
 

Available online at www.sciencedirect.com 

 

 

 

 

A Deep Learning based Hybrid Method for Hourly Solar 1 

Radiation Forecasting 2 

Chun Sing Lai a,b, Cankun Zhong c, Keda Pan a, 3 

Wing W. Y. Ng c, Loi Lei Lai a,* 4 

 5 

Email addresses: chunsing.lai@brunel.ac.uk (C. S. Lai); curran.z@qq.com (C. Zhong); 6 
1111904017@mail2.gdut.edu.cn (K. Pan); wingng@ieee.org (W. W. Y. Ng); l.l.lai@ieee.org (L. 7 
L. Lai) 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

a Department of Electrical Engineering, School of Automation, Guangdong University of 
Technology, Guangzhou 510006, China 

b Brunel Institute of Power Systems, Department of Electronic and Electrical Engineering, Brunel 
University London, London, UB8 3PH, UK 
c Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace 
Information, School of Computer Science and Engineering, South China University of 
Technology, Guangzhou 510006, China 

* Corresponding author 



2  

Abstract 20 

Solar radiation forecasting is a key technology to improve the control and 21 
scheduling performance of photovoltaic power plants. In this paper, a deep 22 
learning based hybrid method for 1-hour ahead Global Horizontal Irradiance 23 
(GHI) forecasting is proposed. Specifically, a deep learning based clustering 24 
method, deep time-series clustering, is adopted to group the GHI time series data 25 
into multiple clusters to better identify its irregular patterns and thus providing a 26 
better clustering performance. Then, the Feature Attention Deep Forecasting 27 
(FADF) deep neural network is built for each cluster to generate the GHI 28 
forecasts. The developed FADF dynamically allocates different importance to 29 
different features and utilizes the weighted features to forecast the next hour GHI. 30 
The solar forecasting performance of the proposed method is evaluated with the 31 
National Solar Radiation Database. Simulation results show that the proposed 32 
method yields the most accurate solar forecasting among the smart persistence 33 
and state-of-the-art models. The proposed method reduces the root mean square 34 
error as compared to the smart persistence by 11.88% and 12.65% for the 35 
Itupiranga and Ocala dataset, respectively. 36 

 37 

Keywords: Solar forecasting, deep learning, clustering, feature attention  38 

 39 

Article Highlights: 40 

 41 

1. Proposed a deep learning clustering method for solar irradiance feature 42 
learning. 43 

2. Hourly solar forecasting with Feature Attention based Deep Forecasting 44 
(FADF). 45 

3. RMSE reduced by 11.88%-12.65% as compared to smart persistence. 46 
 47 

 48 

 49 

 50 

 51 

 52 
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1. Introduction 53 

Smart grids and cities concern with anticipating situations, with an efficient 54 
forecast of weather conditions (e.g., solar energy forecasting) and the possibility 55 
of making decisions in almost real-time. Solar forecasting is crucial in managing 56 
power network operations and solar photovoltaic applications (Huang et al., 2018; 57 
Lai et al., 2017a; Wang et al., 2018, 2019). High penetration of intermittent 58 
renewable sources and the lack of anticipatory capabilities will result in 59 
uneconomic choices (such as the severe curtailment of generation) or lack of 60 
resilience when facing faults and disturbances. The accurate forecasting of Global 61 
Horizontal Irradiance (GHI) is beneficial to quality future power productions.  62 

In previous studies, many data-driven approaches are proposed for short-term 63 
solar forecasting. These approaches can be mainly divided into three parts: the 64 
physical methods, the statistical methods, and the machine learning methods. The 65 
physical methods consist of a set of mathematical equations describing the 66 
physical state and dynamic motion of the atmosphere (Zhang et al., 2018), and its 67 
forecasting performance is highly affected by the sharp changes in meteorological 68 
variables. The statistical methods utilizing statistical analysis of the different 69 
input features for solar forecasting include the auto-regressive integrated moving 70 
average, the exponential smoothing, and the Markov Chain model (Shakya et al., 71 
2017), among others. Recently, machine learning based approaches have been 72 
widely used in modeling, design and prediction in solar energy systems. The 73 
combination of two or more machine learning methods is also used to provide a 74 
more accurate solar forecasting result known as the hybrid model. 75 

From the literature, a collection of classical machine learning methods has been 76 
proposed and applied in the solar energy system. For example, an Artificial 77 
Neural Network (Fermín et al., 2018) model was developed to predict the 78 
levelized electricity cost of two parabolic trough solar thermal power plants 79 
coupled with a fuel backup system and thermal energy storage (Boukelia et al., 80 
2017). The Support Vector Machine was adopted (Ma et al., 2017) to upgrade the 81 
estimation accuracy of solar irradiance levels from photovoltaic electrical 82 
parameters. Also, the potential of the Random Forest method for estimating solar 83 
radiation using air pollution index was assessed (Sun et al., 2016). 84 

With the development and improvement of deep learning algorithms which are 85 
one of the advanced machine learning methods, there are additional deeper 86 
learning methods being applied to renewable energy challenges. Convolutional 87 
Neural Network (CNN) was used (Sun et al., 2018) to forecast the solar 88 
Photovoltaic (PV) output using the contemporaneous images of the sky. The 89 
meteorological features were utilized (Qing et al., 2018) as the input for a Long 90 
Short-Term Memory neural network (LSTM) for day ahead hourly solar radiance 91 



