

Cathodoluminescence imaging in the electron microscope

Dr George R. Fern CChem MRSC FRMS FHEA

Director Experimental Techniques Centre and Reader in Department of Chemical Engineering, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK

Background and Aim

Cathodoluminescence as an analytical tool in electron microscopy

Examples of SEM CL:

Butterfly wings Gd_2O_2S :Tb SEM CL without a CL attachment

Examples of TEM CL:

Mixed Gd_2O_2S :Tb and Y_2O_3 :Eu CdSe/ZnCdS core shell quantum dots CdSe/CdS core shell dot in rods Various Y_2O_3 and Y_2O_3 metal(III) doped phosphors REE₂O₂S:Tb³⁺ phosphors

Cathodoluminescence imaging and spectroscopy in the FE-SEM

Light-emitting nanocasts formed from bio-templates: FESEM and cathodoluminescent imaging studies of butterfly scale replicas

(a) FESEM image of two scale sections of a natural butterfly wing, one showing a dentated scale terminus (scale bar is 2 μ m), and (b) a higher magnification study of one of the scale sections shown in (a) having a scale bar of 1 μ m.

FESEM (Zeiss Supra) studies of butterfly scale casts formed from Y_2O_3 :Eu³⁺: (a) detail of scale cast showing the fine replication of structure (scale bar is 100 nm), (b) scale cast with a thicker deposition of Y_2O_3 :Eu³⁺ (scale bar is 200 nm), (c) cast section of a dentated scale terminus (scale bar is 1 µm) and (d) cast of a dentated scale tip (scale bar is 1 µm).

Light-emitting nanocasts formed from bio-templates: FESEM and cathodoluminescent imaging Light-emittingstudies of butterfly scale replicas, J Silver, R. Withnall, T G Ireland, G R Fern and S Zhang, *Nanotechnology* 19 (2008) 095302 (7pp). DOI: 10.1088/0957-4484/19/9/095302

Brunel University London

Light-emitting nanocasts formed from bio-templates: FESEM and cathodoluminescent imaging studies of butterfly scale replicas

FESEM-CL study of a butterfly scale cast formed from Y_2O_3 :Eu³⁺: (a) SEM image and (b) CL image. The scale bar is 0.5 µm in both cases.

JEOL FESEM AND Gatan-MonoCL

NANOTECHNOLOGY

Featured article Light-emitting nanocasts formed from bio-templates: FESEM and cathodoluminescent imaging studies of butterfly scale replicas J Silver, R Withnall, T G Ireland, G R Fern and S Zhang

IOP Publishing

Brunel University London

We would like to express gratitude to A Yarwood of JEOL, Welwyn Garden City, UK for providing access to the JEOL FESEM instrument that was fitted with a Gatan CCD detector.

JEOL FESEM and Gatan MonoCL

Gadolinium Oxysulphide (Tb) Particle Size: ~130nm CL spectrum: 545nm (++) CL stability: high

Overall: In the SEM long collection times are a problem.

JEOL FESEM AND Gatan-MonoCL

Morrison IEG, Samilian A, Coppo P, Ireland TG, Fern GR, Silver J, Withnall R, O'Toole PJ. <u>Multicolour correlative imaging</u> <u>using phosphor probes</u> *Journal of Chemical Biology* 8(4):169-177 Oct 2015.

Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope

CL-micrograph of ZnO:Zn at 10 keV

(A) SE-micrograph of a cluster of Y_2O_3 :Eu³⁺ particles and a single Gd₂O₂S: Tb³⁺ particle. (B) CL-micrograph of same area as shown in (A). (C) SE-micrograph of Y_2SiO_5 :Tb³⁺ particles. (D) CL-micrograph of same area as shown in (C). Primary electron energy 10 keV, scanning rate of 10.1 s/frame.

Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope, Daniel den Engelsen, Paul G. Harris, Terry G. Ireland, George R. Fern and Jack Silver, *Ultramicroscopy*, 2015, 10.1016/j.ultramic.2015.05.009

Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope

Grey scale of CL-micrograph (10 keV) versus time for $Y_2SiO_5:Tb^{3+}$ particle. The single particle comet was used to construct the diagram

(A) SE micrograph of ZnO:Zn at 10 kV.(B) CL micrograph of same area of ZnO:Zn at 10 kV ZnO:Zn powder is deposited on carbon substrate.

(A and B) Micrographs of the same area of monosized Y_2O_3 :Eu³⁺ at 10 keV on ITO substrate. (C and D) Micrographs of the same area of ZnS:Cu,Cl at 10 keV on C-substrate. (A and C) SE-micrographs, (B and D) CL-micrographs.

