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Abstract: The consolidated drained triaxial shear tests have been performed in this work to 29 

investigate the shearing behavior of calcareous sands sampled from the South China Sea, with the 30 

focus to analyze the influence of particle breakage on the materials shear strength. At approaching 31 

the failure limit state, the intense particle breakage and rearrangements prevented the shear stress 32 

from increasing further. Depending on the initial packing density, the loose sand sample exhibited the 33 

strain hardening response, while the dense sand sample exhibited the strain softening response with 34 

clear shear dilatancy after the peak shear strength has been reached. However, as the confining 35 

pressure increases, particle breakage occurred more thoroughly, and the sharpness of the peak stress 36 

disappeared gradually. For the series of tests, an upper limit of relative particle breakage existed, 37 

beyond which the confining pressure and relative density had little influence on the breakage of 38 

particles. The shear strength of calcareous sands was found to be determined by the combined effects 39 

of interparticle friction, sample dilatancy, and particle breakage. Under low confining pressures, the 40 

shear strength was mainly controlled by particle friction and sample dilatancy, while under high 41 

confining pressures, the effect of particle breakage was dominant. In this process, the volumetric 42 

strain evolved from dilatation to contraction and the sample dilatancy angle decreased gradually, as 43 

the particle shape transformed from highly angular to sub-rounded.  44 

Keywords: Calcareous sands; triaxial shear test; particle breakage, shear strength, dilatancy 45 
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Introduction 61 

As a type of geotechnical materials, calcareous sands are deposits widely found in tropical marine 62 

environment. They are primarily composed of calcium carbonate or other insoluble carbonate 63 

materials. The sands have the characteristics of well-developed internal pore space, irregular shape, 64 

low strength, and high brittleness, which make their mechanical properties significantly different 65 

from the terrigenous counterpart soils (Xiao et al., 2019). These characteristics also lead to the unique 66 

property of particle breakage under even low stress and strain levels (Coop et al., 2004, Miao and 67 

Airey, 2013, Wei et al., 2018, Yu, 2017a).  68 

The particle breakage has been widely recognized as the key factor influencing the overall 69 

mechanical behaviour of soil, including strength, deformation and permeability (David et al., 2011, 70 

Lade et al., 2010, Shahnazari and Rezvani, 2013, Wang et al., 2017, Xiao and Liu, 2017). During 71 

compression or shearing, particle breakage occurs when the loading stress exceeds the yielding stress 72 

of sands (Hyodo et al., 2002, Lade et al., 1996). This effect is particularly significant for uniformly 73 

graded samples (Bolton et al., 2008). The particle breakage induced by the shearing of aggregates is 74 

different from the crushing of rock mass, as the damage is concentrated mainly at particle edges and 75 

corners or particle surface abrasion due to the localized high contact stresses between particles. It is 76 

affected by many factors, such as the material property of constituent particles (e.g. strong minerals 77 

can hardly be crushed.) (Leleu and Valdes, 2007), particle size and shape (e.g. the probability of 78 

particle breakage increases with its size) (Norazirah et al., 2016, Xiao et al., 2020), particle size 79 

distribution (Gupta, 2017, Shen et al., 2019), relative density (Shahnazari and Rezvani, 2013), 80 

external loading stress (Parab et al., 2014), saturation condition (Alonso et al., 2016) and the loading 81 

duration (also known as creeping behaviour) (Fu et al., 2019).  82 

In the literature, different types of laboratory experiments have been performed to investigate the 83 

influence of particle breakage on the mechanical responses of soil under drained condition, including 84 

the direct shear tests, triaxial shear tests and ring shear tests (Lade and Yamamuro, 1996, Luzzani and 85 

Coop, 2002, Wei et al., 2018). Detailed analyses revealed that the particle breakage can change the 86 

position of the critical-state locus in the plane of void ratio-mean effective stress (Xiao et al., 2016b), 87 

with the downward translation and an anticlockwise rotation (Yu, 2017b). The related studies also led 88 
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to some well-developed constitutive models (Tengattini et al., 2016, Xiao et al., 2016a, Yao et al., 89 

2008), such as the generalized plasticity model (Liu and Zou, 2013), the disturb state concept 90 

(Varadarajan et al., 2006) and the bounding surface model (Xiao and Liu, 2017). Hassanlourad et al. 91 

