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1 Introduction

Many variables are used in logarithms (logs) in economic studies because this
transformation is deemed appropriate for one reason or another. From the
point of view of univariate time series modelling the log transformation may
be used because a transformed version of the variable of interest may be bet-
ter modelled with standard linear autoregressive integrated moving average
(ARIMA) processes. For example, a logarithmic transformation is often em-
ployed to obtain a more homogeneous variance of a series. In this study we
investigate the implications for forecasting the original variable. If the log se-
ries is well described by an ARIMA model, optimal forecasts can be obtained
easily for the log series. Of course, one may reverse the log transformation
by applying the exponential function to the forecasts and thereby obtain a
forecast of the original variable. This approach has a drawback in the present
situation, however. It is well-known that an instantaneous nonlinear trans-
formation applied to the optimal forecast of a variable may not result in the
optimal forecast of the transformed variable (Granger and Newbold (1976)).
In particular, if optimal forecasts of the logs are available, converting them
to forecasts for the original variable by applying the exponential function is
in general not optimal.

In this study we compare different forecasts for variables which are typi-
cally used in logs in economic models. The following forecasts are compared:
(1) An ARIMA forecast for the original variable without the log transforma-
tion. This forecast is not implausible because ARIMA models capture the
conditional mean and this is what is important for point forecasts. The log
transformation is typically used to stabilize the variance and hence has an
impact on the second moments. (2) An ARIMA forecast based on the logs
of the series, where the forecast of the original series is obtained by applying
the exponential function to the forecast of the log series. (3) The forecast for
the log series obtained under (2) is converted to a forecast for the original
series by a more sophisticated transformation which gives a more efficient
forecast under ideal conditions.

We conduct a simulation experiment to investigate the performance of
the different forecasts under controlled conditions and we also use the three
predictors to forecast a range of economic variables. It is found that the log
transformation can lead to substantial reductions in forecast mean squared
error (MSE) if taking logs really leads to a more stable variance of a series
of interest. On the other hand, if the log transformation is applied although
it does not make the variance more homogeneous, using it can be damaging
to the forecast precision.

The plan of the study is as follows. In the next section the models and
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forecasts are summarized formally and some related results regarding the
efficiency of different forecasts are reviewed. In Section 3 the results of sim-
ulation experiments are reported and in Section 4 a forecast comparison for
a set of economic variables is presented. Finally, Section 5 concludes and
detailed data sources are given in an Appendix.

2 The Predictors

2.1 Stationary Processes

Let xt = log yt be the natural logarithm of the univariate time series variable
yt and suppose that xt is generated by a stationary ARMA(p, q) process,

α(L)xt = ν + θ(L)εt, (2.1)

where ν is a constant, α(L) and θ(L) are polynomials in the lag operator,
L, of orders p and q, respectively, and εt ∼ i.i.d.N (0, σ2

ε) is Gaussian white
noise. In practice, there may be other deterministic terms such as seasonal
dummy variables or deterministic trends. Although the analysis can be easily
generalized to account for such terms, we ignore them because in this study
we focus on the stochastic part of the data generation process (DGP).

Granger and Newbold (1976) show that the process yt is in fact stationary
if xt has this property. They also show that yt is a finite order MA process of
order at most q if xt ∼MA(q). If, however, xt is a mixed ARMA(p, q) process
with nontrivial AR part (p > 0), then the covariance structure becomes more
complicated. In any case, it is possible that an h-step forecast for yt+h given
yt, yt−1, . . . , is based on an ARMA model fitted to the variable of interest,
yt. The forecast obtained in this way by using the usual forecasting formula
is denoted by

ylin
t+h|t.

It may be the optimal linear forecast for yt+h, e.g., if xt is a zero-mean finite
order MA process. In the following we refer to a forecast based on an ARMA
or ARIMA model for the original yt variable as linear forecast.

Another plausible forecast for yt+h may be obtained via xt. Because xt is a
stationary Gaussian ARMA process, the usual forecasting formulas result in
the conditional expectation which is the optimal (minimum MSE) predictor.
We use the notation

xt+h|t = E(xt+h|xt, xt−1, . . . ).

This forecast is unbiased, i.e., the forecast error has mean zero and its vari-
ance, denoted by σ2

x(h), equals the forecast MSE. A naive h-step forecast for
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yt+h may be based on xt+h|t by reversing the log transformation,

ynai
t+h|t = exp(xt+h|t). (2.2)

Granger and Newbold (1976) call this forecast naive because it is not the
optimal forecast. They show that in this case the optimal forecast can be
obtained as

yopt
t+h|t = exp(xt+h|t + 1

2
σ2

x(h)). (2.3)

The forecasts ylin
t+h|t, ynai

t+h|t and yopt
t+h|t are compared in the following.

2.2 Integrated Processes

As usual we define the variable yt to be integrated of integer order d (I(d)),
if its DGP is nonstationary but the DGP of the d times differenced variable
is stationary, while differencing d−1 times will not suffice to achieve station-
arity. Suppose that the original variable, yt, is I(d). In principle one may in
this case use all the predictors that we considered in the foregoing. Rather
than ARMA models one shall use ARIMA models, however. Apart from that
the same predictors can be used. In the following we only consider the I(1)
case, that is, all integrated variables are I(1) for convenience because that is
the most important case from a practical point of view.

If the transformed variable xt = log yt is integrated, the situation becomes
a bit more complicated. Typically, if yt needs to be transformed to obtain
a Gaussian ARIMA process, it may not have the usual characteristics of an
I(1) variable, as pointed out by Granger and Hallman (1991). These authors
note that the autocorrelations of yt = exp xt may decay more quickly than for
an I(1) variable if xt is a random walk, i.e., a simple I(1) variable. Moreover,
the usual Dickey-Fuller and augmented Dickey-Fuller tests for unit roots have
quite different distributions from the standard ones when applied to yt. Thus,
it may well be that yt is not classified as I(1) if xt = log yt is clearly found
to be I(1).

Although this problem may occur in practice and may lead a forecaster
to proceed differently in some cases, in general, the leading approach still
seems to be that an ARIMA model is fitted and there is also a good chance
that yt is classified as I(1) if xt is I(1). Therefore, in Section 4 where we
consider real economic time series, we focus on series for which the original
and the logs are likely to be classified as integrated. Before we look at actual
economic series, we study the performance of the predictors in a controlled
simulation environment in the next section to get a feeling for what to expect
in actual applications.
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3 Simulation Comparison of Forecasts

In this section we use a simulation experiment to compare the three predictors
introduced in Section 2. We consider two different situations. In the first set
of simulations we generate xt by an ARI process so that the variances of the
logs of yt = exp(xt) are indeed homogeneous. In contrast, in a second set of
simulations we generate yt by an ARI process. Hence, the log transformation
is applied although yt already has a homogeneous variance.

