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ABSTRACT 

Recent experimental data has revealed that, over short time scales (on the 

nanosecond time scale), during formation of a shock in metals the amplitude of 

the ‘elastic’ precursor greatly exceed the Hugoniot elastic limit (HEL), before 

decaying to the level of the HEL. Existing continuum scale material models are 

unable to reproduce this behaviour.  To capture this aspect of material behaviour 

physical effects related to high rate dislocation mechanics have to be taken into 

consideration and included into the continuum scale material model.   

This is achieved with the use of a dislocation dynamics based model, where the 

state variable are calculated on the microscale, before being fed up to the 

continuum scale by use of the Orowan equation. Three state variable are used 

for the evolution of plasticity on the microscale; the density of mobile dislocation, 

the density of immobile dislocations and the velocity of dislocations. The model 

used in this work was previously available in literature in a 1D form only. Full 3D 

implementation of the model is made in a finite element hydrocode, including 

coupling with an appropriate equation of state 

Model validation was done by comparison of numerical results with experimental 

data for plate impact tests (1D strain state) for aluminium and copper, both fcc 

structured metals. The difference between the experimental and numerical 

values of the compared parameters (longitudinal stress, pulse length, elastic 

precursor relaxation time) was within 10%.  Notably the plate impact tests show 

that over the first 50ns after impact the pre-cursor wave has an amplitude similar 

to the stress levels behind the shock wave, relaxing to HEL with time (wave 

propagation).  

Further developments are made to the model to allow for simulation of the more 

complexly yielding bcc single crystals, with a focus on the simulation of single 

crystal tantalum plate impact tests. It is observed that the model accurately 

predicts the shape of the rear surface velocity obtained experimentally for single 

crystal tantalum, with analysis of the generate simulation data allowing for 

explanation of the features observed.  
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Further to the use of the model for simulations, method have been developed to 

allow for the determination of material parameter using the fitting of data.  
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1 Introduction  

Computation modelling of material deformation has many benefits to a wide 

range of industries. Accurate and reliable simulations can significantly reduce 

costs and the need for destructive testing during the design stages of many 

products including aircraft, spacecraft, satellites, automobiles and weapons. This 

work focuses on the modelling of deformation of metals.  

It is well established that the deformation of metals can be characterised into 

three main categories: elastic, plastic and damage, where elastic deformation is 

reversible upon unloading, plastic deformation is permanent but does not affect 

the elastic stiffness of the metal, and damage is associated with the formation of 

microcracks and microvoids, and is therefore permanent upon unloading and 

affects the elastic properties of the metal.  

The main focus of this work is the modelling of plastic deformation of metals. 

Plasticity is an important phenomena in metals, as, depending on the application, 

it could be a desirable effect or could be catastrophic. In manufacturing 

processes, the forming of sheet metals require plastic deformation to occur in 

order to create the desired shaping of the product, whereas in the design of a 

submarine hull it is essential to avoid plastic flow under loading as this could lead 

to catastrophic underwater results.  

The specific metals of interest in this work are single crystal metals, with either a 

face centred cubic structure, or a body centred cubic structure.  

The dynamic strength of metals; the stress required for plastic flow to occur, is 

observed to have a non-linear dependence on the strain rate. The typical 

relationship between the dynamic strength of a metal and the strain rate is shown 

in Figure 1-1. 
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Figure 1-1: Graph showing the three regimes of strain rate dependence on the 

dynamic strength of materials. (Qi, et al., 2009) 

It is seen in Figure 1-1 that there are three regime of strain rate dependence on 

the dynamic strength of materials. Firstly, in regime 1, it is seen that increasing 

strain rate produces very little increase in dynamic strength. However in regime 

2, a strong dependence of the strain rate is  observed on the dynamic strength. 

Finally, when the strain rate is sufficiently high, the dependence of the strain rate 

on the dynamic strength decreases significantly.  

From Figure 1-1 it is apparent that, when developing a model, the strain rate 

dependence must be taken into account depending on the intended applications 

of the model. It is also observed that the strain rate dependence is likely to be a 

limiting factor with regards to the range of applicability of a model. The focus of 

this work is on modelling at high strain rates, such as those observed during high 

velocity impacts or explosive loading.  

It has been shown in recent ultrashort laser pulse experiments that the amplitude 

of ‘elastic’ precursor wave behave differently to that observed using traditional 

approaches. This can be seen in Figure 1-2. Figure 1-2 shows the results of a 

plate impact test, where the amplitude of the stress is plotted vs the distance the 

wave has propagated into the plate a different instances in time. The time scales 

used are over the nanosecond range. The plot on the right hand side of Figure 

1-2 shows the results obtained using an existing continuum mechanics model, 
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with plasticity driven via an MTS approach. It is seen that a small precursor wave 

of a fixed amplitude precedes the main plastic shock front. The left had side plot 

shows the results obtained using a multiscale approach (Mayer, et al., 2013), with 

the behaviour of the precursor wave significantly different. It is observed that the 

amplitude of this wave initially exceeds the amplitude of the trailing plastic shock 

front, before decaying over a short time scale to the traditional elastic limit. A 

primary objective of this work is to capture the precursor decay in the framework 

of the traditional continuum mechanics model.  

 
 

Figure 1-2: Plots showing the longitudinal stress plotted against distance into the 

target plate at instances of 2, 5, 10 and 20 nanoseconds after impact of two 

symmetrical aluminium plates at a relative impact velocity of 500 m/s obtained 

using two different models.  

 

1.1 Aim and Objectives 

The overall aim of this piece of work is summarised into the following aim: 

“To develop a constitutive model capable of (accurately) predicting high strain 

rate deformation processes of metals at the continuum level, incorporating 

physics from sub-continuum scales” 
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In order to achieve this aim, the following objectives have been identified, which 

can be used to ensure specific targets are achieved in the duration of the work, 

and also be used to measure progress towards completion.  

- Development and implementation of a dislocation based continuum 

model for plasticity in finite element hydrocode available at Brunel 

University for modelling fcc metals. 

- Extension of model to incorporate the deformation of bcc metals 

- Validation of both fcc and bcc models for single crystal examples, 

including comparison against experimental data.  

- Identify and develop method of determining material model parameters.  

1.2 Methodology 

To achieve the aim and objectives outlined above, the following methodology was 

followed.  

Firstly, a model was identified in literature which shown potential capable of 

reproducing precursor decay behaviour during shock formation. The model 

identified in literature is a 1D model with published results showing capture of 

precursor decay behaviour. However, some limitations of the model are 

identified: 

 1D 

 Only tested for single crystal fcc metals  

The formulation of the model is analysed and implementation in a full 3D form is 

made in finite element hydrocode, including coupling with an equation of state: 

 Incorporation of full stress tensor 

 Inclusion of all material slip systems  

 Couple with appropriate equation of state  

Next, validation is the performed for FCC single crystal metals:  

 Repeat validation available in literature, including comparison of 

plate impact tests against experimental data  

 Confirm precursor decay behaviour is successfully captured in 3D 

implementation  

Finally the applicability of the model is extended to allow for simulation of BCC 

single crystals. This stage required several aspects of work to be completed: 

 Inclusion of complex slip systems, up to 48  

 Determination of material parameters for single crystal Tantalum  
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 Simulation of single crystal plate impact tests  

 Full analysis of simulated data to explain features observed in 

both experimental and simulated plots  

1.3 Structure of report 

The structure of this thesis is as follows: chapter two focusses on the motivation 

and need for this work as has been determined by surveying current literature. 

Following this chapter 3 outlines the continuum mechanical foundations of 

modelling at the continuum scale. This is followed by a discussion of the physical 

concepts of shock waves, including the continuum mechanical considerations 

required for modelling shocks. Chapter 5 outlines the microscale physics, in the 

form of dislocation dynamics, which is used as the underlying principles for the 

development of plasticity in the new material model, which is described in chapter 

6. The implementation of the new material model in the hydrocode available is 

described in chapter 7, which is followed by the validation process for fcc metals 

presented in chapter 8. Chapter 9 outlines the new application of the model to 

modelling bcc single crystal tantalum. The report is concluded with the 

conclusions and proposed future work in chapter 10.  
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2 Survey of relevant shock loading plasticity models 

 A review of relevant strain rate dependent plasticity models has been carried out 

and is presented in this chapter. The chapter begins with discussion of the older, 

widely used and publicised shock plasticity models, for which many of the more 

recent works build upon, followed by a discussion of the more recently developed 

shock plasticity models. The chapter is concluded with a discussion of the 

proposed method for developments in this work.   

 

As is seen in Figure 1-1 and discussed in chapter 1 the flow stress of a material 

is dependent on the strain rate by a variable degree, depending on the magnitude 

of the strain rate. Therefore, modelling at high strain rates requires the flow rules 

to incorporate rate effects.  

2.1.1 Steinberg-Guinan model  

The first significant high strain rate model was developed in 1980 by Steinberg 

and Guinan (Steinberg, et al., 1980). The Steinberg-Guinan model is a fully 

empirical, high strain rate model which makes use of the fact that at very high 

strain rates, the effect of the strain rate on the yield strength becomes insignificant 

in comparison strain and temperature effects. This can be seen in Figure 1-1 to 

be in the third regime, with the lower limiting strain rate of 105s-1.  

Evolution of the yield surface is given by equation (2.1).  

 

    1
3

' '

0

0 0

1 300 1
np T

Y Gp
Y Y T

Y G




     
        

    

  (2.1) 

Where: Y  is yield strength, 0Y  is the yield stress constant, '

pY  is the pressure 

dependent yield component, 0G  is the shear modulus, '

TG  is the temperature 

dependent shear modulus, and   is a material constant.   
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It is seen in equation (2.1) that the yield surface is a function of pressure, 

temperature and strain. The yield surface is independent of the strain rate, 

resulting in the model only being applicable at strain rates above 105 s-1.  

 

2.1.2 Johnson-Cook model 

Further to the Steinberg-Guinan model, in 1983 a model was published by 

Johnson and Cook (Johnson & Cook, 1983) to model rate dependent plasticity. 

Similar to the Steinberg-Guinan model, the Johnson-Cook model is a simple, fully 

empirical model. Evolution of the yield surface controlled by a sum of three terms; 

the three terms account for the dependence of the yield strength on the strain, 

the strain rate and the temperature, as can be seen in equation : 

        * *, , 1 ln 1
mn

y p p p pT A B C T       
       

        (2.2) 

Where 
y  is the flow stress, 

p  is the effective plastic strain, *

p  and *T  are 

normalised plastic strain rate and normalised temperature, respectively, and 

, , , ,A B C m n  are material constants.  

Due to the strain rate dependence of the yield surface, the Johnson-Cook model 

is applicable over a larger range of strain rates, and even remains valid for quasi-

static analysis.  

The Johnson-Cook model is still a widely used model, in part due to the 

requirement of only 5 material constants, which are available for a wide range of 

materials in literature.  

2.1.3 Zerilli – Armstrong  

In 1987 a model based on simplified dislocation mechanics was proposed by 

Zerilli and Armstrong (Zerilli & Armstrong, 1987). The Zerilli-Armstrong model is 

based on the thermally activated motion of dislocations, and as such is a 

physically based model. Similar to the Johnson-Cook and Steinberg-Guinan 

models, evolution of plasticity is dependent on the strain, the strain rate and 
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temperature. However, a distinguishing feature of this model is the fact that two 

microstructurally based constitutive equations are used, depending on the 

material structure. This is due to the observation that a BCC metal exhibits a 

much greater dependence on the strain rate and temperature than it does on the 

strain. The evolution of the yield strength is for FCC metals by equation (2.3) and 

for BCC metals by equation (2.4).  

  
1

2

2 3 4exp lnG C C T C T         (2.3) 

  1 3 4 5exp ln n

G C C T C T C          (2.4) 

Where   is flow stress, G  is the athermal component of flow stress,   is strain, 

  is strain rate, T  is temperature and 1 2 3 4 5, , , , ,C C C C C n  are material parameter 

that depend on the structure of the material.  

2.1.4 MTS model  

The next significant model was developed in 1988 by Follansbee and Kocks 

(Follansbee & Kocks, 1988) and is widely referred to as the Mechanical Threshold 

Stress (MTS) model. The MTS model provides a scalar valued flow stress which 

is a function of the strain rate and temperature.  

The model is physically based, with dislocation mechanics the basis of the model; 

and two key assumptions: 

i) Viscous drag effects are small in comparison to the thermally 

activated dislocation motion. 

ii) High temperature diffusion effects are absent  

As a result of the first assumption, thermally activated dislocation motion is used 

to describe the flow stress evolution. This assumption also limits the MTS model 

to strain rates below 104 s-1, as at strain rates above 104 s-1 viscous drag effects 

become dominant.  

The mechanical threshold stress, MTS , is provided by equation (2.5) as a sum of 

parts: an athermal term, a , which is used to describe the rate independent 
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interactions of dislocations with long range barriers and the thermally part, which 

accounts for interactions with short range barriers..  

    
0

,MTS a a ps T


    


     (2.5) 

Where   is the plastic evolution parameter, ( , )ps T   is the thermal activation 

factor, which is a function of both temperature, T , and plastic strain rate, 
p .  

The athermal componenis calculated via the following relation:  

  0

n

a yM k d      (2.6) 

Where M  is the Taylor orientation factor, 0  is the friction stress, d  is grain 

diameter and 
yk  and n  are fitting constants.  

The thermal activation factor is given as:  

  

1
1

0

3

0

ln

, 1

p
q

B

p

k T

s T
Gb g






 
   
    
       
  
   

 

  (2.7) 

Where Bk   is the Boltzmann constant, 0  is a reference strain rate, G  is the shear 

modulus, b  is Burgers vector, 0g  is the normalised activation energy and p   and 

q  are micromechanical constants.  

Unlike the relatively simpler Steinberg-Guinan, Johnson-Cook and Zerilli-

Armstrong models discussed about, a large number of material parameters, 29, 

are required for modelling with the MTS model. The parameters required for the 

MTS model are outlined in Table 2-1 However, studies (Panov, 2006) have 

shown that the MTS model holds some advantages over the Johnson-Cook and 

Zerlli-Armstrong models, most notably it is accurate over a wider range of strains.  
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Table 2-1: Outline of the 29 parameters required for modelling with the MTS model 

Symbol Description  

a  
Dislocation interaction – long range barriers 

i  
Dislocation interaction – interstitial atoms  

s  
Dislocation interaction – solute atoms  

  
Initial flow stress 

0 1 2, ,a a a  
First, second and third dislocation generation constants 

0s  
Saturation threshold stress 

b  
Magnitude of Burgers vector  

A  
Material constant  

Bk  
Boltzmann constant  

0b  
Shear modulus at 0K 

1 2,b b  
First and second shear modulus constants  

0G  
Normalised activation energy for dislocation – dislocation interactions  

0 0, 0,, , ,so i s     
Reference strain rates  

1 1 1
, ,

i sp p p
 

Material constants  

1 1 1
, ,

i sq q q
 

Material constants  

0,sG  
Normalised activation energy for a dislocation/solute interaction  

0,iG  
Normalised activation energy for a dislocation interstitial interaction  

pC  
Density heat capacity  

T  
Temperature  
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The MTS model is widely used, for example in (Banerjee & Bhawlkar, 2008) and 

(Djordjevic, 2011). Significantly, in (Djordjevic, 2011) the MTS model is modified 

for use in modelling orthotropic metals under high strain rate loading, which is a 

work that this work largely builds upon. However, MTS based models are unable 

to capture the superelastic precursor behaviour that this work is focussing on 

therefore it is required to investigate different modelling methods for the success 

of this work.   

More recently works by Khan (Khan & Liu, 2016) (Khan, et al., 2015) , and 

Hansen (Hansen, et al., 2013) have utilised thermal activation of dislocations in 

modelling. However, when considering dislocation motion, it is widely observed 

that at strain rates higher than about 105 s-1 thermal activation is superseded by 

viscous drag effects as the dominant process controlling dislocation motion. 

Therefore, it is necessary for dislocation dynamics based models to be developed 

to accurately model over higher strain rates and subsequently thermal activation 

models are discounted from this work. .  

 

2.2 Orowan equation based modelling 

It is seen in Figure 2-1 that the time scales of interest in this work is the 

nanosecond timescale over which the precursor wave amplitude decays. Figure 

2-1 shows that when modelling, the time and length scales required scale 

accordingly. Therefore, to accurately capture behaviour over the nanosecond 

time scale, it is imperative to give proper consideration to the microscale 

processes governing plasticity.  
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Figure 2-1: Graph showing the time and length scales applicable to different 

modelling methods 

The Orowan equation provides a convenient method of achieving this. The 

Orowan equation, equation (2.8), provides a method of calculating the continuum 

scale plastic strain rate from the dislocation scale variables.  

 
p mbv    (2.8) 

It is seen in equation (2.8) that the plastic strain rate is determined by the product 

of the magnitude of Burgers vector, b , the velocity of mobile dislocations, v , and 

the density of mobile dislocations m .  Numerous model have been developed 

utilising the Orowan equation, for example (Groh, et al., 2009) (Colvin, et al., n.d.) 

(Hansen, et al., 2013) (Luscher, et al., 2016) (Malygin, 1999) (Mayeur, et al., 

2016) (Mayer, et al., 2013), with the unique features in each being the equations 

governing the evolution of the dislocation based variables.  

Two models were identified in (Kiely, 2013) as being of particular interest to this 

work; both models combined processes occurring on the microscale with the 

development of deformation on the continuum scale. The first method 

investigated was that developed by Malygin (Malygin, 1999). In this method a 

series of dislocation kinetic equations are developed, with evolution equation 
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developed dislocation densities of various origins. This results in a large number 

of internal variables, resulting in an extremely computationally expensive model.  

2.2.1 Mayer’s model  

The second model investigated was developed by Mayer (Mayer, et al., 2013) 

(Krasnikov, et al., 2010) (Krasnokov, et al., 2011). The model uses three internal 

state variables to evolve plasticity; the density of mobile dislocations, the density 

of immobile dislocations and the velocity of mobile dislocations. The three internal 

state variables evolve by the use of dislocation dynamics based equations.  

Firstly, the density of mobile dislocations is evolved by the following constitutive 

relation:  

  2D
D I a D D D I

d
Q Q k b V

dt


     

        (2.9) 

Where: 
D

  is the density of mobile dislocations, 
DQ  is the rate of generation of 

new mobile dislocations, 
IQ  is the rate of immobilisation of mobile dislocations, 

ak  is a coefficient of annihilation, b  is the magnitude of Burgers vector and 
DV   is 

the velocity of mobile dislocations. The superscript   ‘s indicate that values are 

for each slip system.  

This can be interpreted physically as, the rate of change of mobile dislocation is 

equal to the rate of generation of new mobile dislocations, formed using plastically 

dissipated energy, minus the number of dislocations immobilised into structures 

via dislocation interactions, minus the number of dislocations lost to annihilation 

with other dislocations.  

Next, evolution of the immobile dislocation density is achieved by the relation:  

 I
I a D D I

d
Q k b V

dt


   

     (2.10) 

It can be seen that similar to equation (2.9), the evolution of the immobile 

dislocation density can physically be interpreted as the increasing by the same 
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number of mobile dislocations lost to immobilisation, minus the annihilation of 

previously immobilised dislocations with other mobile dislocations.  

Finally, the velocity of mobile dislocations is determined via the dislocation 

equation of motion:  

 3 3

0

1 1

1

2

N N

D
ik i k D

i k

dV
m S b n bY B V

dt


  

  
 

 
   
 
   (2.11) 

Where: 
0m  is the effective mass of dislocations, 

ikS  are the mechanical stress 

components driving dislocation motion, 
kn  is the vector normal to the slip plane, 

Y  is the yield strength and B  is a coefficient of dynamic drag.  

Here, the equation of motion is comparable to Newton’s second law of motion, 

whereby the acceleration of dislocations is written in terms of a sum of the forces 

acting on the dislocations. The forces accounted for in the equation of motion are 

the driving force from the mechanical stress tensor, minus the resistive forces in 

the form of the inherent lattice resistance and the dynamic drag forces.  

Work hardening in the model is controlled by the immobile dislocation density via 

the relation:  

 0 I IY Y A Gb     (2.12) 

Where: 0Y  is the resistance due to Peierls barrier, IA  is a coefficient of hardening 

and G  is the shear modulus.  

The mobile dislocation density and the dislocation velocity are used to determine 

the rate of plastic strain via Orowans equation.  

The model proposed by Mayer was identified as being of significant interest in 

this work as it is a dislocation dynamics based model, which uses the Orowan 

equation to feed microscale variables up to the continuum scale, while providing 

information regarding the state of the microstructure of the material. This is 

advantageous to aiding the understanding of the underlying processes driving 

plasticity during shock deformation. Unlike the Malygin model (Malygin, 1999), 
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only the overall densities of dislocations are considered on each slip system, the 

origin and separate dislocation processes are not considered. This is 

advantageous as it maintains computational efficiency.  

