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Abstract

This thesis presents numerical studies of fundamental fluid mechanical mechanisms

that play a role in the transfer of atmospheric gases across the air-water interface. At

first numerical methods are discussed that allow the calculation of the mean surface age

and the interfacial gas transfer velocity from snapshots of the interfacial flow field. After

constructing the near-surface three-dimensional (3D) velocity field from the interfacial

velocity field, first the Lagrangian particle tracking method is employed to estimate

the mean surface age. Subsequently, a new continuum method was developed as an

alternative to the Lagrangian approach. To estimate the mean surface age, a continuous

surface age density was introduced to replace the point particles used in the Lagrangian

method. To obtain a smooth initial density distribution on the uniform base mesh in

the z-direction, N number of mesh cells were used. Each grid cell was refined in the

x, y and z-direction by a factor of RXY = 5 and RZ = 10, respectively. On the refined

mesh, an unsteady three-dimensional convection equation for the surface age density

was solved using the fifth-order-accurate WENO-Z scheme for the convection terms

combined with a third-order Runge-Kutta method for the time-integration. For the

surface age density, ρτ , a symmetry boundary condition was used at the surface, while

below the region where the initial surface age density was introduced, ρτ was set to

zero, to model that the surface age density left the near surface region. The results

obtained with the continuum method were in good agreement with the results from the

Lagrangian particle tracking method.
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Subsequently, the effects of Marangoni forces, induced by temperature differences

at the air-water interface, on the instantaneous development of a buoyant convective

instability for several Sc-numbers was studied by Direct Numerical Simulation (DNS).

Simultaneously with the flow, five scalar convection diffusion equations were solved.

The first scalar, the temperature, is non passive as it affects the flow through buoyancy

forces. The other scalars are passive and represent the transport of atmospheric gases.

The Prandtl number for the temperature was Pr = 7 and the Schmidt numbers for the

mass transport were Sc = 16, 50, 100, 200. The latter simulations allow a non biased

comparison of the effect of Schmidt number on the gas transfer velocity KL.

For the flow solver, the convective terms were solved using the fourth order ki-

netic energy conserving discretization, while the diffusive term was solved using the

fourth order central scheme. After substituting the descritized momentum equations

into the continuity equation a Poison equation for the pressure was obtained. This

Poison equation for the pressure was solved using the conjugate gradient method with

simple diagonal decomposition. Time integration was performed using the second or-

der Adams-Bashforth method. It was shown that Marangoni forces that promote the

Rayleigh instability result in significant increases in the amount of atmospheric gases

transferred across the air-water interface and should not be neglected.

xxi



Chapter 1

Introduction

This chapter includes the research background, aims and objectives of the research and

an outline of the thesis. The research question, research model and motivation are

discussed.

1.1 Research Background

Gas exchange across the air-water interface plays a vital role in environmental processes

and various industrial applications in a range of engineering fields. The atmosphere and

rivers, lakes, seas and oceans are essentially linked in a dynamical system. One typical

example is the absorption of significant amounts of heat and gases into the oceans and

other natural water bodies. For instance, the absorption of oxygen across the air-water

interface is important to sustain aquatic life. The oceans constitute a major sink for

heat and green house gases by removing significant quantities from the air. Due to

this, the oceans tend to lessen the increase in carbon dioxide in the atmosphere which
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is related to human activity. Unfortunately, this results in a significant increase in

acidification which is very critical to the aquatic habitat and leads to the destruction of

their life e.g. coral reefs. It is noted that up to 40% of the produced carbon dioxide is

absorbed into the ocean, resulting in an increase in carbonic acid [19]. The production

of carbonic acid decreases the CO2 gas pressure. Thus, the significant capacity of ocean

to absorb CO2 from the atmosphere is for a huge part due to the formation of carbonic

acid [80].

Heat transfer across the air-water interface is an important driver of weather con-

ditions [48]. Absorption of heat reduces the oxygen solubility in water bodies so that

less oxygen is carried from the water surface to the deeper regions leading to an oxy-

gen depletion [59]. The gas transfer process does not only play an important role in

global warming but also in re-aeration problems in rivers and lakes. This shows that

an improved knowledge of the gas exchange mechanism is an important factor for the

assessment and management of water quality.

Climate change has a significant effect on balancing the amount of gases absorbed

in water bodies and the gases in atmosphere. The gas transfer models used for the

prediction of climate change can be improved with a good understanding of the air-

water gas exchange mechanism. In the first part of the present study, the estimation

of surface age and gas transfer velocity using a continuum model is investigated. In

the second part, the effect of Marangoni forces on the instantaneous development of

the buoyant instability across the air-water interface is studied. At low wind speeds,

due to evaporative cooling at night, the upper water surface cools down. As cold water

is slightly heavier than warm water a buoyant instability is generated. By modelling

2
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the water-surface cooling by a constant heat flux, the buoyant instability will cause

horizontal gradients in the surface temperature field. Such gradients in the surface

temperature give rise to gradients in the surface tension resulting in the occurrence of

Marangoni forces. These forces tend to promote the buoyant instability.

Most of the flows are turbulent in nature. A turbulent flow is classified as an appar-

ently random motion with a large variety (continuum) of different scales. The macro

scales are basically determined by the largest scales in the turbulent flow. Whereas,

the smallest scales (several order of magnitude smaller than macro scales) in the tur-

bulent flow are determined by the micro scales (Kolmogorov scales) that characterise

the dissipation of turbulent kinetic energy. A huge range of different scales exists in

between the micro and macro scales (the so-called inertial range) at which turbulent

kinetic energy is conserved. Energy is exchanged within this range of scales from small

to large and vice versa. Kolmogorov [46] determined that the scaling of the turbulent

energy spectrum in the inertial range as a power of the wave number is k−5/3. Gen-

erally, the interaction of molecular diffusion and turbulence governs the air-water gas

transfer process. The rate of transfer is controlled by resistance on the water side [33].

Turbulence is increasingly damped close to the water surface. Due to this, molecular

diffusion is a much more effective and dominating source of gas transfer at the wa-

ter surface than turbulent convection. If the turbulence is absent from the water, in

time the molecular diffusion of gases towards the water bulk eventually becomes very

slow. If turbulence is established (whether by bottom shear, wind shear or buoyancy),

this process is significantly enhanced. Fundamentally, turbulence tends to decrease the

thickness of the diffusive concentration boundary layer close to the surface. As a result,
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diffusion becomes more effective at the surface. The typical boundary layer thickness of

low soluble environmentally important gases such as oxygen is about δ ≈ 10− 1000µm

[32], which makes it very hard to carry out precise measurements. Consequently, many

researchers used conceptual models to explain the gas exchange process using measure-

able parameters such as turbulent Reynolds number or surface divergence. The film

model developed by Lewis & Whitman (1924) [57] is the first and simplest model. It

is assumed that both sides of the air-water interface are covered with a stagnant film,

where only molecular diffusion takes place. Thus, the gas transfer was assumed to be

governed by diffusion and the gas transfer velocity KL is inversely proportional to the

film thickness δ, so that

KL =
D

δ
m/s, (1.1)

where D is the diffusion of the gas in water. Realistically, this model is an oversim-

plification of the actual mechanism [63]. An improved model, that took the surface

renewal events into accounts, was proposed by Higbie [34]. Higbie discovered that the

existence of turbulence plays a vital role in the liquid-bulk by bringing up fresh pack-

ages of unsaturated liquid to the surface, thereby replacing the saturated liquid to the

surface. The surface renewal time was considered as the typical time ∆t between two

consecutive renewal events. He assumed ∆t to be constant. Danckwerts [14] improved

the penetration model with the concept of the surface renewal rate r. For this he made

two assumptions: The first one was that all fluid parcels at the surface have equal

probability of being replaced by fresh fluid from the bulk of the fluid body, independent

of their surface age τ . Therefore, the probability density function of the surface age

τ in Danckwert’s model is the exponential distribution. The second assumption made
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by Danckwerts was that the diffusion is the only transport mechanism at the inter-

face, which was also originally assumed by Higbie. Hence, the surface renewal model,

encompassing the exponential distribution of the surface age, is expressed by

KL =
√
Dr m/s, (1.2)

where the mean surface age τ = 1/r may be interpreted as the average time between

surface renewal events and has to be determined by performing experiments. Many

researchers tried to estimate the renewal rate r. Fortescue & Pearson [23] proposed the

large-eddy model by making the assumption that the gas transport process is dominated

by the large turbulent eddies. Therefore, the term r can be approximated by the ratio of

the velocity rms the of large eddies and the integral length scale u′L/L.The advection-

diffusion equation of a steady roll cell was solved numerically resulting in the expression

KL = a

√
D . u′L
L

, (1.3)

where L is the turbulent integral length, u′L is the root mean square of the turbulent

fluctuations and a is a constant with value 1.46. However, for the higher turbulence

levels Banerjee [7] and Lamont [53] concluded that the characteristic time scales of

small eddies determined the renewal rate. Here r was defined by r =
√
ε/ν, where ε

is the rate of turbulent energy dissipation close to the surface and ν is the kinematic

viscosity. Using dimensional analysis the relation

KL = b
√
D
[ ε
ν

]1/4
, (1.4)
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is obtained, where b is the constant of proportionality. As an alternative, the two

regime model was proposed by Theofanous et al. [85], which combines the large and

small-eddy models. They suggested that the large-eddy model is appropriate for low

turbulent Reynolds numbers ReT and the small-eddy model for high ReT turbulent flow

and proposed the following expressions

KL = 0.73u′ Sc−0.5ReT
−0.5 when ReT < 500, (1.5)

KL = 0.25u′ Sc−0.5ReT
−0.25 when ReT > 500, (1.6)

where Sc is the Schmidt number and ReT is the turbulent Reynolds number defined by

ReT =
u∞Λ

ν
, (1.7)

where u∞ is the root mean square (r.m.s) of the horizontal velocity fluctuations, Λ is

two times the horizontal integral length scale of the fluctuations and ν is the kinematic

viscosity.

Note that the rate of turbulent energy dissipation ε is estimated on the large-eddy

scale as ε = u3∞/Λ. The critical value of ReT separating both regimes is approximately

500. Another alternative model to calculate the renewal rate r is the surface divergence

model, proposed by McCready et al. [63]. Here, the 2D divergence of the velocity at the

surface is used to calculate r. Using this model, the gas transfer velocity is estimated

by

KL = c
√
Dβ′, (1.8)
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where D is the molecular diffusivity, c is the constant of proportionality and β′ is the

r.m.s of the surface divergence. More detailed information on the gas transfer models

is given in Sections 2.4.1 and 2.4.2.

1.2 Aim and objectives

In order to sustain aquatic life, atmospheric gas transfer from air into water, for in-

stance seas, lakes, rivers and oceans is very important. The low soluble atmospheric gas

transfer across the air-water interface is governed by resistance at the water side. The

gas transfer is determined by the gas flux. At the liquid surface, the gas flux is fully

determined by molecular diffusion and the amount of molecular diffusion is determined

by the concentration boundary layer thickness underneath the surface. The thinner

the concentration boundary layer thickness, the more molecular diffusion of gases will

occur. Deep down into the bulk, molecular diffusion becomes insignificant and the ver-

tical atmospheric gas transport is fully dominated by turbulent convection. In nature,

turbulence can be generated in the environment by three major mechanisms, namely

bottom-shear-induced turbulence (e.g. in windless rivers), surface-shear-induced tur-

bulence (e.g. wind shear on lakes) and buoyant-convective-induced turbulence (e.g.

turbulence in lakes caused by surface cooling). Figure 1.1 shows a schematic of the

three distinct types of turbulent generating sources. The present study is focused on

quantifying the mean surface age and the gas transfer velocity using the surface velocity

field as obtained in experiments or numerical simulations. After constructing the near-

surface three-dimensional velocity field, first the Lagrangian particle tracking method is

employed to estimate the mean surface age, Subsequently a new continuum method was
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developed as an alternative to the Lagrangian approach. The main advantage of the

continuum method is the ease with which this can be implemented within a numerical

code where it can be used to determine the mean surface age while the simulation is

running. Apart from this, it also provides a very good approximation of the lognormal

distribution of surface ages.

Figure 1.1: Schematic illustration of the turbulence generating sources introducing
atmospheric gas transfer in the water. Produced following the example of Herlina [31]

Many researchers have focused on the most dominant gas transport process, which

is the one induced by wind-shear, such turbulence is introduced directly at the surface.
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This turbulence generating process is very important when sufficiently high wind speeds

produce significant amounts of shear. The other two processes becomes more important

if the wind speed is low. In rivers, the dominant turbulence-inducing mechanism driving

the interfacial gas transfer is bottom-shear-induced turbulence. However, buoyancy-

induced turbulence may be the most important turbulent source in sheltered lakes or

in oceans at low wind speed conditions.

The role of interfacial velocity field in the determination of the gas transfer velocity

is not fully understood. The aim of this thesis is to investigate the dependence of the

gas transfer velocity on the interfacial velocity field. For this purpose both existing

velocity fields generated in previous DNS as well as newly generated data (studying the

temperature induced Marangoni forces from the interfacial velocity field) were used.

To reach this aim the following research objectives were set:

• Development of a continuum method to calculate mean surface age.

• Applying the continuum method to determine the probability distribution of the

surface age.

• Use results generated by the continuum method to directly calculate the interfacial

gas transfer velocity from a 2D velocity field stored at the surface.

• To show that surface temperature-gradient-induced Marangoni forces cannot be

ignored when simulating the development of a buoyant convective instability

driven by a fixed temperature-gradient at the surface (to model cooling).

• Performing a series of runs to study the effects of Marangoni forces on the instan-

taneous development of a buoyant convective instability for several Sc-numbers
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per simulation.

• Performing a grid refinement test to see whether the results produced at realistic

Marangoni number Ma are mesh-independent.

1.3 Thesis outline

The relevant background with a description of the gas transfer problem of the present

research is presented in Chapter 1. This chapter also covers the objectives, and a brief

summary of the methodology which is presented in more detail in further chapters.

Chapter 2 covers the relevant literature review on air-water gas transfer processes. It

also discusses the conceptual models of gas transfer including theoretical background

as well as previous experimental investigations on gas transfer and previously obtained

results related to the effect of Marangoni forces on the properties of turbulent flow.

In Chapter 3, the methodology, and in particular the numerical techniques used in

the implementation of the Lagrangian particle method for the estimation of the sur-

face age and gas transfer velocity using the Danckwert’s model, are presented. The

reconstruction of the three-dimensional near-surface velocity fields, and the Euler and

Adams-Bashforth method used for the time-integration are also discussed. Chapter 4

presents the development of the continuum method to calculate the gas transfer veloc-

ity. This chapter also presents a comparison of the results obtained from the Lagrangian

and continuum method. In Chapter 5, it is shown that Marangoni forces cannot be

ignored when simulating the development of a buoyant convective instability driven

by a fixed temperature-gradient at the surface (to model evaporative cooling). A grid
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refinement study is performed to see whether the results produced at realistic Ma are

mesh-independent. Finally, Chapter 6 presents the conclusion of the present research

and also recommendations for future research.

Figure 1.2: Flow chart showing how gas transfer velocity is determined in Chapters 3,
4 and 5.

11



Chapter 2

Literature review

In this chapter, a comprehensive review on gas transfer processes and the importance

of surface age including a summary of the theoretical background, existing gas transfer

models using various parameters, experimental investigations on gas transfer as well

as their development and shortcomings are presented. Research models and numerical

methods introduced in this study are based on the above analysis.

2.1 Fundamental concepts

The gas transfer process across the air-water interface of low soluble gases such as oxy-

gen O2, carbon monoxide CO, nitric oxide NO and ozone O3 is controlled by resistance

on the water side. Gas transfer of a stationary fluid without any disturbances is gov-

erned by the molecular diffusion. However, in more realistic cases the fluid may be in

motion generated by bottom shear, wind shear, buoyant convection due to surface cool-

ing or any combination of these (see Figure 1.1). The rate of gas transfer corresponds

12
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to the gas flux at the water interface which is fully governed by molecular diffusion.

Slightly away from the interface, turbulent gas flux tends to reduce the diffusive bound-

ary layer thickness. This interaction between diffusion and turbulent convection gas flux

determines the thickness of the concentration boundary layer and plays a vital role in

air-water gas transfer process. The gas concentration boundary layer has a very small

thickness δ of about 10− 1000µm which indicates that only slightly away from the wa-

ter interface molecular diffusion is entirely replaced by turbulent convection. The gas

transportation process is characterized by the turbulent gas flux j, in which molecular

diffusion is described by Fick’s law.

−→
j = −D∇c, (2.1)

where c is the gas concentration in Kg/m3 and D is the diffusivity in m2/s. The

minus sign indicates that the gas flux at the surface, when the water is unsaturated, is

directed downwards. The (downward) gas flux, that is studied in this work, across the

flat horizontal homogeneous plane is given by

−→
j = −D ∂c

∂z

∣∣∣∣
i

, (2.2)

where the subscript i corresponds to the interface and z denotes the vertical direction.

In the surface age calculations z = 0 at the surface and the positive z direction is

downwards. In contrast, in chapter 5, discussing temperature-induced Marangoni forces

at the surface, the positive z direction is pointed upwards. In all simulations, the x and

y coordinates are always directed horizontally. Further below, in the water body, the

13
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turbulent gas flux will begin to dominate the total gas flux and the equation (2.2) for

the average gas flux
−→
j reads

−→
j = −D∂c

∂z
+ c′w′, (2.3)

where c and c′w′ represent the time averaged gas concentration and time averaged

turbulent convection of the concentration in the z-direction respectively. Note that the

c′ is the concentration and w′ is z-velocity fluctuation.

2.2 Gas transfer velocity KL

The gas transfer flux is often expressed in the gas transfer velocity KL, defined by

KL =

−→
j

∆c
=

−→
j

cs − cb
, (2.4)

where cb represents the gas concentration in the bulk region of water and cs is the

gas concentration at the interface identified by Henry’s law. The transfer processes

of the low soluble gases are mainly governed by resistance on the water side. Lewis

& Whitman [57] identified the mass concentration profile in a two-phase (air-water)

system by a supposition of two distinct surface films, one at the air side and the other

at the water side. Each distinct surface film has a mass transfer coefficient, ka for the

air (gas) phase and kw for the water (liquid) phase. The actual mass transfer velocity

14
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(KL) corresponds to the individual mass transfer coefficients, defined by

KL =
1

kw
+

1

Hcka
, (2.5)

where Hc represents Henry’s constant which plays an important role to estimate the

resistance at the water phase, which explains that when the ratio of kw/Hcka is large,

the air (gas) phase resistance take over the transportation process. On the other hand,

the resistance on the water (liquid) side controls the transportation process when the

ratio is small. The value of Henry’s constant Hc is inversely related to the gases that are

of environmental interest such as N2, O2, CO, CO2. These are very low soluble gases

and thus they have a high Hc. So the conclusion is that the transfer of low soluble

atmospheric gases across the air-water interface is controlled by the water phase of the

interface [41].

As defined earlier, the gas exchange processes for low-diffusivity atmospheric gases are

governed by a very thin gas concentration boundary layer with a standard thickness of

δ = 10− 1000µm. This thickness is significantly influenced by the mass diffusivity D,

the time scale and the turbulence intensity.