Brunel University London

Ultramicroscopy, 2015, 10.1016/j.ultramic.2015.05.009

OPTIFED ~2005 Phosphors for screen printed field emission displays

Brunel University London

Cathodoluminescence imaging and spectroscopy in the FE-TEM

Microscopy Instrumentation

JEOL 2100F Field Emission Transmission Electron Microscope with

Various STEM detectors

Electron Energy Loss Spectrometer (Gatan Quantum EELS)

Cathodoluminescence Spectrometer (Gatan Vulcan)

Cathodoluminescence in the TEM

Liquid-nitrogen cooled holder on workstat

Experimental modes:

- > STEM CL Imaging using cooled-PMT, total light or selected wavelength
- > Spectroscopic analysis using Czerny-Turner spectrometer and back-illuminated CCD
- > CL Spectrum-imaging
 - > Compatible with simultaneous EELS

Footprint: 60 x 80cm

spectrometer and

ntrollers

Hyphenation of Cathodoluminescence in the TEM using the Gatan Vulcan system

Hyphenation of Cathodoluminescence in the TEM using the Gatan Vulcan system

Vulcan also includes optical spectrometer, detectors and software for analysis of CL in the 4.1-1.1eV range (300-1100nm)

Reality, 400+ nm due to optics to about 800nm

Limitations of Brunel's machine:

No possibility to tilt sample

Benefits:

Very sensitive (c.f. bulk time collection)

Schematic cross section through the Vulcan[™] holder showing the specimen region.

Electron beam (green) stimulates the specimen to emit photons (blue) which are focussed by the collection mirrors into optical fibres situated away from the specimen region

The benefit of using the TEM over the SEM is the much higher beam voltage leading to higher resolution

Imaging of Gd₂O₂S:Tb 5% (Very bright green emitting phosphor) Dark Field STEM (Total light)

Images collected simultaneously

Brunel University London

Fig. 9 High resolution CL spectrum of $(Lu_{0.5}Gd_{0.5})_2O_2S:2\%Tb^{3+}$ recorded at 200 keV and room temperature in the TEM. The insert shows the structure of the $Tb^{3+5}D_4 \rightarrow {}^7F_5$ manifold in more detail.

Relative changes of the effect of cooling the sample (normalised at 540nm)

Scan from vacuum to phosphor particle (Gd₂O₂S:Tb)

Condenser aperture and spot size determines the resolution (How closely the STEM and CL signals match)

Use of the hard X-ray aperture reduces background from the CL aperture by ~x4

Spectrum Image

Resolution issues Particles are separated by 100nm

Gd₂O₂S:Tb

However secondary emission causes adjacent particles to emit CL (with thick and high Z samples).

24 February 2021

CL imaging from CdSe/ZnCdS core/shell quantum dots to visualise luminescent properties and uniformity

Simulation of a LED TV without (left) and with (right) saturated red (QDV image)

QDV sample

Development of TV backlighting materials suitable for the REC2020 display screen standard.

Cathodoluminescence and electron microscopy of red quantum dots used for display applications, Fern, George Robert; Silver, Jack; Coe-Sullivan, Seth, *Journal of the Society for Information Display*, 23(2) 50-55, FEB 2015 DOI: 10.1002/jsid.278

HRTEM from CdSe/ZnCdS core/shell quantum dots

Showing hexagonal shape looking down the c axis

Orthogonal to the c axis

Truncated hexagonal pyramids

It is not possible to know the position of the red emission. Resolution is limited to particle's size. (~13-14 nm) No emission so we must be seeing

Thinness means there is no significant secondary excitation and hence excellent spatial resolution for adjacent particles

Brunel University London Journal of the Society For Information Display, 23(2) 50-55, FEB 2015 DOI: 10.1002/jsid.278²³

Excellent correlation of the STEM and CL images

Overlay: Showing a range of particles with some on and some off lying both together and singly.

We are able to achieve spatial resolution which is only limited by the size of the QD.

Hence 13 nm resolution with a wavelength of 628 nm

CL imaging from quantum dot in rods

The Material Studied

Simultaneous Scanning Transmission Electron Microscopy, Cathodoluminescence Imaging and EELS of Quantum Dot in Rods, George R. Fern*, Jack Silver*, Terry G. Ireland*, Ashley Howkins, Tobias Jochum, Jan S. Niehaus, Frank Schröder-Oeynhausen and Horst Weller. International Displays Workshop, 2015.

CL imaging from quantum dot in rods

- Particle size is ~6 nm wide by 50-60 nm long
- Hence beam interaction volume is small
- Expect minimal scattering

- Rods are separated by a thick organic coating (~1nm)
- Removal of the coating leads to rapid distortion and damage in the electron beam

CL and HAADF STEM imaging of fresh DRs

200 nm

200

Emission is elongated in CL image. Different to that seen in QDs.

Hence although the strongest emission is seen at the thickest region there is also observable emission from the rod.

Comparison of DR and QD cathodoluminescence images

Red QD emission

We observe streaking of the CL emission with some rods but never with the QDs

Hence some rods are able to be excited by the electron beam as it approaches or moves away from the dot in the rod. Conversely some are not.

This could be due to many reasons, but we think further investigation could help us to distinguish why some rods are either more stable than others or are able to be excited through the particle.

Overlay of CL and HAADF shows the CL emission occurs at the edge of the dot

Beam spot size can be varied from 0.2-1.5 nm along with varying aperture

24 February 2021

200 nm

24 February 2021

HAADF image of dot (in rod)

Residual CL (red filtered signal is detected even after one full slow scan collection)

EELS map of the spike removed, background subtracted 1436 eV Selenium edge

Simultaneous HAADF, CL (625(25)nm bp filter) image and Se EELS

Intensity plot of the overlay of CL and EELS maps. CL signal is 5.2nm in length and about 2nm away from the Se signal.