The other key feature of the model is its published ability to capture super elastic 

precursor behaviour, which is a key motivation for this work. Initial published 

results, as seen in Figure 1-2 clearly demonstrate the models ability to capture 

this behaviour. Limitations of the Mayer model 

Despite the above mentioned advantages of the Mayer model, the model in its 

published form has some limitations which require improvement for use in a 

hydrocode. Firstly, the published model is a 1D model, where a single stress 

component is calculated, not the full stress tensor. This 1D version of the model 

has been used to model plate impact, successfully predicting superelastic 

behaviour, however further work was required to fully implement this in the 

hydrocode.  

Secondly, the model has only been tested for the use of modelling single crystal 

FCC metals. The modelling of single crystal BCC metals is of significant interest 

to this work in addition to FCC metals. It is widely acknowledged that the yielding 

of BCC metals is somewhat more complicated than that of FCC metals, therefore 

further investigation and development is required for full use.  

Finally, little detail is provided in literature regarding the determination of the 

material parameters required for the model, of which there are 9. Therefore full 

parametric investigation of the model is required before the range of materials it 

is applicable for can be extended.  

Despite the limitations highlighted above, the Mayer model is the only model 

observed in literature to successfully capture superelastic behaviour and 

therefore the model is chosen as a basis for the development of this work. Full 

mathematical details of the Mayer model are described in chapter 6.  
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3 Continuum Mechanics framework for modelling  

The foundations of continuum mechanics are outlined in this chapter. The chapter 

introduces and defines the key concepts of continuum mechanical modelling, 

before defining the framework required for modelling slip deformation, which is 

used in the development of the new material model.  

A continuum approach considers the material being modelled to be continuously 

distributed in space. A continuum is considered to be a continuous medium in 

which the material has properties averaged over representative volume at each 

point (Mase, 1970). In order for this to hold true the size of the representative 

volume must be large enough for the discrete nature of the material structure 

(e.g. individual atoms) not be apparent. Eliminating the need to model material 

discrete structure significantly reduces the complexity of modelling. This section 

will introduce the required relationships and concepts of continuum mechanics 

used in material modelling.  

First, the basics of deformation kinematics are introduced.  In this it is important 

to define a reference configuration. A deforming material is regarded to be in a 

current configuration. However in order to measure deformations a reference 

configuration relative to which deformation is measured has to be defined. It can 

be the initial configuration of the material, prior to any motion or deformation, or 

it can be an imaginary configuration which the material does not achieve during 

the motion.  

Motion is described by the mapping of a point in the reference configuration to a 

corresponding point in the current configuration. This can be done by 

consideration of a point X in the reference configuration with position vector X. 

After deformation the point will be at position vector x in the current configuration, 

and for convenience shall be called point x. The mapping from X to x is achieved 

through the motion 

  , tx X   (3.1) 
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where   is the motion. It is a time dependent vector valued vector function 

(Holzapfel, 2000). The inverse motion can be calculated, mapping point x in the 

current configuration back to point X in reference configuration.  

  1 , t X x   (3.2) 

 

 

Figure 3-1: Diagram showing the mapping of a point in the reference 

configuration to a point in the current configuration via the motion. 

3.1 Deformation measures 

The principal deformation measures used in this work are introduced here.  

The deformation gradient is a measure of deformation between the reference and 

current configurations and is arrived at by partial differentiation of equation (3.1) 

with respect to X.  

 d d





x
x X

X
  (3.3) 

Where  

 
 

 Grad


  
 

Xx
F x X

X X
  (3.4) 
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is the deformation gradient. The uppercase Grad  in equation (3.4) indicates that 

the deformation gradient is taken with respect to the reference coordinates X. If 

the deformation is being mapped back from the current to the reference 

configuration, then the deformation gradient is taken with respect to the current 

coordinates and is shown in equation (3.5). 

 
 

 
1

1 grad
 




 


X
F X x

x
  (3.5) 

The lowercase grad  in the grad term in equation (3.5) indicates that the gradient 

is taken with respect to the current configuration.  

The change of volume between the reference and current configurations is given 

by the determinant of the deformation gradient tensor and is commonly referred 

to as the Jacobian 

  det ,dv dV J t dV F X   (3.6) 

As mass is conserved during deformations, the Jacobian can be shown to relate 

the densities in the reference and current configurations.  

 1

0

J




   (3.7) 

3.2 Polar Decomposition 

One of the fundamental relations in continuum mechanics is polar (multiplicative) 

decomposition of the deformation gradient. This means that the deformation 

gradient can be split into an elongation term and a rotational term as shown in 

equation (3.8). 

  F RU vR   (3.8) 

Where U  and v  are unique positive definite, symmetric tensors. U  is referred to 

as the right (symmetric, material) stretch tensor and v  the left (symmetric, spatial) 

stretch tensor. R   is an orthonormal tensor of rotation. This decomposition shows 

that when deformation occurs, both elongation and rotation occur.  
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3.3 Nansons Formula 

To map a unit vector normal to an infinitesimal surface element in the reference 

configuration to a unit vector normal to an infinitesimal surface element in the 

current configuration the deformation gradient cannot be used (Holzapfel, 2000). 

Instead a useful relationship called the Nanson’s formula is used. The formula is 

defined as: 

 Td J ds F S   (3.9) 

Where 

 d dss n   (3.10) 

 d dSS N   (3.11) 

and ds   and dS   are the surface elements in the reference and current 

configurations, and n  and N  are the unit vectors normal to the surfaces.  

Nansons formula has use during the derivation of different types of stress tensors.  

3.4 Cauchy-Green deformation tensors 

As well as the deformation gradient, other deformation measures and strain 

tensors are used. A good starting point is the product of the deformation gradient 

with the transpose of itself T
F F  . 

From here two deformation tensors can be derived, the right Cauchy-Green 

tensor 

 T T C F F C   (3.12) 

and the left Cauchy-Green tensor 

 Tb FF   (3.13) 

The right Cauchy-Green tensor, C , represents the change in squared length of 

the element dX and is defined with respect to the reference configuration. The 

left Cauchy-Green tensor, b , represents the change in squared length of the 

element dx and is defined with respect to the current configuration. 
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The deformation tensors 3.12 and 3.13 can be linked to the stretch tensors U   

and v  arising during the polar decomposition of the deformation gradient. The 

stretch tensors are related to the Cauchy-Green deformation tensors via 

equations (3.14) and (3.15). 

 2T C F F U   (3.14) 

 2T b FF v   (3.15) 

The Cauchy-Green deformation tensors are useful measures, however in the un-

deformed configuration, equations (3.12) and (3.13) reduce to identity. More 

usefully, they can be used to derive strain tensors which reduce to zero in the un-

deformed configuration, making the constitutive equations less complicated.  

3.5 Green-Lagrange strain tensor 

The strain measured in terms of material variables can be expressed by the 

Green-Lagrange strain tensor 

  
1

2

T E F F 1   (3.16) 

The Green-Lagrange strain can be related to the Cauchy-Green deformation 

tensors and the elongation tensor by substituting equation (3.14) into equation 

(3.16) giving 

    21 1

2 2
   E C 1 U 1   (3.17) 

3.6 Euler-Almansi strain tensor 

When the squared lengths are measured in terms of spatial variables, the 

resulting strain tensor is the Euler-Almansi tensor.  

  11

2

T  1 F F   (3.18) 

The Euler-Almansi tensor can be related to the left Cauchy-Green tensor and the 

stretch tensor by substituting equations (3.12) and (3.13) into equation (3.18). 
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     2
1 11 1

2 2

    1 b 1 v   (3.19) 

The Green-Lagrange and Euler-Almansi strain tensors are linked by relation 

(3.20). 

    11 1

2 2

T T T T     F F 1 F 1 F F F F F   (3.20) 

3.7 Deformation rate measures 

Taking the first derivative of the position vector x  in the spatial description results 

in the spatial velocity. By taking the derivative of this with respect to the spatial 

coordinates yields the spatial velocity gradient: 

 
 

 
,

( , ) ,
t

t grad t


 


v x
l x v x

x
  (3.21) 

By putting the spatial velocity in terms of the motion, and then applying the chain 

rule, the spatial velocity gradient can be shown in terms of the deformation 

gradient 

 1l FF   (3.22) 

Importantly, the spatial velocity gradient can be additively decomposed as in 

equation (3.23). 

      , , ,t t t l x d x w x   (3.23) 

Where  

    
1

,
2

Tt  d x l l   (3.24) 

    
1

,
2

Tt  w x l l   (3.25) 

The tensors d  and w  are the symmetric and skew-symmetric parts of the spatial 

velocity gradient respectively. The symmetric part, d , is referred to as the rate of 

deformation tensor and the skew-symmetric part, w , is the rate of rotation tensor.  
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Similarly the material velocity gradient can be obtained by taking the material time 

derivative of the deformation gradient 

 
     

 
, , ,

,
t t t

Grad t
t t

      
      
       

X X V X
F V X

X X X

 
  (3.26) 

3.8 Intermediate and isoclinic configurations 

As a load is applied to the materials of interest is this work, deformation occurs. 

Three main types of deformation occur in metals; elastic deformation, plastic 

deformation and damage. Elastic deformation forms the Hooke’s law region of a 

stress-strain plot, which for a metal is a straight line region with the strain being 

directly proportional to the stress. Plastic deformation occurs when the applied 

stress reached the yield point of the material. For a metal this is observed to be 

the point on a stress-strain plot where the straight line region ends and a curve 

begins to develop. Upon unloading, the plastic deformation will remain in the 

material. An important property of plastic deformation is that it does not affect the 

elastic properties of the material.  

In a real, physical experiment, both of these modes of deformation will be 

observed simultaneously. When modelling the deformations however, it is 

convenient to consider each type separately. In reality this is not achievable, i.e. 

a material cannot undergo plastic deformation without some degree of elastic 

deformation. For the purpose of modelling this the concept of multiplicatively 

decomposing the deformation gradient as well as intermediate configurations 

need to be introduced.  

Equation (3.27) shows how the deformation gradient is decomposed as 

presented in (Djordjevic, 2011).  

 
p

e p

p

 
  
  

xx x
F F F

X x X
  (3.27) 

Where eF  is the elastic part of the deformation gradient, and 
pF  is the inelastic, 

or plastic, part of the deformation gradient.  
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Making use of the multiplicatively decomposed deformation gradient, an 

intermediate configuration becomes apparent when considering a deformation.  

It is usual to map between the initial and current configurations, however to reach 

the current configuration all types of deformation need to be included. 

Considering the decomposition in equation (3.27), a two stage deformation 

process can be written as shown in Figure 3-2. 

 

 

 

 

 

Figure 3-2 shows three configurations: the initial configuration, C0, the current 

configuration, C, and an intermediate configuration, Cp. The initial and current 

configurations are as described previously in section 3-1, and the intermediate 

configuration is caused due to the consideration of the deformation processes 

separately. The intermediate configuration shown in Figure 3-2 can be 

considered as an elastically released configuration; only plastic deformation is 

present.  

Additionally, the deformation gradient can be decomposed into stretch and 

rotational parts, as shown previously in section 3.2. The same decomposition can 

be applied to the multiplicatively decomposed deformation gradient resulting in a 

rigid body rotation associated with each stage of the deformation. Due to this, the 

elastically released intermediate configuration is not uniquely defined. This is 

overcome by the introduction of the isoclinic configuration. The isoclinic 

configuration is similar to the intermediate configuration, in that it is elastically 

relaxed, however, it is uniquely defined by the removal of the rigid body rotation 

caused during plastic deformation, pR .As 1 T

p P

 R R , removal of the plastically 

induced rotation to map from the intermediate to isoclinic configuration is done 

Reference 

configuration 

Intermediate 

configuration 

C 
C0 

Cp 

 

𝑭𝑝 

 

𝑭𝑒 

Current 

configuration 

Figure 3-2: Link between the decomposed deformation gradient and the 

reference, intermediate and current configurations. 
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via the transpose ( T

PR ) of 
pR . Physically, the isoclinic configuration is not 

achievable, but it is a very useful concept for modelling as it is uniquely defined.    

Figure 3-3 shows the relationship between the initial configuration, the elastically 

released intermediate configuration, the current configuration and the isoclinic 

configuration, 𝐶̃𝑝.   

 

Figure 3-3: Diagram showing the links between the reference, intermediate, 

isoclinic and current configurations. 

3.9 Stress  

Stress in a continuum can be described by considering the forces on an 

infinitesimal surface element on an imaginary plane cutting through the 

continuum. The force on the infinitesimal surface area, 𝑑𝑠, is described by a 

traction vector, 𝒕. The traction vector represents the force per unit area with the 

same direction as the force is acting. Stress tensor arise from this due to Cauchy’s 

stress theorem which states: “there exist unique second-order tensor fields 𝝈 and 

𝑷 so that  

    , , ,t tt x n x n   (3.28) 

    , , ,t tT X N P X N   (3.29) 
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Where 𝝈 denotes a symmetric spatial tensor field called the Cauchy stress tensor, 

while 𝑷 characterizes a tensor field called the first Piola-Kirchhoff stress tensor” 

(Holzapfel, 2000). It should be noted that the traction vector 𝒕 is representative of 

the surface tractions in the current configuration, whereas 𝑻 is a function of the 

referential configuration.   

The Cauchy stress and the first Piola-Kirchhoff stress are related by equation 

(3.30). 

 1 TJ  PF   (3.30) 

There are many other stress tensors that have been defined in literature, however 

two are of particular interest in this work; these are the so called second Piola-

Kirchhoff stress and the Mandel stress. 

The second Piola-Kirchhoff stress is defined by the pull-back operation on the 

contravarient spatial tensor field, known as the Kirchhoff stress. The Kirchhoff 

stress is given as  

 J    (3.31) 

Where 𝐽 is the volume ratio and 𝜎 is the Cauchy stress tensor.  

The second Piola-Kirchhoff stress tensor is now defined as 

  1 # 1

*

T   S F F     (3.32) 

The subscript ∗ and superscript # in equation (3.32) represent that the second 

Piola-Kirchhoff stress is achieved by a pull-back operation of the contravariant 

spatial tensor field.  

From the definition of the Kirchhoff stress, equation (3.31), and the relation 

between the first Piola-Kirchhoff stress and the Cauchy stress, equation (3.30), 

the second Piola-Kirchhoff stress can be expressed in terms of the Cauchy stress 

and the first Piola-Kirchhoff stress tensors: 

 
1 1TJ    S F F F P   (3.33) 
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The Mandel stress is a stress tensor which is defined with respect to an 

intermediate configuration. The Mandel stress tensor can be defined separately 

in both the intermediate and isoclinic configurations. It is shown in (Djordjevic, 

2011) that the Mandel stress is given in the intermediate configuration in terms of 

Kirchhoff stress and the second Piola-Kirchhoff stress tensor as: 

 1 T

e e e

  F F C S   (3.34) 

And in the isoclinic configuration as: 

 1 T

e e e

  F F C S   (3.35) 

A relationship exists between the Mandel stress in the intermediate configuration 

and the Mandel stress in the isoclinic configuration, which is determined by the 

inelastically induced rotation 𝑹𝑝 as: 

 
T

p p R R    (3.36) 

In general, the Mandel stress is asymmetric. However, for a model modelling 

small elastic but large plastic deformation, a behaviour which is observable with 

most metals, the Mandel stress becomes symmetric.  

3.10 Kinematics of slip deformation  

Following the continuum mechanical foundations presented above, the 

kinematics of slip deformation are now discussed. This forms the framework for 

the new material model.  

In the framework of thermodynamics and configurational mechanics, kinematics 

of deformation at the continuum level is defined in terms of multiplicative 

decomposition of deformation gradient given as: 

 e pF F F  (3.37) 

where: eF  represents thermo-elastic part of the deformation, and pF  represents 

the part of the deformation due to plastic deformation (dislocation mechanics).  

The decomposition (3.37) introduces an intermediate, elastically unloaded 
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configuration, which is stress free at a reference temperature and can be 

physically obtained by elastic unloading of material.  For the sake of compatibility 

with the orthotropic material properties, the model developed in this work is 

integrated in isoclinic intermediate configuration, which can be obtained from the 

elastically unloaded configuration by rotating back for the plastically induced rigid 

body rotation, as described in (Vignjevic, et al., 2012).  The material directions in 

the isoclinic configuration remain unchanged and corresponding multiplicative 

decomposition is defined as:  

 
T

e p e p p p e p  F F F F R R F F F   (3.38) 

Where polar decomposition of plastic part of deformation gradient introduced the 

orthogonal tensor of rotation 
pR , which is used to obtain the elastic and plastic 

part of deformation gradient in isoclinic configuration: e e pF F R , 

T T
p p p p p p p  F R F R R U U .  Green Lagrange strain pushed forward to the isoclinic 

configuration is additively decomposed as:  

    1 11 1

2 2

T T T T

p p e e p p p p e p

    
       

 
E F EF F F I F F F I F E E   (3.39) 

Equally, velocity gradient pulled back to the isoclinic configuration leads to 

additive decomposition defined as:   

 
1 1 1

e e e e p p e p

      l F lF F F F F l l    (3.40) 

Where el  and pl  are respectively elastic and plastic part of the velocity gradient 

in isoclinic configuration, which can be further divided into symmetric and 

antisymmetric/spin tensor.  Evolution of elastic deformation is determined by 

elastic part of velocity gradient, whilst plastic part of velocity gradient determines 

the evolution of plastic deformation.  The latter is calculated using the generalised 

Orowan’s equation, which is described in the following subsection.   

In the framework of thermodynamics, the velocity gradient in isoclinic 

configuration is work conjugate variable to Mandel stress Σ  (Mandel, 1972) 
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(Mandel, 1974) (Vignjevic, et al., 2012), which is defined as a pull back of 

Kirchhoff stress τ , as:  

 T T
e e

Σ F τF   (3.41) 

Mandel stress tensor can be decomposed into the spherical and deviatoric part, 

which is in the index and tensor notation respectively given as: 

 ij ij ijP S      P  Σ ψ S   (3.42) 

Where P  is pressure that is work conjugate to volumetric part of strain, 
ij  is 

tensor determined by material elastic orthotropy (Vignjevic, et al., 2008) with the 

following properties 0ij   for i j   and 0ij  for i j  ; and ijS  components 

of deviatoric stress.  Note that the tenor ij  becomes ij  for the case of isotropic 

material formulation.   

When modelling the shock response of materials, spherical part of the stress 

tensor is updated by the equation of state, whilst the deviatoric part is determined 

by the strength part of the constitutive model, where the assumption was made 

that only the elastic component of deviatoric part of the strain contributes to the 

deviatoric stress.  Consequently, the generalised constitutive law can be written 

in the rate form as:  

 e

ij ijkl klS C d    e
S d   (3.43) 

where Mandel stress is assumed to be symmetric (Vladimirov, et al., 2009) 

(Reese & Vladimirov, 2008) , so that deviatoric part of elastic component of the 

rate of deformation, e
d  can be obtained from a symmetric part of the additively 

decomposed velocity gradient:  

  
1

:
3

e p
sym

   d l l d δ   (3.44) 
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3.11 Summary  

The basic measures of deformation in a continuum, including the deformation 

gradient, strain and stress have been defined, along with the important rate 

measures. The important decompositions of the deformation gradient and the 

deformation tensors have been defined, before finally the kinematic framework 

for modelling slip deformation has been developed.  
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4 Physics of shock waves and relevant continuum and 

thermodynamic considerations required for modelling   

The main focus of this work is the modelling of deformation of metals under shock 

loading. This chapter outlines the key definitions and physics of shock waves in 

solids. The chapter starts by defining shock waves and outlining the conditions 

under which they are generated. This is followed by the mathematical 

considerations, specifically those relevant in a continuum mechanical framework.  

4.1 Shock waves  

Shock waves are defined as discontinuities in stress, velocity, density and internal 

energy (or temperature) with a very sharp leading edge travelling through a 

medium. Shocks form when high amplitude stress waves overtake stress waves 

of lower amplitude so the result is a pile up of stress waves travelling as a single, 

high amplitude discontinuity.  

In one-dimension the stress waves are described by the wave equation  

 
2 2

2

2 2

u u
c

x t

 


 
  (4.1) 

Where the wave speed, c  is given by Sc   and d
ds 
 , i.e. the slope of the 

stress strain curve.  