2.3 Surface age (τ )

Surface age is an important modelling parameter in the gas transfer process across the

air-water interface. It is important for various applications including atmosphere-ocean

gas transfer and sea surface temperature. Fluid is brought from the bulk towards the

surface and stays there for a certain time before it is transported back to the bulk by
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a downwelling motion. That certain time period is defined as surface age τ (see Figure

2.1). The concept of surface age was originally introduced in the ”penetration model”

by Higbie [34] to analyse the mass transfer across the gas-liquid interface (see section

2.4.1.1). He employed a constant surface renewal time t by assuming that the surface

age τ of the liquid elements arriving at the interface is uniformly distributed. In the

past, many researchers Danckwerts [14], Perlmutter [71], Koppel et al. [47], Chung et

al. [12], Fan et al. [22], Fortescue & Pearson [23], focused their efforts on estimating

the surface age τ in their proposed models.

Further improvement for the prediction of the surface age in turbulent interfacial

transport was made by Kermani & Shen [44]. They directly quantified the surface age

τ of fluid particles associated with surface renewal events using the hybrid Lagrangian

tracking and temperature method, known as HLTT. In this method, Lagrangian particle

tracking is combined with a temperature based Eulerian approach. Many researchers

used the Eulerian method to calculate the fluid velocity and combine it with the La-

grangian method used to calculate the location of fluid particles. The Eulerian approach

deals with concentration of fluid particles and calculates their convection and diffusion.

Lai & Chen [51] adopted a Eulerian model with a Lagrangian model for indoor particle

distribution and deposition. Their results shows that both models are comparable. On

the other hand, some studies proves that the calculations in Lagrangian method are

computationally expensive and quite more time consuming than the Eulerian method

[28, 35, 70, 76, 90].
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Figure 2.1: Motion of fluid parcels

The present study focuses on the estimation of surface age. To investigate this prob-

lem, data from a series of direct numerical simulations (DNS) [32] is used to elucidate

the mechanisms that play an important role in the gas transport across the air-water

interface. Each of the DNS stored a sequence of snapshots of the velocity field in a

horizontal plane at the surface. Using the data from this plane the three-dimensional

velocity field in the upper part of the concentration boundary layer at the water side was

reconstructed which was subsequently used in order to estimate the surface age using a

Lagrangian method to track point particles and the continuum method by introducing

a continuous surface age density (see Chapter 3 & 4).

2.4 Gas transfer models

The significance of the gas transfer process across the air-water interface is defined in

the previous section. To understand the actual mechanism of the gas transfer process,

the quantification of only the gas transfer velocity KL is not sufficient and it is required
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to explain the total mass flux in Eq. 2.3. Previously, due to the complexity of per-

forming measurements inside the ultra-thin gas concentration boundary layer, many

researchers focused on the physical mechanism of the gas exchange process using trans-

fer models and established several statistical relations between KL and measurable flow

parameters.

Gas transfer models can be classified into three set of classes that are discussed in

the following:

1. Conceptual models;

2. Hydrodynamic models;

3. Eddy diffusivity models.

2.4.1 Conceptual models

Efforts have been made to explain the transfer velocity KL with conceptual models.

”Conceptual models are simple solutions of the vertically one-dimensional diffusion

equation without any explicit advection flow field. The effect of turbulence is incorpo-

rated through initial conditions and boundary conditions, which are characterized by

time and spatial scales” Brumley & Jirka [10]. Some of the models are detailed below:

2.4.1.1 Film model

Lewis & Whitman [57] developed the very first conceptual model named as the ”film

model”. They supposed the existence of stagnant films that are located on each side

of the interface, where only molecular diffusion occurs. Gas transfer was defined by
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the stagnant film thickness and the gas concentration in the bulk of the water body

was supposed to be constant corresponding to the fully mixed situation. It is noted

that this model actually oversimplifies the complexity of transport mechanism, where

a stagnant film was not physically present but a region was assumed in which the gas

transfer was governed by the molecular diffusion.

The actual purpose of development of this model was to estimate the relation be-

tween the resistance of the gas-phase and the liquid-phase for different atmospheric

gases with varying solubilities in water. This leads to the following relation between

KL and the stagnant film thickness δ (m),

KL =
D

δ
m/s, (2.6)

where D (m2/s) is the molecular diffusivity. This model appeared to be a good estimate

for transport processes where molecular diffusion is dominant. However, in experimental

studies, it was noted that the relation between transfer velocity KL and D was not linear

[63].

2.4.1.2 Penetration model

A refined model was developed by Higbie [34] that takes surface renewal effects into

account. He acknowledged the existence of the turbulence that plays a vital role in

the bulk region of the liquid by bringing up fresh packages of unsaturated liquid (and

replacing the saturated liquid) to the surface. This gas transfer occurs for a certain

renewal time Tr by assuming that the surface age τ of the liquid elements arriving at
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the interface is uniformly distributed. Higbie derived the relation

KL =

√
D

πTr
. (2.7)

2.4.1.3 Surface renewal model

Danckwerts [14] improved the penetration model with the concept of surface renewal

rate r. For this he made two assumption. The first one was that all fluid parcels at the

surface have equal probability of being replaced by fresh fluid from the bulk of fluid

body, independent of their surface age τ . Therefore, the probability density function

of the surface age τ is the exponential distribution. The second assumption made by

Danckwerts was that the diffusion is the only transport mechanism at the interface,

this was originally assumed by Higbie. Hence, the surface renewal model following the

exponential distribution of the surface age so that the t is no longer constant, expressed

by

KL =
√
Dr m/s, (2.8)

where 1/r may be interpreted as average time between surface renewal events and has

to be determined by performing experiments. The prediction of gas transfer across the

air-water interface has improved by both of these models. Following that, the relation

between the KL and D was formed by using penetration and surface renewal models

and expressed by

KL = Dn m/s, (2.9)
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where n is the power of diffusivity and its value depends on surface dynamics conditions

ranging between n = 1/2 − 2/3 [39]. A surface renewal model was found to be a

significant improvement compared to the film model [38, 87].

2.4.1.4 Film-renewal model

O’Connor & Dobbins [69] proposed a film-renewal model by combining the film model

and the penetration model, thereby assuming the existence of a liquid film at the

interface in which liquid elements are continuously replaced by a fresh liquid from the

bulk of the liquid body. This assumption leads to the expression

KL =
√
Dr coth

(
δ√
D/r

)
m/s. (2.10)

The above expression is asymptotic to the surface renewal model for large r values and

the film model for small r values.

2.4.1.5 Random eddy model

This model was developed by Harriott [29]. He proposed that the gas transport mech-

anism is enhanced by the turbulent eddies even though they do not reach the interface.

These turbulent eddies have a random lifespan and will approach the interface within

some random distance. The only transport mechanism considered is molecular diffusion

from this random distance up to the interface. He derived

KL =

√
Dr

1 + δ
√
D/r

m/s. (2.11)
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2.4.1.6 Surface divergence model

McCready et al. [63] presented the surface divergence model. It was related to the

horizontally averaged gas transfer velocity KL to the horizontal velocity field at the

interface. The divergence of this horizontal velocity field observed at the interface is

given by

wi = −
(
∂ui
∂x

+
∂vi
∂y

)
z = −βz, (2.12)

where ui, vi, wi are the velocities near the interface in x, y, z-direction, respectively. The

expression in parenthesis is known as ’surface divergence’ strength and tagged as β for

convenience. Hence, the model is called surface divergence model (SDM) which leads

to the expression

KL = c
√
Dβ′. (2.13)

The root mean square (rms) of the surface divergence β′ can be theoretically approx-

imated for simple problems. This approximation was adopted by Brumley & Jirka

[11].

The conceptual model shows that transfer velocity KL is dependent on
√
D. In

spite of that, the gas transport process is influenced by the hydrodynamics, which is

still unseen in the term r. In this study, the numerical results enable estimation of the

fraction r in terms of surface age τ .

2.4.2 Hydrodynamic models

Several researchers presented conceptual models which focused on the relation between

the term r and the considerable diversity of turbulent flow parameters. The advection-
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diffusion equation is used in hydrodynamic models under the assumption of a single

flow pattern.

2.4.2.1 Large-eddy model

Fortescue & Pearson [23] proposed the large-eddy model by elaborating the surface

renewal model. They make the assumption that the gas transport process is dominated

due to the large turbulent eddies. Therefore, the term r can be determined by velocity

rms of large eddies and integral length scale u′L/L. The advection-diffusion equation

of a steady roll cell was solved numerically resulting in the expression

KL = a

√
D . u′L
L

, (2.14)

where L is the turbulent integral length, u′L is the root mean square of the turbulent

fluctuations and a is a constant with a value of 1.46.

2.4.2.2 Small-eddy model

The small-eddy model was presented by Banerjee & Scott [7] and Lamont & Scott

[53]. They assumed that the gas transport process is dominated by the small turbulent

eddies. These small turbulent eddies have a mean turnover time scale determined by

the Kolmogorov time scale. Therefore, the parameter r can be estimated by (ε/ν)1/2.

Where ε is the rate of turbulent energy dissipation close to the surface and ν is the

kinematic viscosity. This leads to a relation

KL = b
√
D
[ ε
ν

]1/4
, (2.15)
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the constant b has a value of 0.4 according to Lamont & Scott [53].

Note that large-eddy model and small-eddy model predicted quite different depen-

dencies of KL on the turbulent Reynolds numbers. A detailed explanation provided by

Theofanous et al. [85] resolved this discrepancy between these two models by pointing

out that large turbulent eddies are dominant for the mass transfer mechanism using a

low turbulent Reynolds numbers as in the experiments of Fortescue & Pearson. Whereas

in Banerjee et al. and Lamont & Scott experiments, a high Reynolds numbers was used

for which mass transfer mechanism is controlled by small eddies.

A dimensional analysis can better explain the estimation of r by the expression

(ε/ν)1/2. The rate of energy dissipation per unit mass (ε) has dimension (m2/s3) and

viscosity (ν) has (m2/s).

Dimensional analysis: [ε] = m2s−3 ; [ν] =m2s−1

[ ε
ν

]1/2
=

m2s−3

m2s−1
= s−1, (2.16)

where (s−1) is the dimension of r.

2.4.3 Eddy diffusivity models

Contrarily, in the above stated models, only one turbulence scale was assumed to be

dominant in transport mechanism. The eddy diffusivity models, instead, were supposed

to be multi-scale where the dominating scales fluctuate with depth. ”Using eddy diffu-

sivity closure to relate the transport to the mean concentration gradient, they provide

a single description for the entire turbulent field and so avoid the need for any artifi-
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cial, sharp boundaries or sudden renewal events” Brumley & Jirka [10]. Generally, the

supposition behind the eddy diffusivity model was that the sum of turbulent diffusion

Dt and molecular diffusion Dm together gives the total diffusivity FT . This yields the

following relation

FT = Dm +Dt, (2.17)

where Dt fluctuates with depth and follows a power dependency Dt = αzn, α is defines

as a constant and n ranges between 2 and∞ for D reliance. By integrating the inverse

of the total diffusivity (1/FT ) to ∞ depth provides

KL = (n/π) sin(π/n)α(1/n)D1−1/n. (2.18)

The prediction of power dependency is n = 2 according to Son & Hanratty [81]. Their

result, shows that the transfer velocity is directly proportional to
√
D leading to iden-

tical results as the surface renewal model. Alternatively, when the power dependency

is n =∞, this model shows identical results to Lewis & Whitman [57] (Film model).

2.5 Numerical analysis of scalar transport mecha-

nism

The gas and heat transport problem are problems that deal with scalar transport.

The heat and gas transport mechanisms are assumed to be dominated by diffusion

and convection while neglacting evaporation and radiation. The only difference is that

the Prandtl number (Pr) is the ratio of kinematic viscosity ν and thermal diffusivity
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α. On the other hand, Schmidt number (Sc) is the ratio of kinematic viscosity ν

and mass diffusivity D. In the literature, different terms are used depending on the

conditions and the focus of the proposed particular research. The ’mass/heat transfer’

terms are frequently used in literature in which the primary focus is based on fluid

dynamics. Alternatively, a wider term ’scalar transfer’ is used in papers that focus

more on numerics. During the review of research papers, it is important to recognize

that either terminology explains the same problem or there is a comparison between Sc

and Pr. To date, numerous numerical simulations of scalar transport at the air-water

interface have been performed. There have been more simulations on heat transfer than

on mass transfer, as heat transfer takes a vital role in industrial applications.

There are three main sources to generate turbulence in the environment i.e. buoy-

ant convectively driven turbulence, wind-shear induced turbulence and bottom-shear

induced turbulence (see Figure 1.1). Several researchers have investigated the inter-

action between the gas transfer mechanism using the different turbulence generation

methods. The studies focused on these three turbulent conditions are briefly summa-

rized in the following sections.

2.5.1 Buoyant convectively induced turbulence

Buoyancy-driven flows are present in our everyday life on different scales, from a very

small range such as in the cooling of electronic micro-chips, to a very large scale such

as the natural convection in the atmosphere. Whereas the difference in fluid density

is significantly high, fluid with lower density will start to rise up and fluid with high

density will start to descend, respectively.
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A basic problem in fluid dynamics that has been thoroughly investigated is the

Rayleigh-Bénard convection (RB convection). It is the type of natural convection that

occurs when a horizontal layer of the fluid is heated from below and cooled from above.

Several aspects of the turbulent RB covection problem has been reviewed by Ahlers et

al. [1]. In this review they elucidate the dependence of Nusselt and Reynolds number

on the Reyleigh and Prandtl number. Many researchers investigated RB convection

using a range of Prandtl number and Rayleigh number [5, 13, 16, 17, 18, 25, 45, 86].

Turbulence was measured in an oceanic convective mixed layer during a cold-air

outbreak by Shay & Gregg [77] in the upper ocean. They established a relationship

between the turbulent dissipation rate and the surface buoyancy flux. Subsequently,

Shay & Gregg [78] studied a buoyant convective instability near the Bahamas that was

generated by daytime heating and evaporative cooling at night. The plumes generated

by the convective instability were observed to penetrate up to 100m deep. The rela-

tion between buoyancy induced turbulence and sea surface temperature was studied

by Graham & Barnett [24]. They found that for large scale deep penetrative (buoy-

ant) convection to take place in the Indian and Pacific oceans, it is needed that the

water surface temperature exceeds 27.5 0C. Further increases in sea surface temper-

ature, however, did not produce any additional effect. Sea surface temperature was

associated between convection and surface wind divergence. This study [24] was con-

ducted and according to their results, sea surface temperature is not necessary to be

over 27.5 0C for very effective convection although wind divergence is quite related with

deep convection. Similar studies were performed in a lake environment by Imberger [36].

Other researchers studying buoyancy convective instability driven turbulent convection
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in lakes were Brubaker [9], Sander et al. [74] and Jonas et al. [43]. The turbulent

transport model of Zeman & Lumley [93] was also concerned with buoyancy instability

effects on the vertical flux through the mixed layer. However, none of the above works

really addresses the convective transfer of atmospheric gases by the buoyant convective

instability. Macintyre et al. [61] expanded the scope of the research into penetrative

(buoyant) convection by including investigation into the gas transfer coefficients due

to wind shear and penetrative convection through the mixed layer. Many researchers

investigated the gas exchange across the atmosphere and the surface via a buoyant

convective instability by using various models [2, 21, 55, 75]

The gas transfer process is dominant by buoyant-induced turbulence at low wind

speed and driven by temperature differences between the surface (cold) and the bulk

(warm). To investigate the effectiveness of this process in more detail, Wissink &

Herlina [92] performed DNS to calculate gas and heat transfer into the water governed

by buoyant-convective instability.

2.5.2 Wind-shear turbulence

Wind-shear induced turbulence is an important mechanism to promote the air-water

gas transfer. Wind shear is generated in the vicinity of the interfacial layer. The

turbulence induced by wind causes quick mixing and enhances the gas and heat transfer.

Wind speed above 3 m/s induce considerable wave growth which may enhance the gas

exchange process. Merlivat & Memery [65] studied the gas transfer velocity which

linearly changes with friction velocity ranges between 3 − 9 m/s. The similar results

were found by Jähne & Haußecker [37], which confirmed that the gas transfer velocity
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KL is not only a function of wind speed but also a function of the surface friction

velocity.

Many researchers extended the complexity of the scalar transport process across

the air-water interface by establishing the deformation of the interface produced by

wind. The wave generation and the turbulence processes of the sheared deformable

interface made it necessary to use more complicated numerical techniques. The studies

of Lombardi et al. [60] and Angelis et al. [15] show that in the case of deformable

interface the appearance of waves adds a new source of motion to the gas phase that

effects the transport process in the liquid phase. Lombardi et al. [60] carried out

a direct numerical simulation (DNS) of coupled gas-liquid interface flows over a flat

surface. They investigated that the gas-liquid interface generated at the gas side was

almost like a rigid wall, while the liquid side of the interface is like a slip surface. An-

gelis et al. [15] presented the turbulent flow over the wavy wall. According to their

results, high-frequency waves exert significant impact on the turbulence and average

flow characteristics. Kunugi et al. [50] performed a direct numerical simulation (DNS)

for the turbulent flow over a freely deformable interface with wind-shear studying the

carbon-dioxide gas absorption. To evaluate the gas solubility, Henry’s law was applied

and they concluded that the carbon-dioxide gas exchange coefficient at the turbulent

free surface was in good agreement with existing experimental data.
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Figure 2.2: Two-phase flow for sheared wavy interface [52].

Finally, a direct numerical simulation of turbulent heat transfer across a mobile,

sheared gas-liquid interface was carried out by Lakehal et al. [52]. They found that

the scalar transport process across the gas-liquid interface was only slightly affected

by high-frequency fluctuating fields. The computational setup includes a liquid and a

gas phase that flow in opposite directions with a deformable wavy gas-liquid interface

as shown in Fig. 2.2 (this picture is taken from the Lakehal paper). Their analysis

was limited to the gas side. The effect of Prandtl numbers of Pr = 1, 5 and 10 on the

thermal field were investigated.

2.5.3 Bottom-shear turbulence

Bottom-shear induced turbulence become dominant and governed the gas transfer pro-

cess, when wind speeds are quite weak in stream environment. Many researchers pre-

sented the relation between gas transfer velocity and flow parameters. These relations

are usually based on numerical analysis or experimental investigations [20, 84, 27].

The previously mentioned researchers used empirical methods to obtain gas transfer

relations, while a semi-empirical method was used by O’Conner & Dobbins [69].
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The re-aeration of open channel flow was studied by Plate & Friedrick [72]. They

evaluated various turbulent conditions, namely bottom-shear induced turbulence, wind-

shear induced turbulence and the combination of bottom and wind-shear induced tur-

bulence. They introduced a relation of gas transfer velocity KL as a function of root

mean square of the horizontal component of the velocity near the interface. Many re-

searchers performed experiments to relate the gas transfer process in an open channel

flow and studied the effect of different surface roughness elements [68, 42, 66, 67]. They

found that rate of gas transport agreed with macro-roughness and only the small eddy

model is valid for small roughness elements.

Atmane & George [3] directly quantified the bottom-shear induced turbulent mass

flux using the eddy-correlation method. The measurements of gas transfer in a tank

with grid-stirred turbulence was studied by McKenna & McGillis [64]. They carried out

the experiments with various levels of contamination at the surface. They found that

the bulk turbulence is unaffected due to the presence of surface films. They determined

a relation between the surface divergence and the gas transfer velocity for the case

of interfacial contamination. It appeared that the surface divergence is an important

parameter for gas transport process (see Brumley [10]). Tamburrino & Gulliver [83]

also investigated the relation between the mass transfer in an open channel flow and a

free surface turbulence. This study was performed at various Re numbers in the range

8, 500− 45, 00.