(2014) carried out consolidated and drained triaxial shear tests on four different types of sands to 92 

investigate their shear strengths via the energy approach. The results showed that the internal friction 93 

angle of carbonate sands has three contributing components, namely the particle surface friction, 94 

sample dilatancy and particle breakage. The effects of confining pressure and initial relative density 95 

of sample on each component have also been studied and explained. To investigate the influence of 96 

particle breakage on soil behaviour, Yu (2017a) performed a series of drained triaxial shear tests on 97 

precrushed coral sands and concluded that particle breakage can impair the dilatancy response of the 98 

sample, resulting in a more contractive behaviour. This process has a significant influence on the 99 

friction-dilatancy response of sands, such that both peak-state friction angle and dilatancy angle at 100 

the critical-state would decrease. The shearing process can also change the particle grading 101 

significantly as many fine particles are produced due to successive breakage of particles under the 102 

increased loading stress (McDowell and Bolton, 1998). This process would effectively change the 103 

granular packing state and material internal friction, leading to the dynamic variation of soil strength. 104 

Though advancements exist, the evolutions of sample packing state, shear strength and 105 

volumetric strain induced by particle breakage during the triaxial shear tests are still not well-106 

investigated. These limitations prompt a more systematic research as presented herein, with the 107 

purpose to explore the characteristics of particle breakage and its influence on the corresponding 108 

shear strength of soil. 109 

Experimental procedure 110 

Triaxial shear test of calcareous sands 111 

In this research, a series of consolidated and drained triaxial shear tests have been conducted to 112 

study the strength and deformation characteristics of calcareous sands. Several tests on standard 113 

quartz sands were also performed for comparison purpose. The triaxial shear testing apparatus used 114 

in this study was the fully automatic triaxial instrument manufactured by Nanjing TKA Technology 115 
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Co., Ltd (TKA, 2020). It allowed the application of confining pressure up to 2 MPa and the vertical 116 

loading force up to 10 kN. The shear rate ranged from 0.0001 to 4.8 mm/min. The calcareous sands 117 

were sampled from a coral reef in one of the islands in South China Sea. The mineral compositions 118 

were mainly aragonite, dolomite and calcite. The chemical composition of calcareous sands was 119 

quantitatively analysed by the D8 ADVANCE X-ray diffractometer (Bruker, 2020). It consists of 120 

mainly CaCO3 and MgCO3 with the weight percentages of 81.08% and 11.55%, respectively. The 121 

particle size distributed in a narrow range of 1-2 mm, which was classified as poorly graded according 122 

to the unified soil classification system (ASTM, 2011). The use of poorly sorted sand sample would 123 

lead to higher particle breakages during compression when compare to the well-graded samples 124 

(Altuhafi and Coop, 2011). The basic physical parameters of the two types of sands are shown in 125 

Table 1, and the particle shapes are illustrated in Figure 1. 126 

In this research, the relative density of calcareous sand samples ranged from 45% to 97%, while 127 

the confining pressure (σ3) ranged from 100 kPa to 1200 kPa, respectively. To keep the uniformity, 128 

the triaxial specimens were prepared by slowly air pluviating calcareous sands in three layers into a 129 

1 mm thick membrane tightly held in place. The specimen was tamped gently to reach the targeted 130 

height. The thick rubber membrane was used to avoid the potential piercing of angular particles under 131 

high confining pressures. The sample was then placed in a vacuum container with de-aired water 132 

under back-pressure for more than 2 hours to ensure that it was completely saturated. After that, the 133 

specimen was installed on the triaxial shear apparatus for isotropic consolidation until the sample 134 

volume remained unchanged. Then, the shearing loading was applied until the axial strain of the 135 

sample exceeded 20%. In this process, the drained testing condition was employed on the granular 136 

sample. Finally, the calcareous sand particles were dried for analysing the particle size grading. 137 

Particle breakage analysis 138 

The intensity of particle breakage can be quantified by the relative breakage (Br), which is related 139 

to the change of particle grading before and after the tests, as defined by Hardin (1985). The initial 140 

definition considers a grinding size limit of 0.074 mm, while Einav (2007) removed this size 141 

limitation and proposed a new concept of relative breakage index, BrE. Another way of quantifying 142 

particle breakage considers explicitly the increase of particle surface area as coarse particles are 143 
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gradually crushed into finer ones (Russell, 2011). Nevertheless, the calculation of this index usually 144 

requires a lot of assumptions.  145 

For simplicity and consistency of the analysis, this research used the original definition of relative 146 

breakage by Hardin (1985). Specifically, at the end of the triaxial shear test, the middle one third of 147 

the sample was carefully retrieved from the container and the two ends of the sample were removed 148 

because the calcareous sands in these regions were barely crushed. The calcareous sands were 149 

completely dried and then sieved according to the laboratory testing specification. After sieving, the 150 

mass of calcareous sand particles in each size range were weighed and recorded. Based on the particle 151 

grading curves before and after the test, the relative particle breakage can be calculated.  152 