4  

prediction. Furthermore, studies (Ghimire et al., 2019; Yan et al., 2020) applied 92 
CNN to robustly extract features from predictive variables while the LSTM or 93 
GRU was utilized to absorb the features for solar radiation forecasting. The study 94 
(Feng and Zhang, 2020) adopted the CNN to forecast the solar PV output using 95 
the contemporaneous images of the sky, while the study (Zhen et al., 2020) firstly 96 
assigns the sky image to the corresponding class using the deep clustering method 97 
and then utilizes a corresponding hybrid deep learning method for PV power 98 
forecasting. 99 

Due to the limitation of a stand-alone machine learning method, the hybrid 100 
model combining multiple machine learning methods was conducted to improve 101 
the solar forecasting accuracy. The Adaptive Neuro-Fuzzy Interface Systems and 102 
the Wavelet Neural Network are among the early generation of hybrid models 103 
(Faizollahzadeh et al., 2018; Fotovatikhah et al., 2018). The study (David et al., 104 
2016) evaluated performances of an ensemble of Autoregressive Moving Average 105 
(ARMA) and Generalized Autoregressive Conditional Heteroskedasticity 106 
(GARCH) models to establish solar irradiance probabilistic forecasts. Still based 107 
on the ensemble learning, two advance base models, namely extreme gradient 108 
boosting forest and deep neural networks (XGBDNN), were proposed for hourly 109 
global horizontal irradiance forecast (Kumari et al., 2021). A two-stage method 110 
Coral Reefs Optimization Extreme Learning Machine (CRO-ELM) was applied 111 
(Salcedo-Sanz el al., 2018a) to select useful features and use selected features for 112 
solar forecasting. Since solar features are highly influenced by weather 113 
conditions, the combination of clustering and regression was conducted. A novel 114 
clustering method TB_K-means was proposed (Azimi et al., 2016) to partition the 115 
solar data into several clusters where the multiple layer perceptron was developed 116 
for each cluster to forecast hourly solar radiation. The similar hybrid forecasting 117 
method can also be found in other studies (Li et al., 2017; Feng et al., 2018; Fu et 118 
al., 2019), where the traditional clustering methods were utilized to categorize the 119 
data based on the original solar radiation sequence or the pre-extracted features. 120 
The hierarchical clustering technique was utilized in a different way (Sun et al., 121 
2018) where the K-means clustering was used to cluster the forecasting results of 122 
each sub-component generated from the Ensemble Empirical Mode 123 
Decomposition method, and a least square support vector regression was applied 124 
to ensemble the sub-component forecasts of each cluster. Similar study 125 
(Theocharides et al., 2020) was conducted where the K-means was applied to 126 
categorize the forecasted daily GHI and for each cluster, coefficients were 127 
obtained by linear regression to correct the forecasted outputs of the machine 128 
learning model. 129 

Most of the existing hybrid methods utilizing the clustering techniques for solar 130 
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forecasting usually adopt traditional clustering methods (Azimi et al., 2016; Li et 131 
al., 2017; Feng et al., 2018; Fu et al., 2019) which may result in sub-optimal 132 
clustering outcomes because the feature extraction and clustering are conducted 133 
in two separate independent stages rather than jointly considered. Besides, the 134 
GHI features (e.g., historical GHI, clear-sky GHI) and the meteorological features 135 
(e.g., temperature, wind speed) are often used to forecast the future solar 136 
irradiance (Jeno and Kim, 2020; Pan et al., 2020; Wu et al., 2020). The features 137 
are treated equally to forecast solar radiation in some previous studies. Intuitively, 138 
the historical solar irradiance should play a more important role than other 139 
features for solar forecasting. Some studies consider possible redundant features 140 
that may hurt the solar forecasting performance and thus utilize feature selection 141 
methods to select an optimal feature subset from the original feature set for 142 
improving solar forecasting performance (Salcedo-Sanz et al., 2018b; Niu et al., 143 
2020; Qadir et al., 2021). In this work, instead of utilizing the feature selection, a 144 
deep learning based feature weighting method is proposed alternatively to 145 
automatically enhance more useful features and restrain less important features 146 
for solar forecasting. Because the feature weighting can be observed as a 147 
generalization of feature selection where the feature weights are not limited to 0 148 
or 1. 149 

The proposed deep learning based hybrid method in this work consists of the 150 
Deep Time-series Clustering (DTC) and the Feature Attention based Deep 151 
Forecasting (FADF). The DTC groups solar time series with similar patterns into 152 
the same clusters using high-level useful features extracted by the Gated 153 
Recurrent Unit neural network (GRU) (Chung et al., 2014), where the feature 154 
learning and clustering are learned jointly. Each cluster has a corresponding 155 
hourly solar predictor (i.e., the FADF) trained with the data in the corresponding 156 
cluster. The FADF of each cluster utilizes a Feature Attention Sub-network to 157 
determine the feature importance (Song et al., 2018) and sends the weighted input 158 
to the main GRU network for hourly solar forecasting. The major contributions of 159 
this work are as follows: 160 

1) A deep learning based clustering method (i.e., Deep Time-series Clustering, 161 
DTC) is proposed to group the solar irradiance (i.e., GHI) data with similar 162 
patterns into the same clusters. It optimizes the feature learning and 163 
clustering assignment simultaneously. DTC treats the feature learning and 164 
clustering assignment in two separate stages. 165 

2) A Feature Attention based Deep Forecasting method (FADF) is proposed for 166 
hourly solar radiation forecasting of each cluster grouped by the DTC. The 167 
FADF utilizes a feature attention mechanism to dynamically allocate 168 
different importance to different features at each time step for 1-hour ahead 169 
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GHI forecasting. 170 
3) Extensive simulations are carried out to confirm the superiority of the 171 

proposed method. Simulation results on the National Solar Radiation 172 
Database show that the proposed method outperforms existing methods for 173 
solar forecasting in most cases. 174 

