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Abstract

The IEEE 802.11 standard uses Carrier Sense Multiple Access with

Collision Avoidance (CSMA-CA) to avoid multiple devices simulta-

neous transmitting on a shared transmission medium. In this pa-

per, Bianchi’s model for IEEE 802.11 is studied and we suggest some

important improvements. Firstly, we expand the state space of the

Markov chain to model the evolution of a network, instead of a single

device. Secondly we relax the assumption that the network must be

saturated. Thirdly, we extend the model to allow for heterogeneous
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devices with different transmission profiles.

We use this new model to perform Monte Carlo simulation to dis-

cover the impact of the minimum and maximum contention window

times (CWmin and CWmax) in the standard on measures of through-

put in a network. By exhaustive search over a parameter space, we

find optimal values for these devices for any given network model, and

show that the recommended parameters in the IEEE 802.11 standard

are not optimal. We consider both average and minimum throughput,

and show that increases in throughput of around 8% are possible for

saturated networks, and that even greater improvements are possible

for any case in which the traffic sources are not homogeneous, i.e. any

real scenario.

1 Introduction

In communications networks, a Medium Access Control (MAC) policy deter-

mines how access to a single transmission medium is shared between devices.

Where there is no central media access controller, and each device determines

its own media access, this sharing algorithm is a distributed coordination

function (DCF).

Carrier Sense Multiple Access with Collision Detection (CSMA-CD) is

a DCF used in Ethernet (IEEE 802.3); if a device transmits a frame of in-

formation and detects another device transmitting at the same time, it will

transmit a jam signal, and then wait for a random amount of time before
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sending that frame again. This random time is determined by the truncated

binary exponential backoff algorithm. and parameters determining the mini-

mum and maximume contention window times (CWmin and CWmax). The

device will initially backoff for a period uniformly at random in the discrete

interval [0, CWmin]. If another collision occurs, the device will backoff for a

period uniformly in [0, 2CWmin], and so on, until we reach some maximum

backoff period [0, 2kCWmin] = [0, CWmax].

Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA) is

similar to CSMA-CD, but if a device wishes to transmit it will monitor the

channel and, if it finds the channel busy, waits for a random interval before

retransmission, again determined by the truncated binary exponential backoff

algorithm. This monitoring before transmission seeks to avoid collisions.

The IEEE 802.11 standard[16] specifies parameters CWmin and CWmax

which control time intervals between devices retransmitting in a CSMA-CA

DCF. Further parameters, notably TXOPlimit, and AIFS, which we do not

consider here, are also specified. Recommended values of these are given in

the standard, are not mandatory, and differ according to the physical medium

(PHY). There are many optional extensions within the 802.11 standard, and

for a more full technical description we refer the reader to, for example, Lopez

Toledo et al. [20]. However, extensions to the standard have so far not been

widely implemented, and the standard IEEE 802.11 DCF is still relevant.

In this paper we show how sensitive the DCF is to the values of CWmin

and CWmax and how to choose them in order to optimize the throughput
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possible in the network.

Although we have focused here on the IEEE 802.11 standard, as it is both

well used and studied, the CSMA-CA DCF is used in other standards such as

IEEE 802.15.4 (Wireless Personal Area Networks). See for example Campbell

et al.[7] which explains the use of CSMA-CA in IEEE 802.15.4 and compares

these two standards. We seek to demonstrate through reference to IEEE

802.11 the importance of the parameter choice, although the methodology

could be adapted to a different standard by changing the network model we

discuss below.

The Bianchi model is fundamental to our research. Bianchi ([3],[4]) mod-

els the transmission state of a device as a Markov chain. He assumes a

saturated model, i.e. the device always has untransmitted packets that it

will transmit when it has an opportunity. He uses this model in order to find

a theoretical throughput for the CSMA/CA DCF under saturation condi-

tions. He assumes each device acts in the same way and looks at the Markov

chain from the point of view of one device to determine the behaviour of

the rest of the network, a classic decomposition approach. [5] proves this

assumption is valid asymptotically for a large number of states.

Ziouva and Antonakopoulos[27] extend the Bianchi model to account for

busy medium conditions for invoking backoff conditions.

Banchs and Vollero[2] consider optimizing throughput in IEEE 802.11e,

a wireless standard which allows different priorities for different classes of

traffic, called Access Classes. By modelling each Access Class as a different
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device they then consider each device evolving as a Markov chain as per Wu

et al.[26]. A set of non-linear equations are solved to give the maximum

throughput for any configuration parameters; the authors present optimal

settings for the IEEE 802.11e parameters CWmin, CWmax, and TXOPlimit,

and AIFS.