It can be seen from the wave equation that the speed of the shock is dependent 

on the slope of the stress strain curve for the material. A typical stress strain curve 

shape is shown in Figure 4-1 for a typical non-ferrous metal in the state of uniaxial 

stress. It is apparent that the slope of the stress strain curve decreases with an 

increasing stress amplitude. Consequently, that higher amplitude stress waves 

travel at a slower speed in this regime, therefore higher amplitude stress waves 

will not overtake lower amplitude waves, resulting in no pile up of waves and 

consequently no shock wave. It can therefore be concluded that shock waves 

cannot form in metals in the state of uniaxial stress. It is noteworthy that the elastic 

region in Figure 4-1 has a steeper slope than tangents after the yield point. This 

property ensures that, if material is dynamically loaded beyond yield limit, two 
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stress wave pattern will form with a dispersive plastic wave trailing behind a faster 

elastic wave.  

 

Figure 4-1: Typical stress strain curve of a metal in a state of uniaxial stress  

In the case of uniaxial strain i.e. deformation is confined to one-direction only, the 

material response is somewhat different. A typical stress strain curve for a 

material in the uniaxial strain regime is shown in Figure 4-2. It is apparent that as 

plastic deformation progresses, the slope of the curve increases. As a result of 

this property, applying equation (4.1) it is seen that the speed of stress waves 

increases with increasing amplitude. This results in higher amplitude waves 

catching up lower amplitude waves and propagating as a single, steep wave front, 

i.e. a shock wave. Therefore, the state of uniaxial strain is a condition for shock 

wave formation.   

It is observed in Figure 4-2 that under the conditions of uniaxial strain, there are 

four different regimes that can be observed. Firstly, when the stress is below the 

yield point, a single elastic wave is formed, and propagates through the material. 

The speed of this elastic wave is governed by the slope of the elastic region of 

the graph following equation (4.1).  

The second regime can is observed at point A in Figure 4-2. At point A, the slope 

of the curve above the yield point decreases. In this case, two waves are formed 

and propagate through the material; an elastic wave and a plastic shock. The 

speed of the elastic wave will be determined from the slope of the elastic region 

of the graph, and the speed of the plastic shock will be determined from the slope 

of the plastic region of the graph. Therefore, as the gradient of the elastic region 
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of the graph is greater than at point A, the elastic wave will have a greater speed 

than the plastic wave, and so will move away from the plastic shock wave. The 

magnitude of the elastic wave will be determined by the magnitude of the yield 

stress. When this two wave structure is observed, the shock is common referred 

to as a weak shock.  

The third regime is observed at point B on Figure 4-2. Here, both an elastic and 

a plastic shock wave will form and propagate, however unlike the case at point 

A, the speeds of both waves will be the same, so no separation of the waves will 

be observed. As with the case at point A, the magnitude of the elastic wave will 

be determined by the elastic limit.  

The final regime is typical of that observed at point C on Figure 4-2. Here, the 

slope of the plastic region of the graph exceeds that of the elastic part, therefore 

the speed of the plastic wave will exceed the elastic wave. In this case a single 

plastic shock front will form and propagate, with no elastic wave being observed. 

The lack of the elastic precursor wave typifies the regime and is commonly 

referred to as strong shock.  

 

   

Figure 4-2: Typical stress strain curve for a metal in a state of uniaxial strain. 
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4.2 Rankine Hugoniot conditions  

As a shock propagated through a material, mass, momentum and energy are 

conserved across the shock discontinuity. This conservation is described by a set 

of conditions, known as the Rankine – Hugoniot conditions, which relate the state 

variables either side of the shock discontinuity.  

Starting from the conservation of mass, consider a continuous slab of material, 

with a constant cross section, impacted by a piston at some velocity, as is shown 

in Figure 4-3 Assuming the piston moves at a constant velocity, as this impacts 

the material the material at the impacted face begins moving with the same 

velocity. This onset of material motion results in an increase in material density 

ahead of the impacted surface, which in turn results in a shock travelling forward 

at a velocity, sU .  

 

Figure 4-3: Schematic diagram of shock propagation in a slab of material (Park, 

2010) 

 

After a short time period, t , the shock will have travelled a distance sU t , and 

the material behind the shock will have been compressed by an amount 
pU t . 

Therefore, the material behind the shock will now occupy a length of  s pU U t 

. As mass is conserved, the mass contained in the length of the material swept 

by the shock prior to compression, will be the same as the mass of the 

compressed length behind the shock. Therefore; 

  0 s s pAU t A U U t       (4.2) 
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Where 0  is the initial density of the material, A  is the cross-sectional area, sU  

is the shock velocity, 
pU  is the particle velocity and   is the material density 

behind the shock.  

Making use of the fact that the specific volume is given by 
1

v 


 , equation (4.2) 

can be expressed as:  

 
0

s p

s

U Uv

v U


   (4.3) 

Equation (4.3) shows that the compression, i.e. the change in volume, is given 

by the shock velocity and particle velocity.  

Now, consideration of the conservation of momentum can be used to develop an 

expression for the pressure change across the shock. The force driving the 

shock, i.e. the pressure, is by definition equal to the rate of change of momentum. 

By application of the well known relation, force = mass x acceleration, it can be 

written:  

 
 d md

m
dt dt

 
vv

p   (4.4) 

In the time period t  the mass accelerated is equal to that of the material through 

which the shock has propagated;  

 0 sm AU t    (4.5) 

With the acceleration being pU

t
  

Now the pressure, the force acting per unit area, can be obtained by division of 

the momentum gain by the cross sectional area, A , resulting in the following 

relation:  

 
0

1 0 0

s p

s p

AU tU
P P U U

A t





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
  (4.6) 
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Similar to the volume change given by equation (4.3), the pressure is given by 

equation (4.6) in terms of the shock and particle velocities.  

A similar approach is taken to develop the expression for the change in energy 

by equating the work done by the shock wave with the sum of the increase of 

internal energy and kinetic energy.  The work done by the shock is equal to the 

force driving the shock (i.e. the pressure multiplied by the cross sectional area, 

PA ) multiplied by the distance the mass of material is moved, 
pU t . The increase 

in internal energy is given by the change in specific internal energy, 
1 0E E E  

, multiplied by the mass of material swept by the shock, 0 sm U A t  , and finally 

the gain in kinetic energy is given as 21
2 pmU , which result in: 

   2

1 0 0 0

1

2
p s s pP P AU t U A t E U A tU          (4.7) 

Which reduces to:  

    2

1 0 0 0 1 0

1

2
p s P SP P U U U U E E       (4.8) 

The three equation, (4.5), (4.6) and (4.8), are known as the Hugoniot conditions. 

These three relations contain five unknowns: 1 , 1P , sU , 
pU  and 1E . Using 

equations (4.6) and (4.8),  sU  and 
pU can be eliminated from the energy 

conservation expression, resulting in the following expression.  

   1 0 0 1 1 0

1

2
E E V V P P      (4.9) 

Equation (4.9) is the Hugoniot equation, which combined with equations (4.5), 

(4.6) and (4.8) allows for all variables to be calculated provided one is known or 

measured. The Hugoniot is a material property which represents the locus of all 

attainable shock states; that is the material state does not pass along the 

Hugoniot curve during the shock process, rather the curve can be used to 

determine the endpoint value of the shock.  
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Figure 4-4: Typical Hugoniot curve in the P-V plane with the Rayleigh line 

showing the loading path  

Figure 4-4 shows a typical Hugoniot curve in the P-V plane. As the Hugoniot 

curve provides only the endpoint value of the shock, the curve does not represent 

the loading path. This is instead provided by the Rayleigh line, shown in Figure 

4-4 as a straight line, over which energy is not constant. An important feature of 

the Rayleigh line is the fact that its slope is a function of shock speed; faster 

shocks are described by steeper lines. A key feature of the Hugoniot graph is that 

the area enclosed by the Hugoniot and the Rayleigh line is equal to the energy 

dissipated by the shock.  

The Hugoniot curve shown in Figure 4-4 is used to determine the jump in a state 

variable across the shock given knowledge if the other i.e. if the pressure jump is 

know, the change in volume can be read off of the graph. This is seen by the 

dashed lines on Figure 4-4, where the jump in pressure from the value P0 to P1  

correspond to the change in volume from V0 to V1.  

 

4.3 Hugoniot Elastic Limit 

Additional to an increase in pressure during the shock process, the compression 

of the material also induces shear stresses. When the amplitude of the 

compression waves is sufficiently low, the shear stresses are supported by the 
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material, and no structural change in the material is observed. In this case the 

material is compressed elastically and will return to its original state upon release. 

However, as the amplitude of the compression increases, the magnitude of the 

shear stresses also increase, until the point where the material can no longer 

support the shear stress and plastic deformation occurs. This point is known as 

the Hugoniot Elastic Limit (HEL).  

 

 

Figure 4-5: Hugoniot curve in the P-Up plane showing the differing nature of the 

Rayleigh lines depending on the loading (Park, 2010). 

 

Due to the change in material strength associated with the onset of plastic 

deformation, different behaviours are observed above a certain pressure, see 

Figure 4-5. It is seen in Figure 4-5 that the nature of the Rayleigh lines differ for 

pressures above and below the point P1. For pressures below P1 a single 

Rayleigh line is present, indicating a single wave. When the shock pressure 

exceeds the value of P1, typified by the point II on Figure 4-5, it is seen that two 

distinct Rayleigh lines are now observed. First a steeper line defines the shock 

until the point of P1, then a second, less steep line to the point II. Since the slope 
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of the Rayleigh line is a function of shock speed, this indicates that a two wave 

structure will propagate through the material; a faster, lower pressure precursor 

wave propagates, followed by a slower higher pressure wave. This two wave 

structure is observed until the shock pressure reaches that of point B, at which 

point the shock speed is equal to that of the precursor, resulting in the two shocks 

becoming indistinguishable. For shocks of pressures above point B, only a single 

shock is observed. This is typically referred to as an overdriven shock.  

 

4.4 Shockwaves in Continuum Mechanics  

The current mathematical capabilities of shock wave modelling are explored in 

this section. The mathematical capabilities explored are those from a continuum 

mechanics point of view. In a continuum a shock wave is treated as a 

discontinuity of field variables. Despite this discontinuity, balance laws must still 

be observed.   

4.4.1 Basic jump conditions 

The balance laws in a normal, smooth continuum are given as: 

 0
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Where equations (4.10), (4.11), (4.12) and (4.13) represent, respectively, the 

balance of mass, the balance of linear momentum, the balance of angular 

momentum and the balance of energy.  

The above laws can conveniently be written in the general form 

 ( )

t t t

n

R R R

d
dv sdv f da

dt
 



      (4.14) 

 

With the quantities 𝜋, 𝑠 and 𝑓(𝑛) are given in the table for the corresponding 

balance laws 

Table 4-1: Variables for inclusion in the general form of the balance law to give the 

corresponding balance law 

Balance Law 𝜋 𝑠 𝑓(𝑛) 

Mass 1 0 0 

Linear Momentum 𝒗 𝒃 𝒕(𝑛) 

Angular 

Momentum 

𝒙 × 𝒗 𝒙 × 𝒃 𝒙 × 𝒕(𝒏) 

Energy 
𝜀 +

1

2
𝒗 ∙ 𝒗 

𝒃 ∙ 𝒗 + 𝑟 𝒕(𝑛) ∙ 𝒗 + ℎ(𝑛) 

 

If the singular surface, shown in Figure 4-6 as Λ in the body 𝑅𝑡, is now considered 

it is observed that the continuum becomes discontinuous with the body being split 

into two separate regions 𝑅𝑡
+ and 𝑅𝑡

−, where 𝑅𝑡
+ is the part of the body ahead of 

the advancing singular surface and 𝑅𝑡
− is the region of the body trailing it. 
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The balance laws are extended to discontinuity relations. The derivation of the 

discontinuity relations starts from Reynolds transport theorem in the following 

form (Chadwick, 1999): 
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Or in vector form as: 
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Application of the scalar theorem over 𝑁+ and 𝑁− , where 
tN R    

individually gives: 
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Figure 4-6: Diagram of body 𝓑 in which the volume Rt is enclosed by surface dRt, 

intersected by the singular surface 𝚺, where 𝚲 is the element of    contained in the 

boundary. The superscript + and - indicate values in the region ahead of and trailing the 

singular surface respectively. 
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Adding equations (4.17) and (4.18) results in the generalisation of equation (4.15)

, as: 
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The brackets around the field   , i.e.   , represent  the jump in the variable 

across the discontinuity, with the jump given as: 

         (4.20) 

The vector transport theorem, equation (4.16), is similarly modified to produce: 
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Application of the modified scalar and vector transport theorems to the general 

form of the balance equations results: 
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Where the values of 𝜋, 𝑠 and 𝑓(𝑛) are taken as the quantities in Table 4-1 for the 

corresponding balance law.  The volume of 𝑅𝑡 is made to approach zero in such 

a way that, in the limit, 𝜕𝑅𝑡 collapses onto the two sides of Λ.  

When 𝜌, 𝜋 and 𝑠 are assumed to retain away from Σ the smoothness properties 

attributed to them previously the result of this procedure is:   

   ( ) 0n nf V da 


      v n   (4.23) 

This holds for all segments of the singular surface that are formed by intersection 

of the surface with regular regions of the body. Therefore, providing the integrand 

is continuous on Σ, the general jump condition is given: 

 ( ) 0nV f       (4.24) 
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Where 𝑉 is the local speed of propagation of the surface relative to the material, 

and is given mathematically as: 

 
nV V  v n   (4.25) 

The general jump condition, equation (4.24), results in the basic jump conditions 

when the entries in Table 4-1 are substituted in, in place of 𝜋 and 𝑓(𝑛). 

   0V    (4.26) 

 
( )nV   v t 0   (4.27) 

  1
( ) ( )2

0n nV h        v v t v   (4.28) 

 

4.5 Thermodynamic consideration of shocks 

The thermodynamic aspect of modelling shocks in a continuum mechanical 

framework dates back to the early 20th century. The foundations for the modern 

analysis of discontinuous surfaces were laid in by Hadamard (Hadamard, 1903) 

in his work ‘Lecons sur la propagation des ondes et les equations de 

l’hydrodynamique‘ in 1903. His studies focussed on the basic jump relations for 

field quantities and their derivatives.  

Further work was done in 1948 by Courant and Friedrich (Courant & Friedrichs, 

1948). This work is of great value to considering shocks and is the beginning of 

the more modern approach to discontinuity analysis. The work considers shocks 

in the context of gas dynamics, not the solid mechanics of interest to this work, 

but it provides a useful analysis of moving strong discontinuity surfaces. The 

conclusion of the work by Courant and Friedrich showed that the entropy change 

across shocks can be disregarded in all but the strongest shocks in gases. 

Further work by Wallace (Wallace, 1980) shown that entropy effects are of third 

order in strain in gases, but second order in strain for weak shock in solids.  
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Following on from the work of Courants and Friedrich (Courant & Friedrichs, 

1948) the assumption that a shock wave can be approximated using a smooth 

wave has found much use, first for quasistatic deformation (Drugan, 1986) and 

then of dynamic deformation of elastic plastic solids (Drugan & Shen, 1987) 

(Drugan & Shen, 1990). This assumption has been proven to be valid by Brannon 

et al. (Brannon & Drugan, 1995) in 1995. Using this assumption, the works of 

Drugan and Shen in the 1980’s have provided specific conditions which are 

required for jump to occur. The key stage of these works was the realisation that 

integration of the maximum plastic work inequality at a material point during the 

passage of a discontinuous surface provides an explicit restriction on jumps in 

the components of stress and strain (Drugan & Shen, 1987).   

The conclusion of Courants and Friedrich’s 1948 (Courant & Friedrichs, 1948) 

work stating that the entropy changes across shocks can be disregarded in all 

but the strongest of shocks, which has led to the assumption that entropy 

changes across shocks must be small in order for the approximation by a smooth 

wave to hold is challenged by Brannon et al. (Brannon & Drugan, 1995). The work 

by Brannon et al. aimed to extend the work of Courant and Friedrich from entropy 

effects in weak one-dimensional shocks in mechanically conservative systems to 

general three-dimensional large deformations in a material of arbitrary 

construction (Brannon & Drugan, 1995). This extension concludes that the 

approximation of a shock by a smooth wave is legitimate, and also that entropy 

change across the wave does not need to be small in order for the approximation 

to hold. The entropy change can be significant at the first order, and the change 

in entropy predicted using the smooth wave approximation will agree until the 

third order (Brannon & Drugan, 1995).  

 

4.6 Hugoniot 

When modelling shocks, one of the important functions is the so called Hugoniot. 

The Hugoniot function is a function which essentially relates the state of the 

continuum on one side of the shock to the state of the material on the other side 

of the shock.  
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Specifically, the Hugoniot provides the set of all states on one side of the shock 

front associated with a given state, referred to here as state 1, on the other side, 

that is compatible with the jump in internal energy (Brannon & Drugan, 1995). It 

is convenient here to define the Hugoniot mathematically as: 
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The function 𝐻 is convenient in this form as it is defined entirely in terms of 

thermodynamical variables (Brannon & Drugan, 1995). This form of the Hugoniot 

can be written by considering the first law of thermodynamics in jump form.    This 

can be given as (Brannon & Drugan, 1995): 
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Which by substitution of equations (4.32) and (4.31) into (4.30), results in 
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It can be seen that by rearrangement of equation (4.33) to set it to equal zero, 

and expansion of the jump terms following the definition in equation (4.20), then 

the Hugoniot function in terms of thermodynamical variables is fully derived.  

A state is considered to be on the Hugoniot if the function results in 𝐻 = 0. 

Solutions that satisfy this, and are therefore on the Hugoniot, provide all of the 

equilibrium states achievable by the material after shock wave passage.  
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4.7 Summary  

The basic definition of shock waves has been describes, along with the conditions 

which are required for shocks to form in solid (i.e. uniaxial strain). The continuum 

jump conditions have been outlined, these conditions ensure the balance 

principles of continuum mechanics are maintained when considering a shock to 

be a travelling discontinuity. Finally the important Hugoniot function has been 

discussed.  
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5 Dislocation dynamics  

This section outlines the theoretical aspects of this work, starting from the cubic 

structures of interest, the key features of these structures, defects contained 

within crystals, focussing specifically on the role of dislocations. The key 

properties of dislocations are then discussed, along with forces acting upon them. 

The microscale dislocation processed presented in this chapter form the 

underlying physical processes of the material model presented in detail in chapter 

6.  

5.1 Crystal structures of metals 

When observed on an atomistic scale, the arrangement of atoms in a metallic 

structure is found to be very ordered. This structure is referred to as the crystal 

structure of the metal and has been shown to have a limited number of possible 

arrangements. In total there are 14 possible structures, however only three of 

these are commonly observed; the so-called body centred cubic structure (bcc), 

the face centred cubic structure (fcc) and the hexagonal close packed structure 

(hcp). This work focusses on modelling of metals with fcc or bcc structures, 

therefore only details of these structures are given here.  

5.1.1 The face centred cubic structure 

The face-centred cubic structure, from herein referred to simply as fcc, consists 

of cubic lattice, with a lattice point on each of the corners, and one additional atom 

located at the centre of each of the six faces of the resulting cube.  
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Figure 5-1: Schematic diagram of the face centred cubic structure 

The fcc structure is shown in Figure 5-1. Common metals with a fcc structure 

include aluminium, copper, nickel, lead, gold and silver.  

5.1.2 The body centred cubic structure 

The body centred cubic structure, herein referred to simply as bcc, is similar to 

fcc in that the cubic lattice contains lattice points on the corners of the cube, 

however instead of having an additional six sites at the centre of each cubic face, 

bcc crystals contain only one additional lattice site located in the centre of the 

body of the cube. Figure 5-2 shows the bcc structure.  

 

Figure 5-2: Schematic diagram of the body centred cubic structure 

Metals with a bcc structure include iron, tantalum, tungsten and chromium.  
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5.1.3 Miller Indices  

When discussing metals on the microscale, it is convenient to use the 

conventional notation of Miller indices. Miller indices are used to describe planes 

contained in the crystal, as well as directions through the crystal. For cubic 

structures the indices are determined simply by attaching axes aligned with the 

edges of the cube and then applying the following three stage approach:  

i) Determine the intercepts the crystal plane makes with the attached 

crystal axes expressing these as the number of axial lengths.  

ii) Take the reciprocal of the intercepts 

iii) Scale to the smallest integers for which the same ratios are maintained.  

When defining a direction through the crystal, the Miller indices are determined 

by constructing an arrow pointing in the required direction, ensuring it passes 

through the origin and then determining the axial intercepts. Steps two and three 

from above can then be applied, leading to the required values.  

