐵 = 12.5 mm,
𝑊 = 25 mm, 𝑆∕𝑊 = 4) with 𝑎∕𝑊 = 0.5 of CrMo steel JIS SCM440 were tested. The experimental load at fracture varied from 12.2
to 15.7 kN (average 14.3 kN) and fracture toughness varied from 27.0 to 69.1 N/mm (average 53.48 N/mm). Reported material
properties at 20 ◦ C temperature are: 𝜎𝑦 = 458.5 MPa at 0.2% offset, hardening exponent 𝑛 = 4.77 and E = 216 GPa. The offset of
0.2% results in strain value of 0.0041 at 𝜎𝑦 = 458.5 MPa. The calculated limit load according to the plane strain limit load solution
(Eq. (A.2)) with 𝜎𝑦 = 458.5 MPa is 12.62 kN. The FEA with an EPH material showed that the ligament is fully plastically deformed
at a load 14% higher than the nominal limit load, 1.14 × 12.62 kN = 14.39 kN and the averaged across thickness 𝐽𝑝𝑙 = 62.42 N/mm
at this load. This value is higher than the average fracture toughness of 53.48 N/mm, but lower than the maximum experimental
fracture toughness of 69.1 N/mm. The numerical load applied of 14.39 kN is close to the experimental average load at fracture of
14.3 kN.

These two literature cases described above and the associated finite element analysis which have been performed show that the
experimental load at fracture is often close to but in excess of the limit load from a plane strain. The numerical 𝐽 -integral values
at the fracture load depend on the yield point offset. For an elastic-perfectly plastic material, the yield point offset is equal to zero
and the 𝐽 -integral value at the limit load is close to that obtained from an elastic material. A material with significant yield point
offset accumulates more plastic work at the limit load and the 𝐽 -integral value is greater than that calculated elastically. This is
particular visible from Fig. 15(a), where the plane strain curve with an EPP material (𝜎𝑦 = 407 MPa at 𝜎𝑦∕𝐸 = 0.002 strain) at
𝐿𝑟 = 1.04 reaches 𝐽𝑝𝑙 = 9.72 N/mm and the plane strain curve with an EPH material (𝜎𝑦 = 407 MPa at 0.01 strain) at 𝐿𝑟 = 1.2
reaches 𝐽𝑝𝑙 = 48.31 N/mm. In the case of the EPH material, the remaining ligament becomes fully plastically deformed at the higher
load, 𝐿𝑟 = 1.2.

Now the mid-plane 𝐽𝑝𝑙 curves for all 5 mm thickness (𝐵∕𝑊 < 0.3) specimens greatly exceed the TWC pipe curve when using
the plane strain limit loads to normalise the test specimen results. The limit load of a thin specimen is lower than the plane strain
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Table 7
Summary of analysis parameters for TWC pipe and 3D specimens.

Parameter Specimen TWC
pipeSENB SENB-c SENT(C) SENT(C)-c SENT(P) SENT(P)-c

𝛼 = 𝜃∕𝜋 0.156 0.147 0.426 0.28 0.312 0.23 0.22
a, mm or 𝜃,◦ 4.134 4.1748 7.2335 6.9776 6.3336 7.13 39.6
W(𝑅𝑚), mm 26.5 28.4 16.98 24.92 20.3 31 10
H, mm 106 113.6 84.9 124.6 243.6 279 200
B(t), mm 5 28.4 5 24.92 5 31 2
𝑃𝐿, N or 𝑀𝐿, Nmm 9960 58764 16881 144201 21042 214819 149818
𝐿𝑟 1 0.95 1 0.931 1 0.9 1
𝐽𝑒𝑙 , N/mm (FEA) 12.76 11.27 12.77 11.24 12.72 11.31 11.29
T, MPa (FEA) −103.4 −126.9 −104.3 −126.4 −104.6 −126.7 −127.4
𝐽𝑝𝑙 , N/mm (FEA with EPH) 299.9 27.96 122.6 27.38 458.6 27.38 27.74

Fig. 16. TWC pipe and 3D specimens using EPH material option: (a) 3D specimens subjected to plane strain limit loads (b) 3D samples subjected to corrected
plane strain limit loads.

which are quite complex to take into account as limit load solutions for variable specimen thickness are not readily available. The
increased thickness reduces 𝐽 -integral value. For the 3D samples with 𝐵∕𝑊 = 1.0, the limit load used to normalise the results was
then reduced until the mid-plane 𝐽𝑝𝑙 value was matched (Fig. 16(b)). Although the 𝐽𝑝𝑙 values at 𝐿𝑟 = 1.0 must now match for the
TWC pipe and all 3D specimens, it is found that the 𝐽𝑝𝑙 curves for SENB, SENT(C)-c and SENT(P)-c specimens exhibit very similar
shapes, the TWC is rather different.