Results 153 

Stress-strain and volumetric strain behaviour 154 

Figure 2 showed the evolutions of deviatoric stress (q) and volumetric strain (εv) with the axial 155 

strain (εa) of calcareous sand samples during the triaxial tests under different confining pressures (σ3). 156 

In Figure 2(a), under relatively low confining pressures (e.g. σ3 = 100 kPa), the calcareous sand 157 

sample of low relative density (Dr=45%) showed a strain-hardening behaviour throughout the test, 158 

with the peak strength occurring at a very large axial strain. As the relative density increases, the 159 

stress-strain curve evolved gradually from the strain hardening (ductile) to strain softening (brittle) 160 

behaviour. For dense samples, the peak shear strength occurred at a relatively small axial strain. After 161 

reaching the peak value, the higher the relative density, the faster the shear stress decreased. As the 162 

confining pressure increased, the sharpness of the stress-strain curve disappeared, and the soil 163 

exhibited only the strain hardening behaviour. Under very high confining pressures (e.g. σ3 = 1200 164 

kPa), the stress-strain curves of calcareous sands with different relative densities all showed similar 165 

evolution pattern of the strain hardening.  166 

Figure 2 also illustrated the evolution of volumetric strain for calcareous sands under different 167 

confining pressures. Under low confining pressures (e.g. 100kPa), the dense calcareous sand samples 168 

(Dr > 65%) showed obvious shear-induced dilatancy, while the loose sample (Dr = 45%) only 169 

exhibited the contractive behaviour. The strain corresponding to the starting point of sample dilatation 170 

gradually decreased with the increase of sample relative density. At higher confining pressures, the 171 

volumetric strain showed purely the contractive behaviour, even though at p = 200 kPa, dense samples 172 

could still have the trend to dilate after some degree of contraction. For all the tests, the trend of 173 
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sample dilation increased with its initial packing density. Under the extremely high confining pressure 174 

of 1200 kPa, the contractive volumetric strains of different samples showed very similar results and 175 

the peak values were not obvious within the current range of axial strain.  176 

The mechanical behaviour of calcareous sands shown in Figure 2 were governed primarily by 177 

particle rearrangement and breakage during the shear deformation. Under low confining pressures, 178 

as quite a few particles were crushed, the initial relative density of the sample dominated the soil 179 

behaviour. The loose samples of low relative density needed to be compressed thoroughly before the 180 

occurrence of shear dilatation. Therefore, intense particle rearrangements existed within the sample, 181 

resulting in large axial strains before shear dilatation. As the relatively density increased, particles 182 

were packed increasingly closer to each other, resulting in a small volumetric contraction before the 183 

sample dilation. Thus, the axial strain corresponding to the start of shear dilatation was small. Under 184 

higher confining pressures, the compression of the solid skeleton was also accompanied by intense 185 

particle breakages. The crushed calcareous sands can produce a large number of fines which would 186 

fill up the voids between particles effectively, resulting in a much denser sample after the initial 187 

consolidation. This process could effectively consolidate the initial loose samples, transforming the 188 

packing state and mechanical behaviour similar to those of dense samples.  189 

As a comparison, Figure 3 illustrated the mechanical behaviour of relatively dense quartz sand 190 

samples in consolidated drained triaxial tests under the confining pressures of 100 kPa and 1200 kPa, 191 

respectively. Similar strain softening and shear dilating behaviour of sands occurred under low 192 

confining pressure of 100 kPa. However, under the high confining pressure of 1200 kPa, the dense 193 

quartz sands can still exhibit clear strain softening behaviour, which is different from the response of 194 

calcareous sands. The difference was mainly due to the influence of particle breakage. For calcareous 195 

sands, particles could be crushed readily under high loading pressures, inducing additional volumetric 196 

contraction in addition to the normal consolidation. However, the particle breakage effect was not 197 

significant for quartz sands under high confining pressures due to the high material strength. For the 198 

dense quartz sand samples, the particle rearrangement (e.g. dislocation and tumbling) played a 199 

dominant role during the shearing process, resulting in obvious shear dilation. For the loose samples 200 

tested under high confining pressures, the skeleton of quartz sand particles was compressed gradually 201 

to a very dense state, exhibiting primarily the contractive behaviour. 202 
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Particle breakage during drained triaxial shear tests 203 

