
Fast and Interactive Ray-based Rendering

Dissertation

submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Ph.D.)

of the

Department of Computer Science,
Brunel University London

by

Thorsten Roth

Submission Date: 2020-09-24

Declaration

I hereby declare that this thesis is solely completed by the candidate, Thorsten Roth.
The original research work has not been presented for the award of any other degree
in the past. Some work in it has been published previously, which is stated in the
text where relevant. All sources of material have been properly acknowledged and
references have been provided.

i

ii

Publications

This is a list of publications lead-authored and co-authored by the author of this
thesis during the PhD time frame:

• (Weier, Maiero, et al. 2014a):
M. Weier, J. Maiero, T. Roth, A. Hinkenjann, S. Slusallek: Enhancing Render-
ing Performance with View-Direction-Based Rendering Techniques for Large,
High Resolution Multi-Display Systems, 11. Workshop Virtuelle Realität und
Augmented Reality der GI-Fachgruppe VR/AR, 2014

• (Weier, Maiero, et al. 2014b):
M. Weier, J. Maiero, T. Roth, A. Hinkenjann, S. Slusallek: Lazy Details for
Large High Resolution Displays, SIGGRAPH Asia, 2014, Poster

• (Sigitov, Roth, et al. 2015):
A. Sigitov, T. Roth, A. Hinkenjann: Enabling Global Illumination Rendering
on Large, High-Resolution Displays, 8th Workshop on Software Engineering
and Architectures for Realtime Interactive Systems (SEARIS), 2015

• (Hinkenjann, Jato, et al. 2015):
A. Hinkenjann, O. Jato, J. Maiero, T. Roth, M. Weier: High Quality Render-
ing and Visualization at the Institute of Visual Computing, Sankt Augustin,
Germany, IEEE VR 2015, Lab Presentation

• (Szeracki, Roth, et al. 2015):
S. Szeracki, T. Roth, A. Hinkenjann, Y. Li: Boosting Histogram-Based De-
noising Methods with GPU Optimizations, 12. Workshop Virtuelle Realität
und Augmented Reality der GI-Fachgruppe VR/AR, 2015

• (Roth, Weier, et al. 2015):
T. Roth, M. Weier, J. Maiero, A. Hinkenjann, Y. Li: Guided High-Quality
Rendering, 11th International Symposium on Visual Computing (ISVC), 2015

• (Jato, Weier, et al. 2016):
O. Jato, M. Weier, J. Maiero, D. Scherfgen, T. Roth, P. Frericks, O. Stefani, M.
Bues, A. Hinkenjann, E. Kruijff: OLIVE: Simulation within Human-Centric
Lighting Environments, Proceedings of the 13. Workshop Virtuelle Realität
und Augmented Reality der GI-Fachgruppe VR/AR, 2016

• (Weier, Roth, et al. 2016):
M. Weier, T. Roth, E. Kruijiff, A. Hinkenjann, A. Pérard-Gayot, P. Slusallek,
Y. Li: Foveated Real-Time Ray Tracing for Head-Mounted Displays, Computer
Graphics Forum, 35-7, 2016, Okinawa, Japan

• (Roth, Weier, et al. 2016):
T. Roth, M. Weier, A. Hinkenjann, Y. Li, P. Slusallek: An Analysis of Eye-
Tracking Data in Foveated Ray Tracing, Proceedings of the 2016 Workshop on
Eye Tracking and Visualization

• (Frericks, Roth, et al. 2017):
P. Frericks, T. Roth, A. Hinkenjann, E. Kruijff: A Framework for Cluster-based

iii

Rendering and Postprocessing, presented at the 10th Workshop on Software
Engineering and Architectures for Realtime Interactive Systems (SEARIS),
2017

• (Roth, Weier, et al. 2017):
T. Roth, M. Weier, A. Hinkenjann, Y. Li, P. Slusallek: A Quality-Centered
Analysis of Eye Tracking Data in Foveated Rendering, Journal of Eye Move-
ment Research, 10-5, 2017