The remainder of this paper is organized as follows. Section 2 describes the 175 
proposed method for 1-hour ahead GHI forecasting. Section 3 gives the 176 
simulation results and detailed discussion. Finally, a conclusion is given in 177 
Section 4. 178 

2. The Hybrid Method for One-hour Ahead GHI Forecasting 179 

The training and testing phase of the proposed deep learning based hybrid 180 
method for 1-hour ahead GHI forecasting is shown in Fig. 1. The historical GHI 181 
time series of finite length (specified by the window size) is sent to the DTC to 182 
get its clustering label. Then, the FADF of the corresponding cluster assigns the 183 
feature importance of the GHI features (including historical GHI, clear-sky GHI, 184 
clear-sky index and solar zenith angle) and the meteorological features 185 
(temperature, relative humidity, wind speed, wind direction, and pressure) and 186 
utilizes the weighted features to forecast the next hour GHI. 187 

 188 
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 189 
(a) The training and testing phase of the proposed method. 190 

 191 

(b) The overview of DTC. 192 
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 193 

(c) The overview of FADF. 194 

Fig. 1.  The proposed deep learning based hybrid method for 1-hour ahead GHI 195 
forecasting. 196 

 197 

In the following section, we first introduce DTC for grouping the historical 198 
GHI time series in Section 2.1. Then, FADF is proposed for hourly GHI 199 
forecasting and details are given in Section 2.2. 200 

2.1. Deep Time-series Clustering (DTC) 201 

The DTC utilizes an encoder-decoder framework to learn the latent 202 
representation Z of the original data Xs (i.e., GHI time sequences) for clustering, 203 
where the encoder is a GRU model mapping the original GHI time sequences into 204 
the latent representation and the decoder is a Multiple Layer Perceptron (MLP) 205 
model reconstructing the latent representation into the original ones. It should be 206 
noted that the capacity of the decoder is lower than that of the encoder in this 207 
work such that the encoder is forced to learn the latent representation effectively 208 
instead of highly relying on the decoder.  209 

The clustering is carried out on the latent representation space. After the initial 210 
clustering centers in the latent representation space are given, the clustering 211 
centers and the latent representation of the original data are updated by applying 212 
the clustering loss and reconstruction loss jointly. The clustering loss is 213 
responsible for forcing the data in the latent representation space to move closer 214 
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to the corresponding clustering center while the reconstruction loss is utilized to  215 
preserve intrinsic structure in data and avoid the distortion of the latent 216 
representation space (Guo et al., 2020).  217 

1) Gated Recurrent Unit Neural Network (GRU) 218 

The GRU is invented to capture the long-term dependency of the time sequence 219 
data. The GRU consists of three basic components: the reset gate r, the update 220 
gate p, and the hidden state h. The hidden state acts as a memory storing useful 221 
information extracted by the reset gate and update gate. Specifically, at time step 222 
t, the reset gate takes the current time step input (i.e., the GHI value at time 223 

step t) to determine how much information stored in the previous hidden state 224 

should be ignored and to obtain a new candidate hidden state of current time 225 

step while the update gate is used to decide how much memories should be 226 
updated by the candidate hidden state. This is implemented with the following 227 
equations: 228 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

where the is the sigmoid function and the is the hyperbolic tangent 229 

function. Wj , Uj , and bj ( ) are all trainable parameters. * denotes 230 

the element-wise multiplication operation. 231 

2) Training of DTC 232 

The DTC is first trained with the reconstruction loss only to provide a good 233 
initialization. Then, the K-means clustering (Lai et al., 2017b) is performed on the 234 
latent representation space to derive the initial cluster centers. Finally, the DTC 235 
model is fine-tuned with the clustering loss and reconstruction loss jointly.  236 

The reconstruction loss is shown as below:  237 

 (6) 

where X is the original data, the is the encoder (i.e., the GRU model), and 238 

the is the decoder (i.e., the MLP model).  239 

The clustering loss (Xie et al., 2016) consists of the Student’s t-distribution Q 240 
measuring the similarity of the latent representation data point and the cluster 241 
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center , and the powerful auxiliary target distribution P to refine the clusters. 242 

This is shown in the following equations: 243 

 (7) 

  
(8) 

 (9) 

where KL(P||Q) is the Kullback-Leibler divergence formulating the divergence 244 
between Student’s t-distribution Q and the auxiliary target distribution P. Note 245 
that the distribution Q serves as the soft assignment of the clustering label. The 246 
auxiliary target distribution P provides the supervision information by using high 247 
confidential samples as supervision and then makes samples in each cluster 248 
distribute more densely. 249 

The parameters (parameters of the encoder, parameters of the decoder, and the 250 
cluster center) of the DTC model are updated using the Adaptive Moment 251 
Estimation algorithm. Assume that the parameter of the encoder is Wenc and the 252 
parameter of the decoder is Wdec. The parameters are updated using the following 253 
equations: 254 

 (10) 

  
(11) 

 (12) 

where n and denote the learning rate, the number of samples, and the 255 

coefficient  balancing the clustering loss and the reconstruction loss respectively. 256 