Green is CL signal and red is EELS map

Ultraviolet and blue cathodoluminescence from cubic Y₂O₃ and^{bruary 2021} Y₂O₃:Eu³⁺ generated in a transmission electron microscope

TEM images, (a) and (b), of Y_2O_3 :Eu³⁺ particles: (a) ureaprecipitated route, (b) higher magnification image of a single particle from (a). (c) HAADF image oxalate-precipitated particles.

Site

SI-1

SI-2

SI-3

SI-4

SI-5

SR405

0.5

12.2

5.3

3.3

2.5

SR₆₁₂

2.6

10.8

10.2

5.6

8.4

η

0.37

0.23

Quenching factor η at various
ites for urea-precipitated
′ ₂ O ₃ :Eu ³⁺ (0.1 mol% Eu ³⁺) at
168°C and 200 keV

CL spectra of Y_2O_3 :Eu³⁺ recorded at -171°C, 200 keV beam voltage and spot size of 1.5 nm. (A) non-doped Y_2O_3 , inset: spectrum at larger scale between 600 nm and 900 nm; (B) 0.1 mol% Eu³⁺; (**C**) 0.5 mol% Eu³⁺; (**D**) 1 mol% Eu³⁺. The sharp lines in the spectrum are Y_2O_3 :Eu³⁺ transitions; the strongest is the ⁵D₀ - ${}^{7}F_{2}$ Eu ${}^{3+}$ transition at 611 nm.

Self trapped exciton (intrinsic) radiation leads to the blue/UV emission observed from the Y_2O_3 lattice under e-beam excitation.

den Engelsen, D.; Fern, G. R.; Ireland, T. G.; et al. Journal of Materials Chemistry C, 4(29) 7026-7034, AUG 7 2016. 34 Brunel University London DOI: 10.1039/c6tc01750a

Ultraviolet and blue cathodoluminescence from cubic Y_2O_3 and Y_2O_3 :Eu³⁺ generated in a transmission electron microscope

Spectra of undoped Y_2O_3 recorded at 80 keV and various temperatures. The inset shows the spectra between 600 and 900 nm at a different vertical scale.

Quenching factor η as a function of Eu³⁺ concentration in Y₂O₃. (1): oxalate-co-precipitated Y₂O₃:Eu³⁺, (2) SM-oxalate-precipitated Y₂O₃:Eu³⁺. Other points are urea-precipitated.

Energy levels of Eu³⁺ in Y_2O_3 . The broad intrinsic luminescence of Y_2O_3 has been represented at 28300 cm⁻¹ by arrow (3). The arrows (0), (1) and (2) refer to the ${}^5D_0 - {}^7F_2$, ${}^5D_1 - {}^7F_1$ and ${}^5D_0 - {}^7F_4$ Eu³⁺ transitions respectively, while (4) indicates the radiation-less energy transfer from Y_2O_3 to Eu³⁺. For arrows (5), (6) this process is more dominant at low temperature because of the much stronger UV luminescence of Y_2O_3 and (7) Eu³⁺ doping quenches this process.

Conclusions

- 1. EELS is detected by the primary beam and hence very fast but we need to consider CL differently since this is a secondary process.
- 2. We have demonstrated that 'large' phosphor particles show CL emission from adjacent particles resulting in uncertainty of where the CL signal is produced.
- **3**. Hence 'large' particle, phosphors, need to be highly dispersed when collecting Cl spectral information.
- For quantum dots we can distinguish individual particles by CL imaging. Their thinness reduces secondary processes to a level that is not detected by CL imaging. (In this case the limiting factor is the particle size ~13-14nm due to beam damage).
- 5. For DRs emission is observed when very close to the quantum dot core or when directly exciting the core. Hence we observe CL emission when the electron beam is about 2nm away from the core as demonstrated by using simultaneous HAADF, CL imaging and EELS.
- 6. In recent studies we have been able to combine CL imaging or CL spectroscopy with EELS and STEM.
- 7. High resolution CL emission spectra can be obtained from individual luminescent particles to yield a variety of information about their electronic states / emission spectra.

Acknowledgements

- 1. Prof Jack Silver and Prof Daan Engelsen, Terry Ireland, Paul Marsh, Paul Harris, Anthony Lipman, R Dhillon
- 2. Seth Coe-Sullivan ex-QD Vision for excellent QD materials and discussions.
- **3**. Tobias Jochum* CAN GMbH for synthesising the DRs and for useful dicsussions.
- **4**. Ashley Howkins ETC Brunel for help with EELS.
- 5. Neil Wilkinson (retired) and David Stowe Gatan UK Ltd for support with EELS and CL.
- 6. Funding over many years from various agencies, InnovateUK, EPSRC and BBSRC for many grants including PLACES, FAB3D, ACTIVEL, SHAPEL, BEDS, PRISM, HTRaD, PURELIGHT, LIGHTWAY and QANDELA

Contact: George Fern, george.fern@brunel.ac.uk