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Summary.

This paper is concerned with the study of a class of methods for solving
second and fourth-order two-point boundary-value problems. The methods under
consideration are modifications of the standard cubic and quintic spline
collocation techniques, and are derived by making use of recent results con-

cerning the a posteriori correction of cubic and quintic interpolating splines.
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1. Introduction.

This paper is concerned with the study of a class of methods for computing smooth
cubic and quintic spline approximations to solutions of second and fourth-order boundary-
value problems for ordinary differential equations. This study has been motivated by
the work of Daniel and Swartz [6] who proposed and analyzed a 0(h*) ) cubic spline
collocation scheme, the so-called extrapolated collocation method, for the solution
of second-order problems. Here, we consider the problem of deriving a class of similar
collocation schemes of high order, by making use of the results of Lucas [ 9] and our
recent results [11], concerning the a posteriori correction of cubic and quintic inter-

polator splines.

Our specific objectives are as follows:

(1) To extend the work of [6] to a wider class of methods by making full use  of
the results of [9, 11], which were not available to the authors of [6].

(i1) To present a unified convergence analysis based on that of the extrapolated
collocation method of [6], but covering the wider class of methods.

(ii1)) To show that the results of [9, 11] can also be used for computing derivative
approximations of further increased accuracy, at any point of the interval under

consideration.

The following notation will be used throughout the paper:

(1) mpn will denote a uniform partition,

Ty ! xi:a+ih, h=(b—-a)/n; 1=0,1....n, (1.1)

of a bounded interval [a,b].

(i) Sy (my), m > 1, will denote the space of all smooth splines on [a,b], of

degree m and with equally spaced knots (1.1), i.e.

Sm(mp): =\s: s € cm_l[a,b],,and on each of the

subintervals of m, s is a polynomial

of degree at most m} (1.2)

(i11) [|.|| will denote either the function norm |.|| [a,b] OF the infinity

vector and matrix norms.



-
(iv) yi(j), si(j) , e.t.c. will denotes y(j)(Xi), s(j)(xi), et.c

2.  Preliminary results.

The purpose of this section is to summarize the results of [11], on which much
of the subsequent analysis is based. These results concern the a posteriori correction
of non-periodic cubic and quintic splines, and are based on earlier results for odd
degree periodic splines due to Lucas [9].

Withr=2orr =3, lets bea Sy, - 1 (n,)-interpolate of a sufficiently smooth
function y defined on [a,b]. That is, s is either a cubic (r = 2) or quintic (r = 3)
spline, satisfying the n + 1 interpolation conditions s; =y; ; = 0,1,...,n, and an
appropriate set of 2r - 2 end conditions. Also, let Yﬁ) denote the corrected spline

approximation to y(j) , obtained as indicated in [11: Theor.2.2] by adding M (1 <M < 3)

correction terms to s(j) .Thatis,for] <M <3,0<pu<1 and0 <j < 2r,

Mol | p2r=j+m

YO (x. +ph) = s (x, +ph)+ 4@+ p ey Li_01 n-1, (2.1
w (X +ph) (i +uh)+ 2 Qrem! Jiu m’ (L) 2.1

(2r+m)

where Py,; m = 0,1,2, are the polynomials listed in (2.2)-(2.3) below, and d1 M

(2r+m)

are spline approximations to the derivatives y; of y. These approximations

(2r-2)

are given by linear combinations of the spline derivatives h as indicated in

(2.4)-(2.5) below.
The polynomials Py, ; m = 0,1,2, in (2.1) are as follows:

(i) Whenr =2, i.e. when s is a cubic spline,

5.5 2
P =pt -2+, Rw=y’ —§u3+§u, P = p'-p’. (22

(i1) When r = 3, i.e. when s is a quintic spline,

5 1 7 7
Po(u)=u6—3u5+5u4—5u2, Pl(u)=u7—5u5+5u3—u
Py(u)=ud - 7u% +6u2. (2.3)



Let

~(2r) 1 . r_ . .
! :=h—2{si(f1 D _osCr2 g2l 210 n-l, 2.4)

Then, the values dl(zl\r,l) in (2, 1) are as follows:

(1) dﬁr) _ di(,zzr) — di(f;) =y i=12,.,n-1, (2.5a)
and
2r) _ (2 2 ~(2r) ~(2 2 ~(2 ~(21r)  ~(2
d%j) ~5@0), d(o,§)= 2520 20, d<0’3r) = 3520 3520 3@, (2.5b)

The remaining values di(’zl\ﬂl“), 2<M<3,and di%r”) are given in terms of the

expressions (2.5a, b) and the three additional expressions
) _ ~(2 2 ~(2n) =2 2 ~2 ~(2r) | ~(2
A =92, di) =252 -5, i = 391 -39 + 5, (2.5¢)

as indicated in (ii), (iii) below:

(ii) der = i faen, —d®n, | 2<M<3i=12.n-1,  (2.6a)

and
dis™ =di3, diit =243 —df. (2.6b)
(iii) di3 = hiz {df%{g —2d% +d{3, } . i=12,..,n-1, (2.7a)

and
diy™ =dy . (2.7b)

O
Remark 2.1  As was previously remarked the values di(21\5[+m) , given by (2.4)-(2.7),

(2r+m)

are approximations to the derivatives y. Y; , of y. For the order of these

approximations see Remark 2.4 below.
O

Remark 2.2 It is important to observe that for i = 1,2,... ,n-1, the values di(zl\r/[)

in (2.1) are independent of the number M of correction terms used i.e., from
(2.5a),
1
@2r) _ 42 _ 40 _ (2r-2) (2r-2) | (2r-2) -
diV =diy) =di3’ = . {si_lr =287 48 }; i=12,.,n-1.

i+1

2.8)



Similarly, from (2.6a) and (2.7a),

1 _ _ _ _
qarh _ qarsy _ {_Sgr 2 | pg2r2) _ 2 o r 2)};
1,2 1,3 h3 1-2 1-1 1+1 142
1=2,3,....n— (2.9)

and

1 _ _ _ _ _
d§2r+2) _ {ngr 2) 4S§2r 2) n 6s§2r 2) _4S§2r 2) n ngr 2)}’
1,3 h4 1-2 1-1 1 1+1 1+2

1=2,3,...,n—2. (2.10)

Therefore, the subscript M is needed only because the values do(i\r/l) and

d;ﬁ”; i=0,1, n-1, which approximate respectively the "end" derivatives y{"
and y*"*";i=0,1,n-1, depend on the number of correction terms used.

i B
O
We can now state the main result concerning the corrected spline approxi-

mations Yl(vjl) as follows; see [11: Theor.2.2] and also [9: Theor.4].

Theorem 2.1. Let YéJ) = sV and let Yl(vjl)’ I<SM<3 be the corrected

spline approximations defined by equations (2.1)-(2.7). Then, for 0= M< 3, 0= p=1
and0 < j < 2r,

y Do+ = Y (x+pmy+ 0@ Myioonn-n @1
provided that y e C**™ [a,b], and the end conditions of s are of order

p= 2+M in the sense of Definition 2.1 of [11: p.491].
O

We end this section by making several remarks concerning the correction

formula (2.1) and the result (2.11) of Theorem 2.1.