3.1 Linear DGP of the log Series

We first use an AR(1) process for the first differences of xt, i.e., an ARI(1,1)
process, to simulate xt. In other words, denoting the differencing operator
by ∆ (= 1− L), our DGP has the form

∆xt = ν + ρ∆xt−1 + εt, t = 1, 2, . . . , (3.1)

with x0 = x−1 = 0, ρ = −0.9,−0.5, 0, 0.5, 0.9, ν is a constant term which
induces a drift in the levels of the integrated xt series and εt is indepen-
dent, identically normally distributed with zero mean and variance σ2

ε , i.e.,
εt ∼ i.i.d.N (0, σ2

ε). Samples of size T = 40 and 80 are considered and 4
post-sample values are generated additionally to evaluate the forecasts. Fur-
thermore, we have discarded 50 values at the beginning of each sample to
alleviate start-up effects and we add as many pre-sample values to each sam-
ple as needed for model selection and estimation. Thus, T is the net sample
size for the levels series. Note, however, that the net sample size for the
differenced series is T − 1 because one observation is lost by taking first
differences. The variable yt = exp(xt) is computed from the generated xt

series.1

To simulate an approach which is used in applied work, we fit only AR(p)
processes with an intercept to the first differences of xt and yt. The three
forecasts for yt as summarized in Section 2 are computed for forecast horizons
up to h = 4. The AR orders are chosen by model selection criteria. More
precisely we use the very parsimonious SC (Schwarz (1978)) and the more
profligate AIC (Akaike (1973)) to choose the lag orders (see also Lütkepohl
(2005, Section 4.3.3) for a more detailed discussion of the model selection
criteria). We use maximum lag orders of 4 and 6 for samples of size T = 40
and 80, respectively, in the selection procedure and we also experimented
with other maximum orders. For our DGPs small changes in the maximum
AR order did not change our main results.

1All computations are performed with Matlab programs.
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The forecast error variances required for the optimal forecasts are es-
timated as follows. Let α̂1, . . . , α̂p+1 be the estimated coefficients of an
AR(p + 1) model for the levels variables. The AR operator is 1 − α̂1L −
· · ·− α̂p+1L

p+1 = ρ̂(L)(1−L), where ρ̂(L) is the estimated AR(p) polynomial

of the series in differences. Furthermore, let σ̂2
ε = (T − 1 − p)−1

∑T
t=2 ε̂2

t be

the corresponding estimator of the residual variance. Then we set φ̂0 = 1,
compute

φ̂i =

min(i,p+1)∑
j=1

φ̂i−jα̂j

recursively for i = 1, 2, . . . , and determine the estimator for the h-steps ahead
forecast error variance as

σ̂2
x(h) = σ̂2

ε

h−1∑
i=0

φ̂2
i (3.2)

(see Lütkepohl (2005, Section 6.5) for a justification). We compute forecast
MSEs on the basis of 10 000 replications of the experiment.

Results of simulation experiments with different parameter values are
presented in Tables 1 and 2. The parameter values are chosen so that they
are roughly in line with some of the AR models used for the actual economic
variables in Section 4. In particular, small values of the residual variance
σ2

ε and the drift parameter ν are typical in practice when ARIMA models
are fitted to logs of economic time series. In Table 1 MSEs of naive forecasts
relative to linear forecasts are given for sample sizes of T = 40. The AR order
is selected by SC. Numbers greater than one indicate that the MSE of the
naive forecast is larger than the one of the linear forecast. Clearly, there are
some numbers greater than one in Table 1. Notably for a zero drift term using
logs does not help to improve the forecasts except that the AR coefficient
has a large positive value, ρ = 0.9. The losses due to using logs are minimal,
however. The largest loss in Table 1 for ν = 0 is obtained when ρ = 0.5,
σ2

ε = 0.001 and 4-steps ahead forecasts are considered. Even in that case the
MSE of the naive forecast is only about 5% larger than the one of the linear
forecast. Of course, if the drift is zero, it is possible that xt is a time series of
negative values and applying the exponential function may actually reduce
the variability of the series. In turn, applying the log transformation to yt

may not result in sizable improvements in the homogeneity of the variance.
In that case, using the log series may not improve the forecasts.

The situation is quite different if the drift term is positive. Then, depend-
ing on the residual variance, the AR coefficient ρ and the forecast horizon, the
efficiency gains from using logs can be dramatic. For example, for σ2

ε = 0.001,
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ρ = 0.9 and forecast horizon h = 4, the MSE of the linear forecast is more
than 10 times as large as that of the naive forecast if the drift parameter
ν = 0.02. In fact, in general, if using logs is beneficial for the forecast preci-
sion, the gains tend to increase with the forecast horizon. Also, for a given
residual variance, a larger drift value and a larger ρ tend to make the log
transformation more beneficial or, in other words, they improve the forecast
MSE of the naive forecast relative to the linear one. This result may not be
too surprising because a larger drift term induces more irregularity in the
variances of yt = exp(xt). For example, xt tends to increase more rapidly
if the drift term is larger. Hence, the magnifying effect of the exponential
function for positive values induces more heteroskedasticity in yt. Thus, the
overall conclusion from the results in Table 1 is that the log transformation
helps to improve forecasts a bit or even substantially if it actually has a
sizable stabilizing effect on the variance of the series of interest, yt.

This conclusion turns out to be robust in various dimensions. For exam-
ple, we have also used the AIC criterion for AR order selection. The resulting
relative forecast MSEs are very similar to those in Table 1. This may not
be very surprising given the simple AR structure of the DGP. Although we
have not checked this, one may guess that AIC and SC selected the same AR
orders in the vast majority of all cases. We also considered a larger sample
size of T = 80. For zero drift term, ν = 0, the results are again similar to
the corresponding ones in Table 1. For ν > 0, the relative performance of
the naive forecast tends to improve, however, in some situations.