• (Weier, Stengel, et al. 2017):
M. Weier, M. Stengel, T. Roth, P. Didyk, E. Eisemann, M. Eisemann, S.
Grogorick, A. Hinkenjann, E. Kruijff, M. Magnor, K. Myszkowski, P. Slusallek:
Perception-Driven Accelerated Rendering, Computer Graphics Forum, 36-2,
2017

• (Weier, Roth, et al. 2018a):
M. Weier, T. Roth, A. Hinkenjann, P. Slusallek: Foveated Depth-of-Field Fil-
tering in Head-mounted Displays, ACM Transactions on Applied Perception,
15-4, 2018

• (Weier, Roth, et al. 2018b):
M. Weier, T. Roth, A. Hinkenjann, P. Slusallek: Foveated Depth-of-field Fil-
tering in Head-mounted Displays, Proceedings of the 15th ACM Symposium
on Applied Perception, SAP 2018, Vancouver, B.C., received the best paper

award

• (Weier, Roth, et al. 2018c):
M. Weier, T. Roth, A. Hinkenjann, P. Slusallek: Predicting the Gaze Depth in
Head-mounted Displays using Multiple Feature Regression, Proceedings of the
2018 ACM Symposium on Eye Tracking Research and Applications, ETRA
2018, 19:1–19:9, 2018

• (Roth, Weier, et al. 2019):
T. Roth, M. Weier, P. Bauszat, A. Hinkenjann, Y. Li: Hash-based Hierarchical
Caching for Interactive Previews in Global Illumination Rendering, Computer
Graphics and Visual Computing (CGVC 2019), Bangor University, Wales,
United Kingdom, 2019

• (Roth, Weier, et al. 2020):
T. Roth, M. Weier, P. Bauszat, A. Hinkenjann, Y. Li: Hash-based Hierarchical
Caching and Layered Filtering for Interactive Previews in Global Illumination
Rendering, Computers, 9(1), 17, 2020, featured as the cover story

iv

Abstract

Despite their age, ray-based rendering methods are still a very active field of research
with many challenges when it comes to interactive visualization. In this thesis, we
present our work on Guided High-Quality Rendering, Foveated Ray Tracing for Head-
Mounted Displays and Hash-based Hierarchical Caching and Layered Filtering.

Our system for Guided High-Quality Rendering allows for guiding the sampling
rate of ray-based rendering methods by a user-specified Region of Interest (RoI).
We propose two interaction methods for setting such an RoI when using a large
display system and a desktop display, respectively. This makes it possible to compute
images with a heterogeneous sample distribution across the image plane. Using
such a non-uniform sample distribution, the rendering performance inside the RoI
can be significantly improved in order to judge specific image features. However, a
modified scheduling method is required to achieve sufficient performance. To solve
this issue, we developed a scheduling method based on sparse matrix compression,
which has shown significant improvements in our benchmarks. By filtering the
sparsely sampled image appropriately, large brightness variations in areas outside
the RoI are avoided and the overall image brightness is similar to the ground truth
early in the rendering process.

When using ray-based methods in a VR environment on head-mounted display de-
vices, it is crucial to provide sufficient frame rates in order to reduce motion sickness.
This is a challenging task when moving through highly complex environments and
the full image has to be rendered for each frame. With our foveated rendering sys-
tem, we provide a perception-based method for adjusting the sample density to the
user’s gaze, measured with an eye tracker integrated into the HMD. In order to
avoid disturbances through visual artifacts from low sampling rates, we introduce
a reprojection-based rendering pipeline that allows for fast rendering and temporal
accumulation of the sparsely placed samples. In our user study, we analyse the im-
pact our system has on visual quality. We then take a closer look at the recorded
eye tracking data in order to determine tracking accuracy and connections between
different fixation modes and perceived quality, leading to surprising insights.

For previewing global illumination of a scene interactively by allowing for free scene
exploration, we present a hash-based caching system. Building upon the concept
of linkless octrees, which allow for constant-time queries of spatial data, our frame-
work is suited for rendering such previews of static scenes. Non-diffuse surfaces are
supported by our hybrid reconstruction approach that allows for the visualization of
view-dependent effects. In addition to our caching and reconstruction technique, we
introduce a novel layered filtering framework, acting as a hybrid method between
path space and image space filtering, that allows for the high-quality denoising of
non-diffuse materials. Also, being designed as a framework instead of a concrete
filtering method, it is possible to adapt most available denoising methods to our
layered approach instead of relying only on the filtering of primary hitpoints.

v

Acknowledgements

First and foremost, I want to thank Jessica Chromik: You have been my main source of
sanity and reason during most of my PhD. Through these years, I stumbled more than once;
With all that has happened, it has been a very difficult and delightful experience at the
same time, and good and bad, failure and success are sometimes so close.