Suga and Kubo [82] presented an extended version of the analytical wall-function

(AWF) which was developed for Reynolds averaged Navier Stokes simulation to es-

timate the concentration of turbulent fields and the rate of mas transfer across the

31



2. Literature review 2.6. WENO schemes

undeformable gas-liquid interface for different values of Schmidt number ranging from

1 ≤ Sc ≤ 1000.

2.6 WENO schemes

Weighted essentially non-oscillatory (WENO) schemes have become a very popular

approach in a large field of applications, especially in computational fluid dynamics.

The first WENO scheme was developed in 1994 by Liu et al. [58]. They considered a

convex combination of various sub-stencils for the calculation of the mass flux at the

grid cell to construct an ’optimum’ calculation of the mass flux using nonlinear weights.

The main contribution of this scheme was the construction of nonlinear weights using

smoothness indicators (SIs) for sub-stencils. Later, various researchers developed a huge

variety of WENO schemes. A lot of improvements have been carried out to improve

the accuracy of WENO schemes by modifying the SIs. Jiang and Shu [40] introduced

WENO-JS scheme and proposed a local SI for the estimation of nonlinear weights.

They developed WENO(2r − 1)th - order accuracy of the scheme for various stencil

sizes r = 2 (WENO3) and r = 3 (WENO5). Subsequently, Balsara and Shu [6] further

extended the WENO scheme up to eleventh-order accuracy. Henrick et al. discovered

a sufficient condition that the nonlinear weights proposed by Jiang and Shu [40] failed

to recover the high order accuracy at critical points where the first-order derivative is

zero. They realized that the WENO scheme needed to have an accurate parameter ε

for the calculation of nonlinear weights. To solve this problem, they introduced a new

WENO-M scheme (mapped WENO). This scheme has a fifth-order accuracy in smooth

regions as well as critical points. Another approach was discovered by the Borges et al.
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[8]. They introduced the WENO-Z scheme that has the same order of accuracy as the

WENO-M scheme but with less computational cost. They used a different approach

to calculate the weights by introducing a global smoothness indicator (GSI) ζ. A brief

review of WENO schemes are explained below.

Consider the scalar conservative law equation,

∂u

∂t
+
∂f(u)

∂x
= 0. (2.19)

Given a 1D mesh with points xi = i∆x, i = 0, ..., N , where ∆x is the uniform grid

space [30, 8], using finite differences, Eq. 2.19 can be defined by

dui
dt

= −
f̂i+1/2 − f̂i−1/2

∆x
+ (∆x)2, (2.20)

where the terms f̂i±1/2 are numerical fluxes.The flux of the 5th-order WENo-JS [40]

scheme is defined by f̂i+1/2 =
∑2

k=0 ωkqk, where qk is the 3rd-order flux on the sub-

stencil Sk = (i+ k − 2, i+ k − 1, i+ k). The weight function defined by Jiang and Shu

[40] is given by

ωjsk =
αk

α0 + α1 + α2

, (2.21)

where

αk =
ck

(ISk + ε)2
, k = 0, 1, 2, (2.22)

ISk is the local smoothness indicator used to measure the smoothness of a solution on

sub-stencils Sk. ck (k = 0, 1, 2) are the optimal weights with c0 = 0.1, c1 = 0.6 and

c2 = 0.3 that generate a 5th-order accurate upstream schem and ε is a small positive
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real number needed to avoid the denominator becoming zero. Note that ωk are the

normalized weights whereas αk are not normalized. In the 5th-order WENO-Z scheme

presented by Borges et al. [8] a global smoothness indicator ζ was used to calculate the

weight function,

ωzk =
αk

α0 + α1 + α2

, (2.23)

where

αk = ck

(
1 + (

ζ5
ISk + ε

)q
)
. (2.24)

The global smoothness indicator in [8] reads ζ5 = |IS2− IS0|. Where q is an adjustable

parameter. If q = 1, 4th-order accuracy is obtained. While for q = 2 the accuracy is

5th-order [8]. Borges et al. pointed out that, to gain the required accuracy for a solution

containing discontinuities, reducing q was benificial to obtain a more accurate solution

at critical points. Therefore, q = 1 was proposed for the WENO-Z scheme in [8].

2.7 Surface film effects

2.7.1 Surface tension

Surface tension is a property of the fluid that allows it to resist external forces, because

of the cohesive nature of the fluid molecules. The surface tension of water (as compared

to other fluids) is quite large, for instance, for water at 20 0C a value of 7.28 × 10−2

N/m is obtained.

Surface tension is also responsible for the shape of bubbles and liquid droplets.

Water droplets tend to be pulled into a spherical shape by the cohesive forces of the

34



2. Literature review 2.7. Surface film effects

surface and due to its shape, surface tension is identical at every surface location.

Surface tension is usually represented by σ and it is expressed as a force F (Newton)

exerted parallel to the surface of a liquid divided by the length L (metre) of the line

over which the force acts:

σ = F/L (2.25)

Surface tension also depends on physical fluid properties, for instance its temperature

(see Sabersky et al. [73]). Several experiments were performed by Lapham et al. [54]

for the determination of surface tension. For instance, the situtensiometry technique

was used to determine surface tension by the retraction of a thin-walled tube through

the fluid surface. Successive repeatable results were achieved by measuring the surface

tension of water with various quantities of alcohol and surfactants added.

2.7.2 Marangoni effect

Marangoni effects occur when surface tension is no longer constant due to differences

in e.g. temperature or concentration along the surface. Such differences in surface

tension may induce flow. For instance, when the surface tension gradient is produced

by variations in temperature, the induced flow is usually known as thermocapillary flow

(or thermal Marangoni effects). Whereas, when the surface tension gradient is produced

by local differences changes in solute concentration, the resultant phenomenon is known

as solute Marangoni effects, e.g., ’tears of wine’. In the present study, the (horizontal)

surface tension gradient was generated due to a buoyant instability generated by an

unstable vertical surface temperature gradient.
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Chapter 3

Lagrangian approach

In this chapter, the Lagrangian particle tracking method is described, which is used to

calculate the mean surface age (τ). Subsequently, Dankwert’s model [14]. Apart from

that, also the reconstruction of the three-dimensional velocity field adjacent to the sur-

face from the two-dimensional DNS-generated velocity field at the surface is discussed.

Finally, a time-step-reduction study and a particle-density-refinement study is carried

out in order to obtain a time-step and particle-density independent approximation of

the mean surface age.

3.1 Lagrangian Modelling

A Lagrangian particle tracking technique is used to estimated the mean surface age

τ . In the literature, various simple theories for the surface age distribution have been

proposed. They have been widely used in many applications involving interfacial gas

transfer problems. In the present study, the surface renewal theory by Danckwerts [14]
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is used to calculate the gas transfer velocity KL using the mean surface age τ . Surface

age is a critical parameter for the determination of turbulent interfacial gas transfer that

plays an important role in various applications including atmosphere-ocean gas transfer.

Gas transport in the upper ocean is controlled by the interplay of molecular diffusion

at the interface and turbulent mixing underneath. The hydrodynamic processes of

upwelling and downwelling motions in the water phase play an important role in the

gas transport near the interface. The upwelling increases interfacial gas transport by

replacing saturated fluid close to the interface with fresh, unsaturated fluid from the

bulk.

Danckwerts [14] made two assumptions in his surface renewal model. His first as-

sumption was that all fluid particles at the surface have an equal probability of being

renewed by fresh fluid elements from the water bulk, independent of their surface age

τ . Therefore, the probability density function of the surface age τ is the exponential

distribution. The second assumption was that the diffusion is the only transport mech-

anism at the interface. This model is used in the present study to calculate the gas

transfer velocity KL.

Velocity field snapshots (Table 3.2) stored at the surface are used to calculate the

gas transfer velocity (KL), these snapshots contain the 2-dimensional velocity fields,

produced by the direct numerical simulations (DNS) [32, 92]. These DNS were based

on experiments performed at KIT by Jirka & Herlina and co-workers (see e.g. [41])

in Karlsruhe, Germany. In the DNS, the mass transfer across the air-water inter-

face was simulated using various computational domains and meshes as detailed in

Table 3.1. Only the water phase was simulated, the presence of air above the wa-
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ter surface was modeled by assuming that the water at the top of the computational

domain was fully saturated with atmospheric gases. In the horizontal directions, pe-

riodic boundary conditions were employed while at the bottom of the computational

domain symmetry boundary conditions were employed. In the simulations a time step

of 10−4L/U time units was used and the simulations were run for at least a 100 time

units in order to obtain a quasi-steady state. Two different sources were used to pro-

duce turbulence, bottom-shear induced turbulence was used in BT10 and BT20 while

buoyant-convectively induced turbulence was used in BY10 and BY20, see Table 3.1.

For the bottom-shear induced turbulence-driven flow, simulations were conducted for

five different Schmidt numbers (2, 4, 8, 16 and 32). Two turbulent Reynolds numbers

RT = 195 and RT = 507 (see Eq. 1.7) were solved, using computational domain sizes

of 5L ×5L ×3L and 20L ×20L ×5L, respectively. The characteristic length scale L

and velocity scale U were typically set to 0.01 m and 0.06m/s, respectively, because the

kinematic viscosity in the BT10 and BT20 simulations was ν = 10−6 m2/s. For buoyant-

convectively induced turbulence-driven flow, the Prandtl number was set to Pr = 6 for

water at 298.15 K. The non-dimensionalization was carried out using L = 0.01 m and

U = 0.01 m/s. Table 3.2 shows the time of the velocity field snapshots used in the KL

calculations.
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Table 3.1: Overview of the simulations. A structured (Cartesian) mesh was used to
resolve the water phase.

Simulation Sc Domain (∆x×∆y ×∆z) Number of nodes

BT10 2-32 5L × 5L × 3L 128 × 128 × 212

BT20 2-32 20L × 20L × 5L 512 × 512 × 300

BY10 20, 500 10L × 10L × 10L 800 × 800 × 512

BY20 7, 16 30L × 30L × 30L 2400 × 2400 × 1520

Table 3.2: Times of the velocity field snapshots used to calculate KL

Simulation Times of the velocity field snapshots (s)

BT10 16.7, 20.04, 23.38, 26.72, 30.06, 33.4, 36.74, 40.08

BT20 28.39, 31.73, 35.07, 38.41, 41.75, 45.09

BY10 50, 60, 70, 80, 90, 100, 110, 120

BY20 40, 45, 50, 55, 60, 65, 70, 75

3.1.1 Reconstruction of 3D velocity field adjacent to the sur-

face

The DNS calculations [92] produced time-sequences of snapshots at the interface con-

taining the local horizontal velocity field u∗(x, y), v∗(x, y) as well as the normal deriva-

tive of the vertical velocity ∂w∗/∂z(x, y), where u∗ and v∗ are the normalised velocities

in the x and y directions, respectively and w∗ is the velocity in the vertical, z, direction.

Note that z = 0 coincides with the air-water interface and z > 0 is directed downwards.

The time-interval between the recorded subsequent snapshots is relatively large, while

also the time period over which snapshots are available was too small to be able to
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approximate a time-accurate velocity field. Hence, to approximate the mean surface

age, it was assumed that the velocity field was frozen in time. In the DNS, the incom-

pressible Navier-Stokes equations were solved to determine the flow field, together with

upto five convection diffusion equations for scalar transport. Periodic boundary condi-

tions were employed in the horizontal directions for all variables. At the bottom of the

computational domain either free-slip boundary conditions (for the buoyant-convective

simulations BY10 and BY20) or turbulent fluctuations were copied from a concurrently

running large-eddy simulation of isotropic turbulence in a periodic box (simulations

BT10 and BT20). For BY10 and BY20 a fixed, low temperature (lower than the tem-

perature in the bulk) was prescribed at the interface. While in all simulations a free-slip

boundary condition for the velocity was employed. For more detailed information on

the setup of the DNS performed see [32, 33, 92]. The free-slip boundary condition for

the velocity at the top were exploited below to reconstruct the 3D velocity fields for

z > 0 as used in the present calculations.

The 2D time-sequences (u∗, v∗, ∂w∗/∂z) stored at the interface in the DNS were used

to reconstruct the 3D velocity fields in a thin region adjacent to the surface. This

reconstruction was based on the boundary conditions used in the DNS, where ∂u/∂z =

∂v/∂z = w = 0 combined with the continuity equation. From this it was derived that

in a small region below the surface, u and v are virtually independent of z, while w

scales linearly with z such that


u(x, y, z) = u∗(x, y)

v(x, y, z) = v∗(x, y)

w(x, y, z) = z ∂w∗

∂z

∣∣
i

, (3.1)
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where the subscript i denotes the interface and the velocity field is assumed to be frozen

in time. This reconstruction of the 3D velocity fields was needed as only 2D velocity

fields were stored at the interface in the DNS and to be able to track particles moving

up towards the interface and subsequently down towards the bulk, a 3D velocity field

is needed. Also, this has the added bonus that the method discussed here can also

be employed using measurements of 2D interfacial velocity fields as input in order to

assess the mean surface age. Calculations of the mean surface age were performed

both forward and backward in time. The latter has the advantage that the area with

downward moving flow tends to be smaller than the area with flow moving upwards,

such that when using a particle-based method (see 3.1.2) significant computing time

can be saved.

3.1.2 Lagrangian method

In the Lagrangian particle-based method, both the basic Euler method (single-step) and

the second order Adams-Bashforth method have been used to calculate the particle path

given an initial location in space (x0, y0, z0) under the influence of the reconstructed

3D velocity field [u(x, y, z), v(x, y, z), w(x, y, z)] given in Eq. 3.1. The particle path is

described by: 

x(tk+1) = x(tk) +
tk+1∫
tk

u(x(t), y(t), z(t))dt

y(tk+1) = y(tk) +
tk+1∫
tk

v(x(t), y(t), z(t))dt

z(tk+1) = z(tk) +
tk+1∫
tk

w(x(t), y(t), z(t))dt

(3.2)
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Time integration algorithms employed here are based on finite difference methods [56]

and the (constant) time step dt = tk+1−tk is defined as the distance between consecutive

points in time. Due to the low accuracy of the Euler method, defined by


x(tk+1) = x(tk) + dt× u(x(tk), y(tk), z(tk))

y(tk+1) = y(tk) + dt× v(x(tk), y(tk), z(tk))

z(tk+1) = z(tk) + dt× w(x(tk), y(tk), z(tk))

, (3.3)

a very small time step is needed to obtain an accurate approximation of the surface age τ

so that it takes a lot of time to complete a simulation. As explained in more detail later,

the particle surface age τ is defined by the time it takes for a particle originating at z0

(moving initially upwards to the surface) to return to its original location. Therefore, as

an alternative, the second-order-accurate Adams-Bashforth method (two-step) is used

to get better results using approximations at two subsequent time steps. This method

is defined by:


x(tk+1) = x(tk) + dt

2
[3u(x(tk), y(tk), z(tk))− u(x(tk−1), y(tk−1), z(tk−1))]

y(tk+1) = y(tk) + dt
2

[3v(x(tk), y(tk), z(tk))− v(x(tk−1), y(tk−1), z(tk−1))]

z(tk+1) = z(tk) + dt
2

[3w(x(tk), y(tk), z(tk))− w(x(tk−1), y(tk−1), z(tk−1))]

(3.4)

If not stated otherwise all times (like surface age and time-step) were non-dimensionalised

using L/U . Where L/U depends on the simulation, i.e. L/U = 1s for BY10 and BY20,

and L/U = 1/6s for BT10 and BT20.
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3. Lagrangian approach 3.1. Lagrangian Modelling

Figure 3.1: Time-step sensitivity study for BT10 simulation comparing first order Euler
method to second order Adams-bashforth AB2 method at time t = 16.7 s. See Tables
3.1 and 3.2

Various calculations were performed for different time steps using both methods

(Euler and AB2) to compare the results. Figure 3.1 shows the variation of mean surface

age against time step. The red-line with circular marker shows the results obtained by

the Euler method and the blue-line with square marker was obtained using the second-

order-accurate Adams-Bashforth AB2 method. It can be clearly seen that the surface

age obtained using the Adams-Bashforth method is significantly more accurate than

the surface age obtained with Euler, even when using a relatively large time step.

In the Lagrangian method, N massless point particles (that move along with the

fluid flow) are introduced uniformly distributed in the plane z = z0. Where z = z0

identifies the plane located somewhere in the area where the velocity field was recon-
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3. Lagrangian approach 3.1. Lagrangian Modelling

structed. Note that the results are independent of actual location of this plane. For the

forward calculations particles are only activated when their initial w velocity is negative

(upward flow) and vice versa for the backward calculations. The surface age of each

particle is determined by integrating the particle path in time using the second-order

Adams-Bashforth AB2 method until the z-location, zp, of the particle is larger than z0.

The mean surface age is then obtained by averaging the surface ages of all particles.

Figure 3.2 shows a vector plot of the (u, v) velocity field at the surface of simulation

BY10 in Table 3.1. The coloured contours, representing ∂w/∂z, clearly identify areas of

upwelling and downwelling motions (see Figure 3.2). These upwelling and downwelling

motions are especially important for the promotion of gas transportation. Typically,

the downwelling motions are relatively narrow and separate large areas of upwelling

motions thereby forming the footprints of convection cells.
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3. Lagrangian approach 3.1. Lagrangian Modelling

(a) t = 50 s

(b) t = 100 s

Figure 3.2: Horizontal velocity vectors and magnitude (contours), representing ∂w/∂z,
at the interface of BY10 simulation at t = 50 s and t = 100 s

Figure 3.2a represents ∂w/∂z, a clear picture of several strong upwellings (blue) with
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3. Lagrangian approach 3.2. Weighted/Non-weighted τ

red downwelling areas where flow plunges down at t = 50 s. Fifty seconds later the

upwellings become weaker as convection cells merge so that the average size of these cells

increases (see Figure 3.2b). With the passage of time, the average size of the upwelling

regions becomes almost constant even though their locations and shapes continuously

change. The significant changes in size, shape and location of the convection cells are

typical for the early stages of an evolving buoyant instability that was simulated in the

corresponding DNS [32].

3.2 Weighted/Non-weighted τ

The two ways in which the mean surface age was determined are explained, assuming

forward calculations in time. In the weighted mean surface age τ calculation, each

particle is given a weight equal to its (upward) velocity which is proportional to the

local particle flux. In the non-weighted method, all weights are the same (as long as the

initial velocity is upward). For the weighted method, initially at t = 0 s each particle

p(0) is given a weight ψp(0) = awp(0), where wp(0) is the initial vertical velocity of the

particle and a = 1/
∑

p(0)wp(0) so that

∑
p(0)

ψp(0) = 1. (3.5)

Note that p(t) is an indicator function of time which can only be 1 (if the particle is

still active) or zero (if it becomes inactive). The mean surface age τ is subsequently
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3. Lagrangian approach 3.3. Mesh refinement study

calculated from

τ =

∫ ∞
t=0

∑
p(t)

ψp(0)dt. (3.6)

For the non-weighted method, initially at t = 0 s each active particle p(0) is given the

same weight ψp(0) = a, where a = 1/N and N is the number of active particles at t = 0

s. For the rest, the calculation is the same as for the weighted surface age. Note that

in practice the calculation of τ is stopped as soon as
∑

p(t) ψp(0) < 10−4.