Of course, so far we just compared the linear forecast to its naive com-
petitor which is theoretically inferior to the optimal forecast. In practice
it is not clear that the optimal forecast actually outperforms the other two
predictors because the forecast error variance which is used in the forecast
transformation is unknown and has to be replaced by an estimate. Using
the estimate from (3.2) does not in fact improve the forecast precision much
over the naive one if at all. This can be seen in Table 2 where the MSEs
of the optimal forecasts relative to the naive ones are presented. Clearly,
the numbers tend to be very close to but still slightly larger than one. This
holds across all forecast horizons, drift terms and error variances. In fact,
the results in Table 2 are invariant to the value of the drift parameter ν.
Therefore we report results only for ν = 0. Given these simulation results, in
applied forecasting, the optimal forecast may not be of great value. At least
it does not improve the forecast MSEs in the experimental situations which
we consider here.

The DGPs considered so far favor the forecasts based on logs because
this transformation has the potential to make the variance more stable. One
may, of course, also wonder how much can be lost by applying the log trans-
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formation when the variance is stable already. This question is considered
next.

3.2 Linear DGP of the Series of Interest

To investigate whether the log transformation can be damaging to the fore-
cast precision if it does not stabilize the variance, we perform another exper-
iment where we generate the variable of interest, yt, by an ARI process and
we apply logs to obtain xt. More precisely, the DGP of ∆yt is an AR(1),

∆yt = ν + ρ∆yt−1 + εt, t = 1, 2, . . . , (3.3)

with y0 = y−1 = 0 and all other quantities are specified as in (3.1). The xt’s
are generated as xt = log yt. We use only processes with positive drift term,
ν > 0, to ensure positive values of yt at least after the initial burn-in period
of 50 observations which are dropped as in the previous simulation setup.
Some results based on samples of size T = 40 and AR order selection by SC
are reported in Table 3. Again we show MSEs of naive forecasts relative to
linear forecasts.

Now all entries are greater than one and some substantially so. Consider,
for instance, the relative MSEs associated with 4-step ahead forecasts when
ν = 0.05 and σ2

ε = 0.0001. Taking logs can lead to MSEs which are more
than six times as large as those of the linear forecasts. Thus, quite a bit of
damage can be done by taking logs if the variance of a series is stable across
the sample already. In particular, longer-term forecasts based on logs can
be quite poor relative to the linear ones. But even for short-term forecasts
(1-step ahead) sizable losses are possible.

Also in this case we checked the robustness of these results. For instance,
we used AIC instead of SC for AR order selection and we increased the
sample size to T = 80. The results remain qualitatively the same.

Thus, the overall conclusion from our simulations so far is that forecast-
ing logs of a variable of interest first and then converting back to the original
variable can lead to substantial improvements in MSE if the log transfor-
mation indeed stabilizes the variance of the DGP. If however, the variance
is stable already, quite some damage can be done by forecasting logs. Our
simulations also show that no substantial gains can be expected from using
the optimal instead of the naive forecast. In fact, the optimal forecast with
estimated forecast error variance often has a slightly larger MSE than the
naive forecast. The differences are usually minimal, however. Thus, there is
no compelling reason for considering the more elaborate optimal forecast.
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4 Forecast Comparison Based on Economic

Data

We consider a range of different economic time series which are often used
in logs in economic modelling and compute the three different forecasts for
the original variables. More precisely, we use monthly series of different
stock indices as well as quarterly series of gross domestic product (GDP)
and consumption for a range of countries. Although stock returns are often
of interest, the level of stock indices is also of interest because the returns
of many certificates are linked to the level of specific stock indices. If the
returns are of interest, first differences of logs are typically considered. Hence,
using logs of the stock index series is not uncommon. Similarly, in economic
analyses, logs of GDP and consumption are often considered. Although
forecasts of the rates of change of these series may be more important in
practice, we focus on forecasting the levels because thereby we hope to cover a
good range of different DGPs which come up in applied work. Having a range
of different DGPs is important in this context because the characteristics of
the DGP are crucial for the performance of the different forecasts, as we have
seen in the simulations. We first discuss the results for the stock indices and
then consider the GDP and consumption series.

4.1 Forecasting Stock Indices

We consider nine well-known stock indices, the Dow Jones Euro Stoxx 50,
FTSE, DAX, CAC 40, Dow Jones, Nasdaq, S&P 500, Nikkei and HangSeng.
The indices are related to important stock exchanges from all over the world.
They measure stock prices from different regions and sectors. Moreover, they
differ in how many stock prices they incorporate. Overall they cover a good
range of the stock markets in the world. We use monthly series from 1990M1
to 2007M12 based on end-of-month index values. Details on the data sources
are provided in Appendix B.

The first differences and first differences of logs of all series are plotted
in Figure 1. Apparently the variation in volatility is larger for the series
without logs in most cases. Thus, using logs can be interpreted as a means
for stabilizing the variance. However, even the first differences of logs still
show considerable variation in the volatility, as one would expect for monthly
financial market series. In such series conditional heteroskedasticity is often
diagnosed and modelled. To ensure that our results are not driven purely
by the specific period used for the forecast comparison, we report results
for different forecast periods. Also, we vary the sample on which model
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specification and estimation are based.
Forecasts are computed by fitting AR models to the first differences of

the original index series and to the first differences of logs. The AR orders
are chosen by model selection criteria, as in the simulations, that is, we use
the SC and the AIC for AR order selection. The maximum lag order is 4 in
the selection procedure because no seasonality or higher order AR dynamics
are expected in the differenced series. In fact, for the current set of series,
the AR orders chosen by both model selection criteria are often zero. In
efficient markets it is of course not surprising to find no predictability in the
returns. Since the choice of selection criterion did not make any difference
for the results qualitatively, we report relative forecast MSEs only for SC
models in Table 4. In fact, the AIC results are identical for most countries
and samples and very close to the SC results when there are differences. The
reason is, of course, that the AR(0) for the first differences is the dominating
model. For our purposes, computing the forecasts from those models means
that estimation uncertainty has only a limited impact on the results. The
only estimated parameters are the drift term and the residual variance which
enters the estimator for the forecast error variance in the optimal forecast
formula.

In Table 4 we report relative forecast MSEs for two alternative sample
periods, three different forecasting periods and forecast horizons h = 1, 3
and 6. Thus, the forecast horizons refer to one month, one quarter and half
a year. In this table the forecast MSEs of the naive forecasts relative to
the linear forecasts are displayed. An asterisk indicates that the difference
between the forecast MSEs is significant at the 5% level based on a two-sided
modified Diebold-Mariano (DM) test (Diebold and Mariano (1995)). We
use a modification which was proposed by Harvey, Leybourne and Newbold
(1997) and give the precise form of the test statistic in Appendix A.