I would like to thank my supervisors, André Hinkenjann and Yongmin Li, and all my dear
colleagues at the Institute of Visual Computing, for fruitful and sometimes mind-boggling
discussions, wandering minds, and the occasional (or regular) cup of coffee. I cannot ex-
press my gratitude sufficiently in regular words, but nonetheless I want to explicitly thank
my colleague and friend Martin Weier for working on so many projects together with me
throughout the years, through hardships and ease alike. It was both an honor and an
insightful experience to work with you.

Thank you, Jens Maiero for many years of talking sense and nonsense, discussing ideas and
frustrations, and for going on this journey together with me in 2013. I am very happy that
we could not only start together, but will likely also both reach the finish line in the same
year.

Exceptional thanks to all the people who have shared an office with me throughout the years:
Katharina Stollenwerk (I’m seriously going to miss that diabolic laugh!), Oliver Jato (let’s do
some time sheets together!), Jessica Millberg, Anton Sigitov, Florian “Nougatring” Mannuß,
Florian Bingel, Christoph Pomrehn, and Sandra Felsner. Thanks to Christina Trepkowski
for helping me out when statistics were just too much for me! My deepest gratitude goes
to Andreas Priesnitz for being an extremely supportive and understanding colleague when
working together in projects unrelated to my PhD.

Thank you to all of my friends, especially (but in no particular order) to Denise Pommerening
for just being there in difficult times and for some great trips, Mamdouh Maduar for being
the awesome guy you are, Tobias Voß for over thirty years of friendship, Silvio Hentschel
for your authenticity, open mind and for just being you, Julia Krämer and Ben for just
being awesome, Diana Kurch for being a great and understanding friend even when we’re
far apart, and Stefanie Höller for many years of friendship. While we have not even met
in person, Christoph Schempershofe, Anna-Lena Haider and Tobias Haider are a proof that
gaming can make people grow really close over the years.

Thank you to Philipp Slusallek for inspiring ideas when I worked together with Martin, Pablo
Bauszat for participating in bringing that HashCache idea to life when some random guy
from the internet just asked you, and all my co-authors that I have not explicitly mentioned
here. Thank you for your support.

Thanks to my family, especially my mother Solveig Roth, my uncle Helmut Brandt and my
aunt Ingrid Brandt for supporting me.

Last but not least, thank you to our former dean Kurt-Ulrich Witt for inspiring me to start
my PhD: “Wenn Sie es jetzt nicht machen, machen Sie es nie!” (“If you don’t do it now,
you’re never going to do it”).

– dedicated to everyone special in my life

vi

Acronyms

ANOVA analysis of variance

AABB axis-aligned bounding box

BDPT bidirectional path tracing

BRDF bidirectional reflectance distribution function

BIH bounding interval hierarchy

CDF cumulative distribution function

CK Country Kitchen

CPD cycles per degree

CRF caching resolution factor

CVA comfortable viewing angle

DCNN deep convolutional neural network

CNN convolutional neural network

DGI distance-guide image

DNN deep neural network

FoV field of view

FPS frames per second

FRC foveal region configuration

GI global illumination

HMD head-mounted display

HDR high dynamic range

HVS human visual system

LHRDW large high-resolution display wall

LoD level-of-detail

LUT lookup table

MC Monte Carlo

MLT Metropolis light transport

MS-SSIM multi-scale structural similarity

MVP Matrix model-view-projection matrix

vii

OoI object of interest

PoR point of regard

PSNR peak signal-to-noise ratio

RMS root mean square

relMSE relative mean-square error

RoI region of interest

SMC sparse matrix compression

SoA Streets of Asia

SPEM smooth pursuit eye movement

SPP samples per pixel

SURE Stein’s unbiased risk estimator

VR virtual reality

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aims and Objectives . 3
1.3 Thesis Overview . 4