3.3 Mesh refinement study

Figure 3.3: p-refinement

To obtain more accurate results for the

mean surface age τ , a particle density re-

finement is carried out by increasing the

density of the N × N mesh with a par-

ticle defined at each node, known as p-

refinement. As shown in Figure 3.3, p-

refinement relates to the increase in the number of particles in the computational do-

main. By increasing the number of particles, it is shown that resulting mean surface age

becomes independent of particle density. It is important to note that mesh refinement

not only leads to a significant reduction in errors in the surface age estimation (see

Figure 3.4) but also to a significant increase in computational effort. To estimate the

surface age, the velocities are interpolated onto the refined mesh using a second order

interpolation. An interpolation is required for each subcell when employing a sub-mesh

refinement by a factor of p= 2 (Figure 3.3).
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3. Lagrangian approach 3.3. Mesh refinement study

The highlighted data shown in Figure 3.4 is the mean surface age corresponds to the

N ×N point particles considered in further calculations to reduce errors. The number

of N × N nodes used in BT10, BT20, BY10 and BY20 are 1024 × 1024, 512 × 512,

512 × 512 and 1024 × 1024, at time t = 26.72, 28.39, 80 and 50, respectively. This

particle-density refinement study clearly shows all surface age approximations properly

converge to a unique solution and the selected particle density used in the calculation

of KL in section 3.4 provides a good approximation.

(a) BT10 (b) BT20

(c) BY10 (d) BY20

Figure 3.4: Mesh refinement study, when particles are initially placed at the nodes of
the mesh.
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3. Lagrangian approach 3.4. Results

It can be seen in Figure 3.4, with increasing N ×N the mean surface age τ approx-

imation was found to drastically improve and converges to a particular value for each

simulation. This mesh refinement study was carried out in order to obtain particle-

density independent approximation of the mean surface age τ .

3.4 Results

Figure 3.5 shows the particle paths of seven individual particles, which were initially

located in the upwelling region. Their paths were traced by performing Lagrangian

tracing using the Adams-Bashforth AB2 method for time integration.

Figure 3.5: Particle paths of seven individual particles at time t = 50 s for BY10
simulation.
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3. Lagrangian approach 3.4. Results

The blue color indicates that the particles reached a location that is very close to

the surface. The surface age τ of a particle is defined by the time it takes for this

particle starting at z = z0 to return to its initial height.

The influence of various parameters on the mean surface age τ̄ was studied. One

of the important parameters is the threshold (wth), which was used to identify the

active fluid particles with absolute velocity greater than wth. The threshold used was

10−8U . The threshold actually restricts which particles will be used in the calculation

of the mean surface age. Fluid particles, defined by having an absolute velocity less

than wth are discarded. To study the influence of the threshold on the weighted and

non-weighted surface age, active particles were distributed into classes based on their

initial vertical (w) velocity.

Table 3.3: Number of active particles using the initial w velocity classes for simulation
BT10

Initial w velocity Class mean No. of active particles

0-0.02 0.01 171401

0.02-0.04 0.03 126251

0.04-0.06 0.05 69368

0.06-0.08 0.07 34581

0.08-0.10 0.09 15007

0.10 > 0.115 15375

The weighted and non-weighted variants are defined in detail in section 3.2. In the

calculations, 1024 × 1024 uniformly distributed point particles were used to calculate

weighted mean surface age τw and non-weighted mean surface age τnw. The maximum

value of initial w velocity under consideration was 0.13 m/s, threshold classes and the
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number of active particles for each class are shown in Table 3.3. It can be seen that,

in general, the number of active particles decreases with increasing initial w velocity

(see Figure 3.6). Note that the last class has higher number of active particles than its

previous class, it is due to the fact that the maximum value of initial w velocity was

0.13m/s, while all other classes were equally distributed.

Figure 3.6: Influence of initial w velocity classes on number of active particles (P) for
simulation BT10

Figure 3.7 shows the weighted and non-weighted mean surface age as a function of

the class mean of the initial velocity for simulation BT10. Initially, in any calculation

that starts by activating particles with initial w velocities (< 0.02 and 0.02− 0.04), the

active particles have a relatively short surface age τ . Apparently, the active particles

with low initial w velocity are already very close to the peak of their trajectory.
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3. Lagrangian approach 3.4. Results

Figure 3.7: Influence of initial w velocity on τw and τnw for simulation BT10

Because of their small initial upward w-velocity, also the divergence so that the

particles will only slightly move upwards and sidewards before moving quickly away

from the surface. It can be seen that the active particles with a high initial w-velocity

(in the last three classes) also tend to have a relatively small surface age. This is due

to the fact that particles with a high initial velocity tend to undergo a large horizontal

displacement so that particles reach down flow areas more quickly than particles with

moderately high initial w-velocity (class 0.04-0.06).

Note that the difference between the τw and τnw in each class is relatively small

because the small class size significantly reduces the variation in vertical velocities in

each class and, hence, the variation in weights associated with each particle path. As a

result the weights applied in the weighted surface age calculation tend to become more

and more equal the smaller the class sizes become. The better agreement is obtained

between τw and τnw.
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3. Lagrangian approach 3.4. Results

(a) (b)

Figure 3.8: The gas transfer velocity KL in time for simulation BT10 for case (a) WF,
NWF and (b) WB, NWB.

Gas transferKL was calculated using Danckwerts model (see section 2.4.1.3). Danck-

werts model [14] allows the renewal time to follow an exponential probability distribu-

tion of surface renewal rate. KL was calculated for both weighted and non-weighted

mean surface age τ using sequences of snapshots of velocity fields employing time inte-

gration both forward and backward in time. Results are shown in Figures 3.8, 3.9, 3.10

and 3.11. The results of KL obtained from the mean surface age determined for the

simulations listed in Table 3.1 compared to the corresponding numerically calculated

KL results of the same simulation. They were found to be in good agreement. For

the gas transfer velocity KL calculations using forward time integration, the weighted

WF shows a better agreement with the existing DNS results (BT10) than the non-

weighted NWF calculations. For backward time integration, both weighted WB and

non-weighted NWB looks closer together in Figure 3.8b.
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(a) (b)

Figure 3.9: The gas transfer velocity KL in time for simulation BT20 for case (a) WF,
NWF and (b) WB, NWB.

In Figure 3.9a, generally both WF and NWF cases for the calculation of the gas

transfer velocity KL were over estimated. Whereas, it can be seen that weighted forward

WF case was more accurate and closer to the DNS results, as compared to the results

obtained using the non-weighted surface age NWF for BT20 simulation. The maximum

error was about 20% for NWF at t = 35s. On the other hand, for the backward time

integration in part (b), NWB and WB were found to be in good agreement with the

DNS results. In particular, only one point at t = 16.7 shows the underestimation and

overestimation for NWB and WB, respectively.

For the buoyant convectively induced turbulence BY10, shown in Figure 3.10, the

predicted KL results generally show an overestimation for all the cases of weighted/non-

weighted surface age for forward/backward in time. Whereas, the weighted surface age

for both forward and backward in time integration (WF and WB case) was found to

be in good agreement with BY10 DNS results.
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(a) (b)

Figure 3.10: The gas transfer velocity KL in time for simulation BY10 for case (a) WF,
NWF and (b) WB, NWB.

This is likely due to the fact that the divergence was implicitly taken into account

(there is a linear relation between the divergence and the initial w velocity) when

calculating the weighted surface age. In non-weighted surface age results, the maximum

error of about 37.4% can be seen in case NWB at t = 80s (see Table 3.5).

In Figure 3.11, the gas transfer velocity KL profiles are in excellent agreement

for the weighted surface age calculations using both forward and backward (WF and

WB case) in time integration except the only first point at t = 40s which show some

overestimation. Hence, it can be concluded that the weighted surface age method in

combination with Danckwerts’ model produces more accurate results than the non-

weighted variant. On the other hand, the non-weighted surface used in the calculation

of the gas transfer velocity KL was found to be overestimated at all times for cases

NWF and NWB, with a maximum error of 28.4% at time t = 40s in NWB.
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(a) (b)

Figure 3.11: The gas transfer velocity KL in time for simulation BY20 for case (a) WF,
NWF and (b) WB, NWB.

The errors were calculated between the gas transfer KL calculated directly from

the numerical results and the predicted gas transfer calculated from Danckwerts model

using the mean surface age τ . The averaged relative error (ARE) and maximum relative

error (MRE), calculated for KL in Tables 3.4 and 3.5, is given by

ARE(KL) =
1

N

N∑
i=1

(
|KL(i)−KL(τ)(i)|

KL(i)
× 100

)
, (3.7)

MRE(KL) = Max

(
|KL(i)−KL(τ)(i)|

KL(i)
× 100

)
, (3.8)

where KL is the reference value from DNS (see Table 3.1), KL(τ) is the predicted value

calculated by using the mean surface age τ and N is the total number of the snapshots

of velocity field for each simulation.

Generally, KL calculations obtained by using the weighted surface age approxima-
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tions for forward in time integration, appear to be highly accurate.

Table 3.4: Averaged relative error (ARE) in gas transfer velocity KL

Simulations
ARE(KL)

WF NWF WB NWB

BT10 3.9 % 9.7 % 3.8 % 3.4 %

BT20 4.0 % 16.4 % 4.0 % 2.3 %

BY10 8.9 % 19.1 % 9.0 % 29.1 %

BY20 2.4 % 15.4 % 2.3 % 20.9 %

Whereas, for the backward time integration, the bottom shear induced turbulence

(BT10 and BT20) shows similar behaviour for both weighted and non-weighted surface

age calculations For the buoyant convectively induced turbulence (BY10 and BY20)

surface age calculations. However, the weighted surface age calculations were found to

provide more accurate results.

Table 3.4 shows the averaged relative error (ARE) for the estimated gas transfer KL

using Danckwerts’ model for all cases. It can be seen that, the KL obtained using the

weighted surface age approximations for forward in time integration (WF case) shows

less errors as compared to NWF in all simulations. On the other hand, for backward in

time integration (WB and NWB), it was found that simulation BY10 and BY20 shows

a better agreement for WB. While, BT10 and BT20 shows slightly better for case NWB

as compared to WB.
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Table 3.5: Maximum relative error (MRE) in gas transfer velocity KL

Simulations
MRE(KL)

WF NWF WB NWB

BT10 8.6 % 15.1 % 8.4 % 16.7 %

BT20 6.0 % 20.3 % 6.1 % 4.5 %

BY10 10.7 % 24.5 % 10.8 % 37.4 %

BY20 7.0 % 22.1 % 6.9 % 28.4 %

The corresponding maximum relative errors (MRE) was shown in Table 3.5. It can

be seen that the maximum error of 37.4% can be found for case NBW in simulation

BY10. Whereas, a smallest maximum-error of 4.5%4 was found in simulation BT20 for

case NWB.
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Chapter 4

Continuum method

This chapter outlines the development of the continuum method to calculate the mean

surface age (τ) using the 5th order WENO-Z scheme for the convection and a 3rd

order Runge-Kutta for the time integration. Subsequently, the gas transfer velocity

KL is calculated using Danckwerts’ model [14]. The continuum method is employed to

calculate the evolution of the surface age density, which is subsequently used to calculate

the cumulative probability density distribution of the surface age τ .

4.1 Introduction

The surface age is an important parameter in the turbulent transport of heat and atmo-

spheric gases across the air-water interface. This transport process, for instance, affects

the water temperature and the transfer of atmospheric gases like O2 and CO2 from air

into water and vice versa. Gas transfer across the water surface is governed by the inter-

action of molecular diffusion, which dominates gas transfer in a small layer immediately
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underneath the surface, and vertical turbulent convection. The latter dominates further

down into the bulk. Surface age is defined as the time that a fluid particle, that has

been brought up from the bulk, remains at the surface (after which it eventually moves

downwards). During this time, the particle (which is usually assumed to be unsaturated

in the beginning) can absorb atmospheric gases. When the particle subsequently moves

back towards the bulk, it also transports atmospheric gases downwards. At the surface,

the amount of diffusion is governed by the diffusivity of the gas itself and the thickness

of the saturation boundary layer. Turbulence typically reduces the thickness of this

boundary layer, thereby increasing diffusion. Because there is no turbulent transport

at the surface, the transfer velocity is fully determined by diffusion.

In the present study, the (mean) surface age is approximated by two different ap-

proaches: i) The Lagrangian particle tracking approach and ii) The continuum ap-

proach. Generally in fluid mechanics, Lagrangian methods (with the frame of reference

moving with the flow) and Eulerian methods (with fixed frame of reference) can both be

used to calculate fluid flow. To calculate the mean surface age, however, the Lagrangian

particle tracking method is commonly used. After determining the mean surface age,

the gas transfer velocity KL is usually calculated using (a possibly modified version

of) Danckwerts’ model. Using the Lagrangian approach is the most natural way to

describe fluid flow. It is based on tracking trajectories of discrete fluid particles so that

the surface age of each individual particle can be determined directly. The simultane-

ous tracking of huge quantities of particles is the main disadvantage of the Lagrangian

method as it requires extensive book keeping. Hence, to introduce this tracking of huge

numbers of individual particles in traditional Eulerian codes (in which the continuum
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assumption is employed) extensive modifications are required, especially in massively

parallel codes. A more natural way to calculate the mean surface age in such codes

is to use a continuum approach and replace the individual particles by a surface age

density distribution. To illustrate the suitability of the continuum method to calculate

the mean surface age, here both the classical Lagrangian particle tracking method and

a newly developed continuum method are used to calculate the mean surface age of

fluid particles (or parcels) transported by a predefined (as explained in Section 3.1.1)

three dimensional (3D) turbulent flow field near the surface that is reconstructed from

a given two dimensional (2D) interfacial velocity field.

4.1.1 Two ways to observe fluid flow

There are two, quite different, ways to observe fluid flow within a 3D domain, either

by tracking identifiable, specific fluid point particles in a material fluid volume, the

Lagrangian method, or by observing the fluid velocity at fixed locations in space, the

continuum method.

Figure 4.1: A material volume and a Eulerian control volume
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Figure 4.1 shows a snapshot of a 2D velocity vector field. In this domain a material

volume is identified (green boundary and shaded) as well as a control volume (dotted

boundary).

The (Lagrangian) material fluid volume moves along with the flow (and possibly

deforms) such that all fluid particles that were initially inside this volume remain inside

the volume at all times. In contrast, the (continuum) Eulerian control volume is fixed

in space allowing fluid particles to freely move in and out of the volume.

Figure 4.2: Schematic showing a cross section of the concentration boundary layer
adjacent to the surface and the deformation of fluid parcel

Figure 4.2 shows a cross section of the concentration boundary layer adjacent to the

surface. At the surface, the flow is assumed to be fully saturated (c = cs), while at the

bottom of the boundary layer the flow is initially fully unsaturated (c = cb). The domain
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considered in our calculations only consists of a small section of the concentration

boundary layer adjacent to the surface. This section is bounded by z = 0 and z =

zbottom. In this section, the 3D velocity field can be reconstructed quite accurately

from a 2D interfacial velocity field, similar to what was presented in Section 3.1.1. In

contrast to the Lagrangian particle tracking method, the fluid parcels employed here

in the continuum method can deform, so that positive surface divergence will result in

enlargement of the surface area of the parcel, while negative surface divergence will make

it smaller. This extra degree of freedom is the main difference between the Lagrangian

and the continuum approach.

4.2 Numerical Aspects

In the continuum method, the convection of the surface age was calculated using the

5th order WENO-Z scheme proposed by Borges et al. [8], which is an improved version

of the original WENO scheme developed by Liu et al. [58]). For the time integration

the total variation diminishing scheme (TVD) presented in Shu & Osher [79] was used.

In the following section, the WENO-Z scheme is applied to different test problems

with the purpose to predict the accuracy of the method on uniform meshes.

4.2.1 WENO-Z scheme in a 1D test problem

First the implementation of the WENO-Z scheme is tested for convection in one-

dimension using a uniform mesh. As in the three-dimensional calculation of surface

age, any diffusion is neglected as this would interfere with determining the accuracy
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of the WENO-Z scheme (and also we would like to use the continuum method as a

alternative to the Lagrangian method in which diffusion does not play any role). The

1D convection equation,

∂τ

∂t
+
∂τ

∂z
= 0, (4.1)

was discretized on 0 ≤ z ≤ 1 using periodic boundary conditions (see Figure 4.3). To

obtain a smooth distribution of the variable τ , it was initialized by

τ(z, 0) = τ0(z) =
1

2
(1− cos(2πz)) (4.2)

The advantage of having such a smooth distribution is that it is relatively easy to

accurately resolve it in the discretization that is employed, a non-smooth distribution

would result in non-physical oscillations (wiggles) in the simulation. Here we determine

the minimum number of points RZ (RZ is the refinement of each grid cell in z-direction)

needed to obtain a good resolution of the initial surface age distribution, while also

verifying the order of accuracy

p =
ln|ε(z=0.5)1

| − ln|ε(z=0.5)2
|

lnh1 − lnh2
=
ln
∣∣∣ ε(z=0.5)1

ε(z=0.5)2

∣∣∣
ln(h1/h2)

=
ln
∣∣∣ ε(z=0.5)1

ε(z=0.5)2

∣∣∣
ln(RZ2/RZ1)

(4.3)

of the WENO-Z scheme, which theoretically should be fifth-order accurate. If τ(zi, t)

and τexact are the numerical and exact solutions, respectively, at (zi, t), the maximum

absolute error ε is given by

ε = max
1≤i≤RZ

|τ(zi, t)− τexact(zi, t)| (4.4)
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Table 4.1: The maximum absolute error MAE in τ and the order of accuracy p

RZ 7 10 22 61

ε 0.0329 0.0055 1.0818 ×10−4 6.4372 ×10−7

p - 5.01 4.98 5.02

Figure 4.3: Effect of refinement in z-direction (1D periodic box)

Figure 4.3, generally shows a very good agreement between the results obtained

after one time-unit of simulation. Only a slight underestimation of the peak at z = 0.5

can be seen for RZ = 7, while for RZ = 10 the approximation and the exact solution

completely overlap. For completeness, the order of accuracy p of the method is also
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verified for this 1D convection problem. It can be seen that the theoretical order of

accuracy p = 5 is very nearly obtained in all three refinement steps.

4.2.2 Grid refinement studies in 3D

To assess the quality of the results for the mean surface age τ obtained with the con-

tinuum method, a number of grid refinement studies was performed. In figure 4.4, the

initial distribution of the surface age density (which is integrated in time to calculate

the mean surface age) is shown for several values of N . It can be seen that when N

increases the relative width of the initial surface age distribution reduces. Compared to

the upper part of the computational domain, this with exactly N−1 times smaller when

N > 1. Also, the larger N is, the smaller the error in τ will be. In the first refinement

study (see Table 4.2), N = 7 grid points were used in the z-direction and each grid cell

was refined in the x and y direction by a factor of RXY = 5. While keeping the above

parameters fixed, the refinement of each grid cell in the z-direction, RZ was varied

to study its influence on the accuracy of the results approximating the weighted mean

surface age of simulation BT10 at t = 20 s in Table 4.2. Note that the distribution in z

of the surface age density is basically the same as the initial distribution used in the 1D

convection problem investigated in Section 4.2.1. Based on that we would expect that

for RZ = 10 a good approximation of τ should be obtained. The results of refinement

of cells in z-direction study can be seen in Table 4.2. It can be seen that already at

RZ = 10 the error in τ is less than 1% (assuming the result obtained for RZ = 42 is

exact).