The two sample periods used in Table 4 begin in 1990M1 and 1995M1.
The forecast periods start in 2001M1, 2003M1, and 2005M1 and they all
end in 2007M12. Accordingly the forecast MSEs are based on 79, 55 and 31
forecasts. Forecasts up to six steps ahead are computed based on estimated
models fitted to samples of increasing length. For example, for the sample
starting in 1990M1 and the forecast period 2001M1 - 2007M12, we first fit
AR models using data from 1990M1 - 2000M12 (sample size 131 if the first
observation is not counted which is used for forming differences) and we use
these models to produce up to six steps ahead forecasts and corresponding
squared forecast errors. Then we extend the sample length by one and per-
form a new AR order selection and estimation to produce the next set of
forecasts etc.. The largest sample for estimation is achieved when the period
ends in 2007M6. Thereby we generate 79 squared forecast errors for each
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forecast horizon. For the shorter forecast periods starting from 2003M1 and
2005M1, only 55 and 31 forecasts, respectively, are computed in this way. We
divide the sums of the squared forecast errors by the corresponding sum of
squared forecast errors obtained for the original series. Thus, a value greater
than one in Table 4 means that the MSE of the linear forecast is smaller
than the one of the naive forecast based on logs, that is, logs do not improve
the forecasts, whereas a number smaller than one implies that taking logs
improves the forecasts.

Obviously, numbers smaller than one dominate in Table 4. Thus, pro-
ducing forecasts on the basis of the log series is clearly beneficial. In fact,
all numbers greater than one typically exceed one only by very little, while
gains from taking logs can be considerable. This is similar to the simulation
results reported in Table 1. For example, the largest relative forecast MSE in
Table 4 is about 1.24 which occurs for the Euro Stoxx index when the sam-
ple period starts in 1995M1 (smallest sample size 71 for model selection and
estimation) and the longest forecast period 2001M1-2007M12 is considered.
Thus, a potential loss in forecast efficiency of about 24% is incurred by using
logs. Note, however, that the difference in the two MSEs is not significant at
the 5% level based on the DM test. In fact, the only significantly larger MSE
of the naive forecast is obtained for the 1-step ahead forecast of the Euro
Stoxx for the shorter sample period and forecast period 2001M1-2007M12.
On the other hand, there are many cases where the naive forecasts produce
significantly smaller MSEs than the linear forecasts. In a number of cases
the relative forecast MSEs are smaller than 0.80, that is, forecast efficiency
gains of more than 20% are found. For example, for the Dow Jones index, us-
ing the longer sample and the shortest forecast period 2005M1-2007M12, the
relative forecast MSE is 0.7445 meaning that the MSE of the naive forecast
is only about 3/4th of the one of the linear forecast.

In fact, most forecast MSEs above one occur for the longest forecast
period 2001M1-2007M12 which covers the general downturn in the stock
markets in the early years of the current millennium. Had we eliminated
this forecast period, the advantage of the forecasts based on logs would have
been overwhelming. The results for the long forecast period show that the
precision of specific forecasts in practice is quite dependent on the sample and
forecast periods. We account for this fact by reporting results for different
periods.

The optimal forecasts typically have MSEs close to the naive forecasts
or are slightly better. The MSEs of the optimal forecasts relative to the
naive ones are shown in Table 5. Obviously, they are all very close to one,
as in the simulations. In no case has the optimal forecast more than a 10%
higher MSE than the naive one. On the other hand, forecast efficiency gains
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from using the optimal forecast over the naive one of more than 10% are also
rare. Notice, however, that with one exception, all significant differences are
obtained in situations when the optimal forecast is better. The only exception
occurs for the Euro Stoxx when the shorter sample and a forecast period from
2001M1 - 2007M12 is used. In that case the MSE improvement from using
the naive forecast is only about 1.5%. Thus, overall the optimal forecasts are
about equally good or even slightly better than the naive forecasts for these
samples and forecast periods. Hence, the gains from using logs in forecasting
the stock indices would be even greater in some occasions than is seen in
Table 4 had we used the optimal forecast in that table instead of the naive
one. It may also be worth noting that the logs of the stock indices are not
well modelled by normal distributions whereas our optimal forecast is derived
under the normality assumption.

As mentioned earlier, many of the models underlying the forecasts in
Tables 4 and 5 are AR(0) models for the first differences. Hence, these
results do not tell us much about the impact of estimation uncertainty in
the AR parameters. Such estimation uncertainty may in particular have an
impact on the optimal forecast which involves an estimate of the forecast
error variance and is, thus, based on the AR coefficient estimates. Therefore
we now consider series for which more dynamics in the differences and the
differences of logs can be expected.

4.2 GDP

Quarterly, seasonally adjusted GDP series from seven different OECD coun-
tries for the period 1980Q1 - 2006Q4 are investigated. The precise data
sources are again given in Appendix B. Our choice of series is determined
by the objective of our forecast comparison, namely to see whether taking
logs is beneficial for forecasting even if forecasts of the original series are
of interest. The countries are Belgium, Canada, Denmark, France, Japan,
Norway and the U.S.. Thus, we have a range of smaller, medium size and
larger countries in our set. The first differences of the original variables and
the logs are plotted in Figure 2. The main criterion for including these coun-
tries is to ensure that there are no major distortions and data irregularities
during the sample period. For instance, we exclude Germany because the
unification in 1990 resulted in a series with a shift in that year. The shift
is due to the fact that the GDP series refers to West Germany only before
the unification. Of course, we could have adjusted the series in one way or
another. We did not want to include series for which manual adjustments on
our side were necessary to ensure a reasonably good fit, however. Thereby
we try to safeguard against the critique that our results may be driven by
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our adjustments. Thus, we only include countries for which the GDP series
both in first differences and in first differences of logs can be modelled rea-
sonably well by low order AR processes for the entire sample period. This
is also why we use data which are adjusted by some kind of official seasonal
adjustment procedure. The residuals of the AR processes fitted to the series
of changes (first differences of the original series) may still be heteroskedas-
tic, however, which is why logs are often used. In some cases there is still
some heteroskedasticity left in the series if the rates of change are considered,
as can be seen in Figure 2. Again the first differences of logs on the right
hand side of the figure generally appear to have a more stable variance over
the sample period, although that is not obvious in all cases. In fact, taking
logs in some cases seems to lead to a change in variance which may, e.g., be
attributed to the great moderation. There is a substantial literature which
discusses the possibility of a reduction in the volatility of U.S. series from the
middle of the 1980s onward (e.g., Sims and Zha (2006), Sims, Waggoner and
Zha (2008), Lanne and Lütkepohl (2008)). This phenomenon is also seen to
some extent in the last panel in Figure 2 which shows the first differences of
logs of U.S. GDP. However, overall the log transformation seems to stabilize
the variability in the GDP series considered.