2 Background and Literature Review 6
2.1 Concepts of Ray-based Rendering . 6

2.1.1 Ray Casting . 7
2.1.2 Ray Tracing . 7
2.1.3 Path Tracing . 7
2.1.4 Bidirectional Path Tracing 11
2.1.5 Metropolis Light Transport 12
2.1.6 Standard Extensions of Ray-based Rendering 12

2.2 Other Ray-based Methods, Extensions and Optimizations 14
2.2.1 Photon Mapping . 15
2.2.2 Radiosity . 19
2.2.3 General Sampling Techniques 23
2.2.4 Machine Learning . 25
2.2.5 Other Methods and Aspects 27

2.3 Perceptual Considerations and Gaze-Contingent Rendering 29
2.3.1 The Human Visual System: Basic Concepts and Limitations 29
2.3.2 Perceived Image Quality and Quality Assessment 33
2.3.3 Foveated/Gaze-Contingent Rendering 34

2.4 Denoising . 37
2.5 Caching and Reprojection . 39
2.6 Discussion and Conclusion . 43

3 Guided High-Quality Rendering 44
3.1 Introduction . 44
3.2 System Description . 45

3.2.1 Building Blocks . 45
3.2.2 Distance Measure . 47
3.2.3 Interaction . 51
3.2.4 Scheduling . 53
3.2.5 Rendering . 54
3.2.6 Filtering . 54
3.2.7 Display . 55

3.3 Results . 55
3.3.1 Visual Quality . 55
3.3.2 Benchmarks . 57

3.4 Discussion and Conclusion . 66

viii

Contents ix

4 Foveated Ray Tracing and Eye Tracking Data 68
4.1 Introduction . 69
4.2 System Description . 71

4.2.1 Ray Generation and Ray Tracing 73
4.2.2 Reprojection . 74
4.2.3 Handling Reprojection Errors 76
4.2.4 Cache Update and Merging 77
4.2.5 Post-Processing . 79

4.3 Experimental Evaluation: Benchmarks 79
4.4 Experimental Evaluation: User Study 82

4.4.1 Experimental Procedure and Design 83
4.4.2 Results . 85

4.5 Experimental Evaluation: Analysis of Eye Tracking Data 87
4.5.1 Methods . 87
4.5.2 Results . 89

4.6 Discussion and Conclusion . 97

5 Hash-based Hierarchical Caching and Layered Filtering 99
5.1 Introduction . 99
5.2 Method . 100

5.2.1 Cache Structure . 101
5.2.2 Caching . 104
5.2.3 Reconstruction . 106
5.2.4 Layered Filtering . 110

5.3 Results and Evaluation . 114
5.3.1 Visual Quality . 114
5.3.2 Performance . 121
5.3.3 Memory Requirements . 123
5.3.4 Comparison to State-of-the-Art 123

5.4 Discussion and Conclusion . 125

6 Conclusion 127
6.1 Summary . 127
6.2 Contributions . 129

6.2.1 Guided High-Quality Rendering 130
6.2.2 Foveated Ray Tracing in Head-Mounted Displays 130
6.2.3 Hash-based Hierarchical Caching and Layered Filtering . . . 130

6.3 Future Research and Impact of Technological Developments 131
6.3.1 Guided High-Quality Rendering 131
6.3.2 Foveated Ray Tracing in Head-mounted Displays 132
6.3.3 Hash-based Hierarchical Caching and Layered Filtering . . . 133

List of Figures

2.1 A comparison of ray casting and ray tracing 8
2.2 Limiting recursion depth with transparent and reflective materials . 9
2.3 Direct, indirect, and full global illumination 10
2.4 Bidirectional vs. standard path tracing, equal-time comparison . . . 11
2.5 Bidirectional path tracing with 40 samples per pixel vs. Metropolis

light transport with 250 mutations per pixel, equal-time comparison 12
2.6 The effect of (multiple) importance sampling 14