To also study the dependence of the results on the refinement in the x and y di-
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4. Continuum method 4.2. Numerical Aspects

rections, Table 4.3 shows the results obtained when using N = 7 grid points in the

z-direction, combined with a refinement in z of RZ = 10 to calculate the mean surface

age of simulation BT10 at t = 20 s. Here it can be seen that refining the grid cells in the

x, y-directions by RXY = 3 does give a noticeable improvement in the approximation

of τ , with a reduction in error from approximately 3% to less than 0.3% (assuming that

the result at RXY = 7 is exact).

Table 4.2: Refinement of cells in z direction for simulation BT10 using N = 7 and
RXY = 5

RZ τ

10 7.505

18 7.535

24 7.555

42 7.559

Based on the above, in order to obtain accurate results for τ , it was decided to use

a refinement of the grid cells in z-direction of RZ = 10, combined with a refinement of

RXY = 5 in the x and y directions to study the effect of increasing the number of grid

cells N in the z-direction.
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4. Continuum method 4.2. Numerical Aspects

Table 4.3: Refinement of cells in the x, y directions for simulation BT10 using N=7 and
RZ=10

RXY τ

1 7.734

3 7.523

5 7.505

7 7.503

The effect of the number of mesh cells N in the z-direction on the initial distribution

of ρτ is shown in Figure 4.4. It can be seen that with increasing N , the initial surface

age density distribution ρτ becomes increasingly concentrated around the single location

and becomes increasingly narrow. The fact that it has on the mean surface age (τ) is

shown in Table 4.4, where it can be seen that with increasing N , τ decreases and

gradually converges. For more information on the influence of N , see Section 4.4.

Table 4.4: Influence of N on mean surface age τ for simulation BT10, BT20 and BY10
with the refinement of RXY=5 and RZ=10

N

τ

BT10 BT20 BY10

2 9.011 15.596 5.630

4 8.213 14.043 5.426

8 7.870 13.335 5.320

16 7.732 13.003 5.260

32 7.694 12.847 5.238
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4. Continuum method 4.3. Modelling used in the continuum method

4.3 Modelling used in the continuum method

The base mesh used for the calculation of the surface age with the continuum method

was identical to the DNS mesh in the x, y directions. In the z-direction a uniform mesh

was employed with N layers of grid cells between z = 0 and z = zbottom. Note that

z0 identifies the z-location of the middle of the grid cells adjacent to zbottom (see figure

4.5).

Figure 4.5: Schematic of continuum method, using N = 3 cells in the z-direction and
a refinement in z of RZ = 10.

As already mentioned in section 3.1.1, at the surface of the computational domain

a free-slip boundary condition was employed, while periodic boundary conditions were

used in the horizontal directions. At the bottom of the computational domain, the
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4. Continuum method 4.3. Modelling used in the continuum method

reconstructed velocity field (as explained in section 3.1.1) was used as boundary con-

dition. As the vertical velocity scales linearly with z, the calculation of the surface

age is independent of the actual mesh size in that direction. To estimate the mean

surface age, a continuous surface age density ρτ = ρτ (x, y, z, t), where t denotes time,

was introduced to replace the point particles used in the Lagrangian method discussed

in a section 3.1.2. To obtain a smooth initial density distribution ρτ ≥ 0 on the uniform

base mesh in the z-direction, the number of mesh cells N were used in the z-direction.

At the start of the calculations ρτ = ρτ (x, y, z, 0) was initialised to be positive only in

regions with upward flow, so that

ρτ (x, y, z, 0) =

 Ω(x, y)(1 + cos(2(z0−z)π
δz

)) if w(x, y, z0) < 0 and zb − δz ≤ z ≤ zb

0 otherwise
,

(4.5)

where δz is the size of the bottom most mesh cell in the z-direction, zb = zbottom,

z0 = zb − 1
2
δz is the centre of the grid cells adjacent to zb, and Ω is defined by either

Ω(x, y) = C for the non-weighted method or Ω(x, y) = C|w(x, y, z0)| for the weighted

method, with the constant C determined so that at t = 0

Iτ (t) =

∫
V

ρτ (x, y, z, t)dV = 1. (4.6)

On the refined base mesh, an unsteady 3D convection equation for the surface age

density

∂(ρτ )

∂t
+
∂(uρτ )

∂x
+
∂(vρτ )

∂y
+
∂(wρτ )

∂z
= 0, (4.7)

was solved using the fifth-order-accurate WENO-Z scheme for the convective terms

71



4. Continuum method 4.3. Modelling used in the continuum method

combined with a third-order Runge-Kutta method [8] for the time-integration. For the

surface age density, ρτ , a symmetry boundary condition was used at the surface, while

in the lower part of the computational domain (for z > zbottom), ρτ was set to zero, to

model that the fluid left the near surface region. The mean surface age τ̄ was calculated

using both the time step δt and (4.6), giving

τ̄ =

∫ ∞
0

Iτ (t)dt ≈
∞∑
n=1

Iτ (nδt)δt, (4.8)

where t = nδt. Note that the calculation was stopped as soon as Iτ (t) < ε, with

ε ∼ 10−4. Based on the above, we can calculate the cumulative distribution of the

mean surface age

Cτ (t) = 1− Iτ (t) (4.9)

and verify that it approximately has a log-normal distribution. The probability density

of the log-normal distribution is given by

ρ(t) =
d

dt
Cτ =

e−(ln t−µ)
2/2σ2

tσ
√

2π
. (4.10)

Where σ the standard deviation of the log of the distribution and µ is the mean of

the log of the distribution. Results are shown in the following section for commulative

distribution and the log normal distribution of surface age.
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4.3.1 Probability density distributions of surface age

Dankwerts considered the distribution of the surface ages of all particles that were

present at the surface in a snapshot taken at the random time t. It is known, that in

this case, the surface ages of these particles would be exponentially distributed [14].

However, when using the Lagrangian particle tracking method, for each particle that

moves upwards, we determine the surface age by following the particle in time along the

surface until it moves down again. The distribution of the surface ages of these particles

would be a log normal distribution. In the continuum method, we use a particle density

as a replacement for the individual particles. As can be seen below, this method allows

for an easy determination of the underlying log normal distribution. Figures 4.6, 4.7

and 4.8 show the cumulative probability distributions of the surface age density and

the corresponding instantaneous probability distribution obtained by taking its time

derivative. The cumulative distributions for BT10, BT20 and BY10 were obtained

from Eq. 4.9.
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(a) (b)

Figure 4.6: (a) Cumulative distribution and (b) comparison between the instantaneous
probability distribution calculated directly from the continuum method (direct-ρτ ) and
lognormal distribution (theory-ρτ ) of the surface age (for BT10 simulation at t = 100 s
for N=32, RZ=10, RXY=5, using µ = 1.495 and σ2 = 1.137).

Part (b) of the Figures not only shows the instantaneous probability distribution

calculated directly from the continuum method but also the closest matching lognormal

distribution. It can be seen that a good agreement is obtained between the shapes of

the calculated distribution and the shape of the theoretical distribution. This gives us

an alternative way to estimate the mean surface age τ = eµ+σ
2/2, where µ is the mean

of the instantaneous surface age ln τ and σ2 is the variance of ln τ .
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(a) (b)

Figure 4.7: (a) Cumulative distribution and (b) comparison between the instantaneous
probability distribution calculated directly from the continuum method (direct-ρτ ) and
lognormal distribution (theory-ρτ ) of the surface age (for BT20 simulation at t = 31.73 s
for N=16, RZ=10, RXY=5, using µ = 1.930105 and σ2 = 1.262667).

(a) (b)

Figure 4.8: (a) Cumulative distribution and (b) comparison between the instantaneous
probability distribution calculated directly from the continuum method (direct-ρτ ) and
lognormal distribution (theory-ρτ ) of the surface age (for BY10 simulation at t = 90 s
for N=16, RZ=10, RXY=5, using µ = 1.46187 and σ2 = 0.80147).
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4. Continuum method 4.4. Overestimation of surface age

4.4 Overestimation of surface age

While the surface age density remains inside the domain 0 < z < zb it is taken into

account while calculating the integral in Eq. 4.6. As soon as it is transported outside

of this domain it is put to zero so it does not contribute to the calculation anymore.

Because of the fact that the initial surface age density was not defined at z = zb but

was distributed over the bottom grid cells, the surface age will always be overestimated.

Making some simplifying assumptions, the error made can be estimated.

For this, we first assume that there is one interval (N = 1) and model any de-

pendencies on the vertical coordinate by a dependency on time, while ignoring the

homogeneous horizontal directions. We start by defining the average vertical velocity

as a function of time

w(t) = a
(τ

2
− t
)

(4.11)

where τ is the surface age, t is time and a is a constant of proportionality. Based on

the definition in Eq. 4.11 we can calculate the average z location

z(t) =

∫ t

0

w(t′)dt′ =

∫ t

0

a
(τ

2
− t′

)
dt′ =

a

2
(tτ − t2) (4.12)

as a function of time. Note that z(0) = z(τ) = 0 and the maximum z-location that is

reached is z(τ/2) = a(τ 2/8).

Next, we assume that the above is valid for the calculation of the surface age for

particles originating at z(0) = 0. In the simulation such particles are tracked until they

reach the z-location z(t) = −a(τ 2/8).

By writing t = cτ , we obtain the equation a
2
(cτ 2−c2τ 2) = a τ

2

8
which has one relevant
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4. Continuum method 4.4. Overestimation of surface age

solution c = −1
2

+ 1√
2
. Note that c is, in fact, the factor by which the approximated

surface age overestimates the real surface age.

In the simulation, however, the particle can originate at any location z(0) ∈
(
−a τ2

8
, a τ

2

8

)
.

To model this, we represent the z-location of such a particle by

z(t) =
γa

2
(tτ − t2) + a(1− γ)

τ 2

8
, (4.13)

where 0 < γ < 2. Note that γ = 1 corresponds to the situation discussed above.

We now solve

z(t) =
γa

2
(tτ − t2) + a(1− γ)

τ 2

8
= −aτ

2

8
(4.14)

and again substitute t = cτ in Eq. 4.14 to obtain the relevant solution c = 1
2

+ 1√
2γ

.

To approximate the average factor c by which the surface in the calculation with

one interval is overestimated we need to calculate

c =
1

2

∫ 2

0

(
1

2
+

1√
2γ

)
(1− cos(πγ)) dγ ≈ 1.2559 (4.15)

To improve the estimation of the surface age we then calculate τ = τapprox
c

. When there

are N intervals, the situation slightly changes.

In this case, the particle can originate at any location z(0) ∈
(
−a τ2

8N
, a τ2

8N

)
, to

model this, we again represent the z-location of such a particle by

z(t) =
γa

2
(tτ − t2) + a(1− γ)

τ 2

8
, (4.16)

where 1 − 1
N
< γ < 1 + 1

N
. Note that N = 1 corresponds to the situation discussed
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above. We now solve

z(t) =
γa

2
(tτ − t2) + a(1− γ)

τ 2

8
= −a τ

2

8N
(4.17)

and again substitute t = cτ in Eq. 4.14 to obtain the relevant solution

c(γ,N) =
1

2
+

√
γ
(
1 + 1

N

)
2γ

. (4.18)

and average factor c(N) by which the surface in the calculation with N intervals is

overestimated can be found from

c =
N

2

∫ 1+ 1
N

1− 1
N

1

2
+

√
γ
(
1 + 1

N

)
2γ

 (1− cos(Nγπ)) dγ. (4.19)

The aim of the above model is to show that the overestimation of surface age would

reduce by increasing N . Figure 4.9a shows the overestimation of surface age for simula-

tion BY10 by using the above theory c(theory) and the results of surface age obtained

by the continuum method c(direct). It can be seen that the error significantly decreases

between the two with increasing N.

Finally, we assume that the upward and downward velocities differ (but are both

constant). First we take

w(t) = a(bτ − t), if t < bτ (0 < b < 1) (4.20)

w(t) =
ab2

(b− 1)2
(bτ − t), if t > bτ (4.21)

78



4. Continuum method 4.4. Overestimation of surface age

where a is a constant of proportionality and b2/(b − 1)2 represents the ratio between

the magnitudes of the mean downward velocity and the mean upward velocity.

Based on the definition Eq. 4.20 we can calculate the average z-location

z(t) =

∫ t

0

w(t′)dt′ =

∫ t

0

a(bτ − t′)dt′ = a

2
(2bτt− t2), if t ≤ bτ (4.22)

z(t) =
1

2
ab2τ 2 +

∫ t

bτ

w(t′)dt′

=
1

2
ab2τ 2 +

ab2

(b− a)2

∫ t

bτ

(bτ − t′)

=
1

2
ab2τ 2 +

ab2

(b− 1)2

[
bτt− 1

2
t2 − 1

2
b2τ 2

]
, if t > bτ

(4.23)

as a function of time. Note that z(0) = z(τ) = 0 and the maximum z-location that is

reached is z(bτ) = 1
2
ab2τ 2. To estimate of the over prediction, we need to solve:

1

2
ab2τ 2 +

ab2

(b− 1)2

[
bτt− 1

2
t2 − 1

2
b2τ 2

]
= −1

2
ab2τ 2 =⇒ (4.24)

ab2τ 2 +
ab2

(b− 1)2

[
bτt− 1

2
t2 − 1

2
b2τ 2

]
= 0 =⇒

Using t = cτ

(c− b)2

(b− 1)2
= 2 =⇒ c = b+

√
2(1− b) (4.25)

In the simulation, however, the particle can originate at any location z(0) ∈
(
−1

2
ab2τ 2, 1

2
ab2τ 2

)
.

To model this, we represent the z-location of such a particle by

z(t) =
γa

2
(2bτt− t2) +

1

2
a(1− γ)b2τ 2, (for t ≤ bτ) (4.26)
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z(t) =
1

2
ab2τ 2 +

γab2

(b− 1)2

(
bτt− 1

2
t2 − 1

2
b2τ ”

)
, (for t > bτ) (4.27)

where 0 < γ < 2. Note that z(τ) = z(0) = 1
2
a(1− γ)b2τ 2. We now solve

z(τ) =
1

2
ab2τ 2 +

γab2

(b− 1)2

[
bτt− 1

2
t2 − 1

2
b2τ 2

]
= −1

2
ab2τ 2 (4.28)

and again substitute t = cτ in Eq. 4.28 to obtain;

c = b+ (1− b)
√

2/γ (4.29)

To approximate the average factor c by which the surface in the calculation with one

interval is overestimated we need to calculate

c =
1

2

∫ 2

0

(b+ (1− b)
√

2/γ)(1− cos(πγ)dγ) =⇒ (4.30)

c = b+ (1− b)1

2

∫ 2

0

√
2/γ)(1− cos(πγ)dγ) = b+ 1.5117(1− b)

So that for b = 0.4335 an average factor c = 1.2899 is obtained. When there are N

intervals, the situation slightly changes. In this case, the particle can originate at any

location z(0) ∈
(
− 1

2N
ab2τ 2, 1

2N
ab2τ 2

)
, to model this we again represent the z-location

of such a particle by

z(t) =
γa

2
(2bτt− t2) +

1

2
a(1− γ)b2τ 2, (for t ≤ bτ) (4.31)

z(t) =
1

2
ab2τ 2 +

γab2

(b− 1)2

[
bτt− 1

2
t2 − 1

2
t2τ 2

]
, (for t > bτ) (4.32)
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where 1− 1
N
< γ1 + 1

N
.. Note that N = 1 corresponds to the situation discussed above.

We now solve

z(t) =
1

2
ab2τ 2 +

γab2

(b− 1)2

[
bτt− 1

2
t2 − 1

2
t2τ 2

]
= − 1

2N
ab2τ 2 (4.33)

So that after substituting t = cτ we obtain

N +
1

N

γ(c− b)2

(b− 1)2
=⇒ c = b+

√
N + 1

γN
(1− b) (4.34)

and the average factor c(N) by which the surface in the calculation with N intervals is

c = b+ (1− b)N
2

∫ 1+ 1
N

1− 1
N

√
N + 1

γN
(1− cos(Nγπ)) dγ. (4.35)

In Figure, 4.9b, clearly a much better approximation can be seen by assuming the

different velocities and overestimation reduces with increasing N.
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(a) (b)

Figure 4.9: Overestimation of surface age by assuming the (a) upward and downward
velocities are the same and (b) upward and downward velocities differ for simulation
BY10.

Note that the non-weighted surface age τnw is assumed in the above model. While,

the weighted surface age τw is used to calculate the overestimation from continuum

method. To justify this, we have already showed in section 3.4 that the accuracy of

τnw and τw behaves very similar to each other. Thus, we conclude that the presented

model has quite good approximation of overestimation of surface age.

4.5 Results and discussions

A smooth initial density distribution on the uniform base mesh in the z-direction can

be obtained by increasing the values of N as discussed in section 4.2.2. Note that, in

Figure 4.10, τ corresponds to mean weighted surface age as it is already discussed in

section 3.4 that accuracy of weighted and non-weighted surface age behaves similar.
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Figure 4.10a represents the mean surface age τ (solid line) with several values of N .

Dashed line represents the mean surface age τ obtained from Lagrangian method using

1024 × 1024 point particles. It can be seen that τ converges with increasing number

of N . Figure 4.10b and 4.10c shows a convergence of mean surface age with increasing

N , where the mean surface age obtained from Lagrangian method (dashed line) is at

τ = 12.6991 and 5.2022, respectively. The number of mesh cells N used in BT10, BT20

and BY10 are 2, 4, 8, 16 and 32 at time t = 16.7, 31.73, 90s, respectively.
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(a) (b)

(c)

Figure 4.10: Effect of N on mean surface age τ using Rz=10 and RXY=5 for simulation
(a) BT10 at t = 16.7s, (b) BT20 at t = 31.73s and (c) BY10 at t = 90s.

The error was calculated between the mean weighted surface age τ calculated di-

rectly from continuum method and the mean surface age obtained from Lagrangian

method. An averaged relative error (ARE), calculated for τ is given by

ARE(τ) =
1

N

N∑
i=1

(
|τL(i)− τC(i)|

τL(i)
× 100

)
, (4.36)
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where, τL and τC represents the results of τ obtained from Lagrangian and continuum

method, respectively. In Table 4.5, it can be seen that for large N , the absolute error

AE significantly decreases and reaches a minimum of 0.2733%, 0.2325% and 0.0964% for

simulation BT10, BT20 and BY10, respectively. The gas transfer KL was calculated

Table 4.5: Averaged relative error of mean surface age τ

Simulations
N

2 4 8 16 32

BT10 3.7417 % 1.6408 % 0.7377 % 0.3730 % 0.2733 %

BT20 4.5604 % 2.1160 % 1.0020 % 0.4784 % 0.2325 %

BY10 1.6430 % 0.8579 % 0.4532 % 0.2218 % 0.0964 %

using Danckwerts model. Note that, for the continuum method, KL was calculated

only for the weighted mean surface age using sequences of snapshots of velocity fields

employing time integration forward in time.
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Figure 4.11: Gas transfer velocity KL in time at t = 16.7s for simulation BT10 using
RZ=10, RXY=5 and N=32.