Remark 2.3. The assumption concerning the order p of the end conditions of the
spline s is necessary for Theorem 2.1 to hold and, in this sense, it is also
necessary for the analysis of the collocation methods considered in the present
paper. However, as will become apparent later, the actual end conditions of s
do not play an explicit role in the analysis or the implementation of the methods.
For this reason, there is no need for us to repeat here the criteria used in [

for determining the order of end conditions.
O
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Remark 2.4. Let yec®™™ [a,b], 1 <M < 3, and let the end conditions of s be
of order p > 2 +M. Then, for i=0,1,... ,n-1, the values dﬁ;““) in (2.1) satisfy
the following: ,

yi(zf):di@&)m(hM), 1<M<3, (2.12)

y(izm) _ dﬁ\rfl) +ohMh,  2<Mm<3, (2.13)
and

y(izr+2) _ d§2l\rd+2) +0(h), M=3; (2.14)

see [11: p.p. 492-93] and also [9: Theor.3].
O

Remark 2.5. WithM =0, (2.11) shows that if yec*[a,b] and the end conditions

of s are of order p > 2, then

1sY =y = 0h2i),0 < j< 2r 1| (2.15)

In addition, (2.11) gives the points in [x;,x; ;] where the derivatives of s

display superconvergence. Thus, if yecml[a,b] and the end conditions of s

are of order p > 3, then it follows from (2.11) that

in [0,1] These zeros are as follows:

(1) Ifr=2,1.e. if s is a cubic spline, then
m=040 = iV3u =1 (2.17)

(i1) If r=3, i.e. if s is a quintic spline, then

(2.18)

We note in particular that the odd derivatives s(2j+l),0 <j<r-2, display

superconvergence at the knots, i.e.

Yy S22y, 0<j<r-2; i=0l...n, (2.19)

1



-6-

whilst the best order of convergence which can be achieved by the even derivatives

at the knots is that given by (2.15), i.e.

y = s oh? ), 1<j<ri=01,.n-1. (2.20)
O
Remark 2.6 In both the cubic (r = 2) and quintic (r=3) cases, the first r-1 odd
derivatives of Py (n), the first r even derivatives of P;(n) and the first r odd

derivatives of P,(u) are zero when p = 0. Thus, Theorem 2.1 implies the following:

(i) Ify€ C?""? [a,b] and the end conditions of s are of order p>4, then

for 1<j<r,
) ' hzrfzj ) .
y3D =0 2 )rpéz”(O)dﬁzf) +0(h* 2F2)i = 0,1, 1, (2.21a)
r)! :
1e.,
Y& = Y& (x;)+ 0h 22 i =01, -1, (2:21b)

where Y1x denotes the corrected spline approximation Y; but with the value dgrl)

replaced by dé?g) ; see Remark 2.2.

(i) Ify € C*™*3 [a,b] and the end conditions of s are of order p = 5, then
for1 <j<r-1,
2r-2j+2

. . J . .

1=0,1,.....n-1,
1e.,

yD = y @Dy Lo ), =051
where yz*denotes the corrected spline approximation Y, but with the values

dg’zzr“) ;i=0,1,n-1, replaced respectively by dgf”) ;i=0,1,n-1.
O
Remark 2.7. If yec*" [a,b] and the end conditions of s are of order p > 6,

then it can be shown that for 1 <j <,

y & =y (x)+0(h*¥);i= 23,0 -1, (2.23)

where k2j =2r—2j+4 rather than k2j =2r—-2j+3 as predicted by Theorem 2.1;



see [11: Remark 2.3 (ii)]. Since

ey S LIRINC) I aen G g+
V(xp) =si" ] Dy pl ), 2.24
(x;) ann ), (0)d; ( +2), (0)d; (2.24)
it follows easily from (2.23) that for 1 <j<r,

y &) =y () + 02 24y = 0,1, n -, (2.25)

where Y3, denotes the corrected approximation Y3, given by (2.1)-(2.7), but with

the expressions d&r),df? and d(z”z) in (2.5b), (2.5¢) and (2.7b) replaced

respectively by the following more "accurate" expressions:

d?y) = a3 _ 630 4 4500) _50r), (2.26)

di?) = 4351 - 635, + 4701 -5, (2.27)

dZr+2) = oqr2) _ g 2r+2); (2.28)
see the discussion in p.494 of [11]. .
(2r+m)

Remark 2.8. Because the values d; are given by the expressions (2.4)-(2.7),

the "corrections" under the summation sign in (2.1) are in terms of the spline

(2r-2)

derivatives s; ; 1.e. 1n terms of the second derivatives ng) in the cubic

case, and the fourth derivatives sg“) in the quintic case. However, it follows

easily from the analysis of [9] and [11] that the corrections can also be expressed

in terms of other spline derivative values. This can be done by replacing the

expressions (2.4) for ?-(H), and (2.5) for dgzhﬂ), by other suitable approximations

1

to yi(zr). The essential requirement for such alternative representations is that

the new approximations di(i\}) also satisfy (2.12), under the hypotheses of Remark 2.4.
For example, in the quintic (r = 3) case the two corrections in Y, can be expressed
in terms of second derivatives, by replacing (2.4) and the formulae for df62) in

(2.5) respectively by :

y® = L £E) _450) 165 a5 15 bi=23....n-2 (2.29)

- 1+1 1+2
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d=9%i=23,..n-2, (2.30a)
d) =350 -259,d") =231 ~ 51, (2.30b)

and
dfaé—)l,z = 2?1(16—)2 - ?1(16—)3ad$16,; = 3?516_)2 - ?fﬂ (2.30c)

3. A class of modified collocation methods for linear problems.

In this section we describe in general terms a class of collocation-type methods
for the solution of second and fourth-order two-point boundary-value problems of the

form:

[¥)i= 60+ X e (y 0 ()= £ x o] (3.12)
j=
By =0, (3.1b)
where either r = 2 or r = 3, and where (3.1b) denotes a set of 2r - 2 linearly

independent boundary conditions of the form
2r-3 ) )
Y ey V@)+ By b)=0, r=23, 0<i<2r-3. (3.1b)
=0
Our main purpose is to provide a motivation for such methods, and to set up suitable
notation for use in subsequent sections.
Let n, be the uniform partition (1.1) of the interval [a.b], and let s be

a S$yr-1(my)-interpolate of the solution y of (3.1). (That is, s is either a
cubic or a quintic spline depending on whether (3.1) is a second-order (r =2) or
fourth-order (r =3) problem.) Also, let y and s satisfy the smoothness and
continuity requirements of Remark 2.5 for the result (2.15) to hold. Then, it

follows from the equations

2r-3

[yJxi)= v+ Te,(x y = £ + 0(h?);i = 0,L,...,n, (3.2)

j=0

and the boundary conditions (3.1b) that

i

s@ D15 e (x k) = £+ 0(h2 i = 0.1,..m, (3.3)
)



and
Bs = 0(h"), k> 3; (3.4)

see Remark 2.5. The above two results lead naturally to the well-known
collocation method, where spline S approximating the solution of (3.1) is
obtained from (3.3) and (3.4) by simply dropping the 0(h®) and 0(h* ) terms.

That is, S is defined by the n + 2r - 1 linear equations

2r-3 .
51y x5V =5 i=0l..n, (3.5a)
j=0

1

and
3=0 (3.5b)

The "extrapolated collocation method" of Daniel and Swartz [6] is similar
to the above collocation method, but the approximating spline S is defined by
a different linear system. More precisely, the defining equations consist of the
same 2r - 2 "boundary equations" (3.4), but in this case the n + 1 equations approxi-

mating the differential equation at the knots are obtained from (3.2) as follows:

(a) The values y; and the derivatives ygj),l <j<2r-3, are replaced by

and the corresponding spline derivatives Ei(j),l <j<2r-3, (That is the replace-
ment of yfj),1£j£2r—3, is the same as in the collocation method.)