2.2. Feature Attention based Deep Forecasting (FADF) 257 

The proposed FADF utilizes a Feature Attention Sub-network explicitly to 258 
weight the input feature and then send the weighted feature into the main GRU 259 
model to forecast the next hour GHI. In this work, the Feature Attention Sub-260 
network is the GRU model and takes the previous hidden state hft-1 and the input 261 
of current time step xtm (including the GHI features and the meteorological 262 
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features at time step t) as input to compute the normalized weight of the input 263 

feature at the current time step.  264 

1) Feature Attention Sub-network 265 

The Feature Attention Sub-network automatically explores the different degrees 266 
of importance of features at each time step by jointly taking the previous hidden 267 
state hft-1 and the input of current time step xtm into account. The previous hidden 268 
state hft-1 stores the information of the past inputs benefiting from the merit of 269 
GRU while the input of current time step xtm serves as the indispensable element 270 
in determining their importance. With a soft attention mechanism, the weighted 271 

input of current time step  is as follows: 272 

 (13) 

 (14) 

 (15) 

where  is the exponential normalization function. Wxf, Whf, and bf are 273 

trainable parameters.   274 
The Feature Attention Sub-network can also be viewed as a gating mechanism 275 

which adaptively controls the amount of information of each feature to flow to 276 
the main GRU model to forecast the next hour GHI value. 277 

2) Training of FADF  278 

In this work, the proposed deep learning model FADF is trained with the huber 279 
loss instead of the commonly used Mean Squared Error (MSE) loss as reported in 280 
previous study (Mosavi et al., 2019). 281 

One of the major drawbacks of the MSE loss is that it is too sensitive to the 282 
outliers but meanwhile the MSE loss can help the model converge because the 283 
gradient of MSE loss decreases as the loss decreases. Sometimes the GHI 284 
sequence changes dramatically in the short-term due to extreme weather 285 
conditions, which results in the outliers. 286 

The huber loss is the combination of the Mean Average Error (MAE) loss and 287 
the MSE loss. It not only has the advantage of the MAE loss which is not 288 
sensitive to outliers, but also it has the advantage of the MSE loss whose gradient 289 
decreases as it decreases to avoid the divergence caused by a large gradient. 290 
Assuming that y is the real next hour GHI value and the f(xm) is the prediction of 291 
the next hour GHI value, then the huber loss is given by the following equation: 292 
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where is a hyper-parameter. When the Huber loss is between [0- , 0+ ], it is 293 
equivalent to MSE loss, and when it is at [-∞, ] and [ , +∞], it is equivalent to 294 
rRMSE loss. 295 

The proposed FADF consists of the main GRU model for hourly GHI 296 
forecasting and the Feature Attention Sub-network for feature weighting at each 297 
time step. The weighted input derived from the Feature Attention Sub-network 298 
directly influences the forecasting performance of the main GRU model and the 299 
prediction error loss guides the training of the Feature Attention Sub-network. 300 
Due to the mutual influence of these two networks, the optimization is rather 301 
difficult. Therefore, a training strategy of FADF is proposed and described in 302 
Algorithm 1. 303 

 304 

Algorithm 1 Training strategy of the FADF 

Input: Training Dataset (Xm,Y), Randomly Initialized Feature Attention Sub-
network GFASN, Randomly Initialized Decoder GMLP, Randomly Initialized Main 
GRU model GGRU 

Output: Trained Feature Attention Sub-network G’’FASN, Trained Main GRU model 
G’’GRU 

1. The Feature Attention Sub-network serves as the encoder and a MLP serves as 
the decoder. Pre-train the Feature Attention Sub-network with the Auto-encoder 
framework using the MSE loss, i.e., min ||Xm - GMLP(GFASN(Xm))||2, and get the pre-
trained Feature Attention Sub-network G’FASN. 

2. Fix the pre-trained Feature Attention Sub-network G’FASN. Train the main GRU 
model GGRU according to the huber loss, i.e., Lhuber(Y,GGRU(G’FASN(Xm))), and get the 
pre-trained main GRU model G’GRU. 

3. Jointly fine-tune the pre-trained Feature Attention Sub-network G’FASN  (obtained 
from Step 1) and the main GRU model G’GRU  (obtained from Step 2) according to 
the huber loss, i.e., Lhuber(Y,G’GRU(G’FASN(Xm))), and get the trained Feature 
Attention Sub-network G’’FASN and Main GRU model G’’GRU. 

2.3. Time Complexity Analysis 305 

The time complexity of the proposed hybrid method in the testing phase 306 
consists of two parts, namely the time complexity of assigning a GHI sequence of 307 
the testing sample to the corresponding cluster by DTC and, the time complexity 308 
of the next hour GHI forecasting with the testing sample using the FADF of the 309 

d d d
d d
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corresponding cluster. Note that the GRU model is the basic feature learning 310 
component of the DTC and FADF, thus the time complexity of the GRU model 311 
without the output layer is given first:   312 

 (17) 

where T, L, dx, and di denote the length of the input sequence, the total number of 313 
the hidden layers, the feature dimension of the input layer, and the dimension of 314 
the ith hidden layer, respectively. Note that the time complexity of the element-315 
wise operation is ignored here to simplify the expression. 316 
    For the DTC, a GHI sequence is served as the input and the output of the final 317 
hidden layer is served as the feature vector. The distances between the feature 318 
vector and each cluster center vector are calculated to assign the corresponding 319 
cluster. Therefore, the time complexity of the DTC is given as follows: 320 
  321 

 (18) 

where K, LDTC, and denote the number of cluster centers, the number of the 322 
hidden layers of the DTC model, and the dimension of the final hidden layer of 323 
the DTC model. 324 