Lopez Toledo et al.[20] ascribe the throughput sensitivity in an IEEE

802.11 network to the choice of the CWmin and CWmax backoff parameters,

and show that saturation throughput depends only on the number of devices

in the network and these backoff parameters. They develop a sequential

Monte Carlo Bayesian based estimator for the number of devices, and hence

find optimal values for CWmin and CWmax, and also show how this could

work in a distributed situation. They show through simulation that this

optimization method is effective.

Sharma et al. [25] do not decouple the Markov chain, focusing on the

whole series of interactions for a homogeneous network. They form a Markov

chain with a state vector denoting the number of stations in each backoff

stage; they show that this Markov chain stays close to what they call a typical

state, from which estimates of parameters (e.g. throughput) are inferred.

This Markov chain is in effect a summary of the information in the Markov

chain used by Bianchi and by reducing the state space the authors can add

some tractability and make a performance analysis.

Kong et al.[17] analyze IEEE 802.11e performance. Traffic with higher

priority is assigned lower values of CWmin and CWmax, with the result that
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higher priority traffic tends to be transmitted sooner. Their model includes

a maximum number of attempted transmissions before a packet is discarded

(TXOPlimit), and other parameters specified in IEEE 802.11e (CWmin,

CWmax, and AIFS). Simulation shows that the choice of these parameters

affects the network behaviour greatly, but a general pattern or method to

find optimal parameter settings is not shown. Similar work is performed

analytically later by Hwang et al[15], where the effect of different parameters

on an IEEE 802.11e network are deduced by an analytic model and verified,

under saturated conditions.

Criticisms of the Bianchi model include the fact that it is idealized, in the

sense that packets are not lost, and that real behaviour in wireless networks

such as packet retransmissions may change the behaviour and remove the in-

dependence assumed. There have been various attempts to adapt the model

to make the behaviour more realistic; for example Alshaynour and Agarwal[1]

add an extra dimension to the standard Markov chain model. Transmission

losses are assumed which give a loss probability that is constant for each

packet transmitted. As well as the Bianchi backoff state and backoff counter,

a state which tracks the number of data frame retransmission attempts for

that device have been added. These are assumed independent between de-

vices, and an analysis is done in a similar way to Bianchi to find throughput,

and also the packet loss percentage.

All the papers above assume saturation conditions for the network, and

thus also for the Bianchi Markov chain model .
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Malone et al.[22] allow non-saturated models by introducing “post-backoff”

states which represent devices which have transmitted a packet, but have

none waiting; the time until a packet arrives is determined by a parameter,

which can vary between devices. This model goes some of the way to relaxing

the saturation assumption, and allowing heterogeneous devices. They show

how the value of CWmin is crucial to network performance for their model.

However, the model is still a per-device model of the network with a Markov

chain for each device, and does not account for important interactions be-

tween devices.

The hypothesis that the probability of a collision is constant is investi-

gated in [22]. In that article (section 5) it is found that observed collisions of

transmissions vary depending on the backoff stage of the device; the authors

argue that this is because a packet will be retransmitted only if other devices

in the network are transmitting. Thus the experimental data suggests that

the probability of successful transmission depends on behaviour of other de-

vices in the network, and interaction between devices may not be ignored in

an accurate model. In this same paper, the behaviour of the Bianchi model

(in saturation only) is found to significantly under-predict throughput in a

model, particularly for a small number of devices, although [10] comes to a

different conclusion with the same data.

Conversely, experimental or simulation work has shown that the Bianchi

model is indeed a relatively good approximation, at least for saturated net-

works. For example, Mare et al.[23] validate the performance of the model
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experimentally, albeit only for two states. Both Markov chain analysis and

experimental inference become harder as the number of devices increases.

A large amount of simulation work continues to assess the performance

of the IEE 802.11 standard and extensions, and more generally CSMA-CS

DCFs, for various applications; this is generally done using a simulator of

a network, or sometimes a real network, and does not use the model-based

approach we present here, nor evaluate the entire state space. For example,

recently Hajlaoui et al.[13] study how the MAC and physical layer choice

affects throughput of voice transmission in IEEE 802.11n, showing that pa-

rameter choice is important here, but do not attempt to optimise. Deng et

al.[9] study the effect of collisions of packets on safety-critical VANETS (pro-

posed Vehicular Ad Hoc Networks) through means of simulation, and show

the effect of CWmin and CWmax parameters, amongst others, on delays;

here parameter choice could really cost lives, although again a systematic

search is not performed.

