LOW DIMENSIONAL GROTHENDIEK CONSTANTS

by

Andrew Tonge
Let $a = (a_{ij})$ be an $N \times N$ matrix with complex coefficients. The norm of a in the injective tensor product space $l_N \otimes l_1$ is given by

$$
\|a\|_1 = \sup\left\{ \sum_{i,j=1}^{N} a_{ij} s_i t_j \right\},
$$

where the supremum is taken over all choices of complex scalars s_i and t_j ($1 \leq i, j \leq N$) with absolute value no greater than 1.

A fundamental inequality due to Grothendieck (2, but see 4) asserts that if x_1, \ldots, x_N and y_1, \ldots, y_N are unit vectors in a complex Hilbert space, then

$$
\sum_{i,j=1}^{N} a_{ij} (x_i, y_j) \leq G \|a\|_1
$$

where G is an absolute constant. (In other words, G is independent of N, a, and the vectors, and is chosen to be as small as possible.) The symbol $(,)$ denotes the inner product in the Hilbert space.

Although the exact value of G is unknown, it has been shown that $1.273 = 4/\pi \leq G \leq \exp(1-\gamma) = 1.527$ where γ is Euler's constant (5).

There are many proofs of Grothendieck's inequality. In (1) Fournier gave a proof which relied on an algorithm originally developed by Schur (6). The purpose of this note is to examine Fournier's proof closely and to modify it in order to give new upper bounds for constants related to the Grothendieck constant.

If x_1, \ldots, x_N and y_1, \ldots, y_N are unit vectors in an r-dimensional complex Hilbert space, it is clear that there is an absolute constant $G(r) \leq G$ such that

$$
\sum_{i,j=1}^{N} a_{ij} (x_i, y_j) \leq G(r) \|a\|_1.
$$
We shall refer to \(G(r) \) as the \(r \)-dimensional complex Grothendieck constant.

Theorem 1. The two dimensional complex Grothendieck constant is bounded above by \(4/3 \).

Theorem 2. The three dimensional complex Grothendieck constant is bounded above by \(3/2 \).

These results should be compared with work of Krivine (3). He investigated the \(r \)-dimensional real Grothendieck constants (for which all scalars and Hilbert spaces are taken to be real). Krivine showed that the two dimensional real Grothendieck constant is exactly \(\sqrt{2} \) and that the three dimensional real Grothendieck constant is bounded above by approximately 1.517. He also showed how to obtain upper bounds for the \(r \)-dimensional real Grothendieck constant when \(r \) is greater than 3.

It should also be noted that in (7) different methods have been used to improve Theorem 1 by showing that the two dimensional complex Grothendieck constant is bounded above by \(3\sqrt{3}/4 \).

We now turn to a detailed discussion of Fournier's method. This will yield proofs of Theorems 1 and 2.

First we require some notation. We shall write

\[
\omega = (\omega_1, ..., \omega_N) = (\exp(i\theta_1), ..., \exp(i\theta_N))
\]

for a generic point in the group \(T^N \), the \(N \)-fold direct product of the circle group \(T \). The group \(T^N \) will be endowed with the usual Haar probability measure \(d\omega = d\omega_1 \cdots d\omega_N \). We shall write

\[
\beta = (\beta_1, ..., \beta_N)
\]

for a generic point in the dual group \(Z^N \), the \(N \)-fold direct product of the integer group \(Z \). We impose a partial order on \(Z^N \) by defining

\[
\beta \geq 0 = (0, ..., 0) \text{ iff } \beta_1 \geq 0, ..., \beta_N \geq 0 .
\]

For every \(\beta \) in \(Z^N \) any integrable function \(f \) on \(T^N \) has associated with it a Fourier coefficient \(\hat{f}(\beta) \).

The space \(L^\infty(T^N) \) is the space of all essentially bounded
Haar measurable functions on T^N. For each f in $L^\infty (T^N)$ we define
\[
\| f \|_\infty = \text{esssup} \{ | f(\omega) | : \omega \in T^N \} .
\]

Finally we shall write H^{N+1} for the $(N+1)$ dimensional complex Hilbert space. The norm of the element $h = (h_0, \ldots, h_N)$ is given by
\[
\|h\| = (|h_0|^2 + \ldots + |h_N|^2)^{\frac{1}{2}} .
\]

Strategy. For each N we aim to construct two non-linear maps R^N and S^N from H^{N+1} to $L^\infty (T^N)$
\[
R^N : h \rightarrow R^N_h \quad \text{and} \quad S^N : k \rightarrow S^N_k
\]
with the properties that for all h and k in H^{N+1}
\begin{align*}
(1) \quad (h, k) &= \int R^N_h (\omega) S^N_k (\omega) d\omega \\
(2) \quad \| R^N_h \|_\infty &\leq C(N) \| h \| \\
and \quad \text{(3)} \quad \| S^N_k \|_\infty &\leq C(N) \| k \|
\end{align*}

where $c(N)$ is a constant independent of h and k.