Two GRU models are utilized for FADF. They are the Feature Attention Sub-325 
network (FASN) and the main GRU (MGRU). The FASN takes the input 326 
sequences to produce the corresponding feature vectors to calculate the feature 327 
weight of each time step. The MGRU takes the weighted input to forecast the 328 
next-hour GHI. Therefore, the time complexity of the FADF is calculated with the 329 
following equation: 330 

 

(19) 

where LFASN, LMGRU, , , and dh denote the number of hidden 331 
layer of the FASN, the number of hidden layer of the MGRU, the dimension of 332 
the final hidden layer of the FASN, the dimension of the final hidden layer of the 333 
MGRU, and the dimension of the hidden layer in the attention module, 334 
respectively. 335 
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3. Simulations and Results 336 

3.1. Simulation Setup 337 

1) Data 338 

This study employs two 12-year (from 2005 to 2017) hourly datasets collected 339 
from the National Solar Radiation Database (Sengupta et al., 2018) to train and 340 
test the 1-hour ahead GHI forecasting models. One dataset is based on Itupiranga 341 
(latitude = 5.15o S, longitude = 49.34o W), Brazil and the other one is based on 342 
Ocala (latitude = 29.17o N, longitude = 82.14o W), Marion, Florida, United States.  343 

In this work, all the hourly data from 2005 to 2014 were used as the training 344 
set, the data from 2015 to 2016 were utilized as the validation set for determining 345 
the hyper-parameters (e.g., the number of clusters), and data from 2017 were 346 
served as the testing set. 347 

2) Implementation Details 348 

The features from the two information sources were utilized to establish the 349 
data-driven models for hourly GHI forecasting. They are: (i) the GHI features: 350 
Historical GHI, clear-sky GHI, clear-sky index and solar zenith angle; (ii) the 351 
meteorological features: Temperature, relative humidity, wind speed, wind 352 
direction, and pressure.  353 

 354 
 355 
 356 
 357 
 358 
 359 
 360 
 361 
 362 
 363 
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  364 
(a) 365 

   366 
                                                               (b) 367 

Fig. 2.  Mutual information of various time-lags in a) Ocala and b) Itupiranga. 368 

Moreover, the length (i.e., the window size of sliding window) of lagged data 369 
plays a crucial role in determining the optimal structure of data-driven models for 370 
hourly GHI forecasting. Obviously, if the window size is too small, then the 371 
historical information may be not rich enough for a model to forecast the next 372 
hour GHI correctly; if the window size is too large, then too much redundant 373 
information will be fed into the data-driven model to cause the model over-fitting 374 
the training data. In this work, the mutual information was used to calculate both 375 
the linear and nonlinear cross-correlation of the GHI time series with itself at 376 
different time steps while the first minimum criterion usually considered in 377 
evaluating in mutual information (Ghimire et al., 2019) was adopted to determine 378 
the optimal window size.  The main idea of the first minimum criterion is that two 379 
samples can be considered statistically independent if they are delayed by a 380 
number of samples, equal to the time needed for the mutual information to reach 381 
the first minimum. Therefore, as shown in Fig. 2, the sliding window size for the 382 
Ocala dataset and the Itupiranga dataset were set as 11 hours and 12 hours, 383 
respectively.   384 
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To validate the effectiveness of our proposed method, several recent works 385 
were chosen to compare with our proposed method. For simplicity, our proposed 386 
method is denoted as HYBRID in the following section. The brief introduction of 387 
comparison methods is given as follows:  388 
(i) Smart Persistence (Yang et al., 2019): The smart persistence is the persistence 389 

model which is often referred to as the baseline in previous studies. Its main 390 
idea is to predict the next hour GHI by assuming that the next hour clear-sky 391 
index is the same as the current hour clear-sky index, as shown below: 392 

 (20) 
where kcs(t), Ics(t+1) and represent the clear-sky index at time t, the 393 

clear-sky GHI at time t+1, and the predicted GHI at time t+1 respectively. 394 
(ii) TB_K-means+MLP (Azimi et al., 2016): A new clustering method TB_K-395 

means is proposed to partition the GHI time series data into k clusters and 396 
each cluster has its corresponding GHI predictor which is the Multiple Layer 397 
Perceptron (MLP). 398 

(iii) LSTM (Qing et al., 2018): The LSTM with meteorological features as input 399 
is utilized to achieve the day ahead GHI forecasting. 400 

(iv) C_LSTM (Ghimire et al., 2019): The C_LSTM exploits a CNN to extract 401 
local temporal features and then a LSTM takes these local temporal features 402 
as input to forecast the GHI. 403 

(v) ResInceptionGRUAttn (Yan et al., 2020): The ResInceptionGRUAttn  uses 404 
two CNN-based Inception structures (Inception_ResNet and InceptionV3) to 405 
achieve feature extraction and then a two-layer GRU with attention 406 
mechanism is utilized to make predictions.  407 

(vi) XGBDNN (Kumari et al., 2021): Two advance base models (extreme 408 
gradient boosting and deep neural network) are utilized for solar forecasting. 409 
Multiple extreme gradient boosting are used to build an XGB forest and the 410 
ridge regression is utilized to integrate the XGB forest and the DNN to avoid 411 
the over-fitting problem. 412 

In order to make a fair comparison, the features fed to all data-driven models 413 
(except the Smart Persistence) are the same. 414 