The “idle sense” method is proposed in [14] to dynamically change the

value of the CW parameters based on network performance (the number

of observed consecutive idle slots seen by a device) to ensure fairness and

increased throughput; average throughput per host significantly increased

using this proposed DCF under simulations.

There have been many proposed algorithms for coordination functions for

MAC in wireless networks; Chen et al.[8] take a game theoretic approach to

designing medium access methods and present a method that leads to a Nash
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equilibrium when considering each transmitting node as a player in a game.

They suggest an implementation of a medium access policy which replaces

the exponential backoff procedure of CSMA/CA and replaces it with a policy

whereby the channel access probability and contention window is chosen by

each node in an attempt to maximize some utility function. Recent work for

heavy loads includes a game theoretic approach in [12].

2 Model

As in most previous research above, we model the evolution of the idle/

transmission and backoff states of a particular device as a Markov chain in

slotted time.

Indeed, a discrete time Markov chain is a very good model for this pro-

cess. The IEEE 802.11 DCF specifies a number of time periods (Inter Frame

Periods), one of which is the “Slot time”. If a device which is in a backoff

state at the start of this slot time has not detected a transmission by the

end of the slot time, it will decrement its backoff timer by one, and hence

become one “slot time” closer to transmission. As all devices must monitor

once in this time step if they want to transmit, we can use this time step as a

transition time (“clock tick”) within a discrete time Markov chain. The state

of each device in any period which is equal to the slot time can therefore use-

fully be represented as a binary variable representing the transmission status

(transmitting or not transmitting).
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Most previous research using the Bianchi model assumes that the evolu-

tion of the state of a particular device is independent of the evolution of the

rest of the network, and moreover implicitly assumes that the behaviour of

each device in the network is identical. For example, Bianchi[4] states that

“The fundamental independence assumption . . . implies that each transmis-

sion ‘sees’ the system in the same state, i.e. the steady state”. We feel that

an important feature in the CSMA-CA is the interaction between sources, as

demonstrated experimentally in [21] as referred to above, and we therefore

crucially model the evolution of the entire network sharing a single wireless

access point as a Markov chain, and not each device separately.

As described, an assumption in most previous work is that each device is

saturated, and will always try to gain control of the medium and transmit.

We assume devices are either active or inactive, corresponding to a user

having data to transmit or not, and is designed to represent a pattern of user

transmission and not technical constraints, such as buffering in the NIC or

elsewhere. This is similar to the model for one source developed by Pitts and

Shepherd[24].

We assume that the transmission state of each device is determined by

an on-off source. We let the probability of a device which is not transmitting

receiving data it may wish to transmit as α, and the probability of a device,

which is transmitting data, finishing transmission of the current frame and

going to an idle state as β. If we know the time it takes the IEEE 802.11

backoff counter to decrement (our clock tick), we can easily parametrize α and
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β in terms of this (see section 2.1.1). Setting α = 1 in our model such that the

device is never idle, it becomes very similar to that of Bianchi. Note we do not

claim that the on-off transmission model is a good representation of standard

traffic flow, however it allows us readily to demonstrate the importance of

parameter settings for the IEEE 802.11 DCF in a more typical example where

networks may be unsaturated.

We also, as per explicit or implicit assumptions in previous work, assume

that networks have no hidden or exposed nodes, the channel behaviour is

fixed, and each node can detect traffic from all other nodes in the network.

These idealised assumptions allow us to assess the behaviour of the DCF.

2.1 Optimizing CWmin and CWmax

For simplicity in practical implementation we restrict the CW parameters to

powers of 2. We define the maximum number of backoffs determined by our

parameters to be m = log2
CWmax
CWmin

., and the parameters φ = (CWmin,m).

We assume we have n devices 1, . . . , n in our network. We let device i

have a state Y i = (Si,Bi) where Si is the transmission state of the device

and Bi is the backoff counter for the device. The state space for Si is

{−1, 0, 1, 2, . . . ,m} where -1 means a device is idle, 0 means it is transmitting,

and 1, . . . ,m represent the m possible backoff states. The backoff counter Bi

takes values between -1 (idle) and CWmax. We define the whole state space

to be Y. We represent the state of the network at time t by the vector of

devices Y (t). Let a(t) be the number of devices that are transmitting at time
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t, which is equal to the number of zeroes in B(t); if the number of devices is

greater than two, let a(t) = 2. We represent the transition probabilities as

P(Y (t),Y (t+ 1)) = Πn
i=1Pa(t) [Y i(t),Y i(t+ 1)] ,

where by splitting up the transition probabilities into these three possibilities,