The forecasts are computed as explained for the stock indices. That is, we
fit AR models to the original GDP series and to their logs. The AR orders are
chosen by AIC and SC model selection criteria based on increasing sample
sizes for each fixed sample beginning. The maximum lag order considered is
now 8 because we expect some more serial dynamics in the first differences
of the series. Again we just report SC results because the AIC results are
qualitatively identical. MSEs of naive forecasts relative to MSEs for linear
forecasts for samples starting in 1980Q1, 1985Q1 and 1990Q1 are reported
in Table 6. The MSEs for the optimal forecasts are either very close to those
of the naive forecasts or they are slightly smaller. Thus, whenever a number
smaller than one appears in the table, the log transformation improves the
forecasts. Had the optimal forecasts been used, the improvements may have
been even slightly larger. The forecast periods start either in 2000Q1 or
in 2003Q1 and results for forecast horizons from one to four quarters are
reported. We also used different estimation and forecast periods and found
similar results so that we believe that the results reported in Table 6 provide
a good summary of the overall outcome.

The general picture in Table 6 is again in favor of using logs. In fact,
Japan is the only country for which the linear forecasts have significantly
smaller MSEs than the naive ones in some cases, where significance is again
assessed by (two-sided) DM tests with 5% level. For the other countries there
are quite substantial improvements due to the log transformation notably for
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longer term forecasts. Consider, for example, Belgium where in all cases the
log transformation improves the forecasts and in a couple of cases the relative
MSE is less than 10%, that is, a dramatic improvement is obtained (see the
figures for forecast horizon 4 and forecast period 2003Q1-2006Q4). In fact, in
most cases where the forecasts based on the original variables are superior,
the gains are only small, typically a few percent improvements. The only
exception is Denmark for which the original variables deliver more than 50%
improvements in the forecast period 2000Q1 - 2006Q4. This improvement
is not significant at the 5% level according to the DM test, however. More
generally for this forecast period the forecasts based on the original variables
are often superior although not significantly so when checking with the DM
test. In fact, if one would eliminate the first column of the table which shows
the relative forecast MSEs for this period and the rows associated with Japan,
the picture would be even more clearly in favor of taking logs.

Thus, in summary, we can conclude from the results for the GDP series
that taking logs is beneficial from a forecasting point of view. Forecasting the
logs first and then converting to forecasts for the original variables can lead
to dramatic MSE improvements. On the other hand, for those cases where
the forecasts based on the original variables exhibit smaller MSEs, the gains
are typically very limited. This situation is similar to the simulation results
reported in Table 1. In the next section we check whether similar results are
obtained for consumption series from different countries.

4.3 Consumption Forecasts

The next set of variables we use for a forecast comparison are quarterly,
seasonally adjusted aggregate private consumption expenditures for a range
of OECD countries, more precisely for Australia, Belgium, Canada, Japan,
Norway, United Kingdom (UK) and the U.S.. Thus, the countries overlap
with those for which we considered GDP series in the previous subsection,
but they are not identical. The sample period is the same as for GDP, that
is, 1980Q1-2006Q4. The precise data sources are again given in Appendix
B and the first differences and first differences of logs are depicted in Figure
3. For some of the series the log transformation apparently leads to a series
with a clearly more homogeneous variance in first differences than without
logs. Norway is a particularly clear case. On the other hand, there are also
series such as the one from the UK where the advantage of taking logs for
stabilizing the variance is not apparent. Whereas the variability of the first
differences seems to increase over the sample period, it appears to decrease for
the first differences of logs. Clearly, one may question the log transformation
in such a case. Still, the fact remains that logs of consumption series are
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often considered in economic modelling and, hence, it is of interest to check
whether the log transformation can be beneficial for forecasting as well.

We produce forecasts in the same way as for the GDP series, using the
same sample and forecasting periods, and report MSEs of naive forecasts
relative to linear forecasts in Table 7. They are again based on SC models
because the AIC results are qualitatively similar. Also the optimal forecast
MSEs are again similar to those of the naive forecasts. For five countries
there are partly substantial gains from using logs. For example, for Norway
the 4-steps ahead forecasts based on the logs for the sample period starting
in 1985 and forecasting period 2003Q1-2006Q4 produce an MSE which is less
than 20% of the corresponding linear forecast MSE. Many of the MSEs of
the naive forecasts are significantly smaller than those of the linear forecasts.

In contrast, using logs for forecasting Japanese and UK consumption
results in considerable and significant efficiency losses. In particular, for
the UK the MSEs of the naive forecasts based on logs can be more than
five times the corresponding MSEs of the linear forecast. These figures are
similar to the simulation results in Table 3 which are obtained by simulating
the yt series with a linear DGP. Thus, for series where a stabilization of the
variance is not achieved by taking logs, the log transformation may be quite
damaging for the forecast precision.

5 Conclusions

In this study we have investigated whether and under which conditions us-
ing logarithms can help improving forecasts of economic variables. More
precisely, if forecasts of a variable yt are of interest, the question is under
what conditions forecasting xt = log yt and then converting the forecast of
xt to a forecast of yt may lead to a more precise forecast than predicting
yt directly. To explore this question, we have compared three predictors:
(1) a linear forecast based on an ARIMA model for yt, (2) a naive forecast
which converts an ARIMA forecast of xt by the exponential transformation
to a forecast of yt and (3) an ‘optimal forecast’ which adjusts the ARIMA
forecast of xt to account for the nonlinearity of the log transformation when
converting to a forecast of yt. The MSE has been used as a measure for
forecast precision.

In a simulation study based on ARI processes for xt as well as for yt we
found that using logs can result in dramatic gains in forecast precision if the
log transformation indeed makes the variance more homogeneous throughout
the sample. In other words, forecasts based on xt = log yt and then converting
to yt can be much better than direct predictions of yt if xt has a more stable
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variance than yt. On the other hand, directly forecasting yt is preferable in
terms of forecast precision if yt has a more homogeneous variance than xt.
Generally, the so-called optimal forecast based on xt is typically not better
or at least not much better than the naive forecast based on xt. Although
the optimal predictor minimizes the forecast MSE in theory, it involves the
forecasts error variance which is unknown in practice and has to be replaced
by an estimator. Using the usual estimator for this quantity, the optimal
predictor does not appear to have an advantage over the naive predictor
in samples of common size, at least for the DGPs used in our simulation
experiment. In this context it may also be worth noting that Granger and
Newbold (1976) do not report large gains in theoretical forecast MSE in their
examples if a log transform is used. Hence, our simulation findings are in
line with their results.