(b) The derivatives y<2r'2);i:0,1,...,n, are replaced by linear combinations

i

of the spline derivatives 5% as follows:
yg2r—2) N go(zrfz) n %{ZEOOFZ) . 5§1(2r—2) + 452(2#2) . 53(2#2)}’ (3.62)
y ) 5 5D L 5er) a5 L 50eh oy n—,
(3.6b)
y& 2 5502 L L5024 450 5502y pger)) (3.6¢)

Remark 3.1. The method proposed in [6 ] is for the case r = 2 only, and is based on

the observation that the linear combinations (3.6) with r = 2 and with § replaced
by s , are 0(h*) approximations to ygz). In other words, the paper of Daniel

and Swartz is concerned only with the cubic spline solution of second order
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problems. However, as will become apparent in Section 5.2, their method can be
extended trivially to the case r=3, by making use of the a posteriori correction

results of Section 2. O

Both the collocation and the extrapolated collocation methods may be

regarded as special cases of a more general class of methods, in which the
replacement of the derivatives ygj) in (3.2) is performed by using formulae of

the type

g =) LIKC2) | o] 1<j<ar-2; iz, (3.7)

J

where the notation L.{ }[g] has the following meaning: "Given a function g

1
defined on [a,b], Li{j}[g] denotes a linear combination of values of g at a small

number of points of the subdivision m , near the point x; " For example, in the

collocation method
L g]l=0, 1<j<2r-2; i=01...n, (3.8)

whilst in the extrapolated collocation method of [6],

Lillgl=0, 1<j<2r-3 i=01...n, (3.92)

L'lg] = {22, - 5g, + 42, - 8.}, (3.9b)

Li{zr’z}[g] =L {gF1 -2g.+¢g., }; i=12,..,n—1, (3.9¢)
and

LC2[g] = é g, +4g,,-52,,+2¢,} (3.9d)

More generally, the corrected spline approximations, defined by (2.1)-(2.7), give
vy = YD (x) + onZTItMy, i=0,1,.n, (3.10)

and these formulae are of the type (3.7),

The equations (3.7) can be expressed more compactly as

y9 = 50 4 A 5@ 4 omY), 1<j<2r-2, (3.11)
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where X(j) and §(j) are the (n +1)-dimensional column vectors

Y0 =&§j> }?:0 and s = {§i<j) }1?:0

isan (n+ 1) x (n + 1) matrix whose form depends on the coefficients of the
linear combinations Li{j}[.], and 0(h”) is an (n + 1 )-dimensional column vector
whose components are all 0 (h”). With this notation, the substitution of the

expressions (3.7) into the equations (3.2) gives an (n + 1) x (n + 1) linear system
of the form

2r-3 .
Aps®P 4 Ty A sW = f 4 om’),  r=minfr;),  (3.12a)
j=0 J
where:

(a) Ap,j0 < j < 2r—3,are the (n+ 1) X (n+ 1) diagonal matrices
An,; =diagle;(x0),€{(x))sej(xp)} (3.12b)
(b) A, isthe (n +1) x (n + 1) matrix
2r-3
A, = I+An’2r_2 + j§1 An,jAn,j' (3.12¢)
(©) f isthe (n + 1 )-dimensional column vector
f = {1, (3.12d)
In what follows, a method where the approximating spline s is determined
from (3.4) and a set of equations of the form (3.12), by dropping the O(hk) and
0(h")terms, will be referred to as a "modified collocation method". That is, in

such a method the spline S will be defined by a set of n + 2r-1 linear equations

of the form
2r-3 .
4,307 4y A, 50 =1, (3.13a)
=0
and
S =0. (3.13b)
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Remark 3.2. It is important to observe that in the class of methods defined by
(3.13), the derivatives in the boundary conditions (3.1b) are always replaced by
the corresponding derivatives of s .

O

Remark 3.3. In the standard collocation method, all the matrices A, ; in (3.12¢)
are null. Thus, (3.13a) simplifies to

2r-3 -
STy A, 30 =1 (3.14)
i=0

which is the matrix form of equations (3,5).
O

4.  Convergence for linear problems.

This section is concerned with the method of analysis used by Daniel and
Swartz [6: §4], for establishing the convergence of the extrapolated collocation
method. Our purpose here is to show that the same method can be used, more
generally, for the analysis of modified collocation methods defined by linear systems
of the form (3.13).

We first make the following three assumptions concerning the boundary value
problem (3.1):

A4.1. The functions ¢;,0 < j £ 2r-3,and f in the differential equation (3.1a)

are at least continuous on [a,b].
A4.2. The boundary value problem (3.1) has a unique solution y € C™ [a,b],
where m > 2r.

(2r-2) _

A4.3. The equation y 0 with boundary conditions (3.1b) has only the
trivial solution.
The above assumptions guarantee the existence of a Green's function G(x,t) associated

with the differential operator D> and the boundary conditions (3.1b), so that if

vi= y* ), (4.1)
then
. j
yPx) =P GL’J."”v(t)dt, 0<j<2r-3. (4.2)
ox
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Similarly, if
v, =32, (4.3)
where § is the approximating spline defined by the linear system (3.13), then

b aG(x £)

X

70 (x) = I v, (Hdt, 0<j< 2r-3. (4.4)

Proceeding as in [6], we next introduce the following three operators:
(1) D, :Cla,b] > IR, 11, (4.5a)
where for any g € C|a, b],
(Dng); =g(x;) 1=0,1,..n. (4.5b)
(i1) M, IR, = Si(ny), (4.6a)

via piecewise linear interpolation at the points {Xi}?zo . That is, for any vector

ze IR ,,
1
Mnz =+ {(xis1 =07 + x=x)zi1}
X €[x;, x;,,]; 1=0l.n-1. (4.6b)
(ii1) K: Cla,b] > ([a,b] (4.7a)
where for any g € C[a,b],
2r-3 aJG X, t
(kg) (x) = {e (X)I ( ) g(t) dt} . (4.7b)
0
Then, solving the boundary value problem (3.1) for y is equivalent to solving
for v=y®™ in
([+K)v =1 (4.8)
Similarly, solving for § in equations (3.13) is equivalent to solving for
v. =5 in

ADyv,+D,Kv, =D, f , (4.9)
where A4 is the matrix (3.12c). We make the following two assumptions regarding

this matrix:

A4.4 4 is uniformly bounded and there exists no > 0 so that, for n > n, 4,

. . -1
possesses a uniformly bounded inverse A, .
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A4.5 Foreach fixed u € C [a,b]

lim ||Dnu—AnDnu|| = 0.

n—»o0
The operators D, and M defined by (4.5) and (4.6) are respectively the restriction
and prolongation operators involved in the analysis of Daniel and Swartz; see
[6: Defs (4.1), (4.2)]. Also, when r=2 the operator K coincides with the
corresponding operator in [6: Def. (4.3)]. Finally, because of the assumptions- 44:4
and A4.5, the matrix A4, can take the place of the matrix O, involved in [ 6 ]. Thus,
the three results stated below can be deduced immediately from the analysis of [6:
p.p.166-168].
(1) For n2>n,,, equation (4.9) can be written as

(I + P, K)yvy =P, f, (4.10)
where

P:=MA'D,, (4.11)
defines a sequence of operators converging strongly to the identity operator on
C[a,b].

(ii) For sufficiently large n, (I +PK)"' exists and is uniformly bounded.

Thus, equation (4.10), or equivalently equation (4.9), has a unique solution v.
(ii1) The solution v, of (4.10) converges uniformly to the solution v of (4.8).