the transition of each device from one state to the next can now be found as

P0[(−1,−1), (−1,−1)] = 1− α,

P0[(−1,−1), (0, 0)] = α,

P0[(i, j), (i, j − 1)] = 1, i ≥ 1, j ≥ 1,

P1[(−1,−1), (−1,−1)] = 1− α,

P1[(−1,−1), (1, j)] =
α

φ1

, 0 ≤ j ≤ φ1 − 1,

P1[(0, 0), (−1,−1)] = β,

P1[(0, 0), (0, 0)] = 1− β,

P1[(i, 0), (0, 0)] = 1, i ≥ 1,

P1[(i, j), (i, j)] = 1, i ≥ 1, j ≥ 1,

P2[(−1,−1), (−1,−1)] = 1− α,

P2[(−1,−1), (1, j)] =
α

φ1

, 0 ≤ j ≤ φ1 − 1,

P2[(i, 0), (min(i+ 1,m), j] = φ1(2
−min(i+1,m)),

0 ≤ j ≤ φ1(2
min(i+1,m))− 1,

P2[(i, j), (i, j)] = 1, i ≥ 1, j ≥ 1.
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We form a transition matrixM of these transition probabilities. Note that

a single element ofM represents a transition between a vector describing the

state of all devices in the network at a given time, and a vector describing

the network state in the next time period.

We are interested in the long run proportion of time that the network

spends in each state, which we represent by a stationary distribution π. We

write the stationary distribution as π(n,θ,φ) when we wish to emphasize

the dependence of π on the number of devices, n, and the traffic pattern,

which we model with our parameters θ = (α, β).

2.1.1 Determining on-off parameters α and β

Recall that α is the probability that a device that is idle will seek to trans-

mit at the beginning of any time slot, and that β is the probability that

a transmitting device will become idle. We can therefore represent the de-

sired throughput, which is the percentage of time that a device would seek

to transmit in isolation, as α
α+β

. If the bandwidth of the network is B, we

denote the average bandwidth desired by device i as bi, We therefore write

bi = B
α

α + β
, (1)

where in this section we assume each device is homogeneous. In any time

slot, the device will come to the end of the current frame and stop transmit-

ting with probability β. The number of slots used in any transmission will
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therefore be geometrically distributed with mean 1
β
.

As described clearly in Bianchi[4], each transmission of a frame is followed

by a Short Inter-frame Space (SIFS), an acknowledgement from the receiving

device (ACK), and then a Distributed Inter-frame Space (DIFS). We find the

mean time ti that a device engages the medium whilst transmitting as

ti =
Mean frame size

B
+ SIFS + ACK+DIFS. (2)

So, given the decrement interval of the backoff counter S, our clock tick, we

can write

ti =
1

β
S (3)

and solve the simultaneous equations (1), (2), and (3), for α and β. N.B

this method of determining α and β may become invalid for supersaturated

networks, i.e. if n α
α+β

> 1.

2.1.2 Optimality criteria

The system is successfully able to transmit when one (and only one) device

is in state 0 (i.e. a(t) = 1). The success of a DCF is generally measured by

a function of the throughput of each device, i.e. the proportion of time that

a device is able to transmit for, which we call u(i). Within a given DCF,

it would be possible to engineer situations in which one device always has

access to the medium, and other devices have no access.

We seek to maximize some function of the throughput of each device,
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u(i), expressed as

ψκ =















1
n

∑n

i=1
u(i)1−κ

1−κ
, 0 ≤ κ ≤ ∞, κ 6= 1;

1
n

∑n

i=1 log u(i), κ = 1.

This is the alpha-fair criterion described first by Kunniyur and Srikant[18].

There are two criteria which we use to demonstrate our approach:

1. The total throughput for the system, corresponding to κ = 0:

ψT (n, θ, φ) =
∑

y∈Y,a(y)=1

π(n, θ, φ).

2. The minimum throughput for any device in the system, corresponding

to κ→ ∞:

ψm(n, θ, φ) = min
i





∑

y∈Y,a(y)=1,yi=0

π(n, θ, φ)



 .

Thus we wish to find

φ∗

t (n, θ) = argmax
φ

ψT (n, θ, φ), and

φ∗

m(n, θ) = argmax
φ

ψm(n, θ, φ),

where φ∗ represents the optimal design for that criterion.
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2.2 Optimization procedure

There are two methods we consider for finding the optimal value of φ (i.e.

optimal values of CWmin and CWmax).

1. Analytic method: Find π(n, θ, φ) explicitly in terms of φ, by solving

the equation πM = π such that
∑

i πi = 1 and use analytic techniques

to find the solution.