3.1 Building blocks of the proposed framework 46
3.2 Projection process of the ellipse onto the display system 48
3.3 Exemplary shape of the resulting distance-guide image 49
3.4 ART’s interaction device FlyStick . 52
3.5 Schematic illustration of the relevant part of our LHRDW 56
3.6 Comparison between filtering methods and unfiltered image 56
3.7 Unfiltered vs. filtered images displayed on our LHRDW 57
3.8 Reference renderings of the scenes used for benchmarking 58
3.9 Computed samples and rendering times for various FoV settings . . 60
3.10 Tested RoI sizes for the Cornell Box scene 61
3.11 Tested region of interest (RoI) sizes for the Urban Sprawl scene . . . 61
3.12 Tested RoI sizes for the Hairball scene 61
3.13 Rendering time for the Cornell Box scene with and without SMC . . 62
3.14 Rendering times for the Urban Sprawl scene with and without SMC 62
3.15 Rendering times for the Hairball scene with and without SMC . . . 63
3.16 Relative rendering times for SMC-based scheduling (Cornell Box scene) 64
3.17 Relative rendering times for SMC-based scheduling (Urban Sprawl

scene) . 64
3.18 Relative rendering times for SMC-based scheduling (Hairball scene) 65
3.19 Relative rendering times for SMC-based scheduling (Hairball scene,

alternative camera position) . 65
3.20 Asymptotic error rate for various sampling probabilities 67

4.1 Effects of different configurations for the foveal region 68
4.2 The evolution of resolutions in modern HMDs 70
4.3 Building blocks of our reprojection pipeline 73
4.4 Foveal falloff function . 74
4.5 Reprojection from frame t− 1 to frame t 75
4.6 Scenes used for benchmarks and user studies of our implementation 80
4.7 Average total rendering times foveated vs. RT 81
4.8 Influence of the FRC on FPS for Sponza (varying lighting) 82
4.9 Likert-scale ratings for Q1 (The shown sequence was free of visual

artifacts.) for all scenes grouped by foveal region configurations . . . 86

x

List of Figures xi

4.10 Likert-scale ratings of perceived visual artifacts for small, medium,
large and full foveal regions . 86

4.11 Tracking precision vs. fixation target’s distance to the image center . 88
4.12 CDF of measured fixation accuracy 91
4.13 Gaze deviation for all individual scenes, fixed and moving targets . . 92
4.14 Quality for all combinations of scenes and fixation modes 93
4.15 Quality ratings for fixation modes and FRCs (Rungholt) 94
4.16 Quality ratings for fixation modes and FRCs (Sponza) 94
4.17 Quality ratings for fixation modes and FRCs (Tunnel Geom) 95
4.18 Quality ratings for fixation modes and FRCs (Tunnel Maps) 95
4.19 Eccentricity-dependent mean quality measurements and eccentricity

distributions for all scenes in free focus mode 96

5.1 Computation of the occupied grid cells and hashing 102
5.2 An overview of the caching process 104
5.3 Sampling parameters for a single path 105
5.4 An overview of the reconstruction process 107
5.5 Visual Comparison for jittering and denoising 109
5.6 Two dimensional example of the possible issue with spatial jittering 110
5.7 Layered filtering process . 111
5.8 Unfiltered propagation of light bounces 113
5.9 Interleaved comparison: Layered vs. traditional filtering 114
5.10 relMSE and MS-SSIM for both presented scenes 116

List of Tables

4.1 An overview of the buffers used in the reprojection and accumulation
process . 72

4.2 Times in milliseconds for each stage of the pipeline in comparison to
a full renderer showing the speedup of our approach 81

5.1 Data densities and memory requirements 125

xii

Chapter 1

Introduction

1.1 Motivation

Visualizing the content of a scene described by its geometry, lighting and material

information can be a challenging task. Even with today’s hardware capabilities, the

desired visual quality, geometric complexity and various other properties may lead

to sub-par results, especially since visual quality expectations are ever increasing.

Besides rasterization, which has been central to rendering especially in the consumer

field, ray-based techniques have been a popular tool that has evolved over the last

52 years, with Appel (1968) first describing the basic ray casting algorithm in 1968,

while Whitted (1980) introduced ray tracing in 1980.