Figures 4.11, 4.12 and 4.13 compares the gas transfer velocity KL obtained using the

continuum method, the Lagrangian method and the 3D DNS (reference) of simulations

BT10, BT20 and BY10, respectively. While the Lagrangian results are shown for several

instances in time, from continuum results are only shown for one instance in each of the

figures. For BT10 and BT20, the Lagrangian and continuum were found to be in good

agreement with the DNS results. For BY10, on the other hand, the results obtained in

the Lagrangian and continuum method were found to more significantly overestimate

the DNS results. A more quantitative discussion using the errors displayed in Table 4.6

can be found below.
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Figure 4.12: Gas transfer velocity KL in time at t = 31.73s for simulation BT20 using
RZ=10, RXY=5 and N=32.

Figure 4.13: Gas transfer velocity KL in time at t = 90s for simulation BY10 using
RZ=10, RXY=5 and N=32.
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Table 4.6: Relative error in the gas transfer velocity KL

Simulations RE(CL) RE(CR) RE(LR)

BT10 1.08 % 3.55 % 4.68 %

BT20 0.58 % 2.83 % 3.12 %

BY10 0.36 % 8.00 % 8.39 %

Table 4.6 represents the relative error,

RE(KL) =
|KL(i)−KL(τ)(i)|

KL(i)
× 100, (4.37)

in the gas transfer velocity KL. RE(CL) shows the error between the continuum and

the Lagrangian method, RE(CR) is the error between the continuum method and the

existing DNS, while RE(LR) is the error between the Lagrangian method and the exist-

ing DNS. It can be seen that RE(CR) is smaller than RE(LR) for all three simulations.

At the same time, if we compare the results obtained with the continuum method to

Lagrangian method, the error is significantly smaller than the error between either of

the methods in the DNS (reference) results. The reason for the difference between the

reference results and the continuum/Lagrangian results is either due to inaccuracies in

Danckwerts’ model or due to the fact that the velocity field used was not allowed to

develop in time. It can be concluded that results of the gas transfer velocity KL ob-

tained using the mean surface age from the continuum method are in better agreement

with the DNS results than the results from the Lagrangian method.
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Chapter 5

Marangoni forces

In this chapter, a series of runs are presented and the results are analysed in order to

study the effects of Marangoni forces on the instantaneous development of a buoyant

convective instability for several Sc-numbers per simulation.

5.1 Introduction

Marangoni effects occur when surface tension is no longer constant due to differences

in e.g. temperature or concentration along the surface. Such differences in surface

tension may induce flow. For instance, when the surface tension gradient is produced

by variations in temperature, the induced flow is usually known as thermocapillary flow

(or thermal Marangoni effects). Whereas, when the surface tension gradient is produced

by local differences changes in solute concentration, the resultant phenomenon is known

as solute Marangoni effects, e.g., ’tears of wine’. In this chapter, the (horizontal) surface

tension gradient was generated due to a buoyant instability generated by an unstable
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vertical surface temperature gradient.

5.2 Methodology

Generally, the incompressible flow of a Newtonion fluid is described by the Navier-Stokes

equations, which consist of the continuity equation

∂ui
∂xi

=
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

= 0, (5.1)

and the scalar momentum equations

∂ui
∂t

+
∂(uiuj)

∂xj
= −∂P

∂xi
+ ν

∂2ui
∂xj∂xj

− α (Tb,0 − T ) g δi3 i = 1, 2, 3, (5.2)

where u1, u2, u3 = u, v, w are the components of velocity in the x1, x2, x3 = x, y, z-

directions, respectively, P is the generalised pressure (defined as a ratio of the static

pressure and the constant density), t is time and ν is the kinematic viscosity. x1, x2 are

in the horizontal directions, whereas x3 is in the vertical direction. In the present work,

the Navier-Stokes equations were non-dimensionalised by using a characteristic length

scale L and velocity scale U = κ/L. The dimensionless terms were denoted by (.∗) as

xj
∗ = xj/L, uj

∗ = ujL/κ, t∗ = tκ/L2, p∗ = PL2/κ2. The following replacement of the

rescaled variables in the above equation 5.2 can be written as

κ2

L3

∂ui
∗

∂t∗
+
κ2

L3

∂(ui
∗uj
∗)

∂xj∗
= −κ

2

L3

∂p∗

∂xi∗
+ ν

κ

L3

∂2ui
∗

∂xj∗∂xj∗
− α∆T T ∗ g δi3 i = 1, 2, 3,

(5.3)
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By dividing both sides of the above equation by κ2/L3, the dimensionless Navier-

Stokes equations

∂ui
∗

∂t∗
+
∂(ui

∗uj
∗)

∂xj∗
= − ∂p∗

∂xi∗
+ Pr

∂2ui
∗

∂xj∗∂xj∗
−RaL Pr T ∗ δi3 i = 1, 2, 3, (5.4)

are obtained. The last term on the right-hand side in Eq. 5.4 represents the buoyancy

force in z-direction where

Pr =
ν

κ
(5.5)

is the non-dimensional Prandtl number Pr = 7 corresponding to the ratio of mo-

mentum and thermal diffusivities of water at 293.15 K−1. The temperature T was

non-dimensionalised to obtain T ∗ by

T ∗ =
Tb,0 − T

∆T
, (5.6)

where Tb,0 is the temperatures in the bulk and ∆T = 1 K. Note that the temperature

at the surface is time dependent because of the prescribed constant heat flux at the

surface. δi3 is the Kronecker delta and the non-dimensional Rayleigh number is given

by,

RaL =
α∆TgL3

κν
(5.7)

in which g is the gravitational acceleration, α is the thermal expansion factor in K−1

and ∆T is the temperature difference. The transport equation of the temperature T is
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modelled by the convection-diffusion equation

∂T

∂t
+∇.(T~u) = κ∇2T, (5.8)

where κ is the thermal diffusion and ∇ and ~u are defined by

∇ =


∂
∂x1

∂
∂x2

∂
∂x3

 , ~u =


u1

u2

u3

 . (5.9)

Applying Einstein’s summation convention to Eq. 5.8, implying summation over re-

peated indices, Eq. 5.8 can be expressed as

∂T

∂t
+
∂(Tuj)

∂xj
= κ

∂2T

∂xj∂xj
j = 1, 2, 3. (5.10)

As in the non-dimensionalisation of the Navier-Stokes equations, to obtain the dimen-

sionless quantities t∗, xi
∗ and uj

∗, characteristic length L and velocity U = κ/L scales

are used,

κ

L2

∂T ∗

∂t∗
+

κ

L2

∂T ∗uj
∗

∂xj∗
=

κ

L2

∂2T ∗

∂xj∗∂xj∗
j = 1, 2, 3. (5.11)

Note that to obtain Eq. 5.11, Tb,0 was subtracted from T (this is allowed because

∂(T−Tb,0)
∂t

= ∂T
∂t

,
∂2(T−Tb,0)
∂xj∂xj

= ∂2T
∂xj∂xj

and
∂(T−Tb,0)uj

∂xj
=

∂Tuj
∂xj
− Tb,0 ∂uj∂xj

=
∂Tuj
∂xj

as
∂uj
∂xj

= 0),

and subsequently all terms in Eq. 5.10 were multiplied by the constant −1/δT . By

dividing both sides of the above equation by κ/L2, the dimensionless Navier-Stokes
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equations can be written as

∂T ∗

∂t∗
+
∂T ∗uj

∗

∂xj∗
=

∂2T ∗

∂xj∗∂xj∗
j = 1, 2, 3. (5.12)

Similarly, the transport mechanism of the dissolved scalar concentration C in a fluid is

governed by the dimensionless 3D convection-diffusion equation of the non-dimensional

scalar concentration C∗,

∂C

∂t
+
∂Cuj
∂xj

= D
∂2C

∂xj∂xj
j = 1, 2, 3, (5.13)

κ

L2

∂C∗

∂t∗
+

κ

L2

∂C∗uj
∗

∂xj∗
=
D

L2

∂2C∗

∂xj∗∂xj∗
j = 1, 2, 3, (5.14)

By dividing both sides of the above equation by κ/L2, the dimensionless scalar transport

equation can be written as

∂C∗

∂t∗
+
∂C∗uj

∗

∂xj∗
=
D

κ

∂2C∗

∂xj∗∂xj∗
j = 1, 2, 3, (5.15)

Note that

D

κ
=
D

ν
× ν

κ
=
Pr

Sc
, (5.16)

where Sc = ν
D

is the Schmidt number and Pr = ν
κ

is the Prandtl number. Finally, the

non-dimensional scalar transport equation

∂C∗

∂t∗
+
∂C∗uj

∗

∂xj∗
=
Pr

Sc

∂2C∗

∂xj∗∂xj∗
j = 1, 2, 3, (5.17)
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is obtained. Where

C∗ =
C − Cb,0
Cs − Cb,0

, (5.18)

with Cb,0 and Cs are the concentrations in the bulk and at the surface, respectively.

Characteristic length (L) and velocity (U) scales that are used in the present study are

L = 0.01 m and U = κ/L m/s. Where κ = 1.43× 10−6 m2/s is the thermal diffusivity

of water at 293.15 K [4, 92]. Using the characteristic velocity U defined above and the

non-dimensionalisation of T shown in Eq: 5.6, the non-dimensional surface heat flux is

defined by

φT = − ∂T ∗

∂z∗

∣∣∣∣
i

. (5.19)

Initially, the temperature and concentration were initialised by their respective exact

solutions when only considering pure diffusion (given that the surface boundary con-

dition for the temperature was a constant flux −∂T ∗/∂z∗, while for the concentration

constant value of C∗ = 1 was prescribed at the surface), so that

T ∗(ζ∗, t∗) = − ∂T ∗

∂z∗

∣∣∣∣
i

[
2

√
t∗

π
exp

(
−ζ∗2

4t∗

)
− ζ∗erfc

(
ζ∗

2
√
t∗

)]
, (5.20)

and

C∗(ζ∗, t∗) = erfc

(
ζ∗
√

Sc

4Pr t∗

)
, (5.21)

respectively, where ζ∗ = (Lz/L) − z∗ is the non-dimensional distance to the surface

and z∗ = x∗3. A thermal expansion factor α = 0.000207 K−1 was employed, which is

typical for water at 293.15 K. Initially, the velocity field was set to zero at t = 0. In the

remainder, the star notation will be dropped and non-dimensionality will be implicitly
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assumed.

5.3 Boundary conditions

In the simulation, periodic boundary conditions were employed in the horizontal di-

rection for all variables. In the vertical direction, at the bottom, a free-slip boundary

condition was used for the velocity to avoid fluid from leaving the computational do-

main. This boundary condition is given by


∂u
∂z

= 0

∂v
∂z

= 0

w = 0

. (5.22)

At the top, the boundary condition for the velocity is given by


∂u
∂z

= −Ma ∂T
∂x

∣∣∣
i

∂v
∂z

= −Ma ∂T
∂y

∣∣∣
i

w = 0

, (5.23)

where the non-dimensional Marangoni number Ma is defined as

Ma =
−(∂σ/∂T )∆TL

µκ
. (5.24)

Vargaftik et al. [89] showed that the surface tension of water depends on the temper-

ature and that this relation is approximately linear (see Fig. 5.1). From this we can
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conclude that ∂σ/∂T , and hence the Marangoni number, is approximately constant.

The values for the surface tension of water for the temperature ranging between

0−374◦C, given in Vargaftik’s reference book [88] has been widely used in recent years.

Fig. 5.1 shows a linear relationship between surface tension σ and temperature T . In

the present work, the water temperature was set to 20◦ C.

Figure 5.1: Surface tension of water, data taken from [89]

5.4 Overview of the simulations

An overview of the simulations is provided in Table 5.1. The governing equations

introduced above were solved on a non-uniform staggered mesh (where all scalars are

defined in the middle of the mesh cells, while the velocities are defined at the faces) using

the in house KCFlo code as described in Kubrak et al. [49]. This code was especially

developed to allow for an accurate simulation of low diffusivity scalar transport on a
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sufficiently fine mesh, while using a coarser mesh for the flow simulation. The transport

of low solubility (in water) atmospheric gases across the air-water interface is controlled

by a very thin concentration boundary layer on the water side. To accurately resolve

scalar convection a fifth order WENO scheme was employed [58], while a fourth order

central finite difference scheme was used for the diffusive terms. For the time integration

the three stage Runge-Kutta method as described in Liu et al. [58] was employed.

For the flow solver, the convective terms were solved using fourth order kinetic

energy conserving discretization described in [91], while the diffusive term was solved

using the fourth order central scheme. After substituting the descritized momentum

equations into the continuity equation a Poison equation for the pressure was obtained.

This Poison equation for the pressure was solved using the conjugate gradient method

with simple diagonal decomposition. Time integration was performed using the second

order Adams-Bashforth method.

In the present direct numerical simulation (DNS) a Lx × Ly × Lz = 5L × 5L ×

5L computational domain was employed. Simultaneously with the flow, five scalar

convection diffusion equations were solved. The first scalar, the temperature, is non

passive as it affects the flow through buoyancy forces. The other scalars are passive and

represent the transport of atmospheric gases. The Prandtl number for the temperature

was Pr = 7 and the Schmidt numbers for the mass transport were Sc = 16, 50, 100, 200.

The latter simulations will allow a non biased comparison of the affect of Schmidt

number on the gas transfer velocityKL. The setup of the computational simulations was

inspired by the experiments carried out by Jirka et al. [41]. A 200× 200× 252 baseline

mesh was employed to solved both the flow, temperature and the scalar transport

97



5. Marangoni forces 5.4. Overview of the simulations

equation at Sc = 16. For the scalar transport equations at higher Schmidt numbers

(Sc = 50, 100, 200) the basemesh was refined by a factor of two in all directions.

The mesh is stretched in the z-direction in order to obtain a much finer resolution

near the air-water interface. The node distribution is given by

z(k) =

[
1− tanh(zφ)

tanh(z1)

]
z(0) +

[
tanh(zφ)

tanh(z1)

]
z(Nz), (5.25)

for k = 1, ..., Nz − 1, with

z1 =
ψ

2
, (5.26)

zφ =
kz1
Nz

, (5.27)

where Nz is the number of nodes in the z-direction. The mesh stretching is governed

by the parameter ψ, which is set to ψ = 3 in all simulation.
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Table 5.1: Overview of simulations. In all simulations the Prandtl number Pr was set
to 7 typically for water at 293.15 K, 5L × 5L × 5L Domain and 200 × 200 × 252 base
mesh size is used. The Kolmogorov scale is denoted by η.

LB

Case Ma φT η Pr = 7 Sc = 16 Sc = 50 Sc = 100 Sc = 200

MB01 0 0.777 0.2546 0.096 0.064 0.036 0.025 0.018

MB02 0 1.5 0.2010 0.076 0.050 0.028 0.020 0.014

MB03 0 2.33 0.1746 0.066 0.044 0.025 0.0175 0.012

MB11 70 0.777 0.1945 0.074 0.049 0.028 0.019 0.014

MB12 70 1.5 0.1465 0.055 0.037 0.021 0.015 0.010

MB13 70 2.33 0.1301 0.049 0.033 0.018 0.013 0.009

MB51 350 0.777 0.1055 0.040 0.026 0.015 0.011 0.007

MB52 350 1.5 0.0814 0.031 0.020 0.012 0.008 0.006

MB53 350 2.33 0.0741 0.028 0.019 0.010 0.007 0.005

MB10 1049 2.33 0.0517 0.020 0.013 0.007 0.005 0.004

The simulations were performed on a massively parallel super computer using 256

processing cores. Parallelisation was performed by dividing the computational mesh

into blocks of equal size. Each block was given its own processing core. Communication

between the processes was performed using the standard Message Passing Interface

(MPI) protocol.

5.5 Grid refinement study

A grid refinement study has been carried out to assess the adequacy of the resolution

used for the base mesh. For this purpose three simulations were performed using exactly

the same boundary and initial conditions (including the same disturbance added to the
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temperature field). The simulations were performed on different meshes, where MB10

was carried out on the base mesh while the other two simulations (MB20 and MB30)

were carried out on refined meshes (see Table 5.2).

The choice of grid spacing in the upper part of the computational domain was based

on the Grötzbach criterion [26]. There are two requirements to fulfill this criterion. The

first requirement is that the vertical grid resolution near the air-water interface is fine

enough to resolve the Batchelor scale LB. The second requirement is that in the upper

part of the computational domain, the geometric mean of the grid cells ∆ is smaller

than πLB, i.e.

∆ = (∆x×∆y ×∆z)1/3 ≤ πLB. (5.28)

To further ensure an accurate resolution of all near-surface details of the buoyant in-

stability down to the Batchelor scale, a grid refinement study was performed for the

base mesh. To deal with this, in a separate simulation, similar to MB20 (see Table 5.2),

random disturbances were added to the temperature field at t = 10 s. This simulation

was subsequently run for a further 2 s. After which the resulting temperature field was

saved and used as the initial condition for the temperature in MB10, MB20 and MB30.

Between t = 12 s and t = 90 s the disturbance was allowed to develop so that falling

plumes were obtained. This method allowed a direct comparison of the instantaneous

temperature and flow fields calculated on different meshes using various Schmidt num-

bers. MB10 has the coarsest mesh with 200×200×252 points, compared to the coarsest

mesh, the mesh used in MB20 was refined by a factor of approximately 1.3− 1.5 times

in each direction, while the mesh used in MB30 was refined by a factor of 2 in the x

and y-directions and a factor of 1.6 in the z-direction (see Table 5.2). Note that the
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temperature with Pr = 7 and the concentration with the smallest Schmidt number

(Sc = 16) were solved on the base mesh, while the concentrations with larger Schmidt

numbers (Sc = 50, 100, 200) were solved on a mesh that was refined by a factor of 2 in

all directions.

Table 5.2: Grid refinement study, domain size= 5L × 5L × 5L, Ma = 1049, πLB,Sc=16 =
0.041, πLB,Sc=200 = 0.0116.

Simulation Grid (Pr = 7, Sc = 16) Grid (Sc = 50− 200) ∆Sc=16 ∆Sc=50−200

MB10 200 × 200 × 252 400× 400× 504 0.0155 0.0078

MB20 296 × 296 × 330 592× 592× 660 0.0109 0.0055

MB30 400 × 400 × 402 800× 800× 804 0.0083 0.0042

The results of the grid refinement study for the velocity are shown in Figures 5.2, 5.3

and 5.4, where profiles of the instantaneous u, v and w velocities at t = 80s, z/L = 4.5

and at y/L = 2.5 and x/L = 2.5 in parts (a) and (b) of the above figures, respectively.

(a) (b)

Figure 5.2: u-velocity component profile after t = 80s at z/L = 4.5 using different grid
sizes. Only every sixth data point is shown.
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The velocities were all normalised using the velocity scale U = κ/L. All profiles

were found to be in excellent agreement. The largest difference observed between the

velocities in the various simulations was less than 10−8, which is negligibly small.

(a) (b)

Figure 5.3: v-velocity component profile after t = 80s at z/L = 4.5 using different grid
sizes. Only every sixth data point is shown.

Based on the similarities between the results obtained on three meshes, it can be

concluded that the mesh size used in MB10 was sufficiently fine to accurately resolve

the buoyant instability.
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(a) (b)

Figure 5.4: w-velocity component profile after t = 80s at z/L = 4.5 using different grid
sizes. Only every sixth data point is shown.