2. Monte Carlo: Find an approximate solution for π(n, θ, φ). For each

potential value of φ in our parameter space, iterate the Markov chain

over a long number of iterations. As the chain is ergodic (recurrent

and irreducible), the empirical stationary distribution found through

iteration converges to the true stationary distribution.

The first method provides an analytic solution, but the state space Y

is very large and the solution becomes intractable for a large number of

devices and parameters, and for practical values of CWmin and CWmax. As

described in Section 1 above, previous work has focused on approximating

the Markov chain by concentrating on the evolution of one device, in order to

approximate the stationary distribution; although an analytic solution can

be found for the simpler model, it does not guarantee accuracy for a larger

number of devices if the model approximation is inaccurate. We therefore

proceed with the second method for a model which we believe is more correct

as it more closely mimics the true behaviour in a network.
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2.3 Strengths of the model

Our on-off traffic model is flexible; it allows for saturated and unsaturated

networks. Almost all study has been of theoretical performance of saturated

networks, whereas in reality wireless networks are often unsaturated. Setting

α = 1 however allows us to recover the Bianchi model. Moreover, we can

generalize our model to heterogeneous behaviour of users, something not

readily available in the Bianchi model.

The model of network evolution attempts to find a model which is parsi-

monious; we believe the model allows for a rapid simulation to find through-

put (or other fairness criterion, such as minimum throughput) whilst pre-

serving important features of the DCF (collisions). The Markov nature of

the model leads to a rapid (Monte Carlo) simulation, with the result that

optimal value for DCF parameters can be found. We do not claim that the

results are more accurate or precise than a full simulation or experiment with

real devices, however they allow us to quickly assess the performance of the

system over the parameter space, which may allow practitioners to focus on

which hardware experiments to run. In short, our model provides a balance

between a complex experiment and a simpler model which may not describe

the system performance well.
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3 Homogeneous traffic results

We use an IEEE 802.11g network as our example, but the general principle

will apply to any network which uses the CSMA-CA protocol. We assume

we have a network which has a maximum bandwidth B = 54Mbps, a slot

time S = 9µs, SIFS = 10µs, ACK = 2µs and DIFS = 28µs. Let us assume

our mean packet size, including header and FCS, is 1000 bytes. Then from

equation (2), we calculate the mean time that a device engages the transmis-

sion medium as ti =
1000×8
54×106

+10×10−6+2×10−6+24×10−6 = 188×10−6 ≈

2× 10−4s.

We initially assume devices seek to transmit at 1.5Mbps, or 10% of the

total available bandwidth, such that bi = 0.1 for all i. Using ti = 2× 10−4 as

derived above, we solve equations (1) and (3) to get α = 0.005 and β = 0.045.

We used the second optimization procedure described in section 2.2, and

performed an exhaustive search over the parameter space φ = {(CWmin,m)},

where log2(CWmin) ∈ {1, 2, . . . , 10}, and m ∈ {1, 2 . . . , 10}, such that there

were 100 candidate points for φ.

3.1 Assessing convergence

When simulating, we must determine how many iterations of the chain we

need. We want our estimate, ψ̂ of the throughput to be sufficiently close

to the true value ψ to enable us to determine the optimum value of the

unknown parameters φ; i.e. when is |ψ̂ − ψ| < ǫ for some tolerance ǫ,
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or equivalently, when is Var(ψ̂) small enough that we are confident in our

results. (As the Markov chain is irreducible and aperiodic (ergodic), we

know that the stationary distribution exists, and as ψ is a function of the

stationary distribution, the variance of Var(ψ̂) → 0 asymptotically.) The

number of iterations to reach convergence is known as the mixing time of the

Markov chain, and can be difficult to work out in general, and specifically for

the complicated Markov chain we have here. (See [19] for some background.)

Some techniques for assessing whether a Monte Carlo algorithm simulat-

ing a Markov chain has converged are presented in[6]. [11] suggests dividing

our simulation into blocks each consisting of 100 iterations, and forming

an estimate for ψT and ψm after each block; we consider only the last 100

blocks seen, and call the estimates found after the k-th block (after 100k

iterations) ψ̂
(k)
T and ψ̂

(k)
m . In order to test whether the chain has converged,

we compare the two sub-sequences ψ̂(1), . . . , ψ̂(10) and ψ̂(51), . . . , ψ̂(100); we

form our estimates ψ̂A =
∑10

k=1
1
10
ψ̂(k) and ψ̂B =

∑100
k=51

1
50
ψ̂(k), and calculate

the sample autocovariances which we call S2
A and S2

B respectively for the

two sub-sequences. We form the statistic Z = ψ̂A−ψ̂B√
0.1S2

A
+0.5S2

B

, and note that

Z
D→ N(0, 1) as n→ ∞.