Despite its age, ray-based rendering is still a very active field of research, partially

because support for such methods has just been implemented in consumer hardware

in recent years. Historically, it has grown from a method for finding the closest

visible scene geometry for a specific camera perspective (basic ray casting) to a

universal visualization tool that supports very basic rendering and photorealistic

image synthesis alike. At the same time, the computational complexity of meth-

ods for generating photorealistic imagery is still challenging, as they rely on the

physically-based process of global illumination (GI).

The most important concept in the field of GI is the rendering equation, presented

by Kajiya (1986). It fully describes how light distributes on the surfaces in a scene

after being emitted from an arbitrary number of light sources. Being formulated as

an integral equation, its recursive nature makes it analytically untractable. Instead,

numeric Monte Carlo (MC) methods are often used for computing solutions to the

equation.

Such methods rely on an underlying stochastic process, where randomly generated

rays are traced through a scene. These rays originate at the virtual camera and

are then reflected at their intersection points with the scene’s surfaces according to

1

Chapter 1 Introduction 2

material and illumination properties, generating additional rays recursively. Con-

necting consecutively generated rays creates a path, which is commonly referred to

as a sample in GI rendering.

Two challenging phenomena occur when computing GI with MC methods: Due to

the stochastic nature of the process, the generated images exhibit high-frequency

noise, and reducing the noise becomes more and more computationally demanding

the more samples are taken. With an asymptotic error of O
(√

n
−1
)

, where n is

the number of samples, the remaining error declines rapidly at the start, but slows

down rather quickly towards higher sample counts. Consequently, four times as

many samples are required to reduce the noise of an image by 50%. This may be-

come a major issue especially when such methods are used in performance-critical

applications, where image quality is a crucial factor for judging certain image prop-

erties or for analyzing the displayed object’s properties, respectively. This is the

case in areas like design review or architectural visualization, and is certainly ex-

tendible to games, which pose the prime example of a field where the latest graphics

hardware is utilized in the consumer market. However, determining the number of

samples required to achieve a specific noise or error level without performing the

actual rendering task is generally not possible.

While current 3D modeling software often also supports methods for preview render-

ing that do not rely on the full process of accurate global illumination computation,

previews may not meet the specific requirements of providing a sufficient fidelity for

the task at hand. Possible methods for improving the situation by also providing

the means for selectively focusing the computational effort on specific image areas

are discussed later in this thesis.

A field that has gained much interest over the last few years because of the increas-

ingly wide availability of relevant consumer hardware is virtual reality (VR). Using

ray-based rendering methods in this field is challenging, as high frame rates and low

latencies are crucial when using devices such as head-mounted displays (HMDs) to

avoid motion sickness. Recently, several methods from the field of gaze-contingent

rendering have emerged, also relying on eye tracking devices, that are nowadays

often integrated into HMDs. This allows for adapting the rendering process to the

image regions that are actually focused by the user.

Another relevant field of research is given by caching algorithms for GI rendering.

These methods exploit the fact that an MC-based GI renderer oftentimes generates

data at many points in a scene for computing the energy along a specific path,

but then dismisses this data completely. While there are approaches that reuse

computed paths, which are further described in Chapter 2, data reuse is ensured by

employing appropriate caching methods. The complexity and the way that various

illumination effects are handled is completely dependent on the specific method,

Chapter 1 Introduction 3

though, and a variety of approaches are available both for offline rendering and

interactive visualization.

Additionally, numerous methods have been introduced for filtering noisy image data.

With recent approaches also focusing on temporal stability, their usefulness in in-

teractive systems has increased over the years.

In this thesis, all of the three major fields described above are discussed and cov-

ered with appropriate methods for improving the general applicability of ray-based

rendering methods.

1.2 Aims and Objectives

The aim of this thesis is to develop methods that support the applicability of ray-

based rendering in different environments:

(1) Previews of photorealistic rendering on large, high-resolution display systems

(2) Interactive ray-based rendering in VR

(3) Interactive preview rendering of MC-based GI with the possibility of free ex-

ploration, independent of the display system

In order to compute previews of photorealistic rendering on large display systems,

we are going to analyse methods of selectively focusing on specific image regions

that are essential to the user; this approach is mostly tailored towards design review

or iterative modeling processes, where the user alternates between constructing a

3D model and reviewing it in its final environment.