Profiles of the temperature obtained in MB10, MB20, MB30 at t = 80s and z/L =

4.5 are shown in Figure 5.5. Figure 5.5a shows the profiles at y/L = 2.5, while (b)

shows the profiles at x/L = 2.5. It can be seen that in both plots the temperature

profiles are in excellent agreement so that we can conclude that the base mesh of MB10

is also sufficiently fine to fully resolve the temperature field.
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(a) (b)

Figure 5.5: Temperature profile (Ma = 1049) after t = 80s showing (a) T at the center
line y/L = 2.5 and (b) at x/L = 2.5 and z/L = 4.5 obtained using different grid sizes
(see Table. 5.2). Only every third data point is shown.

Similar to the temperature plot above, in Figure 5.6, the scalar concentration profiles

of MB10, MB20 and MB30, obtained on the base mesh at Sc = 16, t = 80s and

z/L = 4.5 are compared. Also for this quantity, an improvement of the resolution

across the entire computational domain in MB20 and MB30 did not lead to any further

(noticeable) improvements in the results obtained on the MB10 mesh. Based on that it

can be concluded that the base mesh of MB10 was sufficiently fine to resolve scalars up

to Sc = 16. This implies that on the refined meshes (which are refined by a factor of 2 in

all directions) we can fully resolve scalars up to Sc = 64. Based on the fact that above

the Grötzbach criterion was shown to be valid in the upper part of the computational

domain for all scalars up to Sc = 200 we believe that the grid refinement study for the

refined meshes would also show a good agreement for the scalar concentrations of the

higher Schmidt numbers.
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(a) (b)

Figure 5.6: Concentration profile (Ma = 1049) after t = 80 s showing (a) C at the
center line y/L = 2.5 and (b) at x/L = 2.5 and z/L = 4.5 from simulations with
different scalar grid refinement factors (see Table. 5.2). Only every third data point is
shown.

Hence, grid MB10 with refinement factor 2 was used in the remainder of this chapter

to obtain results at higher Schmidt numbers.

5.6 Flow field

The Marangoni effect on the turbulent flow statistics was evaluated for a range of

Marangoni numbers (Ma = 0, 70, 350) and φT = 0.777 at time t = 150s. The horizontal

velocity fluctuations, displayed in Figure 5.7, were obtained by averaging the horizontal

velocity components in time and in homogeneous (horizontal) directions. Both the

horizontal and vertical velocity fluctuation level change due to the Marangoni effect.

For Ma = 0 (case MB01), at the surface urms has a local maximum and zero gradient.

Further below, urms eventually reduces with distance to the surface until it becomes
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virtually independent of z. For Ma = 70 (case MB11), the Marangoni effect causes the

gradient of urms at the surface to be non-zero. With distance to the surface urms keeps

on decreasing until z ≈ 4.3L after which it becomes independent of depth. Finally,

the case with the largest Marangoni number of Ma = 350 (case MB51) behaves very

similar to the case MB11. It can be seen that also for this case urms gradually reduces

with distance to the surface until it becomes independent of depth. Note that with

increasing Marangoni number the horizontal fluctuations at the surface were found to

increase. This is the direct consequence of the Marangoni forces acting at the surface

to promote Rayleigh instability.

Figure 5.7: Marangoni effects on urms at time t = 150s. Only every fifth data point is
shown.

In Figure 5.8, it can be seen that near the surface wrms decreases linearly with

distance to the surface for all Marangoni numbers. Further away from the surface this

increase slowly reduces. In the insert can be seen that, very close to the surface, the
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gradient of the wrms becomes steeper with increasing Marangoni number, which may

promote the vertical mixing of concentration and temperature. Note that the non-

dimensional surface heat flux in Figures 5.7 and 5.8 was fixed to a value of φT = 0.777

and urms, wrms were normalised using the velocity scale U = κ/L.

Figure 5.8: Marangoni effects on wrms at time t = 150s. Only every fifth data point is
shown.

Figure 5.9 shows that the integral length scales tend to grow in time, which is in

agreement with growth in time of the convection cells shown in Figure 5.14. The integral

length scale was obtained using two point correlations of the surface divergence

β = ∂u/∂x+ ∂v/∂y, (5.29)

which is directly related to the strength of the Rayleigh instability at the surface. In

the Figure 5.9 it can be seen that the size of the integral length scale initially tends

to increase in all simulations. In simulation MB03, where Ma = 0, this increase is
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most significant. With increasing Marangoni number it can be seen that the increase

in integral length scale becomes smaller and smaller. For the highest Marangoni num-

ber, after the initial increase, the integral length scale remains virtually constant for

a significant time period of more than 90 s. It can be concluded that the Marangoni

forces tend to limit the growth of the integral length scale. As shown in [92] such small

integral length scales (corresponding to small convection cells) tend to have a relatively

large gas transfer velocity compared to larger convection cells. All integral length scales

show a small dip immediately after plumes of cold water start to fall down, these dips

can be seen at t ≈ 20 for MB53, at t ≈ 55 for MB13 and at t ≈ 78 for MB03.

Figure 5.9: Influence of Marangoni number Ma = 0, 70, 350 on integral length scale.

The contour maps in Figure 5.10 show the effects of Marangoni forces on the surface

divergence β by comparing simulations at a fixed non-dimensional surface heat flux of

2.33 at two Marangoni numbers, Ma = 0 (case MB03) and Ma = 70 (case MB13).
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The underlying mechanism play a role in the exchange of heat and saturated fluid

between the bulk and the surface is best illustrated in Figure 5.10b. The yellow areas

correspond to positive surface divergence β (see Eq: 5.29) and indicate upwelling of

unsaturated fluid from the bulk, which upon reaching the surface spreads out along the

surface in radial directions. While it travels along the surface the fluid cooled down and

becomes more and more saturated. Towards the sides of the convection cells the fluid

has cools down so much that it sinks down back into the bulk, forming sheets of falling

saturated fluid. The later is indicated by the dark blue boundaries of the convection

cells, corresponding to negative surface divergence. Compared to Figure 5.10b, where

Ma = 70, at Ma = 0 (shown in part (a)) the convection cells are not fully formed yet,

indicating a much reduced heat and gas exchange between the surface and the bulk.

Hence, it can be concluded that the Maragoni forces tend to aid the Rayleigh instability

that drives buoyant convection.
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(a) (b)

Figure 5.10: Surface divergence contours from simulation (a) MB03 and (b) MB13

Above it can be seen that the formation of the convection cells atMa = 0 just started

at t = 62s. As can be seen in Figure 5.11, at t = 78s the convection cells become much

stronger and clear areas of strong upwelling and downwelling can be seen. At the same

time, the simulation MB13 at Ma = 70 the average size of the convection cells can be

seen to increase as the instability develops. At t = 96s convection cells for Ma = 0 are

well defined as can be seen in Figure 5.12a. Also, in this figure we can see that for the

simulation with Ma = 70, the size of the convection cells further increased. Finally, in

Figure 5.12c also the development of the convection cells at Ma = 1049 is shown. Here

it can be seen that the size of the convection cells are much smaller than in the other

two simulations and also their shapes have become quite irregular.
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(a) (b)

Figure 5.11: Snapshots of instantaneous surface divergence contours from simulation
(a) MB03 and (b) MB13

(a) (b) (c)

Figure 5.12: Surface divergence contours from simulation (a) MB03, (b) MB13 and (c)
MB10
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5.6.1 Instantaneous scalar structures near the surface

For a fixed non-dimensional surface heat flux of φT = 1.5, Figure 5.13 compares the

Marangoni effect by showing colour contours of the instantaneous interfacial gas con-

centration at Sc = 50 and t = 77s for (a) Ma = 0 (case MB03) and (b) Ma = 70 (case

MB13). The high gas concentration areas (in yellow) identify saturated fluids that is

transported downwards from the surface, while the low concentration areas (in blue)

identify unsaturated fluid that is washed up from the bulk. Compared to Ma = 0 at

Ma = 70, the saturation at the top of the convection cells is significantly lower and the

convection cells are separated from each other by much smaller areas of fully saturated

flow.

To study the effect of Marangoni number on the temperature distribution at the

surface, in Figure 5.14 colour contours are plotted of the instantaneous temperature at

t = 87s for the cases MB03 (Ma = 0), MB13 (Ma = 70) and MB10 (Ma = 1049).

It can be seen that the Marangoni effect promotes the buoyant (Rayleigh) instability

so that, compared to Ma = 0, at Ma = 70 the convection cells are much clearer

defined and also slightly larger in number, while at Ma = 1049 a very large number of

convection cells can be seen with a quite irregular shape and size distribution.
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(a) (b)

Figure 5.13: Velocity vectors and magnitude (contours) of scalar distribution for Sc =
50 at the surface. Snapshots taken at time t = 77 s from simulation (a) MB03 and (b)
MB13.

As compared to the above explanation, in Figure 5.16 and 5.18, for Ma = 350, a

strong Marangoni effect can be seen at the surface in temperature and concentration

distribution, respectively.
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(a) (b) (c)

↓

Figure 5.14: Temperature distribution at the surface from simulation (a) MB03 (b)
MB13 and (c) MB10.

Rayleigh instability is promoted due to the Marangoni forces and the buoyancy

instability does not becomes stronger (when the fluid plumes plunges down), so that

the plumes does not penetrate deeper into the bullk very far as compared to Ma = 0

(see Figures 5.16 and 5.18). This is due to the fact that there is not much cold water

at the surface being transported down, resulting in convection to be more limited close

to the surface before it diffuses.
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(a) (b)

(c) (d)

Figure 5.15: Temperature contours in the cross section at x/L = 2.5 (identified by the
arrow in Fig. 5.14a) of simulation MB03.

Figures 5.15 and 5.16 show contours of the temperature in the plane x/L = 2.5

illustrating the initial development of the falling plumes at Ma = 0 (Figure 5.15) and

Ma = 350 (Figure 5.16).

115



5. Marangoni forces 5.6. Flow field

(a) (b)

(c) (d)

Figure 5.16: Temperature visualization from the simulation MB53.

As already noticed above, the Marangoni forces tend to promote the buoyant in-

stability, which is confirmed by the much earlier formation of plumes at Ma = 350 in

comparison to Ma = 0. Because of this, the amount of heat lost at the surface before
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plumes start falling down becomes less with increasing Marangoni number.

As a result, the buoyancy force underneath the surface that is responsible for the

plumes to penetrate into the bulk becomes less. This can clearly be seen by the limited

penetration depth of the plumes at Ma = 350, which tend to remain relatively close to

the surface (in a period of 15s) it only reaches depth of ∆z/L ≈ 1.5. The plumes at

Ma = 0 which start to fall much later, on the other hand, penetrate much deeper into

the bulk with ∆z/L ≈ 3.5. Also, because of the much higher penetration velocity at

Ma = 0 the thermal plumes a typical mushroom shape which is related to the formation

of a toroidal vortex around the head of the falling plume. At Ma = 350 because of the

low penetration velocity combine with the relatively high diffusion no such mushroom

shapes are observed.

At the same time instances used in the comparison of the temperature field of

the falling plumes in Figures 5.15 and 5.16, in Figures 5.17 and 5.18 the contours

of the scalar concentration at Sc = 100 are compared for Ma = 0 and Ma = 350.

The main differences between the scalar concentration and the temperature are the

boundary condition at the surface and the ratio of the thermal/scalar diffusivity to the

kinematic viscosity, i.e. Pr = 7 versus Sc = 100. While the effect of the different

boundary condition is not very crucial, the effect of the much smaller diffusivity of the

gas concentration (compared to the temperature) leads to much finer gas concentration

structures that partially overlap with the thermal plumes.
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(a) (b)

(c) (d)

Figure 5.17: Visualization of scalar transport for Sc = 100 from the simulation MB03.

The reason for this is that the buoyancy forces that cause the plumes to form and fall

down are completely determined by the temperature. At the moment the plumes fall

down the thermal boundary layer at the surface is much thicker than the concentration
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boundary layer at Sc = 100. When the cold fluids plunges down it also takes gas-

saturated fluid from the upper part of the boundary layer (close to the surface) with it.

This is a further reason why the gas concentration structures introduced into the bulk

by the falling plumes tend to be much finer than the thermal structures.

(a) (b)

(c) (d)

Figure 5.18: Visualization of scalar transport for Sc = 100 from the simulation MB53.
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(a) (b)

Figure 5.19: Visualization of scalar transport from the simulation MB03 for the cases
(a) Sc = 16 and (b) Sc = 200. The thickness of boundary layer reduces with increasing
Schmidt number.

Figure 5.19 compares contours of the scalar distribution for Sc = 16 and 200 in

the cross-section at x/L = 2.5 from the simulation MB03. The snapshots show the

distribution of the scalar concentration at t = 89s. As mentioned above, the plumes of

cold water plunge down into the bulk take saturated flow with them from the upper part

of the boundary layer. As the concentration boundary layer at Sc = 16 is much thicker

than the boundary layer at Sc = 200, relatively more saturated fluid is transported

into the bulk. As a consequence the mushroom structures at Sc = 16 are thicker than

the very fine structures observed in Sc = 200. In the corresponding contour plot of the

temperature (see e.g. Fig. 5.15c), because of the increased diffusivity, the cold water

plumes are even thicker than the high concentration plumes at Sc = 16.
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5.7 Scalar transport

5.7.1 Concentration boundary layer

Figure 5.20a shows the growth of boundary layer (BL) thickness for various values of

the non-dimensional surface heat flux φT = 0.777, 1.5, 2.33 with a fixed Ma = 0.

(a) (b)

(c)

Figure 5.20: Growth of the boundary layer thickness for various values of the non-
dimensional surface heat flux for Marangoni number (a) Ma = 0 (b) Ma = 70 and (c)
Ma = 350.
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Initially, in the upper bulk, when the heat flux is dominated by diffusion, resulting in

a gradual increase in boundary layer (BL) thickness. It can be seen that the instability

of BL thickness reaches quickly with the increasing φT , resulting in a earlier transition

to turbulence in the bulk when cold water plumes starts plunges down at t ≈ 55s for

φT = 0.777 and at t ≈ 97s for φT = 1.5, while for φT = 2.33 it takes until t ≈ 132s. This

shows that an increase in φT promotes instantaneous development of instability. Similar

results can be seen for Ma > 0. The boundary layer thickness increases with time before

it starts decreasing and the either fluctuates (MB13 and MB53) or gradually decreases

(MB11, MB12, MB51 and MB52) in time. It can also be seen that the instability

of boundary layer thickness appears to reach more rapidly with increasing Marangoni

number. For Ma = 0 (case MB03), it already appears at t ≈ 55s, for Ma = 70 (case

MB13) at t ≈ 49s and for Ma = 350 (case MB53) at t ≈ 22s.

5.7.2 Horizontally averaged temperature and concentration

profiles

The effect of Marangoni forces on the horizontally averaged surface temperature is

shown in Figure 5.21. In all simulations, a constant non-dimensional heat flux of φT =

1.5 was applied. In all cases, initially the turbulent boundary layer thickens due to

diffusion dominating the transfer process. As soon as thermal plumes start to fall down

relatively cold water from the surface is transported towards the bulk. Simultaneously,

warm fluid from the bulk is brought up resulting in an increased surface temperature.
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Figure 5.21: Influence of different values of Marangoni Ma = 0, 70, 350 on the hori-
zontally averaged surface temperature in the presence of a constant value of the non-
dimensional surface heat flux of φT = 1.5.

The falling plumes cause the flow underneath the surface to become turbulent,

so that heat transfer in that region will becomes dominated by turbulent convection.

Once the flow turned turbulent, the continuous turbulent convection of heat from the

bulk to the surface can be seen to result in a virtually constant surface temperature.

It can be seen at t = 150 s the surface temperature becomes higher with increasing

Marangoni numbers, so that the difference with the bulk temperature decreases. It is

remarkable that even though the Marangoni effect results in an increased gas transfer it

simultaneously causes a reduction in the temperature difference between the bulk and

the surface. At t = 150 s temperature differences between the bulk and the surface of

∆T = 0.37, 0.33 and 0.28 K were observed for Ma = 0, 70 and 350, respectively. In

Figure 5.22 the horizontally averaged temperature profiles obtained in MB03 (Ma = 0)
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and MB53 (Ma = 350), both having a surface heat flux of φT = 2.33, are compared.

In simulation MB03 the temperature has the surface was found to be smaller than

in MB53. This is a direct result of the increase in Marangoni number from Ma = 0

to Ma = 350 enhancing the transport of temperature from the surface to the bulk

(improve mixing).

(a)

(b)

Figure 5.22: Non-dimensional horizontally averaged temperature profiles for simulation
(a) MB03 and (b) MB53.
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It can also be seen that the thermal boundary layer in MB03 at t = 70 s is very thick

and entirely diffusion dominated with a very low temperature at the surface. At t = 100

and 150 s, the temperature at the surface is much reduced indicating the presence of

turbulent heat flux, generated by the buoyant instability causing cold water plumes to

plunge down. In MB53, at t = 20 s the thermal boundary layer is fully dominated by

diffusion and at t = 40 s, though the buoyant instability started to generate turbulence

in the upper bulk, the thermal boundary layer still shows characteristics of purely

diffusive boundary layer with a relatively low temperature at the surface. At t = 150

s the turbulence has fully developed resulting in a thinner boundary layer in a lower

surface temperature.

Figure 5.23: Marangoni effects on the instantaneous Rayleigh number Raδ in the pres-
ence of a constant non-dimensional surface heat flux of φT = 1.5.

Figure 5.23 shows the Marangoni effect on the instantaneous Rayleigh number Raδ

in a presence of a fixed non-dimensional surface heat flux of φT = 1.5. Raδ was calcu-
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lated using the boundary layer thickness δ = Ts/(∂T/∂z). Initially, while the vertical

turbulent heat flux is still negligibly small, the heat flux in the upper bulk is still dom-

inated by diffusion, resulting in a gradual increase in both δ and Raδ. With increasing

Marangoni number, the Rayleigh instability gets more and more enhanced resulting

in a earlier transition to turbulence in the upper bulk which is clearly visible in the

figure where plumes of cold water starts falling down already at t ≈ 20 s for Ma = 350

(MB53) and at t ≈ 54 s for Ma = 70, while for Ma = 0 it takes until t ≈ 74 s. Also, it

can be seen that after the vertical turbulence heat flux is established in the upper bulk,

in all simulations the temperature at the surface is much reduced. Here, induced mixing

that results from the Marangoni effect causes a surface temperature that reduces with

increasing Marangoni number. The Rayleigh number Raδ increases with time before it

starts decreasing and then either fluctuates (MB53) or gradually decreases (MB03 and

MB13) in time.