We have also considered a range of economic series which are typically
used in logarithmic form in economic analysis and compared the three predic-
tors using different sample and forecast periods. The overall results from the
empirical forecast comparisons are the same as those of the simulations. In
other words, series whose variability becomes more homogeneous by taking
logs, can be forecasted better by the naive or optimal predictors. The gains in
forecast MSE can be dramatic. On the other hand, if the log transformation
does not stabilize the variance of a series, it is preferable to base forecasts di-
rectly on ARIMA models for the original series. In that case, using forecasts
based on the log series can be damaging to the forecast precision.

These results can be potentially important for forecasting aggregated se-
ries. If disaggregate data is available it was found that forecasting the dis-
aggregate series and then aggregating the forecasts may be preferable to
forecasting the aggregate series directly. Such results were found for both
temporal as well as contemporaneous aggregation (e.g., Amemiya and Wu
(1972), Wei (1978), Lütkepohl (1986, 1987, 2006), Silvestrini, Salto, Moulin
and Veredas (2008)). Many of the available results relate to linear aggrega-
tion, however. Since the log transformation is a nonlinear one, the question
arises whether forecasting the logs of the disaggregate series and aggregating
the forecasts is still preferable to forecasting the aggregate directly based on
the original series or based on its logs. For the case of contemporaneous
aggregation this would require multivariate extensions of the results regard-
ing optimal prediction of nonlinearly transformed series. Such extensions
were discussed by Ariño and Franses (2000). These issues are left for future
research.
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Appendix A. Modified Diebold-Mariano Test

The following version of the Diebold-Mariano test from Harvey et al. (1997)
for equality of the MSEs of different forecasts is used. Let (e1i, e2i), i =
1, . . . , N , be a set of errors from two different procedures for computing h-
step ahead forecasts and define di = e2

1i − e2
2i, i = 1, . . . , N . The modified

DM statistic has the form,

DM =

(
N + 1− 2h + N−1h(h− 1)

N

)1/2

V̂ −1/2d̄,

where d̄ = N−1
∑N

i=1 di is the mean of the di’s and

V̂ =
1

N

(
γ̂0 + 2

h−1∑

k=1

γ̂k

)

with γ̂k = N−1
∑N

i=k+1(di − d̄)(di−k − d̄), is an estimator of the variance of
d̄. The statistic is used with a t distribution with N − 1 degrees of freedom
and the significance level refers to a two-sided alternative.

Appendix B. Data Sources

All data considered are obtained directly from Thomson Datastream where
data from international sources such as International Monetary Fund (IMF)
or national sources such as Banque Nationale de Belgique are collected.

Stock Indices

Nine price indices from stock markets all over the world are investigated.
The corresponding codes (DS Mnemonics) in the Datastream database are:
DJES50I for Dow Jones Euro Stoxx 50, FTSE100 for FTSE 100, DAXINDX
for DAX 30 Performance, FRCAC40 for CAC 40, DJINDUS for Dow Jones
Industrials, NASCOMP for Nasdaq Composite, S&PCOMP for Standard
and Poors 500 Composite, JAPDOWA for Nikkei 225 Stock Average, and
HNGKNGI for Hang Seng Index.
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GDP

The GDP series are seasonally adjusted in current prices for seven coun-
tries. The corresponding codes (DS Mnemonics) are: BGGDP...B for Bel-
gium, CNI99B.CB for Canada, DKESNGDPB for Denmark, FRL99B.CB for
France, JPI99B.CB for Japan, NWGDP...B for Norway, and USI99B.CB for
U.S..

The GDP of Canada is measured in billions of Canadian dollars, French
GDP is in billions of French franc, Japanese GDP is in billions of Japanese
yen, and U.S. GDP is in billions of U.S. dollars. These series are from IMF
International Financial Statistics. Norway’s GDP, from Statistics Norway, is
in millions of Norwegian krones. The data for Denmark (in billions of euros)
are from Statistical Office of the European Communities and the GDP series
for Belgium is given in millions of euros and is provided by Banque Nationale
de Belgique.

Consumption

Seasonally adjusted time series of private consumption in current prices for
seven countries are considered. The corresponding codes (DS Mnemonics)
are: AUI96F.CB for Australia, BGCNPER.B for Belgium, CNI96F.CB for
Canada, JPI96F.CB for Japan, NWCNPER.B for Norway, UKI96F.CB for
UK, and USI96F.CB for U.S..

The household consumption expenditures of Australia (in billions of Aus-
tralian dollars), Canada (in billions of Canadian dollars), Japan (in billions
of Japanese yen), UK (in billions of UK sterling pounds), and U.S. (in bil-
lions of U.S. dollars) are from IMF International Financial Statistics. For
Belgium, private consumption expenditures (in millions of euros) are from
Banque Nationale de Belgique and the data for Norway (in millions of Nor-
wegian krones) are from Statistics Norway.
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Figure 1: First differences (left column) and first differences of logs (right
column) of stock indices.
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Figure 2: First differences (left column) and first differences of logs (right
column) of GDP series.
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Table 1: Forecast MSEs of Naive Forecast Relative to Linear Forecast for
Simulated Series, DGP ∆xt = ν + ρ∆xt−1 + εt, yt = exp xt, Sample Size 40

σ2
ε = 0.001 σ2

ε = 0.0001
ρ = ρ =

ν h −0.9 −0.5 0 0.5 0.9 −0.9 −0.5 0 0.5 0.9
0 1 1.001 1.001 1.004 1.010 0.582 1.001 1.000 1.001 1.004 1.013

4 1.002 1.007 1.017 1.051 0.515 1.000 1.001 1.002 1.006 1.037

0.01 1 1.008 1.006 1.014 0.980 0.392 1.000 0.997 0.984 0.947 0.659
4 1.016 1.040 1.059 1.008 0.103 0.988 0.979 0.935 0.793 0.541

0.02 1 1.002 0.992 0.976 0.849 0.322 0.904 0.864 0.767 0.767 0.459
4 0.987 0.987 0.933 0.691 0.025 0.747 0.598 0.439 0.461 0.156

Note: AR order selection based on SC with maximum lag order of 4. The
number of replications is 10 000.