When expressing Miller indices there are a few common conventions whih are 

adopted in this report. Firstly, when expressing negative Miller indices, the value 

is written with an over bar instead of a minus sign, e.g. (−101) would be written 

as (1̅01). Next, the shape of the brackets enclosing the indices indicate whether 

the indices are defining a plane or a direction. Planar indices are expressed in 

round brackets, e.g. (111), and directional indices are expressed in square 

brackets, e.g. [110]. Sets of equivalent planes are denoted by curly brackets, e.g. 

{111} and sets of equivalent directions by pointed brackets, e.g. 〈110〉.  

 

5.2 Defects in metals 

So far, the crystal structures outlined show “perfect” crystal; that is, crystals that 

are free from any defects. Theoretical analysis of the shear strength of perfect 

crystal provides a result that is orders of magnitude greater than the equivalent 

experimentally obtained values, indicating that the mechanisms carrying 

deformation are not accounted for in the treatment of perfect crystals. It is well 
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established that defects are nearly always present in a crystal, the presence of 

which can explain the discrepancy in shear strengths.  

There are several types of defects that can be present in crystals; point defects, 

line defects, planar defects and volume defects. The main focus of this work is 

looking at line defects, in the form of dislocations, however, as is seen later, other 

forms of defects can affect dislocations, therefore it is necessary to briefly 

introduce them here.  

5.2.1 Point defects 

Point defects are defects in the crystal that are local to a single point in the crystal. 

These can be in the form of a vacancy, which is a lattice point with a missing 

atom, as is shown by Figure 5-3(a); an interstitial atom, where an atom is located 

in a site outside of regular lattice sites, as is shown by Figure 5-3(b), or an impurity 

atom, where an atom of a different species is found in the lattice. Impurity atoms 

can occupy either a regular lattice point, or an interstitial location.  

 

(a) 

 

(b) 

Figure 5-3: Schematic diagrams showing (a) a lattice vacancy and (b) an interstitial 

5.2.2 Dislocations 

The most important defect considered in this work is the line defect in the form of 

a dislocation. Dislocations have two fundamental forms described as either edge 

or screw dislocations. Edge dislocations are observed as an extra half plane of 

atoms present in part of the crystal, as is shown in Figure 5-4. 
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Figure 5-4: Schematic diagram showing an edge dislocation, The edge 

dislocation is formed by an extra half layer of atoms being inserted into part of 

an otherwise perfect crystal. 

Screw dislocations can be thought of as a perfect crystal which has a cut made 

into its body and then the crystal being twisted resulting in one side of the lattice 

being skewed by one lattice site. Figure 5-5 shows this diagrammatically.  

 

Figure 5-5: Schematic diagram of a screw dislocation 

Dislocations are of significant interest to this work as they are able to propagate 

through the crystal resulting in the relative displacement of two parts of the 

crystal. The result of this is observed to be equivalent to an entire plane of 

atoms sliding over another.  

5.3 Burgers vector 

One of the most important quantities in the description if dislocations is the 

Burgers vector. The Burgers vector is determined by the crystal displacement 

caused by the presence of a dislocation in an otherwise perfect piece of crystal.   

A simple way of determining the Burgers vector is done by forming a loop around 

a dislocation in the material and determining the distortion caused by the 

dislocation. This is illustrated for the case of an edge dislocation in Figure 5-6. 
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Using the edge dislocation shown in Figure 5-6 the Burgers vector is obtained by 

forming a loop clockwise around the dislocation, starting at point S, and ensuring 

the same number of lattice sites are visited in each direction. This leads to an un-

closed loop. In order to close the loop, the vector 𝒃 is added, shown by the red 

arrow in Figure 5-6. This vector is the Burgers vector. It is noted that the 

convention used here determines the Burgers vector using a clockwise loop, if 

however, an anticlockwise loop is used, the Burgers vector obtained will be of 

identical magnitude, with opposite direction.  

 

Figure 5-6: Schematic diagram showing the construction of a clockwise loop 

around an edge dislocation, with the resulting Burgers vector, represented by 

the red arrow, required to close the loop. 

In the case of a screw dislocation, the same approach is applied as was used to 

determine the Burgers vector of an edge dislocation. The screw dislocation 

shown in Figure 5-5 shows a clockwise loop constructed around the screw 

dislocation.  

It is seen that, like the edge dislocation, the loop is unclosed if the same number 

of lattice sites are visited in each direction, with the vector 𝒃 required to close the 

loop. As with the edge dislocation, the vector 𝒃 is the Burgers vector. Consistent 

with the edge analysis, an anticlockwise loop constructed around a screw 

dislocation will result in the Burgers vector having equal magnitude but opposite 

direction to that obtained with the clockwise loop.  

One key difference between the Burgers vectors of screw and edge dislocations 

is apparent when considering their direction with respect to the dislocation line 

vector. The dislocation line vector of an edge dislocation, is perpendicular to the 
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Burgers vector, and in contrast to this, the dislocation line vector and Burgers 

vector for screw dislocations are parallel to each other. This property is important 

when defining the dislocation glide planes.  

It is seen in Figure 5-5 and Figure 5-6 that the size of the Burgers vector is half 

an atomic spacing, i.e. it is closing the loop of an extra half layer of atoms. Using 

the conventional notation, the magnitude of a Burgers vector can therefore be 

found as:  

 0

2

a
b hkl   (2.1) 

Where 𝑎0 is the lattice constant; i.e. the spacing between two lattice points in a 

perfect piece of crystal, and hkl  are the directional Miller indices of the vector. 

Therefore, the magnitude of Burgers vector is dependent on the structure of the 

crystal. For an fcc crystal, the magnitude is found to be: 

 
0 02

110
2 2

a a
b     (2.2) 

Similarly, in bcc metals the magnitude of Burgers vector is found as: 

 
0 03

111
2 2

a a
b     (2.3) 

5.4 Slip and slip planes 

It is observed that, when a metal is loaded and deforms plastically, small step like 

ridges are formed on the surface, as is shown in Figure 5-7. 
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Figure 5-7: Diagram showing 1) an un-loaded, un-deformed specimen and 2) the 

same specimen after loading has been applied and plastic deformation has 

occurred. The direction of loading is indicated by the arrow (Anon., 2013). 

The formation of these steps indicate that the plastic deformation of the crystal 

occurs on specific planes and in specific directions in the crystal. This is explained 

by dislocation slip.  

Slip occurs when the material is loaded sufficiently to cause dislocations to move 

from their current locations and to propagate through the crystal. The motion of 

dislocations results in a portion of the crystal displacing relative to the remaining 

part, as is shown in Figure 5-7. The motion of screw and edge dislocations differs. 

An edge dislocation, under an applied load, glides in the direction of its Burgers 

vector. The process of edge dislocation glide is shown in Figure 5-8. It is apparent 

from Figure 5-8 that the formation of surface steps from an edge dislocation is 

the result of the dislocation moving one lattice site at a time through the crystal, 

and not an instantaneous shearing of several lattice sites. The surface 

discontinuity shown in Figure 5-8 is for a single edge dislocation; in a physical 

sample many dislocations are likely to follow this process, thereby exaggerating 

the surface effect. 

   

Figure 5-8: Schematic diagram of an edge dislocation moving to the edge of the 

crystal under an applied shear load. The three diagrams show the initial 

dislocation (left), the step formed on the edge of the crystal (right) and the 
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dislocation during propagation (centre). The shear loading is indicated by arrows 

on the left hand diagram.  

 The propagation of a screw dislocation is depicted in Figure 5-9, where it is seen 

that, similar to the edge dislocation, the formation of the step on the surface 

occurs as the dislocation moves one lattice site at a time. There is however one 

notable difference; the motion of the screw dislocation is perpendicular to the 

direction of its Burgers vector, which results in the direction of motion of screw 

dislocations being perpendicular to the direction of slip. This is highlighted in 

Figure 5-9, where the rotation axis is used to form a clockwise loop around the 

travelling dislocation in the crystal. To vector required to close the loop, i.e. the 

Burgers vector, is seen the be directed along rotation axis, however the motion 

of the screw dislocation can clearly be seen to be travelling perpendicular to the 

axis.  

 

Figure 5-9: Diagram showing the propagation of a screw dislocation under an 

applied shear stress (Anon., 2012) 

The process of dislocation slip is referred to as conservative motion of 

dislocations, as the number of lattice sites on the slip plane is conserved 

throughout.  

5.4.1 Slip planes 

Within a crystal there are various planes. Slip does not occur on all planes in the 

crystal; certain planes are much more susceptible to slip than others. These are 

referred to as the slip planes and are commonly the planes of greatest interplanar 

spacing. The planes with the greatest inter-planar spacing are also the planes of 
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closest packing. Due to these properties being structure dependent, the slip 

planes are dependent on the crystal structure of the metal being examined.  

 

 

Plane: 

(111) 

 

Directions: 

[1̅10], [01̅1], 

[101̅] 

 

Plane:  

(11̅1) 

 

Directions: 

[110], [01̅1̅], 

[1̅01] 

 

Plane: 

(1̅1̅1) 

 

Directions: 

[11̅0], [011], 

[1̅01̅] 

 

Plane: 

(1̅11) 

 

Directions: 

[1̅1̅0], [011̅], 

[101] 

Figure 5-10: Schematic diagrams showing the slip systems in fcc crystals. The 

four {111} planes are shown with the arrows indicating the three <110> directions 

of each plane. 

Along with the slip planes, the direction of slip is also defined. This is done by 

taking the possible directions of the slip planes. The combination of the slip plane 

and the slip direction are then referred to as the slip system.  

 

The slip systems for fcc metals are shown in Figure 5-10. The planes of closest 

packing, and therefore the slip planes, are the {111} planes, of which there are 

four. The directions of these planes are the 〈110〉 directions, and it is seen that 
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each plane has three of these directions. Therefore, an fcc metal has a total of 

12 slip systems. 

The slip systems in bcc metals consist of the {110} planes and the 〈111〉 

directions. There are six {110} planes, each with two 〈111〉 directions, giving 

twelve slip systems. These are shown in Figure 5-11 and are common to all bcc 

metals. Additional to these twelve, some bcc metals have additional slip systems. 

These are the {112} planes, of which there are twelve, and the {123} planes, of 

which there are twenty-four. Each of these planes have only one 〈111〉 direction, 

giving an additional thirty-six slip planes, which, when combined with the original 

twelve, results in a possible forty-eight slip systems.      

5.5 Climb 

Additional to slip, non-conservative motion of dislocations is also possible under 

certain conditions. Non-conservative motion of dislocations is denoted as such, 

due to the number of lattice sites on the slip plane not being conserved during 

the dislocation motion. This can occur when the dislocation moves perpendicular 

to the slip plane, and effectively climbs out of it. The process of climb can enable 

a dislocation to overcome a point obstacle, which would otherwise inhibit its 

motion. If only a part of the dislocation line experiences climb, a jog is formed, 

whereby the dislocation has segments over two (or more) slip planes, while still 

being connected to one another.   

5.6 Mixed dislocation 

From the definition of a dislocation, the dislocation line can be thought of as a 

boundary between an area over which slip displacement has occurred and an un-

slipped region of the crystal (Hirth & Lothe, 1982). Using this concept, it is 

apparent that the dislocation line cannot terminate in the body of the crystal; it 

must terminate at a grain boundary, free surface or an interaction with another 

dislocation or defect, form a closed dislocation loop.  
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Plane: 

(110) 

 

Directions: 

[11̅1], [1̅11],  

 

Plane:  

(11̅0) 

 

Directions: 

[111], [1̅1̅1],  

 

Plane: 

(01̅1) 

 

Directions: 

[01̅1], [111],  

 

Plane: 

(011) 

 

Directions: 

[1̅1̅1], [11̅1],  

 

Plane: 

(101) 

 

Directions: 

[1̅1̅1], [1̅11],  

 

Plane:  

(1̅01) 

 

Directions: 

[111], [11̅1],  

Figure 5-11: Schematic diagrams showing the 12 common slip systems in BCC 

crystals. The six {110} planes are shown with the arrows indicating the two <111> 

directions of each plane. 

When a dislocation is curved, as is the case in a dislocation loop, it is no longer 

applicable to determine the dislocation to be either an edge dislocation or a screw 

dislocation. The dislocation line shown in Figure 5-12 can be seen, at point A to 

be purely a screw dislocation, but at point C purely an edge dislocation, and at 

point B a mixture of both screw and edge. Such a dislocation is referred to as a 

mixed dislocation.  
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Figure 5-12: Diagram showing a segment of a dislocation loop bounding a region 

where slip has occurred in the crystal. The direction of the Burgers vector is 

shown at points A, B and C.  

The total Burgers vector of the dislocation loop is the same at all points and can 

be resolved into screw and edge components: 

 cossb b    (2.4) 

 sineb b    (2.5) 

Where 𝑏𝑒 is the edge component of the total Burgers vector, 𝑏𝑠 is the screw 

component of the total Burgers vector and 𝛽 is the angle between the total 

Burgers vector and the screw component of the Burgers vector.  

 

5.7 Strain energy of screw dislocation 

It is seen that, the presence of the screw dislocation shown in Figure 5-13 induces 

a displacement around the z-axis. It is reasonable to assume that the induced 

deformation increases uniformly with angle 𝜃 (Hirth & Lothe, 1982), allowing the 

following relation to be written: 

  ,
2

z

b
u r





   (2.6) 

Where zu  is the displacement around the z-axis.  
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The stress associated with this displacement is given from elasticity theory to be: 

 
2

z

Gb

r



    (5.7) 

 0rz r rr zz             (5.8) 

Where z  is the stress associated with the displacement and G  is the shear 

modulus.  

 

Figure 5-13: A screw dislocation in a cylinder showing the displacement caused 

along the z-axis by the presence of the dislocation (Hirth & Lothe, 1982) 

As a result of the crystal displacements caused by the presence of a screw 

dislocation, an elastic strain field is present surrounding the dislocation, which 

has an associated energy.  
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Figure 5-14: Schematic diagram of a screw dislocation in a cylinder showing the 

relative distances 𝑹 and 𝒓𝟎 (Hirth & Lothe, 1982). 

Considering the field surrounding the dislocation in Figure 5-14 the energy stored 

per unit length can be expressed: 
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      (5.9) 

 Where 𝑊 𝐿⁄  is the energy stored per unit length of the dislocation.  

Substitution of the stress component, equation (5.7), into equation (5.9) and 

integrating results:  
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    (5.10) 

From equation (5.10) it is apparent that the stored energy, 𝑊 𝐿⁄ , diverges as 𝑅 →

∞ or 𝑟0 → 0, which means that the energy stored is dependent on the crystal size 

and therefore it is impossible to determine a characteristic value. Approximations 

for the value of 𝑅 can be made. When considering a single dislocation in a sample 

of the crystal, approximating 𝑅 ≈ 𝑙, where 𝑙 is the shortest distance between the 

dislocation and the nearest free surface is a good choice (Hirth & Lothe, 1982). 

In the case a many dislocations, a good choice of the value of 𝑅 is found to be 

half the average distance between dislocations (Hirth & Lothe, 1982).  

The divergence of  𝑟0 limits this analysis to hold only for regions at greater radius 

than 𝑟0 ≈ 𝑏. Therefore, equation (5.10) can be re-written as: 
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Where 𝛼 is equal to one.  

5.8 Force on a screw dislocation  

Generally, a force is defined relative to a general configurational coordinate 𝜂 by 

the requirement that the change in total energy is equal to the force multiplied by 

the displacement, which can be expressed mathematically as: 

 tW F       (5.12) 

Where,  𝑊𝑡 is the total energy, 𝐹𝜂 is the force relative to the coordinate 𝜂.  

Thermodynamically, the forces acting on a dislocation are defined as (Hirth & 

Lothe, 1982): “Forces on dislocations are virtual forces representing the change 

in free energy of the system with displacement of the dislocation (Hirth & Lothe, 

1982)”.  

The total energy, 𝑊𝑡, can be decomposed into the elastic energy, 𝑊𝑒, and the 

potential energy of mechanisms exerting external force on the dislocation, 𝑊𝑝 , 

as: 

 t e pW W W     (5.13) 

It has been seen that the total energy depends on the position of the dislocation, 

therefore the force is also dependent on the position of the dislocation.  

Considering the dislocation shown in Figure 5-13, and making the assumption 

that it is parallel to the free surface, at a distance 𝑙 from it, the energy is given, 

using equation(5.10) to be: 
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    (5.14) 

Therefore, applying equation (5.12), the force per unit length tending to move the 

dislocation towards the surface is calculated to be: 
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 
   (5.15) 

This force arises solely from change in elastic energy in the crystal, and is 

considered to be an image force.  

If the dislocation is far from the boundaries of the material, image forces are 

negligible, and the energy is independent of the x-coordinate. Considering a 

dislocation under these conditions, and allowing it to move from position 𝑥1 to 

position 𝑥2, the surfaces above and below the dislocation are displaced by 𝒃, 

relative to one another over an area 𝐿(𝑥2 − 𝑥1). If this displacement is caused by 

a uniformly applied shear stress, in moving the dislocation the shear stress does 

work, 𝜎𝑦𝑧𝐿(𝑥2 − 𝑥1)𝑏. This work done is at the expense of the potential energy of 

external mechanisms acting on the dislocation, and is expressed: 

  2 1p yzW L x x b     (2.16) 

Substitution of this into equation (5.15) provides the force per unit length as: 

 x
yz

F
b

L
   (2.17) 

In the region of the dislocation core (the region of severe dislocation immediately 

surrounding the dislocation), the total stress, 𝜎𝑡, can be expressed as a sum of 

the dislocation self-stress, 𝜎𝑑, and the stress caused by image effects, external 

loads, and other stress sources, 𝜎, in the form: 

 t d       (5.18) 

The self-stress of the dislocation does no work during motion of the screw 

dislocation, therefore the change in energy per unit length is given: 
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
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

     (5.19) 

Whereas, the external stress field, 𝜎𝑦𝑧, does do work, which is given: 
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which is at the expense of the total energy of the system, therefore: 
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     (5.21) 

From this the total force per unit length acting on the dislocation core is calculated 

to be: 
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F
b

L
    (5.22) 

Or for motion in the y-direction: 
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Comparing equations (5.19) and (5.20) is apparent that the self-stress does not 

impose any force of the screw dislocation.  

5.9 Edge Dislocations 

Similar to the analysis of screw dislocations, edge dislocations will now be 

discussed in terms of the stresses, strain energy, and forces acting on them.  

Analysis of the edge dislocation in a cylinder allows for the stress components to 

be obtained with the aid of the stress function e    
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As: 
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 0xz yz     (2.29) 

Where   is Poissons ratio.  

The displacements caused by the presence of the edge dislocation in the crystal 

are found to be: 
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Where the constant 𝐶 is determined by the condition that 𝑢𝑥 = 0 when 𝑦 = 0. 

Applying this condition yields 𝐶 = 𝑏/4, therefore: 
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Likewise,  
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Where the constant, 𝐶 = 𝑏/4𝜋(1 − 𝜐) is introduced to yield a symmetric 

expression in 𝑥 and 𝑦.  
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5.9.1 Strain energy of an edge dislocation  

The strain energy per unit length of a dislocation between two cylindrical surfaces 

of radius 𝑟0 and 𝑅 about an edge dislocation is given by:  
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Where   is Young’s modulus.  

Which integrates to yield: 
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Comparing this result to that obtained in the analysis of screw dislocations, 

equation (5.10), it is seen that they are the same, except for the (1 − 𝜐) factor. 

Similar to the treatment of screw dislocations, this can be expressed  
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5.9.2 Forces acting on an edge dislocation 

In direct analogy to screw dislocations, the total stress field, 𝜎𝑡, can be 

decomposed into self-stress, 𝜎𝑑, and stress from external sources, 𝜎. Applying 

the same principles as for screw dislocations, only   𝜎 does work as the dislocation 

moves on the glide plane, with the force per unit length produced purely by 𝜎. In 

the x-direction, this force is given: 

 x
xy

F
b

L
    (5.36) 

If the motion of the dislocation is non-conservative, i.e. climb, both the elastic 

energy, 𝑊𝑒 and the potential energy of external mechanisms acting on the 

dislocation, 𝑊𝑝, change.  

The force required for climb can be derived from the derivative of the sum of strain 

energy and potential energy with respect to the y-position of the edge dislocation. 
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The process of climb involves the removal of the extra half plane of atoms from 

the slip plane (i.e. motion perpendicular to the slip direction), which will therefore 

reduce the strain energy and potential energy of external mechanisms acting on 

the dislocation. At the expense of these, energy flows to the dislocation core and 

is dissipated there (Hirth & Lothe, 1982). The expression for climb force can be 

developed from this. As with the glide forces, self-stress does not exert climb 

force.  