(a) (b)

Figure 5.24: Maximum of Trms in time to observe the effects of (a) Marangoni forces
and (b) non-dimensional surface heat flux.
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In Figure 5.24a the effect of the Marangoni forces on the maximum of the horizontal

averaged temperature fluctuations in the bulk is shown at a surface heat flux of φT =

0.777 for Ma = 0, 70, 350. An increase in the maximum Trms indicates transition to

turbulence in the upper bulk. It can be seen that the transition happens much earlier

at higher Marangoni numbers. For instance, at Ma = 350 the sharp increase in Trms

already starts at t ≈ 25 s at Ma = 70 it starts at t ≈ 60 s, while at Ma = 0 it starts at

t ≈ 80 s. It is interesting to see that the maximum Trms level in the bulk, once the flow

has become fully turbulence, reduces with increasing Marangoni number. This indicates

that the Marangoni forces tend to promote mixing, resulting in a reduced variance in

temperature in the bulk. The effect of the surface heat flux on the maximum Trms in

the bulk is shown in Figure 5.24b for Ma = 0. The maximum Trms is normalised by the

non-dimensional surface heat flux. Increases in heat flux result in increases in Rayleigh

number, so it is to be expected that larger heat fluxes result in earlier transition to

turbulence. For instance at φT = 2.33 (MB03) the onset of transition is at about

t ≈ 50s, at φT = 1.5 (MB02) it is at t ≈ 65, while at φT = 0.777 (MB01) it is at t ≈ 80

s. Once the upper bulk is fully turbulent the normalised Trms values can be seen to

be approximately equal, indicating that these maximum values scale linearly with the

surface heat flux.

Figure 5.25 compares the Marangoni effect on the horizontally-averaged Trms distri-

bution as a function of the z-coordinate at t = 101.25 s for various surface heat fluxes,

φT = 0.777, 1.5 and 2.33. For small heat fluxes and small Marangoni numbers it takes

quite a long time before the Rayleigh instability causes cold water plumes to plunge

down. For instance, in figure 5.25 (a), with a heat flux of 0.777, the Rayleigh instability
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in simulation MB01 (Ma = 0) is very slow to develop so that nonzero Trms can only be

found in the upper bulk while further down it is mostly zero.

(a) (b)

(c)

Figure 5.25: Marangoni effects on horizontally averaged Trms distribution using the
Schmidt number Sc = 16 at t = 101.25s for various non-dimensional surface heat flux
of φT (a) 0.777, (b) 1.5 and (c) 2.33.

In MB11 (Ma = 70), the Rayleigh instability is somewhat enhanced by the Marangoni

effects so that much larger values of Trms are obtained in the upper bulk, though, also
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here, deeper down into the bulk it is still zero. Only at Ma = 350 (MB51), the en-

hancement of the Rayleigh instability has been so strong that also deeper into the bulk

nonzero values of Trms are found.

Very similar results can be seen for the scalar concentration at Sc = 16, shown in

Figure 5.26a . Also here, for the lowest surface heat flux of 0.777, only for the highest

Marangoni number a nonzero Crms is obtained in the bulk. For higher surface heat

fluxes the Rayleigh instability becomes stronger and, also for lower Marangoni numbers,

at t = 101.25 s, the instability is much more developed resulting in the introduction

of more turbulence in the bulk. As shown in Figure 5.26b, at φT = 1.5 the Rayleigh

instability at Ma = 0 (MB02) is more developed than at φT = 0.777 resulting in a much

larger peak in Trms even though the Trms is still zero deeper down. At larger Marangoni

numbers the instability has developed further as can be seen by the higher values of

Trms further down into the bulk. The main reason that the largest peak in Trms in

the upper bulk is reached at the lowest Marangoni number (MB02) is because in this

simulation the cold plumes started to plunge down for the first time relatively recently

causing a large variation in temperature in the upper bulk. Compared to the MB52,

in MB12 the Trms values obtained around z/L = 3 are found to be larger. Again, this

is due to the slower development of the Rayleigh instability (enhanced by Marangoni

forces with Ma = 70 rather than Ma = 350) so that the turbulent mixing in the bulk

is not very well developed. Note here that in a very well mixed turbulent flow, the Trms

value would be almost zero. Again, the results obtained at a scalar concentration at

Sc = 16 and a surface heat flux of φT = 1.5, shown in Figure 5.26b, are quite similar.

Also here Crms is zero in the deeper bulk only for the simulation with Ma = 0 (MB02),
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while at the same time the fresh plumes in the upper bulk cause the largest values of

Crms in the upper bulk. The other two simulations show a much deeper penetration of

both the scalar and the turbulence in the bulk.

(a) (b)

(c)

Figure 5.26: Marangoni effects on horizontally averaged Crms distribution at t = 101.25s
for various non-dimensional surface heat flux of φT (a) 0.777, (b) 1.5 and (c) 2.33.

Figure 5.25c shows the Trms distribution for the highest surface heat flux φT = 2.33.

Here, in all simulations the Rayleigh instability is quite well developed as can be seen
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by the nonzero values of Trms for all z/L > 3. This figure allows us to compare

the Marangoni effect for a developed Rayleigh instability. It can be seen that with

increasing Marangoni number, Trms tends to reduce for all z even though the surface

heat flux in these simulation is exactly the same. This implies that turbulence, and

hence mixing, increases with increasing Marangoni forces (that promote the Rayleigh

instability). In contrast, as displayed in Figure 5.26c, despite the improved mixing the

scalar concentration Crms at Sc = 16 and a surface heat flux of φT = 2.33 was found to

slightly increase with Ma. This can be explained by an increasing scalar flux through

the surface, which will tend to increase Crms. That this is indeed the case will be shown

in Section 5.7.4.

5.7.3 Mass flux

To determine the total mass flux, it is important to know both the convective (turbulent)

and diffusive mass fluxes (see section 2.1). In Figure 5.27a and 5.27b the variation of

time-space-averaged diffusive (D∂c/∂z) and convective (c′w′) mass fluxes with depth

carried out for Sc = 16 − 100 are presented for simulation MB01 and MB13. The

ordinate represents the depth which was normalised with the viscous layer thickness.

These figures clearly shows the influence of Schmidt number Sc on the mass fluxes. At

low Sc, the region where molecular diffusion is dominant is relatively thick. However,

at Sc = 100, the contribution of the convective fluxes is already of the order D∂c/∂z

almost immediately below the surface. Note that the non-dimensional surface heat flux

is fixed to 0.777 for all profiles. Thus, with larger Schmidt number, the convective and

diffusive fluxes meet together almost immediately below the surface, as compared to
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smaller Schmidt number.

(a) (b)

Figure 5.27: Variation of mass flux with depth at t = 200s using a non-dimensional heat
flux of φT = 0.777. The mass fluxes are normalised with total flux (D∂c/∂z+ < c′w′ >).
Diffusive −D∂c/∂z (solid lines) and convective < c′w′ > (dashed lines) mass fluxes
plotted against z/L at various Sc numbers for (a) Ma = 0 (MB01) and (b) Ma = 70
(MB11). Only every fifth data point is shown.

Effect of two different Marangoni numbers on normalised mass flux profiles are

shown in Figure 5.29. At the surface, the convective mass fluxes are zero as any con-

vective transport vanishes in the immediate region of the water surface. In this region,

the contribution of the diffusive flux to the transfer mechanism is maximum but reduces

rapidly to 50% at around 4.94z/L (see Figure 5.29b). After this point, the importance

of the convective mass transfer increases quickly and beyond z ≤ 4.6L it becomes al-

most completely dominant. A detailed plot is shown in Figure 5.29b. It shows that in

simulation MB01 with Ma = 0, the region diffusive flux is dominant is relatively thick

as compared to simulation MB13 with Ma = 70.

132



5. Marangoni forces 5.7. Scalar transport

Figure 5.28: Variation of mass flux with depth z/L at various Sc numbers for Ma = 0
(MB01) and Ma = 70 (MB11) with a fixed non-dimensional heat flux φT = 0.777 at
t = 200s. The mass fluxes are normalised with total flux (D∂c/∂z+ < c′w′ >).

We conclude that, with the smaller Marangoni number, the convective and diffusive

fluxes meet together almost immediately below the surface, as compared to the larger

Marangoni number.
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(a) (b)

Figure 5.29: Variation of mass flux with depth for two different Marangoni numbers (a)
Ma = 0 (blue line) and Ma = 70 (red line) with a constant Schmidt number Sc = 50
at t = 200s. (b) Detailed plot of variation of mass flux with depth for Ma = 0 and 70
with Sc = 50 and φT = 0.777.

5.7.4 Gas transfer velocity

The instantaneous gas flux j at the interface is dominated by diffusion and can be

written as

j = D
∂C

∂z

∣∣∣
i
. (5.30)

Subsequently, the averaged gas transfer KL can be determined using the expression

j = KL(Cs − Cb) = D
∂C

∂z

∣∣∣
i

(5.31)

where Cb and Cs are the saturated concentration in the bulk and at the interface,

respectively. Figure 5.30 shows the influence of Marangoni numbers Ma = 0, 70, 350

on the gas transfer velocity KL. The gas transfer velocity KL was normalised using the
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velocity scale U = κ/L. For each simulation performed at a fixed combination of Ma

and heat flux, several convection diffusion equations for scalar transport were solved

simultaneously for Schmidt numbers Sc = 16, 50, 100, 200. In Figure 5.30, the gas

transfer velocity KL was shown as a function of the Schmidt number for three different

Marangoni numbers, Ma = 0 (MB01), 70 (MB11), 350 (MB51). The interpolating

curves (M1, M2 and M3) were produced by assuming the theoretical relation

KL =
1√
Sc
, (5.32)

which is derived from Danckwerts’ model [14] (see Section 2.4.1.3). It can be seen that,

also for Ma > 0, Danckwerts’ model still provides a very good interpolation of the

results. The Marangoni forces do not appear to effect the validity of the model.

Figure 5.30: Variation of transfer velocity KL with Schmidt number Sc =
16, 50, 100, 200 at time t = 150s.
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In Figure 5.31, a comparison of the gas transfer velocity KL (normalised with veloc-

ity scale U = κ/L) is shown with the non-dimensional surface heat flux φT . KL(DNS)

results were obtained from existing DNS. While, KL(SDM) results were calculated using

the surface divergence model.

(a) (b)

(c)

Figure 5.31: Comparison of the gas transfer velocity KL obtained by using the surface
divergence model (SDM) and the direct numerical simulation (DNS) with the non-
dimensional surface heat flux for Marangoni forces (a) Ma = 0, (b) Ma = 70 and (c)
Ma = 350.

The SDM was discussed previously in Section 2.4.1.6. This model used the rms of
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the divergence of the horizontal velocity at the surface and is defined by

KL = c
√
Dβ′. (5.33)

The importance of surface divergence model (SDM) for interfacial gas transfer was

shown in the study of McCready et al. [63]. Apart from this, many researchers further

verified the model using both numerical and experimental data [32, 92, 62, 44].

In Figure 5.31, the constant of proportionality c used in SDM depends on the

Marangoni number. It can be seen that the value of c slightly decreases with increasing

Marangoni number. For Ma = 0, 70 and 350, c was fixed to 0.5956, 0.5236 and 0.4226,

respectively. For case (Ma = 0) in Figure 5.31a, a good agreement was found between

KL(DNS) and KL(SDM), while in part (b) and (c) the actual quality of the surface

divergence model becomes worse when Marangoni number increases from zero. Figure

5.32 shows the Marangoni effects on the gas transfer velocity KL in time for a constant

value of the non-dimensional surface heat flux φT = 0.777. KL was normalised using the

velocity scale U = κ/L. Initially, it was found that the transfer velocity smoothly de-

creases with time before it sharply increases and then either fluctuates about a plateau

(MB53) or slowly decreases in time (MB03 and MB13). The initial decrease in KL

corresponds to the period in which gas transfer is completely dominated by diffusion.

As the concentration boundary layer becomes thicker and thicker, its gradient at the

surface reduces resulting in a lower KL value. The sudden increase in KL happens when

plumes of saturated flow start to plunge down. The falling plumes significantly reduce

the thickness of the concentration boundary layer at the surface, resulting in a larger

concentration gradient at the surface, and hence in a larger KL value.
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Figure 5.32: Effect of Marangoni Ma = 0, 70, 350 on the gas transfer velocity KL.

After the initial phase of plumes plunging down, the near-surface flow gradually

becomes turbulent, resulting in a continuous turbulent convective transfer of saturated

flow from the surface to the bulk. At Ma = 0 and Ma = 70 (no or a relatively small

Marangoni effect) the gas transfer in the final phase gradually reduces in time while for

the higher Marangoni number, Ma = 350 (MB53), the gas transfer velocity remains

more or less constant. As the heat transfer gradient in the three simulations was exactly

the same, any differences in KL are the result of differences in Marangoni number. At

t = 150 s, compared to Ma = 0, at Ma = 70 the gas transfer velocity was found

to increase by about 21%, while at Ma = 350 this increase was approximately 90%.

This illustrates the effectiveness of temperature induced Marangoni forces in promoting

interfacial gas transfer.
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5.8 Conclusion

The aim of the research presented in this chapter was to investigate the importance of

surface temperature-gradient-induced Marangoni forces when simulating the develop-

ment of a buoyant convective instability driven by a fixed temperature-gradient at the

surface (to model cooling). It was found that the Marangoni forces significantly pro-

mote the buoyant (Rayleigh) instability and not only lead to a much faster development

of the instability but also result in a more intense turbulent mixing in the upper bulk.

The increased turbulent mixing in the upper bulk results in a more effective transport

of heat from the surface downwards. Comparing simulations with the same, fixed,

surface temperature gradient the Marangoni-induced increased transport of heat away

from the surface results in a reduced difference between surface and bulk temperature.

With further increases in Marangoni number, this difference between surface and bulk

temperature was found reduce even further. Finally, the Marangoni-induced increase

in turbulent mixing in the bulk, also resulted in a significant increase in air-water gas

transfer.
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Chapter 6

Conclusion and suggestions for

future work

6.1 Conclusion

In the present study, the mean surface age was approximated by two different ap-

proaches: i) The Lagrangian particle tracking approach and ii) The continuum ap-

proach. Generally in fluid mechanics, Lagrangian methods (with the frame of reference

moving with the flow) and Eulerian methods (with fixed frame of reference) can both

be used to calculate fluid flow.

The Lagrangian particle tracking method is based on tracking trajectories of discrete

fluid particles so that the surface age of each individual particle can be determined

directly. After determining the mean surface age from tracking the trajectories of a

large number of particles, the gas transfer velocity KL is usually calculated using (a
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possibly modified version of) Danckwerts’ model. The simultaneous tracking of huge

quantities of particles is the main disadvantage of the Lagrangian method as it requires

extensive book keeping. Hence, to introduce this tracking of huge numbers of individual

particles in traditional Eulerian codes (in which the continuum assumption is employed)

extensive modifications are required, especially in massively parallel codes. A more

natural way to calculate the mean surface age in such codes is to use a continuum

approach and replace the individual particles by a surface age density distribution.

In contrast to the Lagrangian particle tracking method, the fluid parcels employed

in the continuum method can deform, so that positive surface divergence will result in

enlargement of the surface area of the parcel, while negative surface divergence will make

it smaller. This extra degree of freedom is the main difference between the Lagrangian

and the continuum approach. The latter was found to be a good predictor of the gas

transfer velocity (with a maximum error of about 8%).

A series of direct numerical simulations (DNS) was performed to study the effects

of Marangoni forces on the instantaneous development of a buoyant convective insta-

bility for several Sc-numbers per simulation. For the flow solver, the convective terms

were solved using a fourth order kinetic energy conserving discretization described in

[91], while the diffusive term was solved using the fourth order central scheme. After

substituting the descritized momentum equations into the continuity equation a Poi-

son equation for the pressure was obtained. This Poison equation for the pressure was

solved using the conjugate gradient method with simple diagonal decomposition. Time

integration was performed using the second order Adams-Bashforth method. Simulta-

neously with the flow, five scalar convection diffusion equations were solved. The first

141



6. Conclusion and suggestions for future work 6.1. Conclusion

scalar, the temperature, is non passive as it affects the flow through buoyancy forces.

The other scalars are passive and represent the transport of atmospheric gases. The

Prandtl number for the temperature was Pr = 7 and the Schmidt numbers for the

mass transport were Sc = 16, 50, 100, 200. The simultaneous calculation of the four

transport equations for the scalar concentration allows a non biased comparison of the

effect of Schmidt number on the gas transfer velocity KL. The setup of the computa-

tional simulations was inspired by the experiments carried out by Jirka et al. [41]. A

200× 200× 252 baseline mesh was employed to solved both the flow, temperature and

the scalar transport equation at Sc = 16. For the scalar transport equations at higher

Schmidt numbers (Sc = 50, 100, 200) the basemesh was refined by a factor of two in all

directions.

A grid refinement study was performed to assess the adequacy of the resolution

used for the base mesh. The results shows that all velocity profiles were in excellent

agreement. The largest difference observed between the velocities in the various simu-

lations was less than 10−8, which is negligibly small. Based on the similarities between

the results obtained on the three refined meshes, it was concluded that the mesh size

used in MB10 (see Table 5.2) was sufficiently fine to accurately resolve the buoyant

instability.

Furthermore, The Marangoni effect on the turbulent flow statistics was evaluated for

a range of Marangoni number (Ma = 0, 70, 350) at time t = 150s. Both horizontal and

vertical velocity fluctuation level change due to the Marangoni effect. Note that with

increasing Marangoni number the horizontal fluctuations at the surface were found to

increase, which is the direct consequence of the Marangoni forces acting at the surface
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6. Conclusion and suggestions for future work 6.2. Suggestions for future work

to promote Rayleigh instability.

A study of gas transfer velocity was carried out for four Schmidt numbers ranging

from Sc = 16 to Sc = 200. For Ma = 0, the gas transfer velocity shows a very good

Schmidt number scalability with Sc−1/2, the scaling as used in Danckwerts’ model.

The variation of diffusive and convective mass fluxes were estimated for a range of

Schmidt numbers Sc = 16-100. With increasing Schmidt number the location where the

convective (turbulent) and diffusive gas fluxes were found to balance was observed to

get closer and closer to the surface. This is directly related to reductions with Schmidt

number in the thickness of the concentration boundary layer adjacent to the surface.

We conclude that, the Marangoni forces that promote the Rayleigh instability result

in significant increase in the amount of atmospheric gases transferred across the air-

water interface and, hence, should not be neglected.

6.2 Suggestions for future work

So far the continuum method was only used to estimate the mean surface age and to

calculate the gas transfer velocity KL from the mean surface age, Danckwerts’ model

was subsequently employed. More investigation will be needed to be able to directly

calculate the gas transfer velocity using the continuum method.

As the continuum method is especially suited to calculate the mean surface age

without the need to track a huge number of particle paths, it would be nice to see

it implemented inside the main flow solver. The advantage of this would be that the

accuracy of the mean surface age calculations would improve by the availability of the

time dependent 3D velocity field near the surface (avoiding the need to either interpolate
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between snapshots of the interfacial velocity or use a frozen velocity assumption).

It is unlikely that the assumption of a constant heat flux at the surface is a com-

pletely accurate model for evaporative heat transfer. This needs to be further investi-

gated, for instance by explicitly resolving not only the water side but also the air above

the water surface. In this way, the rate of evaporation can be directly calculated and

continuity can be ensured that the diffusive fluxes at the surface (on the air side and

the water side). Based on the results obtained in Chapter 5, it is likely that Marangoni

effects due to temperature gradients at the surface will persist to play an important

role in interfacial gas transfer.

The enhancement found of the interfacial gas transfer velocity by the surface tem-

perature gradient induced Marangoni effect shows that the role of buoyancy induced

turbulence on interfacial mass transfer might be much more important than previously

thought. It would be worthwhile to assess this by performing simulations of air-water

gas transfer driven by, for instance, buoyancy induced and bottom shear induced turbu-

lence and perhaps also study the relative importance of buoyancy induced turbulence

compared to wind shear induced turbulence at lower wind speeds.
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