In other words, if the assumptions A4.1 -A4.5 hold then the modified collocation

method corresponding to the equations (3.13) is well-defined, and the derivative

(2r-2)

5% the resulting approximating spline S converges uniformly to y
Furthermore, by modifying in an obvious manner the analysis of [6; p. 168], it is
easy to show that
Hs(j) —E(j)H —ohP), 0<j<2r-2, (4.12a)
with
= min {k,/}, (4.12b)
where s is the Sy,_|(m,)-interpolate of y defined in Section 3, and k, ¢ are

respectively the orders of approximation of the spline replacements (3.4) and

(3.12). Hence,
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H§U) —yU)H = 0(h?), 0<j<2r-2, (4.13a)
where
Y =min{2r — j, k, /}. (4.13b)

This last result is obtained from (4.12) by use of the triangle inequality,

because the continuity assumption A4.2 implies that
Hs(j) —yU)H — 0(hX Yy, 0<j <21, (4.14)

5. Examples of modified collocation methods.

In this section we illustrate the use of the a posteriori correction results
of Section 2 and of the analysis of Daniel and Swartz [ 6 ] outlined in Section 4,
for deriving and analyzing modified collocation methods of the type described in
Section 3. In particular, we show that the cubic spline extrapolated collocation
method of [ 6] extends immediately to a 0(h*) quintic spline method for fourth-order
problems, and we also derive a new 0(h“) method for such problems. In addition, we
explain how the results of Section 2 can be used to provide derivative approximations

of further increased accuracy at any point of the interval [a,b].

In the examples that follow we always assume that the conditions A4.1-A4.3
concerning the boundary value problem (3.1) are satisfied and, with reference to
A4.2, we indicate the required continuity class of y. Then, in order to establish
the convergence of a particular modified collocation method we need only show that
the conditions A4.4 and A4.5 concerning the corresponding matrix 4, hold; see
Section 4. That is, for convergence we need only prove that:

(1) 4, is uniformly bounded and, for n > n, it possesses a uniformly bounded
inverse 4.

(i) For each fixedu € C [a,b], lim [D,u—A Du

=0, where D, is the restriction

operator defined by (4.5).

5.1 Standard collocation.

Here we assume that y € Czr[a,b], and that the end conditions of s are of order

p = 2, so that
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s =y9[ = oh>7), 0<j<2r-1, (5.1)
and in particular

ye? =5 4 0(h?); i=0,1,...,n. (5.2)
Thus, the exponents k and /7 in (4.13b) are respectively k > 3 and ¢ = 2; see
equations (3.3) and (3.4). Also, as we indicated in Section 3, in this case the
matrix A, is the identity matrix. Therefore, the conditions A4.4 and A4.5 are
satisfied trivially, and (4.13) gives

[59-y?] =0om*, o0<j<or-2 (5.3)

which is one of the results established by Russell and Shampine [13].

5.2 The extrapolated collocation method of Daniel and Swartz [6],

Here we assume that y e C*** [a,b] and that the end conditions of s are of
order p > 4. Then,
[y? =sO[ oh>™), 0<j<2r-1, (5.4)

and, because y7*"(x,) = s""™,0< j<r-2,, the odd derivatives of s display
superconvergence at the knots in the sense that
y P = L W), 1< j<2r-2; (5.5)
see Remark 2.5. Thus,
y@ =59 4+0hY), 1<j<2r-3 (5.6)
where k; > 4 for both r =2 and r = 3. This means that in this case k; >4 in (3.4).
Also, because Pi(zr_z) (0) =0, Theorem 2,1 gives
y>? =YF P (x,)+0h*);  i=0l,.,n-1, (5.7)

where Y+ denotes the corrected spline approximation Y; with d{} replaced by

di’); see Remark 2.6 (i).

In the extrapolated collocation method of Daniel and Swartz [6] the approximating
spline 's' is obtained by replacing the derivatives y\”, 1< j< 2r-2, in (3.2) by the
approximations contained in (5.6) and (5.7). This follows from the discussion of
Section 3, by observing that the approximations (5.7) give precisely the replacements
(3.6). In other words the method of [6] may be regarded as a collocation scheme,

where the collocation is performed by means of the corrected spline approximation Y+
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It follows that in (3.12a) /= 4 and that the matrix (3.12c) is

Ay =T+Ap s, (5.8a)

where Ay ., has the partitioned form

2 1 a" 0]

| |
1 L o
An,zr—zzﬁ b i Tn i_ bR
_____ r
0 1 ag 1 2]

(5.8b)
with a, b, ag, bg and T, as described below:

(i) a and b are respectively the (n - 1)-dimensional column vectors
a=(-54,-10,..,00" and b =(1,0,...0)".

(i) ag and ap are the vectors a and b with their components written down

in the reverse order, (Throughout the paper, if v=(v,,v,,...v,, )T we use VR

T
to denote the vector vy = (V1=V23""°Vn—1) )

() T, = [tij] is the (n—1)x(n—1) tri-diagonal matrix with t. = —2 and

=t 1.

ERER It

Clearly, the matrix An given by (5.8) is uniformly bounded. Also, it can be

shown easily that ‘A;IH <1.86, and that for each fixed u e c[a,b]

lim HD u-A4 D uH =0 where D, is the restriction operator (4.5); see [6: pp 166-167]
nsol D n n

Therefore, the conditions A4.4 and A4.5 hold, and (4.13) gives

U0

y :O(hyj, 0<j<2r-2 (5.92)

where
vy =min{2r — j,4}.

As we indicated in Section 4, the above method of analysis leading to the
result (5.9) is due to Daniel and Swartz [ 6 ], who proposed and analyzed the
extrapolated collocation method for the case r = 2 only; i.e. the cubic spline
solution of second-order problems. For the case r=2, Daniel and Swartz also

proved that the derivatives of the cubic spline S display superconvergence at
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the points (2.17), and described a method for computing improved approximations

to y¥,1<j<4, at any point in [a,b]. This method of [ 6 ] consists of construc-

;1=0,1,....,n—1,

ting a piecewise quartic, q , given in terms of the values §i(l),§i(l_2

L
2

n
and having breakpoints in {Xi Xi+l} , so that || q I _ y Q) || = 0(h S < <4;
" 2040

see [6: Cor. 4.15]. Alternatively, improved approximations to y(j) can be obtained

as indicated below, by constructing corrected approximations of the form (2.1) - (2.7).

Let Yy, denote the corrected approximations obtained from (2.1) by replacing

(2r+m) by d(2r+m) (2r+m)

s by Sand d where d; denote the derivative approximations

(2.4)-(2.7)corresponding to the spline §. Then , it follows from Theorm 2.1
that, for 1 <M <2,

yl(\}I) — y y(J) + y(J) ?(J)

_y D50 +0(h2r—J+M )0 <j<or, (5.10a)

yj

Where

M-1|p2r=j+m (2r+m) ~(2r+m) @
. . S d) d. J)
ygjd) _;,M) =g _ S(J)+mz: 0{ (2r + m) ( i,M i,M )pm (5.10b)

and where we used the abbreviations yﬁ\j,} for yi\j/}, e. t. c. Also, since
B =min{k,/} =4, (4.12) gives

[0 ~39) =0 o< j<ar-2, (5.11a)

and hence
o5 o) (5.11b)

Furthermore, (5.11a) and the definitions of dgzl\r/;rm) and Hﬁ{;m) imply that

dlrm) = g2rmlang gl = gm0y ;i=0,1,. 01 (5.12)

Finally, by combining the results (5.10) - (5.12) we find that for 1 <M <2, 0<pu<1
and 0 <j <2r,
y<J)(X +ph) y( )(X +].Lh)+ O(hv>1—01 -1, (5.13a)
Where
v =min{2r - j+M,4} (5.13b)
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This implies the following:
(i) In the case r = 2, the best order of approximation to y is that given
by (5.9), i.e.
y(x) =5(x)+0(h*), xe[a,b]. (5.14)
For the derivatives of y however improved orders of approximation can be obtained

by using one or two correction terms as follows:

(a) ForO0<pu<l,

y(l)(xi+uh)=§fl)(xi+uh)+0(h4); i=0,1,...,n—1 (5.15)
(b) For0< u<l and 2<j<4,

yP(x, +uh) =59 (x +p) +0h ) i=01.n1)  (5.16)

(i1) In the case r=3, the best orders of approximation to y, y(l) and y(z)
are those given by (5.9),i.e. for0<j< 2
Wi =50 +om*),  xelab] (5.17)
But, for higher derivatives improved orders of approximation can be obtained as

follows:

(a) For0<p<l,

y® (x, +ph) = yf) (x, +uh)+0h*); i=01,....n=1 (5.18)
(b) ForO<u<1 and4<j<6,

y) (x, +ph) = ?;j)(xi +uh)+0h® ) i=ol,...,n-1 (5.19)

53 A 0(h6) quintic spline method for fourth-order problems.

Here we consider only the case r = 3, and assume that the boundary conditions
(3.1b) involve only function values and first derivatives. That is we consider
the use of quintic splines for the solution of fourth-order linear boundary-value

problems with homogeneous boundary conditions of the form

By:=y@)=y®=y"@=y"®)=0. (5.20)
We also assume that ye clo[a,b] and that the end conditions of the interpolating
quintic spline s are of order p > 6. Then

[y =59 =0m®)0< <5, (5.21)
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and

yi(l) = s?) +0(h®); i=0,1,...n; (5.22)
see Remark 2.5. This implies that Bs = 0(h®), i.e. k=6 in (3.4). In addition,

our continuity and end-condition assumptions imply the following:

(i) ygz) = yf) (xi)+0(h6); i=0,1,...,n—1 (5.23)

where Y+ denotes the corrected quintic spline approximation in equation (2.21)

of Remark 2.6(1).

(i) yf) = y§3)(xi)+0(h6); i=0,1,..,n-1 (5.24)

where Y,+ denotes the corrected quintic spline approximation in equation (2.22) of

Remark 2.6 (ii).

(iii) yg“) = y§4)(xi) +0(h%); i=0,...,n—1 (5.25)

where Y3+ denotes the corrected quintic spline approximation in equation (2.25)
of Remark 2.7 .

In the method under consideration, the approximations contained in (5.22) and
(1) 6))

(5.23)-(5.25) are used to replace respectively the derivatives Yi and Y;

2<j<4 (3.2). (The approximations needed for replacing the derivatives

yg), 2 <j <4 can of course be deduced immediately from the corresponding approxi-

mations to yéj) Then, the exponent in (3.12a) is /=6, and the matrix 4, has

the form
Anag + I:'n,4+An,3 An,3 +An,2 l:ln,2’ (5.262)

where:

(1) A, and A 13 are the diagonal matrices defined by (3.12b).

>

(i1)  The matrix A 4 has the partitioned form

>

—

7701261 ¢ 1010

B % R

181 -3114d 1 0 10
JNRPE I e St i R R (5.26b)
nd- 240 _f__I___g____l__Q—_,l{l__}___g_R__{__g_lf__ '

01 0 Vdy 5317 18

EP T o

0] 0 [T i-2661 77
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Where c¢,d,e and g are the (n - 3)-dimensional column vectors, ¢ = (374,-276,109,-18,

0,...,0)", d = (4,14,-6,1,0,...,0)", ¢ = (-1,0,....,0)", g = (24,-1,0,...,0)", and

Q. :[qij] is the (n-3) - (n - 3) quindiagonal matrix with qij = -46, qij: 24 for
li-j| = 1, and qij: -for [i-j|=2.

(ii1) The matrix Dn3 has the partitioned form

—si 81t wW" 1 0 1 0]
————— e I
~3l10l v | 0 | o0
L I N I 5.26
A3 agol X1 Y i Un | VT (5.26¢)
I F====" F=="7 """ 777777
01 0 I—vgl —101 3
_____ S ) S
01 0 [-ugi —18 | 5 |

T

b

the (n-3) x (n-3) quindiagonal matrix with u; =0,u,. , =2,u 2,

Litl =~

u,. ,=-1 and u 1

Li+2

(iv) The matrix © . is a scalar multiple of the matrix (5.8b), i.e.

>

h2
Ha2=_6_0 An,2r—2’ (5.26d)
where A is the matrix defined by (5.8b).

n,2r—2
The matrix An given by (5.26) is clearly uniformly bounded. Therefore, in
order to establish the convergence of the method we have to show that, for

sufficiently large n, An has a uniformly bounded inverse AI;I , and that for each
fixed u o c[a,b]

fim HD u-A D uH —0, (5.27)
n—ool 1 nn
where Dn is the restriction operator (4.5). The first of these can be proved as

follows.

Let

(5.28)

=]+
Bu=/+4 ,
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Then, by performing a number of elementary row operations it is easy to show that
Bn is invertible and that HB:HS6.25. This means that the matrix Arl can be
written as

Ay =B+ B (An3hn 3+, ,An2) (=B 1 +C, } (5.29)

Where

o =Tl 7 Y VN [ Y )
<6.25 (8h||es ||/60+h?||e, ||/60). (5.29b)

Thus, for sufficiently large n ,

CnH<1 and hence, from (5.29a), the matrix

An possesses a uniformly bounded inverse AI;I.
To prove (5.27), let

Z{n}Z=D u—-A D u
= n n

=

_ (Z{n})n (5.30)
i =0
Then,
23| <[~ 77u, +266u, —376u, ~106, +18u,|/ 240
+hle;(a)[Su, —18u, +24u, +3u,|/480
+h2|e2 (a)||2u0 —5u, +4u, +u,3|/720
1.€C.

2" < {280(u; 5h)+ 8hle, (2 )oo(ul4h)

(5.31)
+h?[e, (a)|w(u;3h)}/60

where ®(u ; h) denotes the modulus of continuity of u over an interval of

width h. Therefore,

lim |z™|=0.

n—oo

In exactly the same manner it can be shown that
lim [z™

=0;1=12,.....,n.
n—oo !
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Thus, the conditions A4.4 and A4.5 hold, and (4.13) gives
HE(J)—y(j)H=O(h6_j),OSj£4. (5.32)

Also, by modifying in an obvious manner the analysis leading to the result

(5.13) , it is easy to show that for | <M <3,0<pu<land0<j<6,
yu)(xi +uhy =YY (x; +ph)+0(h");  i=0,..,n~1, (5.33a)

where

v = min{6 — j+,6}, (5.33b)

and where SN(M denote the corrected approximations corresponding to the quintic

~

spline S.

Remark 5.1 The requirement that the boundary conditions are of the form (5.20) is
needed for the application of the convergence analysis of Section 4. However, it
is reasonable to expect that the same convergence results will hold when the boundary
conditions are of the general form (3.1b), provided that the second and third
derivatives in (3.1b) are replaced by the appropriate corrected approximations
given by (5.23) and (5.24). This conjecture is supported by the results of Example

8.3 considered in Section 8.

6. A 0(h®) quintic spline method for linear second-order boundary-value problems.

In this section we describe a 0(h®) modified collocation method for the

solution of second-order boundary-value problems of the form
LIyl y? (X) +e;(x)y" () +e,(x)y(x) =f(x), x€[a,b], (6.1a)
By =0, (6.1b)
where (6.1b) denotes two boundary conditions of the form

@, 0y(a) +Bi 0y(b) +a; 1y(”(b) =0; 1=0,1 (6.1b)
That is the problems under consideration are of the form (3.1) with r = 2. Here
however the approximating spline §s is taken to be quintic rather than cubic.
For this reason, the resulting method is not of the type described in Section 3.