The relationship between particle breakage and relative density 204 

Figure 4(a) showed the gradation curves of calcareous sands after the triaxial shear tests under 205 

the confining pressure of 100 kPa. As shown in the figure, the percentage of fine particles increased 206 

with the relative density (Dr), indicating that particles can be readily crushed in densely packed state. 207 

In particular, the mass percentage of particles less than 1 mm (i.e. the finest particle size of the initial 208 

grading) increased from 23.1% at Dr=45% to 35.7% at Dr=93%. As a comparison, Figure 4(b) 209 

showed the gradation of calcareous sands under the high confining pressure of 1200 kPa. Under this 210 

loading condition, the particle breakage increased remarkably, that the mass percentage of particles 211 

finer than 1mm was about 51.1%. However, the difference of grading curves between tests on samples 212 

of various relative densities was very small, indicating that under high confining pressure, the relative 213 

density had a negligibly small influence on particle breakage.  214 

The relative breakage of calcareous sands was calculated and presented in Figure 5, which 215 

showed a clear trend of the relative breakage increasing with the relative density of calcareous sands, 216 

following a linear relationship. The fitting function could be expressed as: 217 

  (1) 218 

where a and b are the fitting parameters. Table 2 summarized the values of fitting parameters and 219 

their correlation coefficient R2 for tests under different confining pressures. The slope a remained 220 

almost constant in the range of 0.043-0.057, except for the test under 1200 kPa as 0.012. The intercept 221 

b increased quickly with the confining pressure from 0.016 to 0.115, indicating that the confining 222 

pressure had a significant influence on particle breakage. It is worth noting that when the confining 223 

pressure was 1200 kPa, the variation of relative breakage with the increase of relative density was 224 

negligibly small. The results showed that after the confining pressure reaching a certain value, the 225 

influence of relative density on particle breakage would gradually disappear. Thus, an upper limit of 226 

particle breakage existed for these tests, such that beyond this value, the particle breakage could not 227 

increase any further. This result is similar to the research finding in Yamamuro and Lade (1996) for 228 

the shearing of quartz sands, with the upper limit of relative breakage of 0.35. 229 

The relationship between particle breakage and confining pressure 230 

Figure 6 (a) showed the gradation curves of the tests with various confining pressures for 231 

calcareous sands of the relative density Dr = 93%. The curves shifted gradually upwards as the 232 

confining pressure increased, indicating that more fine particles had been produced during the triaxial 233 

Br a Dr b= × +
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shearing process under high confining pressures. For all tests, the mass percentage of particles finer 234 

than 0.1 mm was very low because fine particles can effectively resist the external loading. Figure 6 235 

(b) illustrated that for the loose (Dr = 45%) and dense (Dr = 93%) samples, the relative breakage of 236 

calcareous sands increased with the confining pressure following power law relationships. The dense 237 

samples generally had higher relative breakages than the looser ones. When the confining pressure 238 

reached 1200 kPa, the relative breakage was very close for the loose and dense samples, indicating 239 

that under the extremely high confining pressures, the particle breakage intensity tended to converge, 240 

which was independent of the initial granular packing state. 241 

Influence of particle breakage on drained shear strength 242 

As discussed in Alshibli and Cil (2018), the shear strength of uncemented granular materials (e.g. 243 

sands) has three major contributors, namely the sliding friction by surface roughness, sample 244 

dilatancy by particle rearrangement and interlocking, and particle breakage. The sliding friction is the 245 

intrinsic property of material surface roughness, which may vary slightly when particle breakage and 246 

surface abrasion occur. Thus, the variation of internal friction angle is influenced mainly by the 247 

combined effect of shear dilatancy and particle breakage. The proportion of the two friction 248 

contributors depends mainly on the testing conditions. For dense sands under low confining pressures, 249 

the change of internal friction angle depends mainly on shear dilatancy, while the effect of particle 250 

breakage is not significant. However, under high confining pressures, the sample dilatancy is 251 

negligible and the change of internal friction angle is influenced mainly by particle breakage. This 252 

indicates that when the stress level reached the threshold value of particle breakage, the characteristics 253 

of sand dilatation would be weakened or even diminished. 254 

Peak friction angle, φp 255 

According to previous analyses, when the confining pressure was higher than 200 kPa, a large 256 

number of calcareous sands could be crushed with significantly reduced particle interlocking 257 

intensity, which led the sample dilatancy to diminish gradually. Under such an experimental condition 258 