3）Evaluation Criteria 415 

Several commonly used evaluation metrics are employed to validate the 416 
forecasting performances of GHI prediction models. They are the Root Mean 417 
Square Error (RMSE), Relative Root Mean Square Error (rRMSE), Mean 418 
Absolute Error (MAE), Coefficient of Determination (R2), Maximum Error 419 
(Errormax), Minimum Error (Errormin), and Forecast Skill (FS) as shown in (21), 420 
(22), (23), (24), (25), (26), and (27) respectively. 421 

ˆ( 1) ( ) ( 1)cs csy t k t I t+ = +

ˆ( 1)y t +
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(22) 

 

(23) 

 

(24) 

 (25) 

 (26) 

 
(27) 

where f(t), y(t), and U represent the predicted GHI of tth testing sample, the real 423 
GHI of tth testing sample, and the total number of testing samples, respectively. 424 
The rRMSEproposed is the rRMSE of the model under evaluation and rRMSEbaseline 425 
is the rRMSE of the baseline i.e., the Smart Persistence method.  426 

3.2. Results and Analysis 427 

1) Ablation Study 428 

The proposed hourly GHI forecasting method HYRBID mainly consists of two 429 
components. They are the DTC and the FADF. To validate the effectiveness of 430 
each component, an ablation study was conducted. As shown in Table 1, the 431 
performance of FADF is better than the GRU, which lacks the feature attention 432 
mechanism compared with the FADF on two testing sets under the RMSE and 433 
rRMSE metrics (the best performance is marked in bold black). It shows the 434 
validity of the feature weighting idea and the successful design of the feature 435 
attention sub-network. The feature attention sub-network can dynamically assign 436 
a higher weight to the more important feature for hourly GHI forecasting at each 437 
time step, thus FADF achieves higher forecasting accuracies compared with the 438 
single GRU. Furthermore, after combining the FADF with the DTC (thus 439 
resulting in the HYBRID), the performance is further boosted (i.e., lower RMSE 440 
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and lower rRMSE). Training a single FADF model on the data with several GHI 441 
time series patterns may force the model to learn the common and universal 442 
features for next hour GHI forecasting and thus the model fails to achieve the 443 
performance as good as the HYBRID. It indicates that grouping the data with 444 
similar GHI time series patterns into the same clusters using the deep learning 445 
technique and forecasting the next hour GHI by the corresponding experts (i.e., 446 
the FADF of the corresponding cluster) are worthy doing and beneficial for 447 
improving the GHI forecasting performance. 448 

Table 1. The daytime one-hour ahead GHI forecasting performance of the 449 
proposed method 450 

Locations Models 
Performance Metrics 

RMSE(W/m2) rRMSE (%) 

Ocala 
GRU 117.35 27.29 
FADF 115.50 26.93 

HYBRID 112.60 26.18 

Itupiranga 
 

GRU 120.28 26.47 
FADF 119.41 26.28 

HYBRID 117.71 25.91 

2) Evaluation of DTC 451 

The proposed DTC can be categorized as the prototype-based clustering 452 
algorithm. The prototype-based clustering assumes that the clustering architecture 453 
can be characterized by a set of prototypes. This section further validates the 454 
superiority of the DTC compared with other prototype-based clustering methods. 455 
They are the K-means++ clustering algorithm, the Fuzzy C-Means (FCM) 456 
clustering algorithm, and the Gaussian Mixture Model (GMM) clustering 457 
algorithm. The single FADF trained on the whole training data is treated as the 458 
benchmark to the hybrid methods. These hybrid methods include the FADF 459 
combined with the K-means++ clustering algorithm (FADF+K-means++), the 460 
FADF combined with the (FCM clustering algorithm (FADF+FCM), the FADF 461 
combined with the GMM clustering algorithm (FADF+GMM), and the proposed 462 
HYBRID (the FADF combined with the DTC). In this work, the optimal number 463 
of clusters of each clustering algorithm is determined by the silhouette score 464 
which is one of the measurements for evaluating the performance of the 465 
clustering methods. For the adopted DTC method, the number of clusters for 466 
Ocala and Itupiranga are 3 and 4 respectively, as shown in Fig. 3. 467 
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 468 
(a) 469 

 470 
                            (b)                                  471 

Fig. 3.  Silhouette score of DTC in different number of clusters for a) Ocala and 472 
b) Itupiranga. 473 

 474 
As seen from Table 2, all hybrid methods achieve lower RMSE and rRMSE 475 

scores than the benchmark on both testing datasets (the best performance is 476 
marked in bold black). Overall, the proposed HYBRID achieves the best 477 
performance among all the hybrid methods and the benchmark. The advantage of 478 
the DTC is that it maps the original GHI time series into the Euclidean feature 479 
space through the deep learning and measures the distance between samples in 480 
the feature space, while the distance measurements between samples adopted by 481 
the traditional prototype-based clustering methods may easily ignore the 482 
characteristics of time series data. 483 

 484 
 485 
 486 
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Table 2. The daytime one-hour ahead GHI forecasting performance of the FADF 487 
combined with clustering methods 488 

Locations Models 
Performance Metrics 

RMSE (W/m2) rRMSE (%) 