More heuristically, as we perform more iterations the throughput vs pa-

rameters mesh plots seen in Figures 1 to 4 below get smoother. We can

visually assess when the graphs are smooth enough to find useful results.

In practice we find a moderate number of iterations (≈ 107) are sufficient

to make a good estimate of π, and find parameters which increase throughput
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substantially as compared to the recommended values given in the standard.

3.2 Numerical results

For each candidate point φ, we performed 5 × 107 Monte Carlo iterations,

and present a mesh plot of throughput

ψT (n, (0.005, 0.045)
T , φ) =

∑

y∈Y,a(y)=1

π(n, θ, φ).

We present the results for selected numbers of devices as Figure 1, although

plots for other numbers of devices are similar in feature. Each graph shows

the raw throughput for each device (expressed as a percentage of available

bandwidth) against phi1 (x-axis), and phi2 (y-axis), our parameterised values

for CWmin (x-axis), and CWmax (y-axis) . By finding the maximum value

of each graph, we can find the optimal values of parameters for that number

of devices. We note some general features of the graph:

• The slight lack of smoothness in the graph is due to the stochastic

nature of the Markov chain simulation, and the amount of jaggedness

is proportional to the variance of the simulated process. Increasing

the number of simulations beyond 5 × 107 can reduce this jaggedness

further. The n = 1 graph of course has no conflict, so lets us get an

idea of the (very small) variation caused by the use of Monte Carlo.

• A very high numbers of allowed backoffs generally reduces the through-
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Figure 1: Raw throughput (z-axis) against varying CWmin (x-axis), and CWmax (y-axis). From top left,
top middle, etc., to bottom right the number of devices is: 1,2,4,6,8,10
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put considerably; this is because it is possible for one device which has

data to transmit to have a large value of backoff counter, and be re-

quired to wait a long time even when the medium is available.

• A smaller number of backoffs seems in general to be optimal for max-

imizing throughput. In other words, apart from pathological cases,

the ratio CWmax/CWmin is important in optimising throughput, and

the absolute value of CWmin is less important. Typically setting the

maximum number of backoffs CWmax/CWmin = 2 is near optimal.

• Small values of both CWmin and CWmax give slightly worse results

as more conflicts occur.

The recommended values for CWmin and CWmax in the IEEE 802.11

standard[16], which vary depending on the transition medium (PHY) used.Most

mediums suggest setting CWmin at either 15 or 31, and agree on CWmax =

1023. This corresponds to φ = (4, 6) or φ = (5, 5) in our parametrization.

If these values of φ were optimal, we would expect the highest values of

throughput to be found here, however our results suggest that the optimum

is not found at these levels.

For example, in Figure 1, the throughput under recommended values for

the DSSS PHY in the ISM band recommends CWmin = 31 and CWmax =

1023, corresponding to φ = (5, 5). Our Markov chain simulation shows that

this yields a raw throughput of 73.7%. If we use parameters CWmin = 2 and

CWmax = 8, corresponding to φ = (1, 3) this would provide a throughput
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Table 1: Percentage increase in raw throughput by choice of parameters
No.
of de-
vices

Throughput
at φ = (5, 5)

Max.
Through-
put

φ at
max.

% increase in
throughput
at optimal φ

2 0.19759 0.20018 (1,9) 1.3103
3 0.28989 0.29511 (2,2) 1.7986
4 0.37553 0.38800 (1,10) 3.3216
5 0.45576 0.47476 (1,6) 4.1683
6 0.52839 0.55608 (1,6) 5.2401
7 0.59282 0.63168 (1,4) 6.5542
8 0.65104 0.69426 (2,1) 6.6383
9 0.69777 0.75035 (2,2) 7.5357
10 0.73652 0.79345 (1,3) 7.7297

of 79.3%. This corresponds to a net increase in throughput of 7.73%.

Table 1 shows the increase in throughput by choosing parameters for

between two and ten devices. The benefit of choosing parameters for a larger

number of devices is more pronounced, as there is less unused bandwidth and

resolving conflicts well becomes more important.

3.3 Minimum throughput

We now consider maximizing the minimum throughput ψm of each transmit-

ting device, and repeat the same procedure for the same candidate points for

φ to find our optimal value of CWmin and CWmax.