(σ3 > 200 kPa), the sands showed a strain hardening behaviour with the peak stress occurring at failure 259 

and the peak friction angle (φp) was equal to the final critical state or residual friction angle (φcs). 260 

Figure 7 showed that in the experiments, the peak friction angle φp of the loose and dense calcareous 261 

sand samples decreased with the increase of confining pressures. The calcareous sands exhibited a 262 

high peak friction angle (35° - 42°) under low confining pressures (e.g. 200 kPa), while it was only 263 

around 20°-25° at high confining pressures (e.g. 1200 kPa). Throughout the test, regardless of the 264 
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magnitude of the confining pressure, the test results for the dense specimens were always higher than 265 

the looser ones by about 2-7°. 266 

According to the Mohr-Coulomb theory, the internal friction angle (φ) of the non-cohesive and 267 

non-crushable soil is always a constant value, which is only affected by the material property and the 268 

initial packing density of the sample. By ignoring the intermediate principal stress, the peak friction 269 

angle can be calculated by the following equation (Hassanlourad et al., 2014): 270 

  (2) 271 

In Eq.(2), the ratio of principal stresses  at failure, namely  should be a 272 

constant value. Thus, the peak friction angle φp must be a constant for non-crushable materials. 273 

However, for calcareous sand, since particle breakage becomes increasingly significant with the 274 

increase of confining pressure, it would result in the decrease of  and thus the decrease of 275 

φp. This is illustrated in Figure 8 that the peak friction angle of the calcareous sands decreased with 276 

the relative breakage, following a power law relationship. As expected, at the same particle breakage 277 

level, the peak friction angle increased with the initial relative density of the sample.  278 

Dilatancy angle, φcv  279 

The dilatancy angle was reported to be related to the difference between the peak (φp) and critical 280 

state (φcs) friction angle (Bolton, 1986) by the following equation as, 281 

  (3) 282 

Considering the variations of relative density (Dr) and mean effective stress at failure 283 

,  can also be expressed as, 284 

in Bolton (1986): 285 

  (4) 286 

and in Hasan and Alshibli (2010): 287 
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  (5) 288 

According to Figure 2 and Figure 3, only under relatively low confining pressures (e.g. 100 kPa), 289 

the calcareous sands with the initial relative densities ranging from 65% to 93% could exhibit clear 290 

shear dilation responses. The corresponding dilatancy angles calculated by Eq. (3) were reported in 291 

Figure 9 as in the range of 14° to 19°. In general, the dilatancy angle increased with the initial relative 292 

density of the sample. Whereas, it increased very little when the relative density was higher than 80%, 293 

partly because of the particle breakage during the triaxial shearing which significantly reduced the 294 

sample dilation. The predictions by Eq.(4) was only slightly lower than the experimental results, even 295 

though it was reported not suitable for highly angular particles, such as calcareous sands (Hasan and 296 

Alshibli, 2010). The agreement of experimental data with the prediction by Eq.(4) could be explained 297 

by the change of particle shape from highly angular to sub-rounded due to particle breakage and 298 

abrasion during the test. The results given by Eq.(5) could overestimate the dilatancy angle of the 299 

dense sample as the effect of particle breakage had not been included in the model.  300 

Discussion 301 

In this study, the stress-strain and volumetric strain-axial strain relationships of calcareous sands 302 

evolved gradually from the strain softening to hardening behaviour when the confining pressure 303 

increased. In this process, the development of shear stress along the shear plane played a key role. In 304 

general, the external loading acting on the sample is resisted by the interparticle friction (shear stress, 305 

τ) and the normal stress (normal stress, σ) at the contact points. When the friction between particles 306 

are fully utilized, namely the friction is equal to the sand strength, 𝜏 = 𝜎 tan𝜙, the shear stress 307 

cannot increase any further even though the normal stress continued to increase. Therefore, without 308 

considering particle breakage, the stress-strain relationship of calcareous sands is determined 309 

fundamentally by the interparticle frictions, including the contributions of sliding friction, rolling 310 

friction and particle interlocking. However, as a type of brittle materials, calcareous sands can be 311 

readily crushed under even low normal and shear loadings at contacts. Considering this, the stress 312 

state and deformation should be determined by the lower value of stress required to mobilize either 313 

the sliding or particle breakage process (see the illustrations in Figure 10). If the loading stress is high 314 