Ocala 

FADF 115.50 26.93 
FADF+K-means++ 114.15 26.54 

FADF+FCM 114.87 26.71 
FADF+GMM 113.56 26.41 

HYBRID 112.60 26.18 

Itupiranga 
 

FADF 119.41 26.28 
FADF+K-means++ 118.04 25.98 

FADF+FCM 118.15 26.00 
FADF+GMM 117.92 25.95 

HYBRID 117.71 25.91 
 489 

3) Computational Cost 490 

Table 3. The computational cost of the proposed method 491 

 Training (second/sample) Testing (second/sample) 
Ocala 0.66 1.77E-4 

Itupiranga 0.59 2.42E-4 
 492 

Table 3 shows the training and testing computational cost of the proposed 493 
method on the Ocala and Itupiranga datasets. The experiment was conducted with 494 
RTX 2080 Ti graphics processing unit. It is worth mentioning that the 495 
computational cost of the proposed method mainly comes from the DTC (while 496 
the DTC needs additional training round to determine the optimal clustering 497 
number) and the FADF. Both training of the DTC and FADF set the training 498 
maximum epochs as 1000 while the early-stop technique was also used in the 499 
experiment and the patience of the early-stop technique was set as 15. Table 3 500 
shows that although the training of the proposed method takes time in both Ocala 501 
and Itupiranga datasets, the testing time of the proposed method is short enough 502 
which means the proposed method can be used in real-time. Note that the testing 503 
time of the proposed method on the Ocala dataset is shorter than that on the 504 
Itupiranga dataset mainly because the optimal clustering number for Ocala is 3 505 
while Itupiranga is 4 and the forecasting process is conducted sequentially in 506 
terms of clustering id in this work.  507 

 508 
4) Performance Analysis 509 

Tables 4 and 5 show the 1-hour ahead daytime GHI forecasting results of 510 
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different models in different locations with different performance metrics; the 511 
best performance is marked in bold black and the second-best performance is 512 
marked in bold blue. The values in brackets are the variances of results of the 513 
three runs, indicating the uncertainty of the model for the prediction results. Note 514 
that all models are implemented with the same dataset to provide a fair 515 
comparison, and the adjustments of hyper-parameters of comparative methods are 516 
referred to the corresponding papers (Azimi et al., 2016; Qing et al., 2018; 517 
Ghimire et al., 2019; Yan et al., 2020; Kumari et al., 2021).  518 

In terms of the RMSE, R2, and FS metrics, the XGBDNN achieves the best 519 
performance in both Ocala and Itupiranga dataset, while the proposed HYBRID 520 
achieves the second-best. Note that the XGBDNN is an ensemble model 521 
integrating multiple extreme gradient boosting trees and one deep neural network 522 
through the ridge regression. The proposed HYBRID is only a combination of the 523 
clustering method DTC and the forecasting model FADF.  To further improve the 524 
forecasting performance, the ensemble of multiple FADF models in each cluster 525 
is ensured as a potential research direction inspired by the idea of the XGBDNN. 526 
In addition, the proposed HYBRID yields lower average MAEs than the 527 
XGBDNN in both Ocala and Itupiranga. It achieves the lowest average MAE 528 
(71.31 W/m2 ) in the Itupiranga dataset. This is mainly because the huber loss is 529 
utilized to train the FADF of each clusters so that the trained FADF is not that 530 
sensitive to outliers.   531 

The Smart Persistence model yields the worst performance in all kinds of 532 
metrics except for Errormin. It yields the zero Errormin which is smaller than those 533 
from all other neural network-based models. None of the neural network-based 534 
methods can achieve the zero ERRORmin because they can only approximate the 535 
target as closed as possible. TB_K-means+MLP achieves a better performance 536 
than the Smart Persistence model, benefiting from the clustering technique to de-537 
trend the GHI time series into several clusters and the MLP for GHI forecasting 538 
being developed for each cluster. However, the cluster selection strategy and the 539 
limited forecasting ability of such shallow model (i.e., MLP) may affect the 540 
forecasting accuracy. The deep learning based models LSTM, C_LSTM, and 541 
ResInceptionGRUAttn show a comparable performance with TB_K-means+MLP.  542 
 543 

 544 
 545 
 546 
 547 
 548 
 549 
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Table 4. One-hour ahead daytime GHI forecasting performance comparisons of 550 
different models in Ocala 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

Models 

Performance Metrics 

RMSE 
 (W/m2) 

rRMSE 
 (%) 

MAE 
(W/m2) 

R2 

(%) 
ERRORmax 

(W/m2) 
ERRORmin 

 (W/m2) FS(%) 

Smart 
Persistence 

125.93 
(±0.00) 

29.97 
(±0.00) 

63.84 
(±0.00) 

79.73 
(±0.00) 

725.00  
(±0.00) 

0.00  
(±0.00) 

0.00 
 (±0.00) 

TB_K-
means+MLP 

114.00  
(±1.19) 

26.51  
(±0.28) 

75.76 
(±1.65) 

83.40 
(±0.36) 

619.54  
(±17.70) 

0.01 
 (±0.01) 

11.54 
 (±0.94) 

LSTM 113.85 
 (±1.71) 

26.48  
(±0.40) 

79.08  
(±1.49) 

83.43  
(±0.47) 

610.05  
(±5.54) 

0.02 
 (±0.02) 

11.65  
(±1.32) 

C_LSTM 113.46  
(±1.15) 

26.38  
(±0.27) 

77.47  
(±3.56) 

83.53  
(±0.35) 

602.89 
(±35.50) 

0.02 
 (±0.01) 

11.96 
 (±0.88) 

ResInception 
GRUAttn 

112.70 
(±0.82) 

26.21 
(±0.19) 

72.07 
(±0.32) 

83.73 
(±0.23) 

653.65 
(±35.50) 

4.00E-3 
(±4.00E-3) 

12.54 
 (±0.64) 

XGBDNN 111.97 
(±0.78) 

26.04 
(±0.18) 

72.28 
(±0.34) 

83.93 
(±0.25) 

628.68 
(±6.16) 

7.33E-3 
(±7.51E-3) 