7.3. Fully-circumferential internally cracked pipe and matching specimens

Similar exercises to those of Sections 7.1 and 7.2 have been performed for a fully-circumferentially cracked pipe. The FCC pipe
is a convenient pipe geometry to demonstrate the approach, because 𝐾𝐼 or 𝑇 -stress is a single value at any point of circumferential
crack front. Conversely, in a TWC pipe 𝑇 -stress and SIF vary across the wall thickness. Table 8 summarises the analysis parameters
for the FCC pipe and matching plane strain and 3D specimens. In this case, the SENB plane strain 𝐽𝑝𝑙 curve almost matches the FCC
curve while the SENT(C) and SENT(P) 𝐽𝑝𝑙 curves are a little higher (Fig. 17(a)). After limit load correction, the 𝐽𝑝𝑙 curves of all
matching specimens are in agreement with the FCC pipe curve (Fig. 17(b)).

8. Discussion

The current constraint correction procedure in the FAD method is based on testing of samples with different constraint levels
to obtain the fracture toughness dependence on constraint. Then, according to the results obtained, the failure assessment line is
adjusted. The proposed approach does not require failure assessment line adjustment, as fracture toughness is measured at the same
or similar stress state as that which is present in the component of interest. The proposed approach, as has been demonstrated in
the manuscript, allows selection of such a stress state by choosing appropriate non-standard specimen size and crack length.

The idea of the proposed approach is to have an analytical method allowing for similarity of stress fields in two cracked
geometries. Such a method is described in this work and is based on elastic fracture mechanics parameters, stress intensity factor
and 𝑇 -stress. As the results of elastic finite element analysis show, the method works well for an elastic material. 𝑇 -stress and stress
intensity parameter match in two different geometries. When a material deforms plastically, the stress fields at the crack tip of
two geometries might deviate from each other. Elastic–plastic finite element analysis helps to investigate whether the deviation,
17
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Table 8
Summary of analysis parameters for FCC pipe and specimens.

Parameter Specimen FCC
pipe2D 3D

SENB SENT(C) SENT(P) SENB-c SENT(C)-c SENT(P)-c

𝛼 0.16 0.44 0.32 0.135 0.248 0.2 0.6
a, mm 1.2288 2.1296 1.8496 1.3635 2.2221 2.368 3.6
W, mm 7.68 4.84 5.78 10.1 8.96 11.84 6
H, mm 30.72 24.2 69.36 40.4 44.8 106.56 140
B (𝑅𝑒), mm 5 5 5 5.05 8.96 11.84 36
𝑃𝐿, N 2860 4695 5873 6983 18508 31023 178802
𝐿𝑟 1 1 1 0.87 0.885 0.842 1
𝐽𝑒𝑙 , N/mm (FEA) 3.3 3.29 3.29 3.24 3.26 3.29 3.28
T, MPa (FEA) −124.2 −125.2 −124 −124.7 −125.8 −125.5 −125.6
𝐽𝑝𝑙 , N/mm (FEA with EPH) 4.31 6.7 7.31 5.45 5.3 5.23 5.43

Fig. 17. FCC pipe and samples simulated using EPH material: (a) FCC pipe and plane strain samples, (b) FCC pipe and three-dimensional samples.

monitored by the change in 𝐽𝑝𝑙 integral, occurs or not. In some cases, 𝐽𝑝𝑙 curves from different geometries followed the same path
up to limit load.