Assume that the conditions A 4.1 -A4.3, concerning the functions ey,e,,f and

the solution y of (6.1) hold with m = 8 in A4.2, and let s be a S,(n,),-interpolate
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of y. Assume also that the end conditions of s are of order p > 4, and let
{ti} denote the following n +3 points:
t,=x,+h/2, t,=x_; 1=12,..,n+1, t ,=x,-h/2. (6.2)

Then, our assumptions that y € C* [a,b] and p > 4 imply that:

[s7 -y = o), o0<j<s, (6.3)
yP(t)=s"(t,)+0(h®); i=0,1,.,n+2, (6.4)

and
y& () =Y (t,)+0(h°); i=0,1,..,n+2; (6.5)

see Theorem 2.1 and Remark 2.5.

The method of this section is based on substituting the derivatives in the
boundary conditions (6.1b) and in the n + 3 equations
Lly](t) =1(t;); 1=0,1..,n+2, (6.6)
by the approximations given by (6.4) - (6.5). Here however, we express the two
corrections in Y, in terms of the second derivatives s\ of s. (That is we

take the values df? and dfz) involved in the corrected approximation Y, to be

those given by (2.29) - (2.30) and (2.6); see Remark 2.8.) The above replacements

then lead to the equations:
Bs =0(h°), (6.7)
and
4,57 +A, 8" +A, s=f+0(h"), (6.8a)
where §(D, f, A,; and 4, are as follows;
(i) s?, s" and f are the (n +3)-dimensional column vectors,
SO =B, 1< <2 and £ = {f(t)" (6.8b)
(i1)) A, ,, 0<j<1, are the (n + 3) x (n + 3) diagonal matrices

A,; = diag {ej(tO)Jej(tl)J"'ej(tn+2)}' (6.8¢)

n,j?
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(i11) The matrix A, has the partitioned, form

! | T to |
720 135/16  ~161/161 g o vo o
L - L i
' ! I I l '
0 77T %% b 0 [0 |9
1 | | f f
0o ! -2 I 729 1 of o ‘o 10
L : y .y | J L
1 | I | |1 t !
= —_— I
YT | 2 & g !inzkliRle (6.8d)
: t + 1 t f
| | T [ |
0 0y 0 | g 179 -2 0
{ i H TI L |
|
o (o | o bl 1 m7 0
{ ! N i :
lom
oo 0 L ap =161/16,35/16; 720 |

where a, b, ¢, e and g are the (n - 3)-dimensional column vectors
a= %(294,—266, 119,21,...,0)", b=(-26,24,~11,2,0,..0)", c =(-16,14,-6,

1,0,...0)", e=(=1,0,..,0)" and g=(4-10,.., 0)", ois the (n—3)—
dimensional null vector, and Q, =[q;] is the (n-3) x (n-3) quindiagonal matrix

with q, =714, q; =4 for |i—j|:1, and q; = —1 for |i—j| = 2.

By analogy with the work of the previous sections, we consider now the problem
of determining an approximating quintic spline § by simply dropping the 0(h®)
terms from the equations (6,7) and (6.8), That is, we consider a modified collo-

cation method for the solution of problems of the form (6.1), where the approxi-

mating quintic spline § is defined by the equations
437+ A, 8" + A, 5 =1, (6.9a)

Bs =0. (6.9b)
It turns out that the convergence of this method can also be established by the
analysis of Daniel and Swartz [6: §4], provided that their restriction and prolongation
operators (4.5) and (4.6) are re-defined as follows:
(1) D, : (Cla,b] > IR, ,, (6.10a)
where for any g € C[a,b],
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(D,g); =g(t;); 1=0,,..,n+2. (6.10b)
(ii) M_:IR ., — s, (7,), (6.11a)

n+3

where for any vector z € IR ,;, Mz is the cubic spline w €S, (7,) satisfying the

n+32
(n+3) interpolation conditions
w(t)=2z; 1=0l..,n+2. (6.11b)

(It is well-known that w: = M zexists uniquely for any vectorz IR see e.g.

n+3
[5], [8: p.577] and [12: p.25].)

With these new definitions of D and M we can proceed exactly as in [6: §4],
and thus conclude that the modified collocation method (6.9) is well-defined, and
that the second derivative §” of the resulting quintic spline § converges
uniformly to y®.More precisely, the above results can be deduced immediately

from the analysis of [6: pp.167-68], by observing the following:
(a) The boundary value problem (6.1) and the approximating equations (6.9) can

be written in equivalent operator forms as
(I+Kyw=f, v:=y"?, (6.12)
and
ADv +DKv, =Df, v =359, (6.13)
where A4, is the matrix (6.8d), D, is the restriction operator (6.10), and K is
the operator (4.7) with r = 2.
(b) The prolongation operator M, defined by (6.11) is uniformly bounded. This
can be proved easily by using standard cubic spline results.
(c) DM, =1, where I, is the identity operator /; : IR;+3 = IR ;.
(d) The matrix 4, is uniformly bounded. It is also strictly diagonally dominant,

and hence invertible with HA;IH < 1.09.

(e) For each fixed u e CJ[a,b], lim ||Dnu—Athu|| = 0. This can be established

as indicated in Section 5.3, by letting z'™ = Du—A4 D u and showing that

{n}
Z;

<const, x @ (u; Sh) ;1=0,1,... ,n + 2.

(f) Because of (d) and (e), the matrix 4, can take the place of the matrix O,

involved in the analysis of [6].
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The above observations also imply that
[§9-s9] =0m®), 0<j<2, (6.142)
and hence that
[59=s?| =0m*), 3<j<s. (6.14b)
This can be proved by modifying in an obvious manner the analysis of [6: p.168],

Therefore, from (6.3) and (6.14) we have that
[59-y?| 0h®), o0<j<s. (6.15)

Finally, improved approximations to the derivatives of y can be obtained from
the corrected approximations ?M, 1 <M <2, corresponding to the quintic spline s

in exactly the same manner as in Section 5. The precise result in this case is
that, for ISM <2, 0< <1 and 0L <6,

vy (x, +uh) =Y (x, + gh)+0(h");  i=0,l,...,n—1, (6.16a)
Where

v =min{6 — j+ M,6}. (6.16b)

Remark 6.1 Let ye C°[a,b], assume that the end conditions of the interpolating
quintic spline s are of order p > 2, and let the corresponding approximating
spline s be determined by standard collocation at the n + 3 points (6.2). Then,

the equations (6.7), (6.8), (6.9a) and (6.9b) simplify respectively as follows:

Bs=0(h*), k>S5, (6.17)
s? + A s+ A s =+ 0(hY) (6.18)
57 + A5+ A,,5 =1, (6.19a)
and -
BS =0. (6.19b)

Thatis, the 0(h®) terms in (6.7) and (6.8) are replaced respectively by
0(h*), k > 5,and 0(h*), and the matrix 4, in (6.7) and (6.9a) is replaced by
the identity matrix. Because of this, the convergence ofthe collocation method

defined by (6.19) can be deduced immediately from the analysis outlined above.

The precise result in this case is that
HE(”—y(DH = oh’), 0<j<s5, (6.202)
where
y =min{6 — j,4}; (6.20b)
see [10] and [12: p.21].
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7.  Nonlinear problems.

In this section we indicate how some of the results of the previous sections

can be extended to nonlinear problems of the form

YO0 =16y, y* (X)), xefa,bl, (7.12)
2r-3 . .
By: =Y fayy? @) +ByP 0)f=0, 0<i<2r3, (7.10)
=0

where as before r =2 orr = 3.