In the presence of a compressive force acting over the region of the dislocation 

core, a climb force is experienced. The climb force is determined by the energy 

lost from the system during motion. Consider the diagram in Figure 5-15, which 

depicts a schematic diagram of an edge dislocation climbing a distance δy. It is 

seen that as the dislocation climbs, distortion to the surrounding lattice is caused, 

through which the energy required for climb flows If the value of ℎ is set large 

enough, the compressive stress 𝜎𝑥𝑥 will be much larger than the self stress, 𝜎𝑑, 

rendering it negligible. Therefore, in analogy with previous, the climb force is 

found from the change in energy as: 
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The last term on the left hand side of equation (5.37) is neglected as it is of the 

same order of magnitude as the imprecision of linear elasticity theory. Therefore, 

the climb force is given as: 
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Figure 5-15: Schematic diagram showing that as the edge dislocation climbs a 

distance 𝜹𝒚, energy flows into the region surrounding the dislocation through 

the parallel planes AA and BB. 

5.10 Mixed straight dislocations 

So far, the analysis has assumed the dislocations to be either pure screw or pure 

edge in nature. However, in general dislocations in real crystals are more likely 

to be of mixed nature, containing both screw and edge components. This section 

considers the forces acting on straight mixed dislocations.  

The glide plane of a straight mixed dislocation is defined by the edge component 

only. This is due to the fact that the glide plane is defined as the plane containing 

both the dislocation line and the Burgers vector, which for screw dislocations are 

parallel, and therefore there are no defined slip planes for screw dislocations.  

To determine the forces acting on a straight mixed dislocation, it is first necessary 

to consider the energy stored per unit length of dislocation. This is achieved by 

superposition of the screw and edge components of stored energy per unit length, 

whereby equations (5.11) and (5.35) are used in combination with the following 

decomposition of the Burgers vector.   

As has been outlined in section 5.6, for a mixed dislocation the total Burgers 

vector, 𝑏, can be decomposed into its screw and edge components, 𝑏𝑠 and 𝑏𝑒, 

respectively: 
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 s eb b b     (5.39) 

Where  
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Inserting these expressions into equations (5.11) and (5.35), and superposing 

them results: 
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Here 𝐸(𝛽) is termed the pre-logarithmic factor.  

To determine the force per unit length acting on the dislocation, it is helpful to 

consider the effective operation required to displace it. To do this, the following 

process can be applied; make a cut in the material of area 𝝃 × 𝛿𝒓, per unit length 

of 𝒃 and move the material uniformly over the cut by the amount 𝑏𝑒𝛿ℎ, where 𝛿ℎ 

is the distance climbed normal to the glide plane. Finally restore continuity of the 

material by displacing the opposite surfaces of the cut relative to one another by 

the amount 𝒃. 

During this operation, work is done by the stress acting over the dislocation core. 

The work done is quantified by: 
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 Where 𝝈 ∙ (𝝃 × 𝛿𝒓) is the force caused by the stress tensor on the surface 

(𝝃 × 𝛿𝒓).  

Equation (5.42) can be re-arranged to the form: 

      
L
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r b σ ξ r b σ ξ r    (5.43) 

Now, eliminating the 𝛿𝒓 multiplier from both sides results in the expression for the 

force per unut length acting on the dislocation:  
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Or in index form: 

 k ijk i jl lF b      (5.45) 

Where 𝜖𝑖𝑗𝑘 is the permutation operator.  

Finally, the total force has glide and climb components, glF  and clF , respectively: 
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5.11 Effective mass of dislocations 

The concept of dislocation mass can be developed through consideration of the 

elastic strain field and the stored elastic energy in the dislocation core.  

It is first important to state that physically a dislocation is merely a distortion or 

disturbance in the arrangement of atoms in a crystal, so assigning a mass is not 

physical, however it is often useful to consider the dislocation to be analogous to 

a piece of string, whereby it possesses a real mass and tension (Suzuki, et al., 

1991). It is observed that, as a dislocation moves, the elastic strain field 

surrounding it shrinks in the direction of motion. This decrease in strain field 

results in an increase in the stored elastic energy by the dislocation core. The 

increase in stored energy with increasing velocity can be calculated by application 

of the Lorenz transformation (Suzuki, et al., 1991): 
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Where  𝐸0 is the ‘rest’ energy, 𝑉 is the velocity of the dislocation and 𝑐𝑡 is the 

shear wave speed.  
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From equation (5.48) it can be seen that as 𝑉 → 𝑐𝑡, 𝐸 → ∞.  

The well-known equation from relativity theory, provides a mass-energy 

equivalence relationship, therefore, in a similar fashion an effective mass of 

dislocations can be written as (Meyers, 1994): 
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Where 𝑚 is the effective mass and 𝑚0 is the ‘rest’ mass.  

An estimate for the value of the rest mass can be obtained by treating the case 

of a static dislocation and equating the stored energy to the rest mass multiplied 

by 𝑐𝑡
2. The stored energy of a static screw dislocation is found in section 5.7 to 

be: 
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Applying the relation, 𝐸0 = 𝑚0𝑐𝑡
2 results: 
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Substituting 𝑐𝑡 = √𝐺
𝜌⁄  and re-arranging provides an estimate for the rest mass 

as: 
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As a result of this relativistic effect, the velocity of dislocations are limited to 

speeds lower than the shear wave speed. It is expected that as a dislocation is 

accelerated, at speeds much lower than the shear wave speed, a linear 

relationship will be observed between the dislocation velocity and the applied 

stress. As the dislocation velocity approaches the shear wave speed, it will 

asymptotically approach the limiting value.  
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5.12 Dislocation interactions 

Real crystalline materials contain large numbers of dislocations. Therefore it is 

inevitable that during deformation, there will be interaction between dislocations. 

There are a number of ways in which this can happen, with the key processes 

outlined in this section.  

 

In a real crystal, there will be a large number of dislocations contained within it, 

ranging from a few thousand to many millions, depending on the previous work 

done to the material. Therefore, it is inevitable that during deformation, and 

therefore during dislocation motion, there will be interaction between dislocations. 

This occurs in many forms, with the outcome resulting in either immobilisation of 

the dislocations, therefore preventing it from gliding further, multiplication of the 

dislocation, further dislocations are generated, or annihilation, where two 

dislocations of opposite sign combine to result in a perfect piece of crystal.  

The processes leading to the immobilisation and annihilation of dislocations make 

it harder for other dislocations to propagate through the crystal, therefore 

increasing the load required to drive plastic deformation, i.e these processes 

cause the crystal to harden.  

5.13 Work hardening 

An important behaviour of metals during deformation is the rate at which work 

hardening occurs; the change in the resistance to dislocation motion during 

deformation. It is well established that when the resolved shear stress is plotted 

against strain, the slope of which determines the work hardening, three distinct 

stages are observed. Figure 5-16 shows an example of this for a typical fcc metal. 

The three stages observed are closely related to the dislocation kinematics during 

material deformation.  
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Figure 5-16: Idealised strain-hardening curve typical of fcc metal showing 4 

stages (Kuhlmann-Wilsdorf, 2004) 

From Figure 5-16, stage I shows little increase in the hardening and the slope, 

𝜃𝐼, or rate of work hardening, is found to be 𝜃𝐼 ≈ 10−4𝐺, where 𝐺 is the shear 

modulus (Hull & Bacon, 2001). This stage is typically referred to as the ‘stage of 

easy glide’, and strain occurring during this stage occurs only on the primary slip 

system. During this stage, multiplication of dislocations occurs on the primary slip 

system, however very few dislocations are generated on secondary slip systems.  

Stage II begins when secondary slip systems become active. During stage II the 

rate of hardening, the slope, 𝜃𝐼𝐼, is significantly higher than in stage I and is 

typically in the region between, 𝜃𝐼𝐼 ≈ 3 × 𝜃𝐼 and 𝜃𝐼𝐼 ≈ 10 × 𝜃𝐼 (Hull & Bacon, 

2001). The increase in work hardening observed during stage II is due to the 

densities of dislocations increasing on the secondary slip systems; dislocations 

on intersecting slip planes interact with one another, reducing or totally inhibiting 

their mobility.  

Finally it is seen in Figure 5-16 that the third stage, Stage III, shows a reduction 

in the rate of work hardening, the slope, 𝜃𝐼𝐼𝐼, is less than during that of stage II. 

5.14 Summary  

The key microscale properties and processes for the development of the 

dislocation based model have been detailed. The crystal structures of interest to 
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this work (fcc and bcc) have been discussed, along with the important vectors, 

the Burgers vector and the slip plane normal, which define the slip systems in a 

crystal. The forces acting on dislocations which can cause motion, and 

consequently plastic deformation have been derived. These forces are used in 

the dislocation based model for driving plasticity. Finally, a discussion has been 

made regarding the multistage nature of dislocation hardening. This multiscale 

nature is used later to verify the initial testing of the model.  
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6 Dislocation based plasticity model  

This chapter describes the dislocation based continuum scale shock plasticity 

model. The chapter starts by derivation of the key plastic strain rate equation, the 

Generalised Orowan equation, which provides the link between the microscale 

variables and the continuum scale. Following this, the evolution of the dislocation 

based internal state variables are discussed in turn.  

It has been identified in previous work that the basis of this work should consist 

of the constitutive model developed by Mayer et al. (Mayer, et al., 2013). This 

model, from herein referred to as the Mayer model, was developed to model 

plasticity and fracture of metals at shock loading. As is identified in (Kiely, 2013) 

only the plasticity part of this model is of interest in this work due to large 

inaccuracies of the fracture representation compared to the damage model 

available in (Djordjevic, 2011).  

In (Kiely, 2013) the Mayer model (Mayer, et al., 2013) is shown to have potential 

for the basis of future improvements to the current continuum modelling 

capabilities available at present due to a number of reasons. Firstly, the model is 

multiscale in nature. This means that deformation can be reproduced on a 

continuum scale using properties and processes on the microscale to evolve 

plasticity. An advantage of this is the full model will be able to capture details that 

would otherwise only be obtainable in a molecular dynamics simulation over time 

and length scale only currently achievable with continuum modelling. 

The Mayer model provides the update of stress deviators in terms of the elastic 

strain, in line with the commonly used method in hydrocode modelling. 
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S G u u w


 
   

 
   (6.1) 

Where 𝑆𝑖𝑘 is the stress deviators, 𝐺 is the shear modulus, 𝑢𝑖𝑘 is the total strain, 

𝛿𝑖𝑘 is the Kronecker delta and 𝑤𝑖𝑘 is the plastic strain.  
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6.1 Rate of plastic strain  

The plastic strain tensor updated from the rate of plastic strain. The plastic strain 

rate is calculable from the dislocation density and velocity via the Orowan 

equation. This simple relation can easy be derived by considering the passage of 

a single dislocation through and otherwise perfect piece of crystal.  

 

Figure 6-1:Schematic diagrams showing an un-deformed piece of crystal, the 

same piece of crystal where a dislocation has glided partially through it, and 

finally the piece of crystal after a dislocation has propagated completely through 

it. 

Considering the piece of crystal shown in Figure 6-1 it is seen that its volume is  

 V Lhl   (6.2) 

If a single, straight dislocation propagates fully through the entire crystal, then the 

added shear strain will be: 

 
b

h
    (6.3) 

However, in the case of a single dislocation propagating through only part of the 

crystal, as is shown in Figure 6-1 then the added shear strain is 
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L b

L h



   (6.4) 

Now consider multiple dislocations gliding through the same piece of crystal, the 

added shear strain will be: 

 
L b Nl L b Nl Lb

N
L h l L h V


  

     (6.5) 

The dislocation density can be defined as: 

 
Nl

V
    (6.6) 

Substitution of this into equation (6.5) results: 

 Lb     (6.7) 

Finally, the rate of plastic strain is given by the derivative of equation (6.7) with 

respect to time: 
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
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  (6.8) 

 bv    (6.9) 

Where 𝑣 is the average velocity of dislocations during glide.  

Equation (6.9) is the Orowan equation relating microscale dislocation processes 

to macroscale plastic strain rate.  

This analysis so far only considers dislocations in a single slip system. In crystals 

there are several slip systems active and therefore these must be taken into 

account when calculating the total plastic strain. This is achieved projecting the 

rates of shear onto the directions of the slip systems using Schmid’s tensor 

(Meyers, 1994) and then summing over all slip systems:  

  pl



 
β β

u s n   (6.10) 
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Where 𝒔 is the direction of slip and 𝒏 is the unit vector normal to the slip plane 

and 𝛽 indicates that the values are for a specified slip system. The total rate of 

plastic deformation can then be decomposed into the rate of plastic strain and 

the rate of spin, 𝜺̇𝑝 and 𝒅, respectively: 

     1

2

pl 



   
β β β β

ε s n n s   (6.11) 

     1

2





   d
β β β β

s n n s   (6.12) 

From equation (6.9) it is apparent that in order to determine the rate of plastic 

strain, the dislocation velocity as well as the density of mobile dislocations is 

required to be known. The following sections will discuss in turn how each of 

these are determined.  

 

6.2 Equation of motion  

Following the derivations of the forces acting upon dislocations in section 5.10, 

an equation of motion is developed for dislocations by Mayer. The equation of 

motion has the form of Newton’s second Law of motion, and is simply the mass 

multiplied by acceleration on the left hand side, with the right hand side being a 

sum of the forces acting on the dislocation. The equation is then written as:  
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   (6.13) 

It is seen that the right hand side of equation (6.13) is a summation of the force 

acting on dislocations from external mechanical stress, minus the resistance yield 

resistance of the crystal and minus the dynamic drag caused by phonon 

interaction. In line with equations (6.10), (6.11) and (6.12), the superscript 𝛽’s 

indicate the values are for a specific slip system, specified by the Burger’s vector 

and the normal to the slip plane, 𝒃 and 𝒏, respectively.  
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The first term on the right hand side is the mechanical force acting on dislocations 

as is derived in section 5.10. The second term is the ‘static resistance’, where the 

yield strength 𝑌 is calculated by: 

 0 I IY Y A Gb     (6.14) 

Where 𝑌0 accounts for the resistance due to the Peierls barrier, that is the stress 

required to move a single dislocation in an otherwise perfect crystal, 𝐴𝐼 is a 

coefficient calculated from curve fitting, and 𝜌𝐼 is the total immobilise dislocation 

density, where: 

 I I





    (6.15) 

It is observed that, for dislocation acceleration to occur, the Peach-Koehler force 

acting on the dislocation must be greater than the static friction term. The 

plus/minus sign appears in the equation of motion as the force from mechanical 

stresses must always be of opposite sign to the resistance.  

6.2.1 Resistance forces 

The second resistive term on the right hand side of equation (6.13) accounts for 

the dynamic drag of dislocations. As a dislocation is accelerated through a crystal, 

it experiences a drag force due to interactions with conduction electrons and 

phonons (Suzuki, et al., 1991). This drag force is proportional to the velocity of 

the dislocation, and is determined by the multiplication of the coefficient of 

dynamic drag, 𝐵.  

In general, 𝐵 is given to be a sum of the friction coefficient due to conduction 

electrons, 𝐵𝑒 and the friction coefficient due to phonon interactions, 𝐵𝑝. However, 

in Mayer’s formulation of the equation of dislocation motion only phonon drag is 

taken into account, therefore 𝐵 = 𝐵𝑝.  

Phonon friction arises as, when the dislocation is in motion, it is forced to oscillate 

by other lattice vibrations, i.e. phonons. These forced oscillations results in the 

dissipation of energy from the dislocation, resulting in the dislocation 



 

80 

experiencing an effecting retarding force. The coefficient of phonon friction is 

given by Mayer (Mayer, et al., 2013) and also by Suzuki (Suzuki, et al., 1991) to 

be: 

 
2 3

2 3

4 B

b

k
B T

h c


   (6.16) 

Where 𝜃 is the Debye temperature, 𝑘𝐵 is the Boltzmann constant, ℎ is Planck’s 

constant, 𝑐𝑏 is the bulk speed of sound, and 𝑇 is the temperature.  

6.3 Evolution of dislocation densities  

The second key calculations required for the calculation of the plastic strain 

caused by dislocation motion is the updates of the densities of the mobile and 

immobilised dislocations. Equations governing the rates of change of these 

densities are given by Mayer (Mayer, et al., 2013) in the form: 
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D I a D D D I

d
Q Q k b V

dt
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where 𝑄𝐷
𝛽
 is the rate of generation of new mobile dislocations, 𝑄𝐼

𝛽
 is the rate of 

immobilisation of previously mobile dislocations, 𝑘𝑎 is a coefficient of annihilation.  

Physically, equation (6.17) is saying that the rate of change of density of mobile 

dislocations on the slip system 𝛽 is equal to the rate at which new dislocations 

are generated during deformation, minus the rate at which existing mobile 

dislocations are immobilised minus the rate at which annihilation occurs between 

mobile dislocations with other mobile dislocations and also with immobilised 

dislocation.  

Equation (6.18) physically says that the rate of change in density of immobilised 

dislocations on the slip systems 𝛽 is equal to the rate at which mobile dislocations 

are immobilised minus the rate at which previously immobile dislocation are 

annihilated by mobile dislocations.  
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The rate of generation of new mobile dislocations in equation (6.17) is written in 

terms of the work done during dislocation motion in overcoming resistance forces, 

multiplied by a coefficient of generation, 𝑘𝑔. 
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  (6.19) 

It can be seen that the term in the brackets in equation (6.19) is simply the 

resistance forces from the equation of dislocation motion, equation (6.13) 

multiplied by the velocity of dislocations. These forces multiplied by the velocity 

physically result in the power dissipated during plastic deformation. This is 

transformed into the number of dislocations generated per unit time by the 

definition of the coefficient 𝑘𝑔. It is established during calorimetric experiments 

that a certain percentage of the energy dissipated plastically is used by the metal 

for the generation of new dislocations, this percentage is approximately ten 

percent (Krasnokov, et al., 2011) (Mayer, et al., 2013). Taking this portion of 

energy and dividing it by the energy required to form a single dislocation in the 

crystal results in the number of dislocations generated when this value is 

multiplied by the energy dissipated.  

 g

L

k


   (6.20) 

Where 𝜂 is the portion of power dissipated overcoming resistance forces and 𝜖𝐿 

is the energy per unit line required for generation of new dislocations, where the 

value of 𝜖𝐿 is found to be approximately 8 𝑒𝑉 𝑏⁄ .  

Right hand side of (6.19) is finally multiplied by 𝜌𝐷
𝛽

 as, the term contain inside the 

brackets and then multiplied by 𝑘𝑔 provides the power dissipated by a single 

dislocation, and therefore by multiplication of the number of dislocations per unit 

area, this will result in the number generated per unit area of the slip system.  
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The rate of immobilisation, 𝑄𝐼
𝛽
, which is present in both equations (6.17) and 

(6.18) determined via the following relation: 

  0I I D IQ V        (6.21) 

This relation is written by making the assumption that, when the mobile 

dislocation density reaches a certain threshold, value of 𝜌0, all excess mobile 

dislocation will be immobilised into dislocation structures. This immobilisation 

occurs over a characteristic time, 𝜏𝑐, during which the dislocation will move a 

characteristic distance, 𝑙𝑐. Combining these two characteristic values results in 

definition of the characteristic velocity of dislocations during the immobilisation 

process, 𝑉𝐼: 
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The characteristic distance is estimated as 𝑙𝑐 ≈ (𝜌𝐼
𝛽

)
−

1

2
, so by substitution and 

rearrangement, the characteristic time is estimated as: 
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
   (6.23) 

Simple division of the number of dislocations above the threshold value, 𝜌0, by 

this characteristic time results in the rate of immobilisation expression, equation 

(6.21).  

 

6.4 Summary  

The formulation of the dislocation based continuum plasticity shock model has 

been outlined. The key equation for calculation of the rate of plastic strain, the 

Generalised Orowan equation, has been derived, before the evolution of the 

internal state variable have been discussed in turn. Implementation of this model 

in the hydrocode is described in the next chapter 
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7 Implementation of the dislocation based plasticity 

model in DYNA3d 

The implementation of the model described in chapter 6 in the DYNA3d 

hydrocode is described in this chapter. An overview of the hydrocode is firstly 

presented, followed by a discussion of the numerical schemes used for 

integration of the model. The system of equations is then presented in algorithmic 

style, firstly for the update of the deviatoric stress then the pressure update, which 

includes coupling of the model with an equation of state.  