0.9

0.116p cs
Dr
p

j j- =
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enough to initiate the particle breakage, but low to mobilize the sliding, the particle breakage would 315 

occur (Figure 10 (b)), while on the contrary, the shear stress would increase until the shear strength 316 

is reached to initiate sliding (Figure 10 (c)). Therefore, when particle breakage exists, the material 317 

shear strength should be controlled by the combined contributions of particle friction and breakage. 318 

The friction will increase the shear stress to the peak value and produce the strain-softening response, 319 

while particle breakage will reduce the shear stress and keep it in an intermediate value, producing 320 

the strain-hardening response. This process also determines the value of dilatancy angle of the sample.  321 

For experiments conducted in this research, the low confining pressure was not effective in 322 

crushing the particles. Thus, the sample exhibited only the strain-softening behaviour with clear peak 323 

shear stress (i.e. the peak shear strength). After reaching the peak value, the particle sliding occurred, 324 

creating a layer of shear band within the sample which quickly reduced the shear stress until the stable 325 

residual shear strength was reached. The dense sample had a very small deformation before reaching 326 

the peak shear strength. Thus, the corresponding axial strain of the sample at the peak shear strength 327 

decreased with the relative density. On the other hand, under high confining pressures, particle 328 

breakage occurred more thoroughly for calcareous sands of various relative densities. As a result, the 329 

void spaces between particles were filled up with the fines and the peak shear strength of strain 330 

softening behaviour cannot be reached. Instead, the granular sample would exhibit the strain-331 

hardening behaviour with the residual shear strength.  332 

Conclusions 333 

In this paper, the mechanical behavior of calcareous sands of different relative densities tested 334 

under different confining pressures have been investigated via the consolidated and drained triaxial 335 

shear tests. By comparing with the quartz sand, the particle breakage and its influence on the strength 336 

of calcareous sands have been explored. The major findings are summarized as: 337 

1. At approaching the critical state, intense particle sliding, rolling and breakage occured, which 338 

prevented the loading stress from increasing further. Thus, the shear strength of calcareous sands 339 

was relatively low when compared to the quartz sands. Under the given experimental conditions, 340 

the sample deformation was mainly the particle sliding and rolling at low confining pressures, 341 
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resulting in the strain softening behavior. The strength of calcareous sands was the combined 342 

result of the friction by surface roughness, sample dilatancy by particle rearrangement and 343 

interlocking, and particle breakage. At high confining pressures, particle breakage occurred more 344 

thoroughly during the shearing process and the strain hardening behavior was obtained.  345 

2. The volumetric deformation of the sample developed gradually from dilation to contraction. In 346 

this process, the degree of sample contraction increased with the intensity of particle breakage. 347 

As the sample dilatancy diminished, the particle interlocking effect was significantly weakened, 348 

leading to the decrease of the peak friction angle and thus the shear strength. Thus, the strength 349 

of calcareous sands was mainly affected by the combined effects of particle sliding and particle 350 

breakage.  351 

3. The effect of relative density on particle breakage was less significant than the confining pressure. 352 

With the increase of confining pressure, the rate of particle breakage gradually decreased until it 353 

reached an upper limit. At this point, the confining pressure and relative density had little 354 

influence on particle breakage.  355 

According to this research, the strength of calcareous sands is dependent on the stress level, 356 

which is effectively a state variable. Therefore, when calcareous sands as construction materials, it is 357 

necessary to consider the in-situ stress condition and particle breakage during the construction and 358 

carry out relevant tests to obtain reliable material strength parameters. 359 
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Table 1. The basic physical parameters of the samples. 450 

Sand type Minimal void 
ratio, emin 

Maximal void 
ratio, emax 

Specific 
gravity 

Diameter 
(mm) 

Calcareous sands 0.62 1.44 2.65 1.0-2.0 
Quartz sands 1.27 1.87 2.79 1.0-2.0 

 451 

 452 

Table 2. Fitting values of parameters in Eq. (1). 453 

Confining 
Pressure/kPa 

a b R2 

100 0.043 0.016 0.591 
200 0.048 0.035 0.836 
400 0.057 0.045 0.782 
800 0.045 0.079 0.870 
1200 0.012 0.115 0.748 

 454 

 455 
  456 
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 457 
Figure captions 458 

Figure 1. The photos of two types of sands: a) Calcareous sands and b) Quartz sands. 