As for interactive ray-based rendering on HMDs, we are going to use an eye tracking

device which is integrated into the HMD to implement an appropriate method for

adapting image resolution to the user’s gaze. It is important for this method to

provide a sufficient frame rate, while also maintaining a high resolution in order to

avoid disturbances.

For interactive preview rendering of GI based on MC simulation, the basic idea is to

develop a caching mechanism that provides the means for very fast reconstruction.

One of this method’s main goals is to also support non-diffuse materials, which is

challenging to do in real-time applications. Available caching methods have to be

reviewed to identify central aspects to improve upon.

Chapter 1 Introduction 4

1.3 Thesis Overview

Ray-based rendering methods, which form the foundation of the research presented

in this thesis, are described together with their underlying concepts in Section 2.1.

More precisely, we describe ray casting, ray tracing, path tracing, bidirectional path

tracing and Metropolis light transport, and provide an overview of further develop-

ments in the field, as many of the general techniques in ray-based rendering can be

used in conjunction with our own contributions.

Photon mapping and radiosity are two of the most important general techniques

in GI rendering, that happen to be based on caching mechanisms, making them

strongly related to our own work, which is why we give a relatively detailed overview

of the research regarding these methods. General optimization of the sampling

process in MC methods, more recent approaches based on machine learning and

other techniques are also covered in Section 2.2.

In Section 2.3, we provide a brief overview of the most important properties of

the human visual system (HVS) that have to be considered when designing a gaze-

contingent rendering method. We also give a basic description of perceptual methods

for quality assessment and an overview of research from the fields of foveated and

gaze-contingent rendering. Denoising methods, which have become an invaluable

tool in GI rendering, are reviewed in Section 2.4, while caching and reprojection

methods are covered in Section 2.5.

In Chapter 3, we introduce our work on guided high-quality rendering, working

towards the goal of supporting an iterative modeling/reviewing process, including

GI rendering on high-resolution display systems by providing the means for focusing

the computational effort on specific regions according to the user’s requirements.

Parts of the work presented in this chapter have been published in (Roth, Weier,

et al. 2015).

Chapter 4 contains a thorough description of our foveated ray tracing system for

HMDs, as well as an analysis of the outcome of our user study. In addition to

letting the participants of the study rate the image quality achieved by our approach,

we subsequently analysed the recorded eye tracking data together with the shown

scenes’ properties to give an idea of gaze behaviour in foveated rendering systems.

The work presented in this chapter has been published in multiple articles, namely

(Weier, Roth, et al. 2016), (Roth, Weier, et al. 2016), and (Roth, Weier, et al. 2017).

Our hash-based caching system for GI rendering is described in Chapter 5, together

with a novel layered filtering framework and an exemplary cross-bilateral filtering

approach suited to the specific kind of visual artifacts exhibited by our approach.

This work has been published in (Roth, Weier, et al. 2019) and (Roth, Weier, et al.

Chapter 1 Introduction 5

2020).

We integrate and discuss the presented ideas, give an overview of our contributions

in this thesis and provide an outlook towards possible future research in Chapter 6.

Chapter 2

Background and Literature Review

In this chapter, we describe the foundations of our work and analyse the available

research in the relevant fields. First of all, we introduce the fundamental meth-

ods of ray-based rendering in order to provide some basic understanding of the

involved computations and challenges. After evaluating the relevant research re-

garding the concepts of ray-based rendering, we take a closer look at the human

visual system (HVS) and the according properties that are important when synthe-

sizing images. On the one hand, there are properties that may lead to adjustments

of the according rendering system. On the other hand, there are properties that

could also be described as flaws or imperfections that can be exploited to accelerate

rendering or focus on the most important aspects of the generated images’ appear-

ance. This also leads to post-processing of the generated data, more specifically,

denoising methods, that try to remove artifacts from the imagery that result from

stochastic rendering approaches or general aliasing phenomena. Eventually, we give

an overview of direction-independent and direction-dependent caching methods in

global illumination (GI) rendering.