Table 2: Forecast MSEs of Optimal Forecast Relative to Naive Forecast for
Simulated Series, DGP ∆xt = ρ∆xt−1 + εt, yt = exp xt, Sample Size 40

σ2
ε = 0.001 σ2

ε = 0.0001
ρ = ρ =

h −0.9 −0.5 0 0.5 0.9 −0.9 −0.5 0 0.5 0.9
1 1.001 1.001 1.002 1.003 0.998 1.000 1.000 1.000 1.000 1.001
4 1.001 1.003 1.006 1.019 1.059 1.000 1.000 1.001 1.002 1.011

Note: AR order selection based on SC with maximum lag order of 4. The
number of replications is 10 000.

Table 3: Forecast MSEs of Naive Forecast Relative to Linear Forecast for
Simulated Series, DGP ∆yt = ν + ρ∆yt−1 + εt, xt = log yt, Sample Size 40

σ2
ε = 0.001 σ2

ε = 0.0001
ρ = ρ =

ν h −0.9 −0.5 0 0.5 0.9 −0.9 −0.5 0 0.5 0.9
0.02 1 1.083 1.086 1.085 1.101 1.130 1.376 1.365 1.395 1.283 1.128

4 1.233 1.334 1.358 1.346 1.392 2.175 2.612 2.731 2.276 1.521

0.05 1 1.255 1.256 1.268 1.224 1.135 1.943 1.915 1.916 1.380 1.114
4 1.786 2.099 2.172 1.960 1.535 4.845 6.491 6.033 3.230 1.480

Note: AR order selection based on SC with maximum lag order of 4. The
number of replications is 10 000.
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Table 4: Forecast MSEs of Naive Forecast Relative to Linear Forecast for
Stock Index Series

Sample 1990M1- Sample 1995M1-
Forecast period Forecast period

Forecast 2001 2003 2005 2001 2003 2005
Index horizon -2007 -2007 -2007 -2007 -2007 -2007
Euro Stoxx 1 1.0353 0.9771 0.9641 1.0570* 0.9823 0.9706

3 1.0860 0.9325 0.9108 1.1371 0.9460 0.9262
6 1.1520 0.8126* 0.7691 1.2417 0.8306 0.7839

FTSE 1 1.0182 0.9844 0.9789 1.0209 0.9902 0.9862
3 1.0481 0.9393 0.9310 1.0548 0.9617 0.9535
6 1.0781 0.8492* 0.8217 1.0906 0.8981 0.8687

DAX 1 1.0098 0.9700 0.9551 1.0224 0.9678 0.9509
3 1.0274 0.9282 0.9051 1.0606 0.9208 0.8927
6 1.0430 0.8624 0.8303* 1.1010 0.8393 0.7964

CAC 40 1 1.0182 0.9830 0.9772 1.0446 0.9816 0.9747
3 1.0465 0.9584 0.9521 1.1119 0.9541 0.9501
6 1.0815 0.9074 0.8961 1.1960 0.8878 0.8858

Dow Jones 1 1.0284 0.9795 0.9874 1.0366 0.9919 0.9984
3 1.0786 0.9101 0.9008 1.1034 0.9495 0.9415
6 1.1675 0.8234 0.7445 1.2183 0.9021 0.8275

Nasdaq 1 1.0283 0.9888 1.0169 1.0277 0.9965 1.0143
3 1.0889 0.9621 0.9947 1.0855 0.9847 1.0027
6 1.1692 0.9010 0.8419 1.1614 0.9500 0.8941

S&P 500 1 1.0340 0.9757 0.9975 1.0419 0.9883 1.0077
3 1.0907 0.9140 0.9394 1.1122 0.9501 0.9776
6 1.1682 0.8038 0.7815 1.2086 0.8790 0.8780

Nikkei 1 0.9430* 0.9022* 0.9340* 0.9907 0.9806* 0.9926*
3 0.8783 0.8177* 0.8766 0.9758 0.9563* 0.9828
6 0.8141 0.7541* 0.8350 0.9574 0.9314 0.9712

HangSeng 1 0.9971 0.9275* 0.9034 0.9950 0.9681* 0.9523*
3 0.9779 0.8397 0.8031 0.9819 0.9288 0.9040
6 0.9228 0.7944 0.7732 0.9557 0.9089 0.8918

Note: AR order selection based on SC with maximum lag order of 4.
* significant at 5% level according to DM test with two-sided alternative.
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Table 5: Forecast MSEs of Optimal Forecasts Relative to Naive Forecasts for
Stock Index Series

Sample 1990M1- Sample 1995M1-
Forecast period Forecast period

Forecast 2001 2003 2005 2001 2003 2005
Index horizon -2007 -2007 -2007 -2007 -2007 -2007
Euro Stoxx 1 1.0108 0.9893 0.9844 1.0146* 0.9924 0.9881

3 1.0251 0.9637 0.9598 1.0328 0.9713 0.9703
6 1.0419 0.8867 0.8782 1.0529 0.9009 0.8989

FTSE 1 1.0073 0.9901 0.9891 1.0061 0.9908 0.9906
3 1.0185 0.9567 0.9644 1.0153 0.9601 0.9692
6 1.0287 0.8884* 0.8974 1.0231 0.8985* 0.9101

DAX 1 1.0038 0.9719 0.9636 1.0072 0.9730 0.9654
3 1.0098 0.9268* 0.9175 1.0179 0.9264 0.9179
6 1.0137 0.8504* 0.8387* 1.0279 0.8388* 0.8252*

CAC 40 1 1.0104 0.9820 0.9789 1.0141 0.9896 0.9872
3 1.0259 0.9493 0.9541 1.0338 0.9686 0.9752
6 1.0438 0.8804 0.8980 1.0552 0.9176 0.9451

Dow Jones 1 1.0075 1.0005 1.0043 1.0106 1.0027 1.0071
3 1.0208 0.9940 1.0026 1.0290 1.0000 1.0115
6 1.0432 0.9931 0.9958 1.0575 1.0091 1.0174

Nasdaq 1 1.0143 1.0027 1.0256 1.0204 1.0014 1.0311
3 1.0444 1.0023 1.0485 1.0630 0.9977 1.0573
6 1.0961 1.0073 1.0895 1.1352 0.9980 1.0967

S&P 500 1 1.0083 0.9972 1.0060 1.0113 0.9986 1.0092
3 1.0214 0.9858 1.0078 1.0285 0.9889 1.0172
6 1.0394 0.9686 1.0087 1.0512 0.9783 1.0362