We again plot the throughput ψm(n, (0.005, 0.045)
T , φ) for each potential

value in our parameter space, although in this figure we plot the minimum

throughput. These are displayed as Figure 2, again for selected n. The

graphs are slightly less smooth after 5× 107 iterations compared to those for
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Figure 2: Minimum throughput (z-axis) against varying CWmin (x-axis), and CWmax (y-axis). From top
left, top middle, etc., to bottom right the number of devices is: 1,2,4,6,8,10
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Table 2: Percentage increase in minimum throughput by choice of parameters
No.
of de-
vices

Min.
Throughput
at φ = (5, 5)

Max (min
Through-
put)

φ at
max.

% increase in
min. through-
put at optimal φ

2 0.097989 0.099507 (4,2) 1.5499
3 0.096156 0.098193 (2,2) 2.1178
4 0.093403 0.096503 (1,7) 3.3185
5 0.089447 0.094466 (1,6) 5.6108
6 0.086831 0.092151 (1,10) 6.1272
7 0.08404 0.089405 (1,4) 6.3838
8 0.080182 0.086114 (2,2) 7.399
9 0.076725 0.082357 (2,3) 7.3406
10 0.072465 0.078708 (1,3) 8.6156

the raw throughput. This is because the variance of the minimum function

(corresponding to κ → ∞) is higher than that of the mean function (κ =

0), so we need more Monte Carlo iterations to get the same smoothness.

Nevertheless, the graph clearly demonstrates that the recommended standard

values corresponding to φ = (4, 6) or φ = (5, 5) in our parametrization are

sub-optimal, and suggests that values around φ = (2, 2) would generally yield

greater minimum throughput.

Table 2 shows the increase in the minimum throughput for any device by

choosing parameters, for up to ten devices. Again we see that the minimum

throughput can be increased more by choosing backoff parameters for a larger

number of devices; for example the increase for choosing parameters with two

devices is 1.55%, but with 10 devices is 8.62%.
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4 Heterogeneous users

Up to now we have assumed that the behaviour of the users is homogeneous,

i.e. that the traffic that each user has to transmit is governed by the same

on-off probabilities θ. In reality, this assumption is not true; different users

have different transmission patterns.

Consider a “household” model of IEEE 802.11, a typical small scale imple-

mentation where a small collection of users in a household engage in different

activities using a wireless network; the standard assumption of homogeneous

users is not appropriate, and we investigate in this section how the backoff

parameters affect the throughput of the household.

We now extend our model such that the on state and off state of each

user in the model is modelled by a vector θ = (α,β), where now αi, is the

probability of going from an idle state to a state where device i has a frame

to transmit, and βi is the probability of going from a state where device i is

transmitting to an idle state.

We maintain our example of an IEEE 802.11g network as above, with the

same parameters, and we consider a scenario where we have three types of

users. User 1 is making long file transfers, and we let α1 = 0.0025 and β1 =

0.0225. User 2 is engaged in a VoIP conversation, with many short exchanges

of packets, so α2 = 0.01 and β2 = 0.09. We let any other users experience an

intermediate transfer length with αi = 0.005 and βi = 0.05, i ≥ 3 as before.

We plot our throughput graph again for the heterogeneous devices as

26



1
2

3
4

5
6

7
8

9
10

log(Initial Backoff Range)

1
2

3
4

5
6

7
8

9
10

Maximum Backoffs Allowed

0.086

0.087

0.088

0.089

0.09

0.091

0.092

0.093

0.094

0.095

Throughput

1
2

3
4

5
6

7
8

9
10

log(Initial Backoff Range)

1
2

3
4

5
6

7
8

9
10

Maximum Backoffs Allowed

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

Throughput

1
2

3
4

5
6

7
8

9
10

log(Initial Backoff Range)

1
2

3
4

5
6

7
8

9
10

Maximum Backoffs Allowed

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Throughput

1
2

3
4

5
6

7
8

9
10

log(Initial Backoff Range)

1
2

3
4

5
6

7
8

9
10

Maximum Backoffs Allowed

0.3

0.35

0.4

0.45

0.5

0.55

Throughput

1
2

3
4

5
6

7
8

9
10

log(Initial Backoff Range)

1
2

3
4

5
6

7
8

9
10

Maximum Backoffs Allowed

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Throughput

1
2

3
4

5
6

7
8

9
10

log(Initial Backoff Range)

1
2

3
4

5
6

7
8

9
10

Maximum Backoffs Allowed

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Throughput

Figure 3: Raw throughput for heterogeneous devices (z-axis) against different parameters CWmin (x-axis),
and CWmax (y-axis). From top left, top middle, etc., to bottom right the number of devices is: 1,2,4,6,8,10
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Table 3: Percentage increase in throughput for heterogeneous devices by
choice of parameters