Once this is done, the $(N+1)$-dimensional complex Grothendieck inequality follows immediately. For if we choose an nxn matrix $a = (a_{ij})$ and unit vectors h_0, \ldots, h_N and k_0, \ldots, k_N in H^{N+1} we have
\[
| \sum a_{ij} | (h_i, k_j) | \leq c(N) \| a \|_{1,1} .
\]

This tells us that $G(N+1) \leq c(N)^2$.

A naive algorithm. Consider initially the case $N = 1$. A "natural" way to map an element $x = (x_0, x_1)$ of H^2 into $L^\infty (T)$ is
\[
x \rightarrow x_1 + x_0 \omega_1 .
\]

Now consider the case $N = 2$. We can start an iterative procedure by mapping $x = (x_0, x_1, x_2)$ in H^3 into $L^\infty (T^2)$ in
in the following way:
\[x \rightarrow x_2 + (x_1 + x_0\omega_1)\omega_2. \]

For general N we associate with x in \(H^{N+1} \) a polynomial
\(p_X^N \) in \(L^\infty(T)^N \). The mapping is
\[x + p_X^N ; \quad p_X^N(\omega) = x_N + x_{N-1}\omega_N + \ldots + x_0\omega_N\omega_1 \]

If we could find a good inequality of the type
\[\| p_X^N \| \leq c(N) \| x \| \]
then we would simply be able to take \(R_h^N = p_h^N \) and \(S_k^N = p_k^N \) in
the basic strategy. Unfortunately, such inequalities do not give
good enough values of \(c(N) \) for our purposes.

To get over this difficulty, we shall define
\[R_h^N = p_h^N + U_h^N \quad \text{and} \quad S_k^N = p_k^N + V_k^N \]
where the \(U_h^N \) and \(V_k^N \) are suitable "tails" chosen to be orthogonal
to each other and to the \(p_h^N \) and \(p_k^N \). The tails must be very
carefully chosen to control the norms of \(R_h^N \) and \(S_k^N \).

The Schur algorithm. The Schur algorithm is an inductive process
due to Schur (6) whose properties are inherited from those of
Blaschke factors. In order to understand what is going on, observe
that if we expand the Blaschke factor
\((a + x_1) / (1 + x_1a) \)
where \(a = x_0\omega_1 / (1 - |x_1|^2) \) as a formal power series in \(\omega_1 \),
then the first two terms are
\[x_1 + x_0\omega_1. \]
These terms are precisely \(p_X^1(\omega) \). It will turn out that the
remainder of the power series forms an appropriate tail.

We now describe the Schur algorithm.
Start off with a vector \(x = b_N \) in \(H^{N+1} \) with components
\[b_{N,0} = x_0, \quad b_{N,1} = x_1, \ldots, b_{N,N} = x_N. \]
Form a new vector \(b_{N-1} \) in \(H^N \) with components
\[b_{N-1,0} = x_0 / (1 - |x_N|^2), \ldots, \quad b_{N-1,N-1} = x_{N-1} / (1 - |x_N|^2). \]
Continue inductively. For each \(0 \leq r \leq N-1 \) form a vector \(b_r \).
in $H^{r,1}$ with components

$$b_{r,n} = b_{r+1,n} / (1 - b_{r+1,r+1})^2 \quad (0 \leq n \leq r).$$

Finally, successively define functions Q_0, \ldots, Q_N on T^N by setting

$$Q_0(\omega) = b_{0,0};$$

$$Q_r(\omega) = (Q_{r-1}(\omega) + b_{r,r}) / (1 + b_{r,r}) Q_{r-1}(\omega) \quad (1 \leq r \leq N).$$

Observe that Q_r is a function of $\omega_1, \ldots, \omega_r$ only.

Constraint to be imposed on the algorithm. In order to control the norms of the functions Q_r we shall require

$$|b_{r,r}| < 1$$

for every $0 \leq r \leq N$. It is at this stage, and at this stage only, that our proof deviates from Fournier's.

Observe that if $\sum_{n=0}^{N} |x_n|^2 \leq k$ then provided that $1/2 \leq k \leq 1$

$$\sum_{n=0}^{N-1} |x_n|^2 / (1 - |x_N|^2) \leq (k - |x_N|^2) / (1 - |x_N|^2) \leq 1/4(1 - k).$$

(This follows from a simple calculus argument.)