7.1 Overview of the DYNA3d hydrocode  

The first stage of model development is to implement the model published by 

Mayer et al. (Mayer, et al., 2013) into the hydrocode available at Brunel 

University. The code available is DYNA3d. DYNA3d is an explicit, non-linear 

hydrocode developed by Lawrence Livermore National Laboratories (LLNL), and 

is an open source research code. DYNA3d contains many features of standard 

finite element codes, including (Kiely, 2013): 

- Different element formulations, including 3d solid elements, 2d shell 

element and beam and truss elements 

- Boundary, initial and loading conditions 

- A range of contact algorithms 

- Several equations of state which are coupled to the relevant material 

models 

- A large number of constitutive models applicable to a wide range of 

materials and deformation conditions 

The new dislocation model is being implemented as material model number 224 

(mat_224) and is coupled with the vector equation of state available, and makes 

use of the stress decomposition proposed by (Vignjevic, et al., 2008) and used 

previously by (Djordjevic, 2011).  
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7.2 Implementation of the dislocation densities based model for 

deviatoric stress update  

Following the initialisation phase, the update of the stress deviators is performed 

using the dislocation based plasticity model. To achieve this, the rate of change 

of dislocation densities equations are integrated numerically using an improved 

Euler method. The improved Euler method is a predictor-corrector method 

consisting of two steps; first predicted values are calculated using the forward 

Euler method, these predicted values are then used to calculate the predicted 

rate of change at the next time instant, with the final update performed using the 

mean of the rate of change at the previous and next time instances. Integration 

of the dislocation velocity is performed using an analytical solution which is 

available in (Krasnokov, et al., 2011).  

7.2.1 System of equations  

The first step in the update of the deviatoric stress is the rotation of all variable 

into the material coordinate system. The lattice vectors calculated during the 

initialisation are determined in the material coordinate system, but the strain rate, 

strains and stress are all stored in the global coordinate system.  This 

transformation is achieved simply by applying the rotation matrix, determined 

from the element coordinates and input material axes options, to the tensors of 

interest.  

With all the history variables now in the same coordinate system, update of the 

deviatoric stress can be calculated.  

The first steps of the deviatoric stress update are the calculations of the material 

stiffness and compliance matrices from the input material properties.  
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Now calculate the ij  tensor required for the generalised pressure update: 
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Next, the deviatoric part of the Piola-Kirchhoff stress tensor is defined, according 

to the decomposition outlined in section 3.10: 

 
n

n D n P S S ψ   (7.4) 

With the rate of deviatoric stress defined: 
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Trial stress is now calculated. This is done by making the assumption that the 

increment is elastic deformation only. The trial value (denoted by the superscript 

asterisk) is obtained at the middle of the time step by: 
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The rate of trial elastic deformation now defined: 
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Equation (7.7) in combination with equation (7.8) yields: 
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The increment of the trial second Piola Kirchhoff stress is then obtained as: 
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And then used to calculate the increment of the deviatoric stress: 

 

1 1 1
˙ ˙ ˙2 2 2

1
1 1 1

2 2 2

1
1 1 1

2 2 2

1
:

3

1
: 1 Δ

2

1 1
: 1 Δ :

3 2

n n nn

e

n n nn

e

t

t

  


  


  

 
  
 
 

 
  

 

  
      

* * *n D n n

S S S ψ ψ

C d d

C d d ψ ψ

   (7.11) 

Deviatoric part of stress is then updated in the isoclinic configuration: 
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The main plasticity calculation is now ready to be performed. The first step of this 

is the calculation of the slip deformation and slip spin tensors, by  
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Which are later used to resolve the plastic strain increments in the correct 

directions, as well as being used in the update of the lattice vectors.  
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Next summation of the immobile dislocation density over all slip systems is 

performed in order to set up the calculation of the yield strength, where 
n

I  is 

the current total immobile dislocation density, 
n n

I I 



  .  

 
0

n n

I IY Y A Gb     (7.15) 

The mechanical force acting on the dislocations is now calculated from the 

deviatoric stress: 

 
n n n n

D ik i kF S b n
  (7.16) 

Which allows for assessment of whether plasticity will occur on the slip system 

 . For plasticity to occur, the resolved force driving dislocation motion must have 

a greater magnitude than the static friction inherent in the lattice, 1
2 bY , which is 

summarised by the plasticity criterion:  

 
1

2

n n

DF b Y   (7.17) 

If the mechanical force has a magnitude lower than the static friction, a purely 

elastic response is assumed on that slip system, with the remainder of the 

plasticity calculation skipped, and the plastic strain rate set to zero for the slip 

system. However, assuming the mechanical force has greater magnitude than 

the static resistance, mobile dislocations will move and plasticity will occur on the 

slip system.  

The dynamic drag coefficient and the shear wave speeds are now calculated by 

equations (7.18) and (7.19), respectively.  
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The rate of generation of new mobile dislocations and the rate of immobilisation 

of dislocations, respectively, at the current time are now calculated for use in the 

first stage of the dislocation density updates.  
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  (7.20) 

  0

n n n

I I D IQ V        (7.21) 

The results of equations (7.20) and (7.21) are now used in for the calculation of 

the rate of change of the dislocation densities at the current time instant: 

  2n n n n n n n

D D I a D D D IQ Q k b V               (7.22) 

 n n n n n

I I a D D IQ k b V          (7.23) 

The forward Euler is now applied to determine the ‘predicted’ values of updated 

dislocation densities, with the superscript asterisk indicating the value is a 

predicted value.  
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Next the dislocation velocity is updated using the analytical solution found in 

(Krasnikov, Mayer and Yalovets, 2011): 
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 (7.26) 

The predicted rate of immobilisation at the next time instant is now calculated 

using the results of (7.24), (7.25) and (7.26).  

  * 1 * 1 * 1

0

n n n

I I D IQ V          (7.27) 
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And the rate of generation of new mobile dislocations:   
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Now the predicted rates of change of dislocation densities are determined:  

 * 1 * 1 1 * 1 * 1n n n n n

I I a D D IQ k b V              (7.29) 

  * 1 * 1 * 1 1 * 1 * 1 * 12n n n n n n n

D D I a D D D IQ Q k b V                     (7.30) 

The final values of the dislocations densities at the next time step are now 

determined using a centred difference approach applied to the rates of change 

calculated at the current time step and the predicted rate at the next time step:  

  1 * 11

2

n n n n

I I I It             (7.31) 

  1 * 11

2

n n n n

D D D Dt             (7.32) 

With the dislocation densities and dislocation velocity now updated, update is 

made of the plastic strain rate tensor. This is achieved by summation over all slip 

systems, with the slip deformation tensor, determined by equation (7.13) 

resolving the direction of each slip system in the overall plastic strain rate tensor:  

 
1 1 1n pl n n n

ij D Dslpdef V b        (7.33) 

With update of the plastic strain tensor made using the implicit Euler method:  

 
1 1n pl n pl n pl

ij ij ij t        (7.34) 

The plastic strain tensor is now updated and is used to scale the deviatoric stress 

to obtain the current value.  

The rate of plastic deformation is now used to update the elastic deformation: 
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Finally, the deviatoric parts of the second Piola Kirchhoff and Mandel stresses 

are found: 
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   (7.38) 

By combining the results from equations (7.37) and (7.38), this results in the 

updated deviatoric Piola Kirchhoff stress at the end of the time step as:  
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The deviatoric stress update is now complete. The stress update is completed by 

the pressure update, which is determined from the equation of state.  

 

7.2.2 Update of the pressure by the Gruneisen equation of state 

In order to update the pressure, and therefore complete the stress update in to 

the current configuration, the internal energy, which is stored in the DYNA3D 

code, must first be calculated. The internal energy stored by DYNA3D, 𝑒, differs 

from the internal energy used in the development of the model, 𝑢, as the stored 

energy is divided by the initial volume, whereas the internal energy used in the 
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model development is given per unit volume. The two values are related by 

(Djordjevic, 2011): 

 
1

u e
v

     (7.40) 

The rate of change of internal energy is now given as: 

 : ee v Σ d    (7.41) 

Which has made use of the definition of 𝑢 given in (Djordjevic, 2011). 

As with other internal variables, the update is calculated by solving equation 

(7.41) using the central difference algorithm: 
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Expansion of (7.42) by inclusion of the decomposition of the stress, as is outlined 

in section 3.10 results:  
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The pressure term is now written in terms of the pressure at the beginning and 

end of the time step by application of the central difference algorithm to 𝑃̃̅
𝑛+1

2⁄
, 

and the internal energy is modified slightly to account for an artificial viscosity that 

is used in DYNA3D, resulting in the trial value of internal energy: 
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With 𝑒 given at the end of the time step as: 
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The internal energy that is stored in DYNA3D is updated by: 
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The updated internal energy is now used to calculate the update of pressure 

which is given by: 
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Where 𝐴𝑛+1  and 𝐵𝑛+1  are determined by loading type. Substitution of (7.45) into 

(7.47) leads to: 

 

*1
121 1 1 1

1 1 12 2 2

0 0

1 : Δ
2

n n
n n n nn n n

e e

v e
P B t A B

v v

 
     

 
   
 
 

C ψ d    (7.48) 

Which gives the pressure update in terms of the trial value of the specific internal 

energy as: 
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The pressure update now completes the internal energy update given in equation 

(7.45). With the pressure update calculated, and the deviatoric update from 

before, the full Mandel stress tensor can be updated, and therefore pushed 

forward into the current configuration resulting in 𝝉𝑛+1 : 
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This completes the stress update in the model. 

 

 



 

96 

7.3 Flowchart of subroutines of new material model in DYNA3d 

This section presents a flowchart overview of the subroutines of the new material 

model in DYNA3d.  

The flow chart presented below consists of three regions, each contained within 

a coloured box. The subroutines contained within the black box are the 

subroutines required for the input phase of the model. These subroutines have 

the purpose of reading in the simulation data to the main DYNA3d database. The 

subroutine highlighted in green is a new subroutine developed for the new 

material model and reads in model specific data.  

The subroutines contained within the green box are the subroutine which control 

the initialisation phase of the simulation. As with the input subroutines, the 

subroutines highlighted in green are developed for the new material model. The 

first of these, inse224.f sets the initial values of the material model variables to 

zero, and the second, slpsys.f determines the slip system vectors for the structure 

of the material being modelled. At present this subroutine is only capable of 

determining the slip systems for FCC and BCC crystals.  

The final set of subroutines, contained within the red box are the subroutines in 

the solution phase. These subroutines contain the main plasticity model and 

control the evolution of the model.  

The subroutine in the solution phase highlighted in blue, f3dm224.f, contains the 

main constitutive model, and it is in this subroutine that the new dislocation 

dynamics based model sits. Also in the solution phase, the subroutine 

mat224_csq.f has been modified. This subroutine is used for time step control. 

Finally, the subroutines hieupd224.f and eqos224.f have been modified. These 

subroutines calculate the internal energy update required by the equation of state, 

and compete the stress update using equation of state data, respectively.   
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7.4  Artificial viscosity  

It has been discussed in chapter 4 that a shockwave propagates as a 

discontinuity, with jumps in pressure, density, particle velocity and energy. In 

order to simulate this stably, the DYNA3d hydrocode adds an artificial bulk 

viscosity, which effectively smear the shock front over a few element. The form 

of the artificial viscosity added by DYNA3d has the form :  

  2

0 kk l kkq l C l C a      when 0kk     (2.52) 

 0q    when 0kk   

Where q  is the artificial viscosity,   is the mass density, 3l v  where v  is the 

volume, kk  is the strain rate, a  is the local speed of sound and lC  and 0C  are 

dimensionless constants.  

The dimensionless constants oC  and lC  are commonly referred to as the 

quadratic and linear constants, respectively, and have default values of 1.5 and 

0.06. Effectively in simulations, the quadratic constant controls the number of 

elements over which the shock is smeared, and the linear term damps out noise 

behind the shock front. Following an analysis of the sensitivity of the new 

material model to artificial viscosity, see Appendix B, it is concluded that an 

increased value of lC  is required, with the value of 0.1 being optimal. 

In addition to the increased shock viscosity values, a decreased time step scale 

factor of 0.1 (default =0.9) is required. This is due to the numerical methods 

used within the model and provides stability.  

7.5 Summary 

This chapter has presented an algorithmic style system of discretised equations 

that replicate those implemented in the DYNA3d hydrocode. For stability a 

decreased time step scale factor of 0.1 is required (default = 0.9).  
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8 Validation of the new material model for face centred 

cubic (fcc) metals 

Following the implementation of the new material model presented in chapter 7, 

validation of the model is presented in this chapter. Validation has been achieved 

in two stages; stage one consisted of single element tests, with comparison made 

between the new material model and an existing, previously validated model 

available in DYNA3d, and stage two consisted of simulation of plate impact 

experiments, with comparison made between the simulations and experimental 

data. Finally, analysis is made of the new models ability to reproduce superelastic 

precursor behaviour.  

8.1 Stage one validation: single element compression and 

tension tests 

The first stage of testing is conducted using simple single element tests, whereby 

a single cubic solid element has been created, constrained and loaded depending 

on the test. The single element tests utilised in this work represent an unphysical 

situation, however the use of these is of benefit as, but performing the tests with 

the new material model and an existing, previously validated model available in 

DYNA3d, it is possible to verify that the stress calculated by the new material 

model is correct. For the sake of brevity, two identical single elements have been 

created, one modelled using the new material model and the second using an 

existing model in DYNA3d under identical conditions. The element modelled 

using an existing model in DYNA3d is used as a reference model for the 

comparison of calculated stress. The MTS model, outlined in section 2.1.4 is used 

as the reference model.  
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Figure 8-1: Two single elements created with the node numbers shown 

 

Figure 8-2: Geometry and loading condition of the single element tests 

The geometry of the single elements is shown in Figure 8-2, with the applied 

nodal constraints outlined in Table 8-1. Loading is applied in the form of a 

prescribed velocity in the z-direction, to the nodes unconstrained in the z-

direction. The prescribed velocity ensures that these nodes have a constant 

velocity throughout the test, which in turn will provide a constant strain rate. The 

prescribed velocity has a magnitude of 500 m/s. The direction of the velocity is 

reversed in separate tests to ensure both compressive and tensile loading is 

tested. The prescribe velocity used ensures that the strain rate observed in the 
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single element models is of the order of 107s-1 which is typical of the strain rates 

observed during shock loading.  

At the strain rates observed in the single element tests, the reference MTS model 

is performing outside of limit of applicability, however, due to the non-physical 

nature of these tests, and that the main purpose is to ensure the new model is 

calculating sensible stress levels, use of the MTS model as a reference can be 

justified.  

Table 8-1: Nodal constraints applied to single element tests. 

Nodes Constraints for uniaxial strain 

1, 2, 5, 6, 9, 10, 13, 14 x, y, z 

3, 4, 7, 8, 11, 12, 15, 16 x, y 

 

The single element tests are run using the material properties and parameters of 

aluminium along with the Gruneisen equation of state parameters for aluminium 

(Steinberg, 1996), summarised in Table 8-2. 

Table 8-2: Gruneisen equation of state parameters for Aluminium (Steinberg, 1996) 

Equation of state 

parameter 

Value for Al 

Velocity curve intercept, C   0.52 cm/µs 

First slope coefficient, 1S   
1.36 

Gruneisen coefficient, 0   
2.2 

First order volume correction 

coefficient, a   

0.48 

The single element tests are performed over a time period of 0.5ns. This short 

time period is used to analyse the performance of the model as, at times greater 
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than 0.5ns, the total strain exceeds 20% which is far beyond the physically 

achievable value in metals. 

8.1.1 Analysis of the stress histories in the single element tests 

Comparison of the stress histories calculated by the new material model and the 

reference MTS model for the single element compression tests are made in 

Figure 8-3 - Figure 8-5. 

Figure 8-3 and Figure 8-4, comparing the X and Y stress components, 

respectively, show that the values calculated by the new material model follows 

the values calculated by the reference MTS model, with a maximum discrepancy 

of 6%. Notably, it is observed that at a time of 0.0003µs (0.3ns) a kink appears in 

the traces of the X and Y stresses of the new material model. This kink can be 

explained as this is the instant in time where plastic deformation is initiated.  

 

 

Figure 8-3: Comparison of the X-stress component history of the new material 

model and the reference MTS model for the single element compression test. 

The z-stress history, shown in Figure 8-5, shows an over estimation of the 

magnitude of the z-stress obtained by the new material model when compared to 



 

103 

the reference MTS model, before relaxation to a value within 6% of the MTS 

value. This large overshoot, 25% at the most extreme, can be expected as an 

overshoot of the elastic stresses is a motivating factor for this work, and a feature 

that cannot be reproduced by existing models implemented in DYNA3d. Figure 

8-6 verifies that the time instant of 0.0003µs does indeed correspond to the onset 

of plasticity, as it can be seen in Figure 8-6 that this is when plastic strain starts 

to evolve. The onset of plastic deformation relaxes the overestimated Z-stress 

value to a level that agrees with the reference model, within 6%.  

The calculated strains shown in Figure 8-6 show that the over rate of strain 

appears to be constant. This is due to the conditions applied to the driven nodes 

in the single element tests. The nodes are driven at a constant velocity, and 

therefore a constant rate of strain is observed. It would be expected that the rate 

of strain would harden, similar to the rate of plastic strain presented in Figure 8-6, 

if the loading conditions were different.   

Figure 8-7 - Figure 8-9 show the same stress histories obtained in the tension 

tests, with the same features as the compression tests being observed. In line 

with the compression tests, the z-stress calculated using the new material model, 

presented in Figure 8-9, shows an initial over estimation compared to that of the 

reference model, before relaxing to a level within 6% of the MTS value. Similar to 

the single element compression test, this overshoot behaviour can be expected 

as this is one of the key motivations for this work. It is seen in Figure 8-10 that 

the relaxation of the Z-stress corresponds to the time instant that the plastic strain 

begins to evolve. This confirms that the onset of plasticity provides the 

mechanism to relax the z-stress. The observation of this expected behaviour, 

along with the relaxed stress values agreeing within 6% of the MTS model 

confirms the first stage of validation.  
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Figure 8-4: Comparison of the Y-stress component history of the new material 

model and the reference MTS model for the single element compression test. 

 

Figure 8-5: Comparison of the Z-stress component history of the new material 

model and the reference MTS model for the single element compression test. 
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Figure 8-6: Strain and plastic strain history for the single element compression 

test. 

 

Figure 8-7: Comparison of the X-stress component history of the new material 

model and the reference MTS model for the single element tension test. 
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Figure 8-8: Comparison of the Y-stress component history of the new material 

model and the reference MTS model for the single element tension test. 

 

Figure 8-9: Graph showing a comparison of the z-stress calculated using the new 

material model and the z-stress calculated using the MTS model in the single 

element in tension. 
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Figure 8-10: Comparison between z-stress and z-plastic strain time history for 

single element tension test calculated using the new material model 

 

8.1.2 Analysis of the evolution of the dislocation based variables 

Evolution of the dislocation densities are shown in Figure 8-11, Figure 8-12, 

Figure 8-13 and Figure 8-14 with the slip system numbering defined in Table 8-3. 

Due to the un-physical nature of the single element tests, and the vastly different 

nature of the formulation of the new model, comparison of the values of the three 

dislocation based state variables against experimental data or a reference model 

is not possible. However, analysis of these are still of significant use for ensuring 

the correct trends of each are observed and that the values achieved are 

reasonable.  

Due to the geometry of the single element test, the slip systems which are 

perpendicular to the loading direction are expected to remain inactive throughout 

the duration of the single element tests. The expected inactive slip systems are 

the systems with planes with zero Z component, systems 3, 5, 8 and 12 in Table 

8-3: Definition of the slip system numbering for fcc metals. The time histories for 
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the mobile and immobile dislocation densities are plotted in Figure 8-12 and 

Figure 8-14, respectively. It is seen in both Figure 8-12 and Figure 8-14 the values 

of the dislocation densities remain constant at the initial value, implying that no 

plastic evolution occurs on these slip systems, as expected.  

The time histories of the mobile dislocation density for the remaining 8 active slip 

systems is shown in Figure 8-11, and the time history of the immobile dislocation 

densities for the 8 active slip systems in Figure 8-13. It is observed in both Figure 

8-11 and Figure 8-13 that evolution of densities on each active slip system is 

identical. This behaviour is expected, as due to the geometry of single element 

tests, each of the eight active slip systems are equivalent with respect to the 

direction of loading.  

 

 

Figure 8-11: Mobile dislocation density history for the 8 active fcc slip systems in 

the compressed single element 
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Figure 8-12: Mobile dislocation density history for the 4 inactive fcc slip systems 

in the compressed single element 

Evolution of the mobile dislocation density, Figure 8-11, is observed to initiate 

with the onset of plasticity, ~0.3ns, with the value then rising sharply to a peak of 

11 22.5 10 cm  . In this region, the generation term in equation (6.17) is dominant, 

with little dislocation immobilisation or annihilation occurring. After reaching this 

peak value, the mobile dislocation density beings to decrease. This occurs at the 

same instant in time (0.3ns), seen in Figure 8-13, as the start of significant growth 

in the immobile dislocation density. The rise in immobile dislocation density 

indicates that the second term in equation (6.17) is now more significant, with 

strong dislocation annihilation also indicated by the order of magnitude difference 

between the decrease in mobile dislocation density and the rise in immobile 

dislocation density.  