No.
of de-
vices

Throughput
at
φ = (5, 5)

Max.
Through-
put

φ at
maxi-
mum

% increase in
throughput at
optimal φ

2 0.18510 0.19019 (3,6) 2.7517
3 0.27835 0.28680 (1,7) 3.0380
4 0.36437 0.37603 (2,8) 3.1990
5 0.44396 0.46286 (1,6) 4.2570
6 0.51642 0.54509 (1,6) 5.5523
7 0.58497 0.61965 (2,2) 5.9278
8 0.64141 0.68636 (1,2) 7.0079
9 0.68957 0.74226 (2,2) 7.6406
10 0.73221 0.78753 (2,1) 7.5558

Figure 3. We see a similar pattern as to that in the homogeneous case.

We display the optimal values for different number of devices as Table 3.

Comparing to Table 1, we see that the increased percentage throughput in

choosing the backoff parameters is similar in this heterogeneous case.

For heterogeneous devices, our minimum throughput criterion is no longer

particularly useful, as the minimum throughput will almost always corre-

spond to the device which has the least traffic to transmit. We can therefore

replace our minimum throughput criterion ψm by

ψhet(n, θ, φ) = min
i





∑

y∈Y,a(y)=1,yi=0

π(n, θ, φ)

(

αi

αi + βi

)

−1


 ,

a scaled minimum throughput criterion, where the throughput of each de-

vice is divided by αi

αi+βi

, the proportion of time it would seek to transmit
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Table 4: Percentage increase in scaled minimum throughput for heteroge-
neous devices by choice of parameters

No.
of de-
vices

Min
Throughput
at φ = (5, 5)

Max (min
Through-
put)

φ at
max.

% increase in
min throughput
at optimal φ

2 0.88781 0.92903 (3,6) 4.643
3 0.88290 0.93306 (1,7) 5.6816
4 0.87975 0.91699 (1,7) 4.232
5 0.84873 0.89517 (1,4) 5.4711
6 0.80158 0.86751 (2,3) 8.2251
7 0.74843 0.83049 (1,5) 10.964
8 0.69454 0.78101 (2,6) 12.449
9 0.65174 0.72900 (1,4) 11.853
10 0.59564 0.67385 (2,9) 13.132

were it to be able to act independently in the network without any other

devices being present. The result is that the absolute value of the scaled

minimum throughput becomes difficult to interpret, but the criterion is fair

in that high values of the criterion occur when each device is able to transmit

proportionately to its desired traffic flow. The scaled minimum throughput

criterion for this example is shown in Figure 4.

The increase in this scaled minimum throughput for the heterogeneous

devices is shown in Table 4. Again, we see that choice of backoff parameters

has a larger effect in the heterogeneous environment for this criterion than

in the homogeneous case, an effect ignored in previous research.
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Figure 4: Scaled minimum throughput for heterogeneous devices (z-axis) against varying CWmin (x-axis),
and CWmax (y-axis). From top left, top middle, etc., to bottom right the number of devices is: 1,2,4,6,8,10
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5 Conclusions

In this paper we have shown how to build a Markov chain model to repre-

sent the evolution of a system using the CSMA-CA protocol, using the IEEE

802.11 standard as an example. We have extended models in previous re-

search to model the evolution of the whole network as a Markov chain. This

has advantages as the chain now models interactions between devices; as the

standard specifies a slot time during which a transmitting device will not be

interrupted, and the system can be thought of as evolving in slotted time,

the model is a fairly faithful representation of the standard.

We have shown that a Monte Carlo approach allows us to find the sta-

tionary distribution of the model, and hence estimate the throughput for any

given model of a network. The variance of this estimate can be made arbi-

trarily small given a large enough number of iterations, and we have shown

that the convergence is good even for a relatively small number of iterations.

We have extended previous research to include non-saturated scenarios,

and heterogeneous traffic mixes, all within the same Markov chain model.

This modelling has allowed us to assess the parameters CWmin and

CWmax which determine backoffs within CSMA-CA. For the networks we

have studied here, we show that the values recommended by the IEEE 802.11

standard are not optimal for throughput, or min-throughput, two commonly

used optimality criteria, and we find optimal values. Having found opti-

mal parameter settings the throughput is improved, especially in any non-
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homogeneous case. This is particularly important as almost all previous

analyses have focussed on homogeneous cases whereas reality is always non-

homogeneous.
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