Nikkei 1 0.9846 0.9646* 0.9659 0.9918 0.9767* 0.9783
3 0.9690 0.9339* 0.9389 0.9838 0.9553 0.9606
6 0.9562 0.9144* 0.9268 0.9782 0.9416 0.9534

HangSeng 1 1.0103 0.9697 0.9629 1.0035 0.9563 0.9500
3 1.0142 0.9208 0.9041 0.9999 0.9023 0.8912
6 0.9911 0.8854 0.8743 0.9711 0.8735 0.8705

Note: AR order selection based on SC with maximum lag order of 4.
* significant at 5% level according to DM test with two-sided alternative.
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Table 6: Forecast MSEs of Naive Forecast Relative to Linear Forecast for
GDP Series

Sample 1980Q1- Sample 1985Q1- Sample 1990Q1-
Forecast period Forecast period Forecast period

Forecast 2000Q1 2003Q1 2000Q1 2003Q1 2000Q1 2003Q1
Country horizon -2006Q4 -2006Q4 -2006Q4 -2006Q4 -2006Q4 -2006Q4
Belgium 1 0.9485 0.5219 0.9001 0.5174 0.8489 0.5946*

2 0.8919 0.2939 0.8137 0.2753* 0.7276 0.3925*
3 0.8523 0.1764* 0.7643 0.1723* 0.6601 0.3206*
4 0.8242 0.0930* 0.7270 0.0975* 0.5992 0.2625*

Canada 1 0.7016 0.6226 0.6432 0.5515 0.6706 0.5563
2 0.7564 0.6445 0.6795 0.5402 0.7579 0.6234
3 0.7901 0.6254 0.6961 0.5243 0.8114 0.7011
4 0.7874 0.5622 0.6728 0.4654 0.7792* 0.6444*

Denmark 1 1.2308 1.1222 1.0483 0.9875 1.0289 1.0135
2 1.2764 0.8814 1.0070 0.7981 0.9676 0.8285
3 1.3627 0.5792 0.9461 0.5125 0.8491 0.5779
4 1.5162 0.3651 0.9429 0.2850 0.8278 0.4218

France 1 1.0624 0.6920 0.9574 0.7469 0.8451 0.6874*
2 1.1257 0.3834 0.7983 0.3775 0.6875* 0.5169*
3 1.2773 0.3327 0.6850 0.2275 0.5624* 0.4211*
4 1.2678 0.3133 0.5927 0.2062 0.4953 0.3997*

Japan 1 1.0148 1.0348 1.0146* 1.0245 1.0272 1.0096
2 1.0486 1.0794 1.0289* 1.0683 1.0481 0.9976
3 1.0836 1.1142 1.0435* 1.0923* 1.0655 0.9914
4 1.1117 1.1486 1.0536* 1.1117 1.0770 0.9592

Norway 1 0.9578 0.8317 1.0816 0.9980 1.0772 0.9370
2 0.9781 0.7438 1.1390 0.9932 1.0890 0.8897
3 0.8681 0.5344* 0.9847 0.7664 0.9875 0.7507*
4 0.8272 0.4596* 0.8818 0.6703* 0.9032 0.7048*

U.S. 1 1.1019 0.6882 1.0549 0.6883 1.0632 0.7690
2 0.9840 0.2254* 1.1369 0.3975* 0.9948 0.5648
3 0.9916 0.1331* 1.0530 0.3122* 0.9016 0.4532
4 0.9396 0.1084* 0.9720 0.2683* 0.8134 0.4046

Note: AR order selection based on SC with maximum lag order of 8.
* significant at 5% level according to DM test with two-sided alternative.
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Table 7: Forecast MSEs of Naive Forecast Relative to Linear Forecast for
Consumption Series

Sample 1980Q1- Sample 1985Q1- Sample 1990Q1-
Forecast period Forecast period Forecast period

Forecast 2000Q1 2003Q1 2000Q1 2003Q1 2000Q1 2003Q1
Country horizon -2006Q4 -2006Q4 -2006Q4 -2006Q4 -2006Q4 -2006Q4
Australia 1 0.9167 0.8351 0.8728 0.7471 0.6223* 0.5081

2 0.8236 0.8079 0.7022 0.6413 0.4621* 0.4035
3 0.7521 0.7532 0.5694 0.5207 0.3634* 0.3111
4 0.7554 0.7165 0.4947 0.4484 0.2861* 0.2591

Belgium 1 0.8823 0.7683 0.9443 0.8812 0.8619 0.6263
2 0.8977 0.7138 0.8986 0.7358 0.8050 0.5908
3 0.9512 0.5009 0.8593 0.4859 0.7923 0.4352
4 1.0271 0.2722 0.8319 0.2834 0.7446 0.2947

Canada 1 0.7766 0.8363 0.7314 0.6338 0.7396 0.6342
2 0.6130 0.5491 0.5810 0.3672 0.6358 0.5076
3 0.5536 0.3767 0.4479 0.2186 0.5428 0.4142
4 0.5103 0.2707 0.3494 0.1382 0.4661* 0.3487

Japan 1 1.0403 1.0942* 1.0457 1.0658 1.0637* 1.0717
2 1.0526 1.0952 1.0537 1.0738 1.1064* 1.0897
3 1.1007* 1.1765* 1.0796* 1.1343* 1.1554* 1.1534
4 1.1184* 1.2665* 1.0994* 1.2002* 1.2042* 1.2254

Norway 1 1.0253 0.9317 0.8493 0.8094 0.9002 0.7414
2 1.0274 0.7857 0.6680 0.5676 0.6204 0.4870
3 0.9936 0.4574 0.4634 0.2760* 0.4595 0.3083*
4 0.8791 0.3241 0.3699 0.1871* 0.3540 0.2199*

UK 1 1.8154 2.0701 1.8468 2.0323 1.5834 2.5313
2 3.3214* 3.3397 3.5009 2.5500 2.7726* 3.1062
3 4.0529* 5.7324* 4.1098* 3.3790* 3.0556* 3.6966
4 5.2223* 7.8226* 5.1315* 4.6133* 3.7520* 4.6226*

U.S. 1 1.0235 0.7678 1.0685 0.6963 1.1045 0.8015
2 0.9416 0.4251 0.9251 0.4385 0.9587 0.5327*
3 0.8956 0.2590 0.8348 0.3175 0.8810 0.4467
4 0.8437 0.2879 0.7458 0.3156 0.7302 0.4228

Note: AR order selection based on SC with maximum lag order of 8.
* significant at 5% level according to DM test with two-sided alternative.
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