As an immediate consequence, we have

$$\|b_2\| < \sqrt{2}/\sqrt{3} \rightarrow \|b_1\| < \sqrt{3}/2 \rightarrow \|b_0\| < 1.$$

(This sequence could be traced further back, but there is no point since the results which would be obtained would be weaker than Pisier's (5).) The facts to retain are

(1) $\|b_2\| < \sqrt{2}/\sqrt{3} \Rightarrow |b_{r,r}| < 1 \quad (0 \leq r \leq 2)$

and (2) $\|b_1\| < \sqrt{3}/2 \Rightarrow |b_{r,r}| < 1 \quad (0 \leq r \leq 1)$

Properties of the algorithm.

(1) The condition $|b_{r,r}| < 1$ for every r implies that

$$\|Q_r\|_{\infty} \leq 1 \quad \text{for every } r.$$

When $r = 0$ this is obvious. For other values of r this property can be proved by induction. The crucial point is that
because of the condition
\[(z + b_{r,r})(1 + \frac{b_{r,r}}{z})\]
is an analytic function of \(z\) in the region \(|z| \leq 1\), and has absolute value 1 on the boundary \(|z| = 1\). The induction is now easy if one uses the maximum modulus principle.

(2) For each \(N\), \(Q_N = P_X^N + U_X^N\) where \(U_X^N(\beta) = 0\) unless possibly \(\beta \geq 0\) and \(\beta \neq (1, \ldots, 1)\). (In other words, the Fourier coefficients \(U_X^N(\beta)\) are zero unless possibly all the \(\beta_n\)'s are positive and some of them are greater than or equal to 2.)

To justify this assertion, one can again work by induction.

We aim to show that \(Q_r = P_{b_r} + U_{b_r}\) where \(U_X^N(\beta) = 0\), unless possibly \(\beta \geq 0\) and \(\beta \neq (1, \ldots, 1)\), for each \(0 \leq r \leq N\).

If we make the natural interpretation that \(p_{b_0}^0 = b_{0,0}\) then there is nothing to prove when \(r = 0\).

Assume that \(Q_r = P_{b_r} + U_{b_r}\) when \(0 \leq r \leq s\). Then
\[
Q_s(\omega) = (\omega_s Q_{s-1}(\omega) + b_{s,s})/(1 + \frac{b_{s,s}}{\omega_s Q_{s-1}(\omega)})
= b_{s,s} + \omega_s Q_{s-1}(\omega) - \left|b_{s,s}\right|^2 \omega_s Q_{s-1}(\omega) + (\text{terms in } \omega_s^2)
= b_{s,s} + (1 - \left|b_{s,s}\right|^2) (p_{b_s}^{s-1}(\omega) + U_{b_{s-1}}^{s-1}(\omega))
+ (\text{terms in } \omega_s^2).
\]
This is what was required.

Construction of \(R_h^N\). Fix \(h\) in \(H^{N+1}\). Choose \(c(N) > 2/\sqrt{3}\) if \(N = 1\) and \(c(N) > \sqrt{3}/\sqrt{2}\) if \(N = 2\). Set \(x = h/c(N)\).

Now if \(h\) has norm 1 then the algorithm is constrained in the required way. Consequently, if we set
\[R_h^N = c(N)Q_N\]
we shall have \(\|R_h^N\|_\infty \leq c(N)\).
Construction of S^N_k. Fix a unit vector k in H^{N+1}. The main problem in defining S^N_k is to do so in such a way that its tail is orthogonal to that of R^N_h.

Set $\tilde{k} = (k_N, k_{N-1}, \ldots, k_0)$ and define $\tilde{\omega} = (\tilde{\omega}_N, \ldots, \tilde{\omega}_1)$.

Now choose $c(N)$ as in the construction of R^N_h. Set $x = \tilde{k}/c(N)$. Then the algorithm is constrained in the required way, so if we define

$$S^N_k(\omega) = \omega_1 \ldots \omega_N Q_N(\tilde{\omega}) c(N)$$

we can assert that $\left\| S^N_k \right\|_\infty \leq c(N)$.

Moreover, a moment's reflection shows that S^N_k is the sum of P^N_k and a function whose Fourier coefficients are zero except possibly when $\beta \leq (1, \ldots, 1)$ and $\beta \geq 0$.

Conclusion. The functions R^N_h, and S^N_k, have all the properties demanded by the strategy, and the Theorems are now proved.

References.