As is well-known a solution of (7.1) is not necessarily unique. For this
reason, we only consider modified collocation methods when applied to a sufficiently
small neighbourhood of an isolated solution. Furthermore, for the purposes of the

analysis we only consider modified collocation methods in which the derivatives
y? 1< j2r—3,in the nonlinear part of (7.1a) are replaced by the corresponding
spline derivatives. That is, we assume that the approximating spline § €5, , (7,)
is defined by a nonlinear system of the form

A% =f,  Bs=0, (7.2a)

where f is the (n +1)-dimensional column vector

£= (x5 52V (7.2b)
and
A, =1+A,, 5, (7.2¢)

where the matrix A, ,_, has the same meaning in Section 3. (Of course, we

also assume that (7.2) is derived by dropping the 0(h")and 0(h*) terms from the
equations

4,577 =f+0(h"), Bs=0(h"), (7.3)
corresponding to the interpolatory spline seS, , (7,).) Then, the analysis

reduces essentially to that of Daniel and Swartz [6 : §5], which in turn is based
closely on the convergence analysis of Russell and Shampine [13 : §4], The main

details are as follows.
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In place of the assumptions A4.1-A4.3, we now assume the following in

connection with the boundary value problem (7.1):

A7.1. The boundary value problem (7.1) has at least a solution y € C"[a,b],
m>2r, and the function f is sufficiently smooth near y in the sense that
f € C*[N],where N is a neighbourhood of the "curve" {[x,y(x),...,y(zr_3>(x)]T:
x e[a,b] } see[4:p.590].

A7.2 The equation u”*?(x)=0 with boundary conditions Bu - 0 has only

the trivial solution.

A7.3 The equation

2r-3 (2r-3) )
u® ) (x) - z of (X,¥,--y ) u?(x) =0, (7.4)
0 0z;

subject to the boundary conditions Bu = 0, has only the trivial solution. (Here
y stands for the solution referred to in A7.1.)

Regarding the matrix 4, in (7.2), we assume that this matrix satisfies
precisely the same conditions A4.4 and A4.5 as in the linear case. Then, the
following results can be proved by modifying in an obvious manner the analysis
of [6: §5].

(i) There exists a o >0 such that there is no other solution ¥ of
(7.1) satisfying

R 75)
(Here also y stands for the solution referred to in A7.1).
(ii) For sufficiently large n there exists a unique spline se€S, | (7,)
solving the equations (7.2) and satisfying
ly 2 -5 < o 76)
(iii) The spline s satisfies
[f9-y?| = o), 0<j<or-2 (7.7a)
where as in (4.13),
y=min {2r—j,k,/}, (7.7b)
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and /,k, are the orders of approximation in (7.3).

We end this section by making the following remarks concerning the application
of specific modified collocation methods to nonlinear boundary value problems.
Remark 7.1. Standard collocation

In this method all the derivatives y\”

1

are replaced by the corresponding

()

spline derivatives s;” Therefore, the analysis outlined above applies and, as

in the linear case, the result (5.3) holds; see [13 : §4].
O

Remark 7.2  The extrapolated collocation method of Daniel and Swavts [6].

(2r-1)
i

Since only the derivatives y are replaced by linear combinations of

the 5, the analysis also applies directly to this method. Therefore, the

result (5.9) holds for nonlinear problems of the general form (7.1). Furthermore,
the result (5.13) concerning the quality of the corrected approximations ?{j) can

be established exactly as in the linear case.
O

Remark 7.3 The 0(h®) quintic spline method of Section 5.3.
In this case the analysis applies directly to fourth-order nonlinear problems

of the form
YY) =f(xy(x),y"(x), x eia,b], (7.82)
y(@)=y()=y"(@)=y"(b)=0 (7.8b)
This shows that the results (5.32) and (5.33) also hold for nonlinear problems of

the form (7.8). In fact, it is easy to see that, the same convergence results

hold for problems of the more general form,
YY) +e, ()Y () +e,(x)y? () =f(x,y)(x),y" (x)), xe[abl, (7.92)

y(@)=y(b)=y"(@)=y"(b)= 0. (7.9b)

Remark 7.4. The 0(h®) quintic spline method of Section 6.
The analysis does not apply directly in this case. However, by modifying the

arguments in the manner indicated in Section 6, it is easy to show that the results



31-

(6.15) and (6.16) hold for second-order boundary value problems of the general
form
y?(x) =f(x%,y),y" (0), x € [a,b]. (7.10a)
By =0. - (7.10b)

Remark 7.5 Although the operators P, defined by (4.11) are not projectors, the
convergence results of this section can also be established by modifying the
analysis contained in Section 3 of the paper by de Boor and Swartz [4]; see the
remarks in p.606 of [ 4 ] and p.170 of [ 6 ]. This alternative analysis can also be
used to show that the Newton iterative method applied to the equations (7,2)

~(2r-2)

converges locally to s at a quadratic rate. The application of the iter-

ative method for computing successive approximations §,; k=0,1,.. to §

may be described as follows:

"Given §,,, find the modified collocation approximation §,,,, to the solution

o of the linear boundary value problem

_ ~ ~(2r-3)
23 8f(x,s(k),...,s(k)r ) 0

PRI Z a)
0 0z;
23X, e, ST
~ ~(2r-3 > P(k) >t (k) e
=f(x, St Sy ))—z S8 (7.11a)
ey ﬁzj
Bw=0; (7.11b)

See [4; p.59%4]."

8. Numerical examples

In this section we present the results of several numerical examples,
illustrating the theory of previous sections. These results were computed on
an Eclipse MV/8000 computer, using programs written in double-precision Fortran;
i.e. a precision of between 16 and 17 significant figures. Our programs were based
on representing the approximating spline s in terms of B-splines, and made ex-

tensive use of the B-spline subroutines of de Boor [ 2]; see also [ 3 ].
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As before, let S?M, M >0, denote the corrected approximations corresponding
to the spline s Also, let S?O =75, i.e. let ?0 denote the modified collocation
solution of the boundary-value problem under consideration. Then, the results
listed in the tables are estimates of the uniform norms Hy(j) —SN(]&J)H , M<O,

obtained by sampling the errors at a set o of 160 equally spaced points on

[a,b]. We denote these estimates by ell'(n), i.e.

2

e (m) =max |y (x) - (x)

and in each table we also list the computed values
) = log, {el] (n)/el) (2n)},

giving the observed rates of convergence of if,f) to y.

Example 8.1 ([6: p.172])

y(x)=0, xe[0,1],

16x
D(x)+—m vy (x)+
yr ) 1+4x’ 0 ) 1+4x° (8.1)

y(0)=1,y(1)=0.2.

1
1+4x%°

Exact solution: y(x) =

Numerical results: The results corresponding to the use of the extrapolated
collocation method of [6] and to the quintic spline method of Section 6 are

listed respectively in Tables 8.la and 8.1b.|:|

Example 8.2 ([15 :p.210])
y P (x)+xy(x) =—(8+7x+x’)e", x € [0,1]
y(0) =y =0, y?0) =1 y"O=e

Exact solution: y(x) = x(1-x)e”.

(8.2)

Numerical results: The results corresponding to the extrapolated collocation
method of [6] and to the 0(h®) method of Section 5.3 are listed respectively

in Tables 8.2a and 8.2b.
|
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Example 8.3
Y04y =1, xel-L1], } (83)

yD=yD)=y? (1) =y?(1)=0
Exact solution: y(x) = 0.25{1-2(sin [sinh|[sinxsinhx + cos [cosh| cosxcoshx)/(cos2+cosh2)}.
Numerical results: The results corresponding to the use of the 0(h®) method of

Section 5.3 are listed in Table 8.3; see Remark 5.1.

O
Example 8.4 ([4: p.603], [13 : p.25])

y? (x) =exp(y(x)) , x € [0,1],}
y(0)=y(1)=0.

Exact solution:  y(x) =2 € n{csec[0.5¢(x-0.5)]} - £ n2, where c is the unique

(8.4)

solution of the equation ¢ = \/2_ cos(0.25¢).