The output of elastic–plastic FE analysis depends on the analysis parameters. In the failure assessment diagram approach, a
limit to the structure containing a defect being considered safe is if the service load does not exceed the collapse load. Widespread
plasticity corresponds to the limit load parameter 𝐿𝑟 greater than 1.0. However, here a small-strain formulation was used in elastic–
plastic analysis as the applied load was always equal to the limit load. A non-linear geometrical effect option could be considered
for higher 𝐿𝑟 values, where stress is greater than yield strength. The influence of constraint on fracture load is however greatest
when the load is less than that to cause widespread yielding and so analyses to higher loads are of less importance [50]. Material
hardening parameters affect 𝐽𝑝𝑙 values, but with EPP material it is clearer to observe when the crack tip zone is fully plastically
deformed. It illustrates SENB-SENT(C) example in Fig. 9. In general, under the same limit load EPP material results in higher 𝐽𝑝𝑙
values, than EPH.

Elastic–plastic analysis results have shown that the approach has potential for further development and validation. It should be
checked experimentally how the initiation fracture toughness obtained from a modified geometry matches that obtained from a
low-constraint reference geometry and whether it is less conservative compared to that measured from a high-constraint standard
specimen.

9. Concluding remarks

A method to treat constraint effects by matching the elastic 𝑇 -stress and stress intensity factor in different geometries has been
proposed previously. Elastic–plastic finite element analysis have been performed to examine how the approach works for elastic–
plastic materials for a number of different cases. Elastic–plastic 𝐽 -integral curves with increasing load have been compared up to
limit load for plane strain specimens, three dimensional specimens and pipe geometries. It has been found that accurate matching
can be obtained but the limit loads for SENT(C) and SENT(P) should be based on the finite element models as these lead to lower
limit load values than those from theoretical solutions. For pipes, some differences from plane strain test specimens in the shapes
of the 𝐽𝑝𝑙 curves as a function of increasing load were obtained for a TWC pipe but good agreement was obtained for FCC pipes.
Closer agreement between specimens and TWC pipes was obtained when three dimensional specimens were used to match the pipe
geometries.
18
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ppendix. Closed-form stress intensity factor, limit load and T-stress solutions

.1. SENB specimen

The limit load, 𝑃𝐿, for the SENB specimen (Fig. 1(a)) is [27]:

𝑃𝐿 =

(

𝑊 2𝐵𝜎𝑦
𝐻

)

𝑓𝐿 (A.1)

where 𝑊 , 𝐵 and 𝐻 are the specimen width, thickness and span, respectively. With the von-Mises yield criterion, 𝑓𝐿, for plane strain
conditions is:

𝑓𝐿 =

⎧

⎪

⎨

⎪

⎩

2
√

3

(

1.12 + 1.13𝛼 − 3.194𝛼2
)

(1 − 𝛼)2 for 0 ≤ 𝛼 ≤ 0.18
2.44
√

3
(1 − 𝛼)2 for 0.18 < 𝛼 < 1

(A.2)

where 𝛼 is the relative crack depth, 𝑎∕𝑊 . The stress intensity factor for the opening mode is [27]:

𝐾𝐼 = 3𝑃𝐻
2𝐵𝑊 1.5

𝑓𝛼 (A.3)

where P is applied load and the function 𝑓𝛼 for H/W = 4 is:

𝑓𝛼 =
√

𝛼
1.99 − 𝛼(1 − 𝛼)(2.15 − 3.93𝛼 + 2.7𝛼2)

(1 + 2𝛼)(1 − 𝛼)1.5
(A.4)

The plane strain value of 𝛽𝑇 for H/W = 4, valid for 0 ≤ 𝛼 ≤ 0.8, is [27]:

𝛽𝑇 = −0.9893 + 4.8784(𝛼) − 9.6956(𝛼)2 + 11.434(𝛼)3 − 5.9061(𝛼)4 (A.5)

A.2. Pin-gripped SENT(P)

A general view of the single edge notched tension specimen is shown in Fig. 2(a). This specimen may be subjected to clamped
(Appendix A.3) or pin-gripped loading as illustrated by the finite element models in the deformed states in Figs. 2(b), 2(c),
respectively. Under pin-gripped loading conditions both ends of the specimen are subjected to an uniform stress distribution as
shown in Fig. 2(a). There is no constraint on rotation; the ends of the specimen are free to rotate. This is visible from the finite
element model in Fig. 2(c), where the ends of the specimen are no longer perpendicular to the load in the deformed state. The plane
strain limit load for the SENT(P) specimen is [27]:

𝑃𝐿 = 𝑊𝐵𝜎𝑦𝑓𝐿 (A.6)

where

𝑓𝐿 =

⎧

⎪

⎨

⎪

⎩

(𝛾∕1.702)
(

1 − 𝛼 − 1.232𝛼2 + 𝛼3
)

for 0 ≤ 𝛼 ≤ 0.545

𝛾
[
√

(0.794 − (1 − 𝛼))2 + 0.5876 (1 − 𝛼)2 − (0.794 − (1 − 𝛼))
]

for 0.545 < 𝛼 < 1
(A.7)

ith 𝛾 = 3.404∕
√

3
For the normalised length of the specimen given by H/W = 12 and for 0 < 𝛼 < 0.8, the normalised constraint parameter is [27]:

𝛽𝑇 = −0.5889 − 0.0128(𝛼) + 0.5512(𝛼)2 + 4.651(𝛼)3 − 4.6703(𝛼)4 (A.8)

The stress intensity factor solution is [15]:

𝐾𝐼 = 𝜎
√

𝜋𝑎𝑓𝛼 (A.9)

with the correction function given by:

𝑓𝛼 =
√

2𝑊
𝜋𝛼

tan(0.5𝜋𝑎)
0.752 + 2.02(𝛼) + 0.37 (1 − sin (0.5𝜋𝛼))3

cos(0.5𝜋𝛼)
(A.10)
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Table 9
Normalised stress intensity factor for H/W=5 for SENT(C) [33].
𝛼 0.0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
𝑓𝛼 0.122 1.159 1.205 1.263 1.332 1.412 1.501 1.599 1.706
𝛼 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
𝑓𝛼 1.823 1.949 2.085 2.229 2.384 2.554 2.748 2.992 3.372

A.3. Clamped gripped SENT(C)

Under clamped-grip loading conditions, the ends of the specimen are subjected to uniform displacement. Due to the clamping,
here is no rotation allowed at the specimen ends. Therefore, both ends remain perpendicular to the load vector. This can be seen
rom the finite element model in Fig. 2(b). The limit load for the SENT(C) specimen under plane strain conditions is calculated from
q. (A.6), but using the following expression for 𝑓𝐿 [27]:

𝑓𝐿 =
𝛾

1.702
(1 − 𝛼) for 0 ≤ 𝛼 < 1 (A.11)

For H/W = 5 and for 0 < 𝛼 < 0.55 [27]:

𝛽𝑇 = −0.5889 + 0.1022(𝛼) + 1.588(𝛼)2 − 2.7591(𝛼)3 + 1.4230(𝛼)4 (A.12)

The stress intensity factor is calculated from Eq. (A.9) using values of 𝑓𝛼 from Table 9.

.4. Pipe under bending with a through-wall circumferential crack (TWC)

The pipe geometry is shown in Fig. 3. The limit bending moment is [27]:

𝑀𝐿 = 4𝑅2
𝑚𝑡𝜎𝑦

[

cos(𝜃∕2) − (1∕2) sin(𝜃)
] [

1 + (1∕12)(𝑡∕𝑅𝑚)2
]

(A.13)

where 𝑅𝑚 is the mean radius, t is the wall thickness and 2𝜃 is the circumferential angle of the defect.
The corresponding stress intensity factor is:

𝐾𝐼 = 𝜎𝑏
√

𝜋𝑎𝑓𝛼 (A.14)

where the bending stress, 𝜎𝑏, is related to the applied moment, M, by:

𝜎𝑏 = 𝑀∕
(

𝜋𝑡𝑅2
𝑚
)

(A.15)

The stress intensity factor function, 𝑓𝛼 , and the normalised constraint parameter 𝛽𝑇 are obtained from the same form of an
equation:

𝑓𝛼 , 𝛽𝑇 = (𝑓, 𝑏)0 + (𝑅𝑚∕𝑡)(𝑥1) + (𝑅𝑚∕𝑡)2(𝑥2) + (𝜃∕𝜋)(𝑥3) (A.16)

where

𝑥1 = (𝑓, 𝑏)1 + (𝑓, 𝑏)2(𝜃∕𝜋) + (𝑓, 𝑏)3(𝜃∕𝜋)2 + (𝑓, 𝑏)4(𝜃∕𝜋)3 + (𝑓, 𝑏)5(𝜃∕𝜋)4 (A.17)
𝑥2 = (𝑓, 𝑏)6 + (𝑓, 𝑏)7(𝜃∕𝜋) + (𝑓, 𝑏)8(𝜃∕𝜋)2 + (𝑓, 𝑏)9(𝜃∕𝜋)3 (A.18)
𝑥3 = (𝑓, 𝑏)10 + (𝑓, 𝑏)11(𝜃∕𝜋) + (𝑓, 𝑏)12(𝜃∕𝜋)2 + (𝑓, 𝑏)13(𝜃∕𝜋)3 + (𝑓, 𝑏)14(𝜃∕𝜋)4 (A.19)

The coefficients 𝑓1 − 𝑓14 and 𝑏1 − 𝑏14 can be found in [34].

A.5. Pipe with a fully-circumferential internal crack (FCC) in tension

A pipe with a fully circumferential internal crack subjected to end loads is shown in Fig. 4(a). The external and internal radii
are denoted 𝑅𝑒 and 𝑅𝑖, respectively. Crack length is a and wall thickness is W (Fig. 4(b)).

The limit load for internal cracks is [27]:

𝑃𝐿 = 𝑓𝐿2𝜋𝑅𝑚𝑊 𝜎𝑦 (A.20)

with the function 𝑓𝐿 given by:

𝑓𝐿 =

⎧

⎪

⎨

⎪

⎩

(1+𝜂𝑖)2−(1+𝛼𝜂𝑖)2

(1+𝜂𝑖)2−1

(

√

1 − 𝑝2𝑖 + 𝐴𝑖𝑝𝑖

)

for 𝛼 ≤
(

𝑎0
)

𝑖

(1+𝜂𝑖)2−(1+𝛼𝜂𝑖)2

(1+𝜂𝑖)2−1

√

1 − 𝐴2
𝑖 for 𝛼 >

(

𝑎0
)

𝑖

(A.21)

where 𝛼 = 𝑎∕𝑊 ; 𝜂𝑖 = 𝑊 ∕𝑅𝑖. The parameters 𝑝𝑖, (𝑎0)𝑖 and 𝐴𝑖 are calculated from:

𝑝𝑖 =
𝛼𝜂𝑖 − 0.684

(

𝛼𝜂𝑖
)2 + 0.2475

(

𝛼𝜂𝑖
)3

2
√ 𝑙𝑛

(

1+𝜂𝑖
) for 𝛼𝜂𝑖 ≤ 1 (A.22)
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Table 10
Correction coefficients of stress intensity factor for FCC pipe with 𝑊 ∕𝑅𝑖 = 0.2 [29].

a/t 0.0 0.2 0.4 0.6 0.8
𝑓𝛼 1.122 1.215 1.446 1.804 2.280

(

𝛼0
)

𝑖 = 0.366 − 0.1994𝜂𝑖 + 0.0504𝜂2𝑖 − 0.0055𝜂3𝑖 for 𝜂𝑖 ≤ 3 (A.23)

𝐴𝑖 =
2
√

3

𝑙𝑛
(

1+𝜂𝑖
1+𝛼𝜂𝑖

)

(

1+𝜂𝑖
1+𝛼𝜂𝑖

)2
− 1

(A.24)

The stress intensity factor is defined by:

𝐾𝐼 = 𝜎𝑚
√

𝜋𝑎𝑓𝛼 (A.25)

where values for the coefficient 𝑓𝛼 are given in Table 10 and 𝜎𝑚 is longitudinal stress in the wall due to the axial load 𝑃 :

𝜎𝑚 = 𝑃
𝜋
(

𝑅2
𝑒 − 𝑅2

𝑖
) (A.26)

The normalised constraint parameter for 𝑅𝑖/W = 5 is [27]:

𝛽𝑇 = −0.51 − 0.4074(𝛼) + 4.0608(𝛼)2 − 13.768(𝛼)3 + 27.014(𝛼)4 − 28.024(𝛼)5 + 11.33(𝛼)6. (A.27)
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