Observations of these trends verify that the model is performing as expected as 

these patterns and trends identified follows those outlined in section-5.13 where 

the multistage nature of strain hardening is discussed.   
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Table 8-3: Definition of the slip system numbering for fcc metals. 

Slip system number Slip system 

1  011 111    

2  101 111    

3  110 111    

4   101 111  

5   110 111  

6  011 111    

7   011 111  

8   110 111  

9  101 111    

10   011 111  

11   101 111  

12  110 111    

 

 

Figure 8-13: Immobile dislocation density history for the 8 active fcc slip systems 

in the compressed single element 
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Figure 8-14: Immobile dislocation density history for the 4 inactive fcc slip 

systems in the compressed single element 

8.2 Insight into plate impact tests  

The plate impact test is a useful method of generating shocks in materials in a 

laboratory. The plate impact test typically consists of a flyer plate attached to a 

projectile, called a sabot, being fired from a gas gun towards a stationary target 

plate. The plates are normally aligned so that the impacting faces are perfectly 

parallel at impact. Upon impact, providing the velocity of the flyer plate is suitably 

high, both the target plate and the flyer undergo deformation in the uniaxial strain 

regime, with the presence of shock waves. The typical plate impact experimental 

set up is shown in Figure 8-15 where target plate is impacted by a flyer plate 

attached to a sabot and fired from a gas gun. The instrumentation typically used 

to measure the acceleration of the flyer plate upon impact is termed Velocity 

interferometer system for any reflector (VISAR) which uses laser interferometry 

to measure velocity. Plate impact data used within this work is obtained in this 

way with a sampling rate of 1011s-1 with an accuracy of ±1m/s.   
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Figure 8-15: Schematic diagram of a typical plate impact test, consisting of a 

flyer plate fired from a gas gun into a target plate, with the rear surface velocity 

of the target measured using VISAR.  

A key property of the plate impact test is the geometry of both the flyer and target 

plates. To ensure a state of uniaxial strain is maintained during the time of 

propagation of the shock, the thickness of the plates must be small in comparison 

to the dimensions of the plate perpendicular to the direction of impact. This 

ensures that release waves from the edges of the plate do not reach the central 

cross section of the plate, from which the shock response is measured.  

When simulating plate impact tests, only the central cross section of the plates 

are simulated, with symmetry boundary conditions applied along the faces along 

the direction of impact. Application of these conditions ensures accurate 

representation of the relatively large dimensions of the plates is achieved. Setting 

the simulation up in this manner ensures a state of uniaxial strain is maintained 

throughout, which is a reasonable approximation over the time scales of interest.  

A typical measurable output of a plate impact experiment is the particle velocity 

at the rear surface of the target plate. Figure 8-16 shows an idealised rear surface 

velocity plot, displaying the main features observed experimentally.  
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Figure 8-16: Idealised rear surface velocity plot 

It is seen in Figure 8-16 that two accelerations of the rear surface occur. Firstly, 

a small acceleration is observed, which coincides with the precursor wave arriving 

at the rear surface. This is followed by a steep jump in the velocity, which is 

caused by the main shock front arriving at the rear surface. Finally a decrease in 

the velocity is observed due to the release wave.  

The main features of the rear surface velocity plot are controlled by the material 

properties, the impact velocity and the geometry of the plates. Firstly, the width 

of the precursor pulse is controlled by the difference in velocities of the elastic 

wave and the main shock front. In the case of strong shocks, this difference will 

be minimal, and the precursor response may not always be observed. The width 

of the main shock pulse is typically controlled by the flyer plate thickness. The 

duration of this pulse is typically twice the time taken for the shock in the flyer 

plate to reach the rear surface of the flyer. Reflection of this shock from the rear 

surface of the flyer results in the release wave propagating first through the flyer 

and then the target plate. The amplitude of the rear surface velocity is determined 

by the impact velocity of the flyer plate.  

It should be noted that experimentally additional spall pulses will be observed 

after the release , however analysis of these are omitted from this work due to 
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this typically being accepted as the region in which damage is initiated, which is 

currently not included in the developed material model.  

Validation of the material model is made by comparison of simulation data against 

experimental rear surface velocity data for aluminium and copper, with rear 

surface data available for single crystal tantalum used when investigating the 

application of the model to bcc material.   

 

8.3 Simulation of plate impact tests using the new material 

model  

The second stage of model validation was performed by simulation of plate 

impact tests, with comparison made to experimental data obtained in a similar 

fashion to the experimental techniques outlined in the previous section.  

Plate impact simulations were performed for two materials; single crystal 

aluminium and single crystal copper, both of which have an fcc structure. The 

mesh computational mesh generated consisted of a single continuous mesh 

divided into two regions; a target plate region and a flyer region. The nodes in the 

flyer plate section of the mesh were assigned an initial velocity equal to the flyer 

plate impact velocity of the corresponding experimental data, while the nodes in 

the target region have an initial velocity of zero.  

The aluminium plate impact test consisted of a 2.9mm target plate, impacted by 

a 0.4mm target plate at a velocity of 660 m/s. The mesh generated to model this 

consisted of a single continuous mesh divided into two regions; a flyer region, 

with the nodes assigned an initial velocity of 660m/s in the z-direction, and a 

target region, with the nodes initially stationary. The mesh was generated in this 

way to eliminate the need of a contact algorithm. Figure 8-17 shows a schematic 

diagram of the mesh generated.  
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Figure 8-17: Diagram of the computational model generated for modelling single 

crystal aluminium plate impact test. The x and y dimensions are not to scale here 

and have been expanded for clarity. 

Impact is made along the z-direction, with the material coordinate system aligned 

with the global coordinate system. This results in the single crystal effectively 

being impacted along the [001] crystal direction. Following mesh density studies, 

detailed in Appendix A, 4000 elements are used along the z-direction of the target 

plate, corresponding to an element size of 0.725µm.  To ensure the conditions 

for uniaxial strain are met, symmetry planes are applied along the faces 

perpendicular to the impact faces.  

Similarly, the copper plate impact simulations are set up in the same way, with 

only the dimensions and impact velocity different to match experimental values. 

Two copper plate impact tests are simulated, firstly a 0.7mm thick copper target 

is impacted by a 0.2mm thick aluminium flyer at a flyer velocity of 560m/s, and 

the second test having a 4.2mm thick copper target impacted by a 0.4mm thick 

aluminium flyer at 660m/s. The same mesh density is used as in the aluminium 

plate impact tests. Full data samples are taken every 5ns for the aluminium plate 

impact test and both the copper plate impact tests.   

The material model parameters used for modelling both single crystal aluminium 

and single crystal copper are summarised in Table 8-4, with the values taken 

from (Mayer, et al., 2013), and the equation of state input parameters, available 

in (Steinberg, 1996) shown in Table 8-5.  
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Table 8-4: Material model parameters for aluminium and copper (Mayer, et al., 

2013). 

Model 

parameter 

Parameter Definition  Aluminium Copper Equation 

parameter 

required for 

  Young’s Modulus 62.4 GPa 117 GPa  

G  Shear modulus  24 GPa 47.7 GPa  

  Poissons ratio  0.34 0.337  

0
  Dislocation 

immobilisation threshold  

107 cm-2 107 cm-2 6.21 

g
k  

Coefficient of generation 

of mobile dislocations  

7.9 x 1019 J-1 7.9 x 1019 J-1 6.19 

a
k  Coefficient of 

annihilation of 

dislocations  

10 10 6.18 

I
A  Hardening parameter 6 4 6.14 

I
V  Characteristic velocity of 

dislocations during 

immobilisation  

5 ms-1 2 ms-1 6.21 

  Debye temperature  430 K 280 K 6.16 

0
Y  Resistance due to 

Peierls barrier 

22 MPa 30 MPa 6.14 

0
m  Effective mass of 

dislocation  

10-16 kgm-1 10-16 kgm-1 6.13 

0a   Lattice constant  4.046 Å 3.610 Å 2.1 
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Table 8-5: Gruneisen equation of state parameters for aluminium and copper 

(Steinberg, 1996). 

Equation of state 

parameter 

Aluminium  Copper 

Velocity curve intercept, C   0.52 cm/µs 0.394 cm/µs 

First slope coefficient, 
1

S   1.36 1.489 

Gruneisen coefficient, 
0
   2.2 2.02 

First order volume correction 

coefficient, a   

0.48 0.47 

 

In both the aluminium and copper plate impact test cases, the rear surface 

particle velocity is measured and compared to experimental data (Kanel, et al., 

2001) (Kanel, et al., 1996). The results of the aluminium plate impact test is 

shown in Figure 8-18 and of the copper plate impact tests in Figure 8-19 and 

Figure 8-20.  
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Figure 8-18: Comparison of simulation and experimental rear surface velocity data 

for a 2.9mm thick aluminium target impacted by a 0.4mm thick aluminium target 

at 660m/s. Experimental data taken from (Kanel, et al., 2001) (Mayer, et al., 2013) 

 

Figure 8-19: Comparison of simulation and experimental rear surface velocity data 

for a 0.7mm thick copper target impacted by a 0.2mm thick aluminium flyer at 

560m/s. Experimental data taken from (Kanel, et al., 1996) (Mayer, et al., 2013). 
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Figure 8-20: Comparison of simulation and experimental rear surface velocity data 

for a 4.2mm copper target plate being impacted by a 0.4mm aluminium flyer at 

660m/s. Experimental data taken from (Kanel, et al., 1996) (Krasnokov, et al., 2011) 

It can be seen in Figure 8-18 that the simulation over predicts the rear surface 

velocity by approximately 3%. This minor discrepancy could be due to a slight 

difference in the flyer plate impact velocity between the experimental data and 

the simulation set up, due to a incorrectly recorded experimental measurable. 

In the case of the copper plate impact tests, shown in Figure 8-19 and Figure 

8-20, the rear surface velocity predicted by the simulations show a very close 

agreement to the experimental data, indicating that the model captures this 

correctly.  

Additionally, large discrepancies are observed in both the aluminium and copper 

plate impact tests during the unloading, or release. The simulation over-predicts 

the stress amplitude by approximately 14% for the aluminium plate impact and 

20% for the copper plate impact at the most extreme. This behaviour is expected 

as the current model only accounts for plasticity and does not incorporate 
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damage, and it is this region of the rear surface velocity graphs that the effects of 

damage would be seen.  

Each of Figure 8-18, Figure 8-19 and Figure 8-20 shows that the simulated data 

predicts a small acceleration of the rear surface due to the arrival of the precursor 

wave, however this is not clearly apparent in the experimental data. This could 

be due to the lack of clarity in the experimental curve surrounding the initial rise 

in velocity.  

Finally, the pulse durations in both Figure 8-18 and Figure 8-19 show a very good 

level of agreement between the simulation data and the experimental data, with 

differences of less than 1% observed in both cases. This confirms the model is 

suitable and valid for modelling of shock induced plasticity in fcc metals. 

 

8.4 Analysis of dislocation history variables in plate impact  

One of the advantages of using a dislocation based model over a more traditional 

continuum model, for example the MTS model, is that additional to the output 

stresses and strains, details about the state of the microstructure can be 

obtained. Here an analysis is made of the dislocation based state variables. The 

analysis is made for the copper plate impact test with a 0.7mm thick target. Similar 

analyses have been made for the aluminium plate impact and the 4.3 mm thick 

target copper plate impact, but for the sake of clarity, only the 0.7mm thick copper 

plate impact analysis is presented here. 

The analysis is carried out by analysis of the dislocation state variables, the 

longitudinal stress and the nodal velocity in an element 20µm from the rear 

surface. This element is selected as it is sufficiently far back from the rear surface 

for boundary effects not to have an effect.  
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Figure 8-21: Plot showing the evolution of the mobile dislocation density in an 

element 20µm from the rear surface.of a 0.7mm thick copper target that is 

impacted by a 0.2 mm thick aluminium flayer at a velocity of 560 m/s. The 

deviatoric z-stress history is also plotted to aid understanding.  

Analysis of the density of mobile dislocations is shown in Figure 8-21. Due to the 

symmetry of the slip planes relative to the loading direction, the mobile dislocation 

density history of only one slip system is presented. Eight slip systems have a 

mobile dislocation density history identical to this, with the remaining four, the 

four with directions perpendicular to the loading direction (i.e. [110] or [-110]) 

remaining constant throughout due to these being inactive.  

It is seen in Figure 8-21 that the density of mobile dislocations grows significantly, 

from initial values of the order of 105 cm-2, on the shock front, before remaining 

fairly constant behind the shock, with a slightly decreasing trend. This behaviour 

is explained by the fact that it is the deviatoric component of the stress that drives 

dislocation motion, and consequently the generation of mobile dislocations, which 

is seen in Figure 8-22 to have a near zero value behind the shock front. 

Additionally, Figure 8-22 shows that the dislocation velocity returns to zero behind 
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the shock front, further confirming that the mobile dislocation density should not 

increase in this region.  

The slightly decreasing nature of the mobile dislocation density at times between 

0.18 and 0.22ns can be explained by Figure 8-23. It is observed here that the 

density of immobile dislocations grows steadily behind the shock front, which  

indicates that mobile dislocations are being immobilised in this region and 

therefore the growth of immobile dislocations results in a decrease of mobile 

dislocation density.   

 

Figure 8-22: Dislocation velocity history compared to deviatoric component of z-

stress in an element 20µm from the rear surface of a 0.7mm thick copper target 

plate that is impacted by a 0.2mm thick aluminium flyer plate at a velocity of 560 

m/s.  
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Figure 8-23: Plot showing the evolution of the immobile dislocation density in an 

element 20µm from the rear surface.of a 0.7mm thick copper target that is 

impacted by a 0.2 mm thick aluminium flayer at a velocity of 560 m/s. The 

deviatoric z-stress history is also plotted to aid understanding.  

 

8.5 Investigation of precursor decay using symmetric plate 

impact tests  

It was identified in chapter 2 that the main motivation for the development of this 

model was due to its ability to reproduce the initial overshoot of the amplitude of 

the precursor wave, with decay occurring over short (nanosecond) time scale. 

Investigation into the ability of the model to reproduce this behaviour when 

implemented in the framework of the orthotropic continuum model is assessed 

with the simulation of a symmetric plate impact.  

The symmetric plate impact is simulated using a single, continuous computational 

mesh split into two regions of equal size, see Figure 8-24. Similar to the single 

crystal aluminium plate impact tests, impact is made in the z-direction, with the 

material axes defined so that this corresponds to impact along the [001] 
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crystallographic direction. Both plates are assigned an initial velocity of 250m/s 

directed towards the centre of the mesh, resulting in a relative impact velocity of 

500m/s. A diagram of the computational mesh is shown in Figure 8-24, where it 

can be seen that 1000 elements are modelled along the z-direction of both plates, 

with an initial element size of 0.725 µm. This provides a suitable mesh density 

required to capture the features of interest.  

 

Figure 8-24: Diagram of the computational mesh generated for simulation of the 

symmetric plate impact. The x and y dimensions are not to scale, having been 

expanded for clarity of the image.  

The material parameters for aluminium provided in Table 8-4 are input, with the 

equation of state parameters from (Steinberg, 1996) displayed in Table 8-5. The 

initial value of density of mobile dislocations is 106 cm-2 and the initial value of the 

density of immobile dislocations is 106 cm-2, which follows values reported in a 

similar model by Krasnikov (Krasnokov, et al., 2011).   

The longitudinal stress component is plotted against distance into the target, with 

the interface between the two regions of the mesh taken to be the zero point, at 

time intervals of 2, 5, 10 and 20 nanoseconds.  

It is seen in Figure 8-25 that a two-wave structure is formed, with the elastic 

precursor forming ahead of the main shock front and accelerating away from the 

shock front. The amplitude of the precursor wave is observed, 2ns after impact, 

to have an amplitude similar to the level of the main shock front, before decaying 

over the nanosecond timescale.  

This precursor decay is widely explained as being caused by an insufficient initial 

density of mobile dislocations available to dissipate excess shear stress. This 

explanation can be verified by Figure 8-26, whereby the same wave profiles as 

in Figure 8-25 are presented, only with the simulation having been set up with the 



 

125 

initial mobile dislocation density increased by an order of magnitude to a value of 

107 cm-2.  

 

Figure 8-25: Longitudinal stress vs distance in the target plate 2, 5, 10, 15 and 20ns 

after the impact; with an initial total mobile dislocation density of 106cm-2. 
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Figure 8-26: Longitudinal stress vs distance in the target plate 2, 5, 10, 15 and 20ns 

after the impact; with an initial total mobile dislocation density of 107 cm-2. 

8.6 Summary 

A two stage validation process has been carried out, indicating that the new 

material model is working as expected. The first stage single element tests have 

verified that the levels of stress calculated by the model are inline with those 

achieved by other, previously validated models. The second stage of validation, 

by simulation of plate impact tests, has shown a good level of agreement between 

the simulated data and experimental data available, with any discrepancies fully 

explained. Finally, investigation of the precursor wave behaviour over the 

nanosecond time scale after impact has shown that the model is capable of 

reproducing superelastic behaviour, as desired.   
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9 Application of the model to single crystal tantalum 

(bcc) 

The model presented in chapter 6 was primarily developed for fcc metals. In this 

chapter application of the model is made to a bcc metal in single crystal tantalum. 

The methodology used to achieve this is discussed, followed by the best result 

achievable using the model in the current form, and finally a discussion in made 

outlining the limitations of the model to this application and potential future 

developments are proposed.  

9.1 Determination of material model parameters for single 

crystal tantalum 

Assessment is made of the current models applicability to bcc materials by 

determination of a set of material parameters for single crystal tantalum and using 

these to simulate plate impact tests, for which experimental data provided by 

AWE is readily available for this work (Whiteman, et al., 2014).  

The first step of this application is the extension of the slip systems calculated 

during the initialisation phase. In the fcc model, a single set of 12 slip systems 

are calculated, the {111} <110> systems; however in the case of the bcc 

application three sets of slips systems are potentially active. These are the {110} 

<111>, {112} <111>, and {123} <111> systems, of which there are 12, 12 and 24 

systems, respectively, totally 48 slip systems. In line with the fcc model, these are 

calculated during the initialisation phase, with the material structure indicted (i.e. 

fcc or bcc) on the material input card.  

In addition to extension of the material model to account for 48 bcc slip systems, 

investigation was made into the determination of nine material model parameters, 

required for the plasticity part of the model. Four of these parameters, 
ak , 

0m ,
0  

and a  are available in open literature (Mayer, et al., 2013) (Krasnokov, et al., 

2011). The parameter  is the Debye temperature which is widely available in 

literature (Myers, 1997).   
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The remaining four parameters, being 
0Y , 

IA , 
gk  and 

IV , required fitting to the 

available experimental data for rear surface velocity. Investigation is made to 

determine the effect varying each of these parameters has on the rear surface 

velocity of a simulated plate impact test. The aluminium plate impact test, outlined 

in section-8.3 is used for this purpose. A series of simulations are run, with the 

value of one of the material parameters of interest changed, while all others retain 

the values outlined for the aluminium model. Data samples are taken every 5ns 

for each simulation. This relatively low sampling rate is sufficient for the purposes 

of this study as the data obtained is only required to provide an indication of the 

effect each variable has on the rests of the model.   This shows directly the effect 

of each of the parameters on the rear surface velocity trace. Figure 9-1 - Figure 

9-3 show the effects the material parameters 
0Y , 

IA , and 
IV , respectively, have 

on the rear surface velocity trace. It is seen in Figure 9-1 and Figure 9-2 that the 

parameters 
0Y  and 

IA  control the acceleration of the rear surface caused by the 

precursor wave. The parameter 
IV  is seen in Figure 9-3 to only effect the release. 

Despite 
0Y  and 

IA  also being observed to have effect in the release region, it 

was decided that these two parameters should be tuned to fit the precursor only, 

with the velocity parameter, 
IV  being used to tune the release.  

The final fitted parameter, the coefficient of generation of dislocations, 
gk , is 

founds to control the width and shape of the precursor signal.  
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Figure 9-1: Plot showing the rear surface velocity of a 2.9mm thick target plate 

impacted by a 0.4mm thick flyer plate at 660m/s. Material parameters for aluminium 

are used for the simulation, with the Y0 parameter being varied to assess the 

influence it has on the rear surface velocity. . 