Numerical results: The results corresponding to the use of the extrapolated
collocation method of [ 6 ] and to the quintic spline method of Section 6 are
listed respectively in Tables 8.4a and 8.4b. In both cases, the approximating
spline s was determined, as indicated in Remark 7.5, by using Newton's method
with initial approximation s o = 0. The iteration was terminated when the co-
efficients of the B-spline representation of s (1) agreed with those of s () to

sixteen decimal places. In both cases this required five iterations.



-34-

TABLE 8.1a
Example 8.1 - Extrapolated collocation method of [6 ]; see Section 5.2

M=0 M=1 M=2
84SE-8 | 7.04E-8 6.76E-8
179 4.1 4.1 4.0
- 1.18E-5 | 1.54E-6 9.16E-7
=1 3.0 4.0 4.8
8.00E-3 | 5.65E-4 9.42E-5
172 2.0 3.4 4.0
3.01E-0 | 2.52E-1 3.72E-2
U 1.0 24 3.0

Top entries: Values of el{\jd}(64) Bottom entries: values of rl\{,f}(64)

Theoretical rates: rh{j} =min {4 —j+ M,4}

TABLE 8.1b

Example 8.1 - 0(h°) quintio spline method; see Section 6.

M=0 M=1 M=2
4.55E-10 4.36E-10 1.12E-10
=0 6.1 6.1 6.1
o1 1.16E-8 5.34E-9 9.80E-10
5.3 6.0 6.1
o2 4.31E-6 7.49E-7 7.18E-8
4.1 5.4 5.8
=3 1.51E-3 2.12E-4 9.65E-5
3.1 4.2 4.8
Top entries: Values of eiﬁ}(64) Bottom entries: Values of

Theoretical rates: rA{j} =min {6 —j+M,6}
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TABLE 8.2a

Example 8.2 Extrapolated collocation method of [6],; see Section 5.2

M=0 M=1 M=2
6.14E-11 6.14E-11 6.14E-11
4.0 4.0 4.0
2.10E-10 1.97E-10 1.96E-10
4.1 4.0 4.0
9.14E-9 2.21E-9 2.21E-8
4.0 4.0 4.0
2.96E-6 4.57E-8 1.54E-8
3.0 4.0 4.0
1.95E-3 2.30E-5 3.62E-7
2.0 3.4 4.0
7.51E-1 1.03E-2 9.31E-5
1.0 2.2 3.3
— 1.85E0 2.87E-2
— 1.1 2.1

Theoretical rates:

Top entries: Values of eij}(64) Bottom entries:

Y =min {6 - j+ M4}

Values of rj‘{j}(64)




-36-

TABLE 8.2b

Example 8.2 - 0(h%) quintic spline method. see Section 5.3

M=0 M=1 M=2 M=3

7.55E-12 | 3.47E-12 3.36E-12 3.36E-12
170 6.0 6.1 6.1 6.1

i 5.84E-10 | 4.34E-11 2.40E-11 2.43E-11
5.1 6.0 6.0 6.0

=2 1.24E-7 5.55E-9 1.89E-10 1.02E-10
4.0 5.0 6.0 6.0

=3 2.36E-5 7.69E-7 2.32E-8 1.01E-9
3.0 4.0 5.0 6.3

i—4 7.63E-3 1.85E-4 7.37E-6 2.57E-7
2.0 3.4 4.4 5.3

1.48E-0 4.82E-2 1.44E-3 5.09E-5
172 1.0 22 32 4.1

— 3.66E0 1.39-1 5.72E-3
= — LI 2.1 3.1

Top entries: Values of el{d}(32) Bottom entries: Values of rj‘{j}(ltﬁ)

Theoretical rates:

rA{lj} =min {6 —j+M,6}
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TABLE 8.3
Example 8.3 - O(h®) quintic spline method; see Remark 5.1 of Section 5.3

M=0 M=1 M=2 M=3
1.63E-12 1.63E-12 1.63E-12 1.63E-12
5.8 5.8 5.8 5.8
7.33E-12 3.80E-12 3.41E-12 3.43E-12
5.2 5.9 5.9 5.9
1.57E-9 1.14E-10 6.06E-12 4.02E-12
4.0 5.0 6.0 6.0
2.89E-7 1.56E-8 7.31E-10 2.39E-11
3.0 4.0 4.9 5.5
9.62E-5 6.72E-6 2.94E-7 7.17E-9
2.0 3.0 4.0 5.0
1.85E-2 1.07E-3 4.45E-5 1.07E-6
1.0 2.0 3.0 4.0
— 8.28E-2 3.81E-3 9.86E-5

— 1.0 2.0 3.0

Theoretical rates:

U}

Top entries: Values of el{d}(64) Bottom entries:

=min {6 —j+M,6}

Values of rj‘{j}(32)




-38-
TABLE 8.4a
Example 8.4 - Extrapolated collocation method of [6],; see Section 7, Remark 7.2

M=0 M=1 M=2
1.84E-10 6.28E-11 6.27E-11
4.0 4.0 4.0
3.96E-8 9.18E-10 3.16E-10
3.0 4.0 4.1
2.47E-5 5.78E-7 1.30E-8
2.0 3.0 4.0
9.45E-3 1.90E-4 5.11E-6
1.0 1.9 2.9
— 2.96E-2 1.24E-3

— 0.9 1.9

Theoretical rates:

V= min {4 j+ M4}

Top entries: Values of ej{\j}(64) Bottom entries: Values of rﬁ{j}(S’Z)




Example 8.4 - 0(h°) quintic spline method; see Section 7, Remark 7.4
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TABLE 8.4b

M=0 M=1 M=2
2.84E-14 | 2.85E-14 | 2.85E-14
179 5.8 5.8 5.8
, 127E-12 | 1.72E-13 | 126E-13
=1 5.1 5.8 5.8
) 527E-10 | 229E-11 | 2.02E-12
1=2 4.0 4.9 5.8
) 1.92E-10 | 6.24E-9 2.14E-9
1= 3.0 43 4.8
) 131E-4 | 6.01E-6 7.62E-7
=4 2.0 3.0 3.9
4.97E-2 1.84E-3 1.62E-4
173 1.0 2.0 2.9
g — 2.80E-1 222E-2
— 1.0 1.9

Top entries: Values of eE}(64) Bottom entries: Values of rA{j}(_?Z)

Theoretical rates: flfdj} = min {6 —-Jj+ M,6}
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9. Discussion

We make the following three concluding remarks:

(1) The numerical results of Section 8 confirm the theory, and indicate
that the methods of the present paper are capable of producing approximations of
high accuracy. In particular, the results illustrate the substantial improvements
in the accuracy of the approximations to y o) j >0, that can be achieved by the
a posteriori correction of the approximating spline.

(1)  Inthe present paper we dealt only with the derivation and convergence
theory of modified collocation methods. Thus, although the methods appear to be
competitive, there is a clear need for a proper evaluation of their computational
efficiencies. Such an evaluation will require a comparison analysis of the type
carried out by Russell and Varah [14] and Russell [12], and will involve the
study of computational aspects concerning, for example, the choice of representation
for the approximating spline and the stability of the resulting matrix problems.

(i11)) It will be of interest to investigate the possibility of extending
some of the results f the present paper to partial differential equations. With
reference to this, the methods of Archer [ 1 ] for quasilinear parabolic problems
and of Houstis et al [ 7 ] for second order elliptic problems may be regarded as
modified collocation methods. They correspond to the use of the corrected cubic
spline approximation Y; of Remark 2.6(i), and can be considered to be extensions

of the extrapolated collocation method of [ 6 ].
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