Figure 2. Evolutions of deviatoric stress and volumetric strain of calcareous sand sample during the 
consolidated drained triaxial shear tests under various confining pressures: a)100 kPa, b) 200 kPa, c) 400 kPa, 
d)1200 kPa. 

Figure 3. Evolutions of deviatoric stress and volumetric strain for quartz sands during the drained triaxial tests 
under the confining pressures of a)100kPa and b)1200kPa. 

Figure 4. The gradation curves of calcareous sands with different relative densities after the drained triaxial 
shear tests under the confining pressure of a)100 kPa and b)1200 kPa. 

Figure 5. The relationship between relative breakage (Br) and relative density (Dr). 

Figure 6. a) The gradation curves of calcareous sands after the drained triaxial shear tests under different 
confining pressures with the relative density Dr = 93%; b) The relationship between particle relative breakage 
(Br) and confining pressure (p). 

Figure 7. The relationship between the peak friction angle and effective confining pressure for the loose 459 

(Dr=45%) and dense (Dr=93%) calcareous sand samples. 460 

Figure 8. The relationship between peak friction angle  and relative breakage (Br) for the loose 

(Dr=45%) and dense (Dr=93%) calcareous sand samples. 

Figure 9. The relationship between dilatancy angle (φcv) and relative density (Dr). The confining pressure in 
the triaxial shear test was 100 kPa. 

Figure 10. Schematic view of triaxial shear tests: (a) loading of the tests. The blue dashed region represents 461 

the shear band; (b) illustration of particle breakage under high confining pressure; (c) illustration of particle 462 

rearrangement (sliding and rolling) for tests under low confining pressures.  463 
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Figure 11. The 

photos of two types of sands: a) Calcareous sands and b) Quartz sands. 

 465 
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Figure 12. Evolutions of deviatoric stress and volumetric strain of calcareous sand sample during the 
consolidated drained triaxial shear tests under various confining pressures: a)100 kPa, b) 200 kPa, c) 400 kPa, 
d)1200 kPa. 

 

Figure 13. Evolutions of deviatoric stress and volumetric strain for quartz sands during the drained triaxial 
tests under the confining pressures of a)100kPa and b)1200kPa. 

 466 

 467 

 

Figure 14. The gradation curves of calcareous sands with different relative densities after the drained triaxial 
shear tests under the confining pressure of a)100 kPa and b)1200 kPa. 
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Figure 15. The relationship between relative breakage (Br) and relative density (Dr). 

 468 

 469 

 470 

 

Figure 16. a) The gradation curves of calcareous sands after the drained triaxial shear tests under different 
confining pressures with the relative density Dr = 93%; b) The relationship between particle relative breakage 
(Br) and confining pressure (p). 
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 471 

Figure 17. The relationship between the peak friction angle and effective confining pressure for the loose 472 

(Dr=45%) and dense (Dr=93%) calcareous sand samples. 473 
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Figure 18. The relationship between peak friction angle  and relative breakage (Br) for the loose 

(Dr=45%) and dense (Dr=93%) calcareous sand samples. 

 

Figure 19. The relationship between dilatancy angle (φcv) and relative density (Dr). The confining pressure in 
the triaxial shear test was 100 kPa. 

 474 
Figure 20. Schematic view of triaxial shear tests: (a) loading of the tests. The blue dashed region represents 475 
the shear band; (b) illustration of particle breakage under high confining pressure; (c) illustration of particle 476 
rearrangement (sliding and rolling) for tests under low confining pressure.  477 

 478 
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Table 3. The basic physical parameters of the samples. 480 

Sand type Minimal void 
ratio, emin 

Maximal void 
ratio, emax 

Specific 
gravity 

Diameter 
(mm) 

Calcareous sands 0.62 1.44 2.65 1.0-2.0 
Quartz sands 1.27 1.87 2.79 1.0-2.0 

 481 

Table 4. Fitting values of parameters in Eq. (1). 482 

Confining 
Pressure/kPa 

a b R2 

100 0.043 0.016 0.591 
200 0.048 0.035 0.836 
400 0.057 0.045 0.782 
800 0.045 0.079 0.870 
1200 0.012 0.115 0.748 

 483 