13.12 
 (±0.60) 

HYBRID 112.60 
(±0.57) 

26.18  
(±0.13) 

65.86  
(±0.35) 

83.80  
(±0.17) 

607.71 
(±12.45) 

0.04 
 (±0.06) 

12.65 
 (±0.44) 
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Table 5. One-hour ahead daytime GHI forecasting performance comparisons of 565 
different models in Itupiranga 566 

Models 

Performance Metrics 

RMSE 
 (W/m2) 

rRMSE 
 (%) 

MAE 
(W/m2) 

R2 

(%) 
ERRORmax 

(W/m2) 
ERRORmin 

 (W/m2) FS(%) 

Smart 
Persistence 

133.55 
(±0.00) 

29.39  
(±0.00) 

71.37  
(±0.00) 

78.18  
(±0.00) 

840.00  
(±0.00) 

0.00  
(±0.00) 

0.00 
(±0.00) 

TB_K-
means+MLP 

119.30 
(±0.73) 

26.25 
 (±0.16) 

79.42  
(±1.28) 

82.60 
(±0.20) 

673.76  
 (±33.71) 

0.02 
 (±0.02) 

10.64  
(±0.54) 

LSTM 118.47 
(±0.22) 

26.07 
 (±0.05) 

79.83  
(±1.43) 

82.77 
(±0.05) 

680.22 
 (±9.32) 

0.01 
(±0.01) 

11.22  
(±0.12) 

C_LSTM 118.62 
(±1.05) 

26.11  
(±0.23) 

80.11  
(±4.11) 

82.77 
(±0.32) 

692.79 
(±18.22) 

4.33E-3 
(±1.15E-3) 

11.17 
(±0.78) 

ResInception
GRUAttn 

117.81 
(±0.37) 

25.93 
 (±0.81) 

77.19  
(±2.24) 

83.00 
(±0.10) 

719.17 
(±34.20) 

0.02 
 (±0.02) 

11.78 
(±0.27) 

XGBDNN 117.14 
(±0.562) 

25.78 
 (±0.12) 

77.44  
(±0.84) 

83.20 
(±0.17) 

708.33 
(±14.14) 

0.03 
(±0.02) 

12.27 
(±0.42) 

HYBRID 117.71 
 (±0.47) 

25.91 
 (±0.10) 

71.31  
(±0.41) 

83.03 
(±0.12) 

703.38  
(±7.33) 

4.33E-3 
(±6.65E-3) 

11.88 
(±0.31) 

 567 

Fig. 4 shows the real GHI series (brown lines) and predicted GHI series from 568 
different models under different weather conditions, namely, partly cloudy, 569 
overcast, and rainy in Itupiranga. The subfigures demonstrate the effectiveness of 570 
the proposed method to forecast the GHI with different characteristics and 571 
variations. The HYBRID can forecast the real GHI with less error under different 572 
weather conditions and yields the smallest MAE values with 46.75, 81.88, and 573 
71.06 W/m2 for the partly cloudy, overcast, and rainy days, respectively. 574 
Therefore, the proposed HYBRID is more robust to different weather conditions 575 
than other compared methods.  576 

 577 

 578 

 579 
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    580 

(a) Partly cloudy (30th June 2017)              (b) Overcast (29th July 2017) 581 

 582 

 583 

(c) Rainy (28th December 2017)  584 

Fig. 4.  1-hour ahead GHI forecasting results of different models for the partly 585 
cloudy, overcast, and rainy days in Ocala. 586 

 587 

Fig. 5 shows the correlation between real values and HYBRID forecasted 588 
values of GHI during 2017. The red lines in the plots indicate real values and blue 589 
dots indicate forecasted values by the HYBRID. The high density of the blue dots 590 
around the red lines shows the small forecasting errors of the HYBRID. However, 591 
there are still some big forecasting errors existing mainly caused by the wrong 592 
cluster assignment of the DTC, which needs further research to improve the 593 
prediction accuracy of the clustering method such that the final forecasting error 594 
can be reduced. 595 

 596 



  25 

 597 

(a) 598 

 599 

    (b) 600 

Fig. 5.  Scatter plots of the actual and predicted GHI for the proposed model for 601 
the whole year of 2017 in a) Ocala and b) Itupiranga. 602 

 603 
The performance of the proposed HYBRID method depends on the clustering 604 

method and the 1-hour ahead GHI forecasting performance of the FADF. 605 
However, the imbalanced weather type issue (Lai et al., 2019) where training 606 
samples for common weather events may influence the clustering performance of 607 
the DTC. Furthermore, the neural network-based FADF is sensitive to the 608 
perturbation of the training data, and thus it may jeopardize the robustness of the 609 
FADF (Yeung et al., 2007). The above-mentioned problems will be addressed in 610 
future works. 611 

 612 
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4. Conclusions   613 

In this paper, we propose a deep learning based hybrid method for 1-hour ahead 614 
GHI forecasting. The proposed method adopts the Deep Time-series Clustering 615 
(DTC) to group the GHI time series data into multiple clusters to better identify 616 
its irregular patterns and thus to provide a better clustering performance. Then, 617 
the Feature Attention Deep Forecasting (FADF) model which is capable of 618 
dynamically weighting the input features and using the weighted features to 619 
forecast the next hour GHI is utilized for each clustered 1-hour ahead forecasting 620 
sub-task. Simulation results on the National Solar Radiation Database show that 621 
the proposed method achieves the smallest solar forecasting error compared to the 622 
smart persistence and other recently published methods. 623 
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