 

Figure 9-2: Plot showing the rear surface velocity of a 2.9mm thick target plate 

impacted by a 0.4mm thick flyer plate at 660m/s. Material parameters for aluminium 

are used for the simulation, with the AI parameter being varied to assess the 

influence it has on the rear surface velocity. . 
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Figure 9-3: Plot showing the rear surface velocity of a 2.9mm thick target plate 

impacted by a 0.4mm thick flyer plate at 660m/s. Material parameters for aluminium 

are used for the simulation, with the VI parameter being varied to assess the 

influence it has on the rear surface velocity. . 

. 

9.2 Experimental single crystal tantalum plate impact data  

The single crystal tantalum plate impact data available (Whiteman, et al., 2014) 

consists of the rear surface particle velocity from three experiments. In each 

experiment a 4mm thick target plate is impacted by a 3mm thick flyer plate at an 

impact velocity of 726 ms-1. The crystallographic orientation of the target plate, 

relative to the impact direction, differs between each experiment, with data 

available for impact along the [100], [110] and [111] directions.  

9.3 Simulation of single crystal tantalum plate impact  

Simulation of the three single crystal tantalum plate impact experiments is made 

using a single mesh divided into two separate regions, a flyer region consisting 

of 4125 solid elements and a target region consisting of 5500 elements. Following 

mesh density studies, and inline with the validation performed for fcc materials, 

each element is initially cubic with the dimensions of 0.73 µm. The nodes in the 
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flyer region are prescribed an initial velocity of 726 ms-1, and the nodes in the 

target region are initially stationary. Symmetry boundary conditions are applied 

along the faces parallel to the impact direction to ensure the conditions for 

uniaxial strain are satisfied.  

The material parameters used for simulation of the tantalum plate impact are 

given in Table 9-1, and the equation of state parameters, available in (Steinberg, 

1996), shown in Table 9-2. 

Rear surface velocity curves for the plate impact tests are compared to the 

experimental data (Whiteman, et al., 2014) in Figure 9-4 to Figure 9-6.  For all 

impact directions, the amplitude of the precursor acceleration calculated in the 

simulations matches that of the experimental data.  There is a discontinuity in the 

experimental data set in Figure 9-4, at the time of the precursor pulse arrival at 

the rear surface.  This discontinuity is explained in (Whiteman, et al., 2014) to be 

caused by a temporary malfunction of the experimental equipment used.  

Additionally, the steep rise in velocity caused by the shock front successfully 

reproduces the same peak velocities as observed experimentally.   

The shock front velocity obtained in the simulation of impact in [100] direction 

given in Figure 9-4, shows a good agreement with the experimental results. It is 

seen in Figure 9-5 that the model over estimates the velocity of the shock slightly 

for impact in the [110] direction, with a more pronounced overestimation observed 

in Figure 9-6 for impact in the [111] direction. The discrepancies are between 1% 

and 3%. This discrepancy can well be a consequence of the assumptions made 

within the material model: Equation (6.14) is used with isotropic material 

constants and does not account for material dependency of the parameters 0Y  

and IA .  Equally, error in the fitting of material parameters could not be ruled out 

due the fitting of material parameters done with the experimental data for [100] 

impact, without any optimisation applied to minimise fitting errors across all 

available experimental data.  Lastly, the discrepancy could be a limitation of the 

current form of the model: while the dislocation kinetic equations have been 
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shown to accurately reproduce fcc metal behaviour, dislocation motion in bcc 

metals has additional complexities which may need to be accounted for.   

 

Table 9-1: Material model parameters for single crystal tantalum 

Model parameter Tantalum 

  186 GPa 

G  69 GPa 

  0.34 

0
  107 cm-2 

g
k  1 x 1018 J-1 

a
k  10 

I
A  0.1 

I
V  1 m/s 

  255 K 

0
Y  800MPa 

0
m  10-15 

a  3.306 Å 

 

Table 9-2: Gruneisen equation of state parameters for tantalum (Steinberg, 1996) 

Equation of state parameter Tantalum  

Velocity curve intercept, C  0.341 cm/µs 

First slope coefficient, 1
S  1.20 

Gruneisen coefficient, 0
  1.67 

First order volume correction 
coefficient, a  

0.42 
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An interesting feature of the simulation results is the successful prediction of the 

apparent kink which appears in the sharp rise of rear surface velocity in all test 

cases considered.  These kinks, also observed in characterisation of the shock 

loaded tantalum published in (Asay, et al., 2011) (Ding & Asay, 2011), can be 

seen to have different characteristics in the experimental data sets, with the [110] 

loading direction presented in Figure 9-5 being the most pronounced, a trait which 

is captured with a good degree of accuracy by the material model.  Analysis of 

the nodal velocity and stress time history, obtained in an element near to the rear 

surface and illustrated in Figure 9-7, shows that the kink in the velocity curve is a 

result of a temporary drop in the magnitude of the z-stress component. This 

temporary drop in the magnitude of the z-stress component can be explained by 

Figure 9-8. Figure 9-8 shows the time history of the mobile dislocation density for 

each slip system, plotted alongside the z-stress in an element near to the rear 

surface. It is seen that, the increase in the density of mobile dislocations occurs 

at different time instances for different sets of slip systems, implying that slip 

systems are activated at different time instances. The time instance of the drop 

in the magnitude of the z-stress component is the same time instant that the 

delayed slip systems are activated. This activation allows for a higher degree of 

plastic flow, and therefore the dissipation of a higher amount of shear stress. 

Similar analysis for the [100] and [111] loading directions show the same 

characteristics.   
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Figure 9-4: Comparison of simulation and experimental rear surface velocity data 

for a 4mm thick single crystal tantalum target plate being impacted by a 3mm thick 

tantalum flyer plate at 726 m/s. Impact is made along the [100] direction of the 

target.   
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Figure 9-5: Comparison of simulation and experimental rear surface velocity data 

for a 4mm thick single crystal tantalum target plate being impacted by a 3mm thick 

tantalum flyer plate at 726 m/s. Impact is made along the [110] direction of the 

target.   

Despite the discussed discrepancies between the simulation and experimental 

data, the main features of the experimental curves are reproduced in the 

simulation. The amplitude of the precursor acceleration is accurately reproduced, 

with the initial overshoot observed in the case of the [110] and [111] impact 

directions.  Additionally, the experimentally observed kink in the shock 

acceleration is reproduced in the simulations, with the unique character of each 

correctly predicted.  Further, the magnitude of rear surface velocity at which these 

features are observed shows a good level of agreement between the simulation 

and experimental data.  Finally, for all three test cases the maximum rear surface 

velocity is correctly predicted.   
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Figure 9-6: Comparison of simulation and experimental rear surface velocity data 

for a 4mm thick single crystal tantalum target plate being impacted by a 3mm thick 

tantalum flyer plate at 726 m/s. Impact is made along the [111] direction of the 

target.   
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Figure 9-7: Nodal velocity plotted against the z-stress component in an element 

near to the rear surface of a 4mm thick single crystal tantalum which has been 

impacted by a 3mm thick flyer plate at a velocity of 726m/s, with impact along the 

[110] axis of the target.    
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Figure 9-8: Mobile dislocation density of each slip system plotted alongside the z-

stress component in an element near to the rear surface of a 4mm thick single 

crystal tantalum which has been impacted by a 3mm thick flyer plate at a velocity 

of 726m/s, with impact along the [110] axis of the target.    

 

9.4 Additional bcc considerations 

From Figure 9-4, Figure 9-5 and Figure 9-6, it is seen that using a single set of 

material parameters for all three impact directions through the crystal does not 

accurately reproduce the experimental data available. The two main features that 

differ between the results for different impact directions are the amplitude of the 

precursor acceleration and the width of the precursor pulse.  

The reduced width of the precursor pulses for the [110] and [111] impact 

directions indicate that either the shock velocity or the velocity of the precursor 

pulse is incorrectly predicted. The shock velocity is controlled by the equation of 

state and the velocity of the precursor pulse by the elastic properties of the 

material. It is likely that this is a result of the elastic properties being treated as 

constants, and the material as isotropic. It is apparent from the Figure 9-4, Figure 
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9-5 and Figure 9-6, that single crystal tantalum is not isotropic and therefore 

further work is required to ensure the elastic properties used in modelling 

replicate this.  

The material parameter fitting process has shown that the amplitude of the 

precursor acceleration is directly controlled by the parameters 
0Y  and 

IA , both 

of which are influential in the yield strength calculation. It can therefore be 

concluded that the yield function used in the current model is insufficient for 

accurately modelling anisotropic single crystal tantalum, due to the function 

having a single value for all directions and slip systems.  

It is widely accepted that the yielding bcc crystals is more complex than the 

yielding of fcc crystals. This can potentially be attributed to the fact that there is 

an apparent breakdown of Schmid’s law in bcc crystals (Groger, et al., 2008) 

(Groger, et al., 2008) (Groger & Vitek, 2008) (Ito & Vitek, 2001) (Patra, et al., 

2014) (Qin & Bassani, 1992) (Weinberger, et al., 2012). Schmid’s law states that 

only the shear stress resolved in the direction of dislocation motion influences the 

movement of the dislocation. However, in bcc crystals it is found that dislocation 

slip is primarily carried ½[111] screw dislocations, which due to their nature are 

constrained by direction only and not by crystallographic planes. As a result of 

this, a screw dislocation with a direction of [111] can exist on three slip planes, 

with equal priority. The resolved force on the each of these three slip planes affect 

the nature of the dislocation core, which in turn affects the ability of the dislocation 

to move on the other slip systems. Therefore, the motion of dislocations in a bcc 

slip system is not only driven by the resolved shear stress on that slip system, but 

is also affected by forces acting on other directions.  

Currently, the model developed in this work utilises Schmid’s law as the criterion 

for plasticity. It is seen in equation (6.13) that dislocations will move and therefore 

plasticity will develop in a slip system if the resolved shear stress is greater than 

the inherent lattice resistance. Therefore, adaptation to the yield calculation, and 

consequently the criterion for plasticity to develop, is required to account for these 

additional terms. This will provide that the yield function will need to be calculated 
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per slip system, and will naturally ensure it becomes sensitive to the loading 

direction.  

Following (Groger, et al., 2008) (Weinberger, et al., 2012) it is proposed that for 

modelling of bcc metals, the calculation of the resolved shear stress should take 

the form:  

    1 1 2 3 1 1
DF

a a a
b


                     s n s n n s n n s n    (9.1) 

Where 1


n is the unit vector of a plane in the zone of 

s that makes an angle of -

60°with the vector 
n  (Weinberger, et al., 2012), and 1a , 2a  and 3a are material 

constants.  

 

9.5 Summary 

The process taken to apply the new material model to modelling of the bcc single 

crystal tantalum has been discussed. The results obtained using the best fitting 

material parameters show that the new model reproduces all of the main features 

observed in the experimental rear surface velocity plots. Discrepancies between 

the simulated and experimental data have been discussed, with a potential future 

improvement to the model identified.  
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10 Conclusions  

A new dislocation dynamics based continuum model for modelling plasticity at 

shock loading has been described, implemented and tested. The underlying 

dislocation physics have been detailed which provide a validation of the 

formulation of the material model.  

Implementation of the model has been made in the DYNA3d hydrocode as a new 

material model, and coupled with a vector equation of state. The vector equation 

of state describes the generalised pressure required for accurate modelling of 

orthotropic materials. The single crystals considered in this work do not exhibit 

orthotropic behaviour due to the inherent symmetry of their cubic crystal 

structures, however this coupling is included to allow for potential future 

developments of the model, specifically an extension to modelling polycrystalline 

metals.  

Validation of the model has been achieved for fcc metals by simulation of plate 

impact tests. Simulation has been made for two different metals, single crystal 

aluminium and single crystal copper, and for different geometries. Good 

agreement is observed between simulated rear surface velocity data and the 

experimental data available.  

Investigation of the initial amplitude and subsequent decay of an elastic precursor 

wave has been made. It is observed that the initial amplitude of this wave is at a 

similar level to the main shock front, with decay to the HEL level occurring over a 

time scale of tens of nanoseconds. Further investigation of this behaviour shown 

that it is the initial mobile dislocation density that controls this.  

Analysis of the material parameters has been made, with the method of deriving 

each of these shown in Table 10-1. Of the 12 material parameters, the values of 

5 can be found in open literature, 3 can be estimated from theory and the 

remaining 4 are fitted. The four parameters that are fitted are the yield parameter, 

0Y  , the coefficient of generation of dislocations, 
gk  , the hardening coefficient IA   

and the immobilisation velocity, IV . The procedure followed in this work to fit the 
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parameters used rear surface velocity plate impact data, with each parameter 

found to control a certain aspect of the trace. The yield parameter and the 

hardening coefficient were found to control the magnitude of the precursor region, 

with each tuned to provide optimal results. The coefficient of generation of 

dislocations was found to control the width and shape of the precursor region and 

can therefore be fitted accordingly. Finally the immobilisation velocity controls the 

release and is fitted to this region of the rear surface velocity trace.   

Table 10-1: Material parameters required for the new material model and indication 

of how to determine them 

Model parameter  Method of derivation  

Youngs modulus,    Literature  

Shear modulus, G   Literature  

Poissons ratio,    Literature  

Minimum dislocation density required for 

immobilisation, 0   

Literature  

Coefficient of generation of dislocations, 
gk   Fitted  

Coefficient of annihilation of dislocations, 
ak   Estimated from theory  

Hardening coefficient, IA    Fitted  

Immobilisation velocity, 
IV    Fitted  

Debye temperature,     Calculated  

Yield parameter, 
0Y    Fitted  

Dislocation rest mass, 
0m   Calculated from theory  

Lattice constant, 0a   Literature  
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Further application of the model has been made to single crystal tantalum, a bcc 

metal. This has shown that the capability of the model in its current form 

reproduces all the main features observed experimentally during plate impact 

experiments, but also shows that further adaptations are required to account for 

the more complex yield nature of bcc crystals. A new method for calculation of 

the mechanical force driving dislocation motion specific to bcc metals is proposed 

for future inclusion in the model.  

10.1 Proposed future work  

 Implementation and testing of the new mechanical force calculation 

proposed in chapter 9 for the application of the model to bcc materials.  

 Coupling of the model with a suitable damage model  

 

10.2 Novel aspects of this work  

Novel aspects of this work include:  

 Implementation of a full 3D model in the framework of the hydrocode, 

which was previously available in literature in a 1D form only.  

 Successful coupling of the new model with an equation of state in the 

hydrocode 

 Validation of the 3D model for FCC single crystal metals 

 Successful capture of superelastic precursor behaviour in the finite 

element model.   

 The application of the model to bcc materials, in the form of single crystal 

tantalum 

o Complexities oadditinal slip systems incorporated in the hydrocode 

o Parameters for single crystal tantalum determined 

o Experimentally observed features captured in simulations and 

explained.   
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Appendix A :  Mesh sensitivity study  

A mesh sensitivity study has been performed for the new material model and is 

presented in this appendix.  

The mesh sensitivity study is performed by simulation of a plate impact test, 

whereby a 0.4mm aluminium flyer plate impacts a 2.9mm aluminium target plate 

at 660 m/s. The simulation set up consists of a single, continuous mesh, split into 

two regions, the target region and the flyer region. The target region is initially at 

rest, whereas the flyer region has an initial velocity of 660 m/s in the direction of 

the target. This follows the plate impact tests used for validation of the fcc model.  

To assess the sensitivity of the model to the mesh size, 10 different mesh 

densities are generated, with the number of elements along the 2.9mm target 

ranging from 500 to 5000 elements. This corresponds to a range of initial element 

sizes of 0.0058mm – 0.00058mm. Meshes this fine are required to capture the 

details of the narrow shock front. Table_Apx A-1 provides details of the initial 

element sizes used in each test.  

For each mesh size, the simulation is made and the initial stress wave 

development is analysed at time intervals of 2, 5, 10 and 20ns. The stress waves 

are then plotted vs distance the wave has propagated into the target at each time 

instant and compared to the same results obtained using the other mesh sizes.  

Figure_Apx A-1, Figure_Apx_A-2, Figure_Apx A-3 and Figure_ApxA-4 show the 

comparison of the stress waves obtained at time instances of 2, 5, 10 and 20ns, 

respectively. It is seen that, in Figure_Apx A-1 the results are largely scattered 

and noisy. This is due to the ultra fine timescale over which this graph is plotted, 

however, it can be observed that the results obtained using 4000, 4500 and 5000 

elements along the target plate, the stress profile is very similar. The subsequent 

results displayed in Figure_Apx A-2,  Figure_Apx A-3 and  Figure_Apx A-4, 

clearly shows a convergence of the stress profiles for the profiles obtained using 

4000, 4500 and 5000 elements along the target. Therefore it is concluded that, 

for simulation of a 2.9mm plate, 4000 elements is the minimum required for 

accurate stress prediction. This corresponds to an initial element size of 0.725µm.  
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Figure_Apx A-1: Z-stress vs distance wave has propagated into aluminium target 

plate 2ns after impact for a range of initial element sizes. 

 

Figure_Apx A-2: Z-stress vs distance wave has propagated into aluminium target 

plate 5ns after impact for a range of initial element sizes 
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Figure_Apx A-3: Z-stress vs distance wave has propagated into aluminium target 

plate 10ns after impact for a range of initial element sizes 

 

Figure_Apx A-4: Z-stress vs distance wave has propagated into aluminium target 

plate 20ns after impact for a range of initial element sizes 
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Table_Apx A-1: Table outlining the number of elements along the z-direction of the 

2.9mm target plate and the corresponding initial element size 

Number of elements 

in Z-direction  

Initial element size  

500 0.00058 

1000 0.00029 

1500 0.000193 

2000 0.000145 

2500 0.000116 

3000 0.0000967 

3500 0.0000829 

4000 0.0000725 

4500 0.0000644 

5000 0.000058 
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Appendix B Artificial viscosity sensitivity  

The sensitivity of the new material model to the artificial viscosity term added by 

the hydrocode is analysed in this appendix.  

To perform the analysis, the two artificial viscosity parameters, the quadratic and 

the linear term, are varied independently to assess the effect they have upon the 

results obtained by the model.  

Firstly the quadratic constant is assessed. Similar to the analysis presented in 

Appendix A, plate impact simulation is used here. The plate impact simulation 

consists of a 2.9mm aluminium target plate, being impacted by a 0.4mm 

aluminium flyer plate at an impact velocity of 660 m/s.  

For each increased shock viscosity value used, the initial stress wave 

development is assessed at time intervals of 2, 5, 10 and 15ns. The values used 

for the increased value of the quadratic coefficient are 2, 2.5, 3, 3.5, and 4.  

 

Figure_Apx B-1: Z-stress vs distance wave has propagated into aluminium target 

plate 2ns after impact for a range of increased values of the quadratic viscosity 

constant. 
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Figure_Apx B-2: Z-stress vs distance wave has propagated into aluminium target 

plate 10ns after impact for a range of increased values of the quadratic viscosity 

constant. 

 

Figure_Apx B-3: Z-stress vs distance wave has propagated into aluminium target 

plate 10ns after impact for a range of increased values of the quadratic viscosity 

constant. 
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Figure_Apx B-4: Z-stress vs distance wave has propagated into aluminium target 

plate 15ns after impact for a range of increased values of the quadratic viscosity 

constant. 

It is seen in Figure_Apx B-1 that as the value of the quadratic artificial viscosity 

constant is increased, the steepness of the initial shock front is decreased. The 

remaining results for the quadratic constant analysis shown in Figure_Apx B-2, 

Figure_Apx B-3, and Figure_Apx B-4 show that there is very minimal change in 

the stress profile as the value of the viscosity constant is increased. Therefore, it 

can be concluded that for the purpose of simulations using the new material 

model, the default value for the quadratic viscosity constant is sufficient.  
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Figure_Apx B-5: Z-stress vs distance wave has propagated into aluminium target 

plate 2ns after impact for a range of increased values of the linear viscosity 

constant. 

 

Figure_Apx B-6: Z-stress vs distance wave has propagated into aluminium target 

plate 5ns after impact for a range of increased values of the linear viscosity 

constant. 
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Figure_Apx B-7: Z-stress vs distance wave has propagated into aluminium target 

plate 10ns after impact for a range of increased values of the linear viscosity 

constant. 

 

Figure_Apx B-8: Z-stress vs distance wave has propagated into aluminium target 

plate 15ns after impact for a range of increased values of the linear viscosity 

constant. 
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The analysis of the linear artificial viscosity constant, shown in Figure_Apx B-5, 

Figure_Apx B-6, Figure_Apx B-7 and Figure_Apx B-8 shows that increasing the 

linear constant has little impact on the shock front. However, it is observed that 

increasing this term slightly, damps out the noise observed in the steady stress 

wave, with the value of 0.1 being the smallest to produce a smooth wave. 

Therefore, for use with the new material model, it is concluded that the value of 

the linear term should be increased slightly from the default value of 0.06, to the 

value of 0.1. 
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