2.1 Concepts of Ray-based Rendering

There are various different approaches for image synthesis in the field of computer

graphics. Until recently, rasterization has been the most widespread approach when

it comes to synthesizing images from scene geometry, especially in the consumer field.

One of the reasons for this is that rasterization has been supported by widely avail-

able hardware since the late 1990s, while ray-based techniques were largely bound

to software implementations. With the appearance of freely programmable GPUs

in the late 2000s, ray-based rendering started to gain momentum, with hardware

support now being available in current-generation graphics hardware.

In this section, we first introduce the most basic ray-based rendering techniques: ray

casting, which supports only local illumination, Whitted-style ray tracing, which ad-

6

Chapter 2 Background and Literature Review 7

ditionally supports specular GI, and path tracing, which additionaly supports glossy

and diffuse GI. Subsequently, several more sophisticated methods and approaches

that have been developed over the years are described. As our own work presented

in this thesis deals with surface-based data exclusively, we mostly omit research that

is oriented towards participating media and volume rendering.

2.1.1 Ray Casting

The most basic ray-based rendering technique is ray casting, a term that has been

coined in the early 1980s by Roth (1982). In this early work, ray casting was used

as the basis for a modeling system for constructive solid geometry. The author

describes the concept of generating primary rays (rays that originate at the virtual

camera position and intersect the image plane at the according pixel coordinates)

and intersecting them with the scene geometry, which forms the foundation of all

subsequent research in the field. It has to be noted that even though Roth (1982) was

the first to use the actual term ray casting, it was Appel (1968) who first described

the algorithm already 14 years earlier in his 1968 paper.

2.1.2 Ray Tracing

The first logical extension of ray casting was introduced by Whitted (1980), later

forming the – nowadays ubiquitous – term ray tracing. More specifically, this kind

of ray tracing is referred to as Whitted-style ray tracing. The main difference be-

tween ray casting and ray tracing is the fact that additional rays may be cast from

intersections with the scene geometry in order to achieve realistic physical effects

like refraction, reflection, transmission or shadows. Figure 2.1 illustrates the main

difference between these two concepts. It is important to note that this basic kind

of ray tracing only supports perfectly specular reflections and refractions. A phys-

ically correct visualization of diffuse and glossy objects requires more sophisticated

methods. The effect of varying recursion depths in a full GI renderer is shown in

Figure 2.2.

2.1.3 Path Tracing

The most basic approach to provide a physically-based visualization of diffuse and

glossy GI is to apply another extension to ray tracing, namely path tracing. For path

tracing, multiple paths of rays are traced per pixel. If a ray intersects an object that

has been assigned a non-specular material, such as a lambertian (perfectly diffuse)

material, a stochastic process decides which direction is chosen for the newly cast ray.

Chapter 2 Background and Literature Review 8

V

e

I0
I1

I2

I3

I4

pr
im

ar
y

ra
ys

(a) Ray Casting

V

e

I0
I1

I2

I3

I4

pr
im

ar
y

ra
ys

sh
a
d
ow

 ray

L

(b) Ray Tracing

Figure 2.1: A comparison of ray casting and ray tracing. In ray casting, rays are cast into
the scene which are then intersected with the scene geometry in order to find
the closest hitpoint. Color information or local shading may be used to color the
surfaces in the scene. In ray tracing, real specular transmissions/refractions and
reflections are possible by casting additional rays according to the local geometry
and material information. The green object represents a specular surface, where
rays are reflected symmetrically to the local surface normal. The blue object
represents a transparent material: rays are refracted according to the material’s
refractive index and the incident angle when entering and exiting the geometric
object. The grey material represents a diffuse surface. At the intersection point
I2, a shadow ray is cast towards the light source L in order to determine if the
surface point is within a shadowed area or if it is illuminated by the light source.
In this case, the ray is blocked by the green object, so there is no direct path
towards the light source. Note that this kind of shadow computation is limited
to blocker objects that are either opaque or have a refractive index of 1, as basic
ray tracing cannot handle shadows from transmissive objects that refract light.

Chapter 2 Background and Literature Review 9

(a) (b) (c)

(d) (e) (f)

Figure 2.2: The effect of limiting recursion depth d with transparent and reflective materials.
For d = 1, no reflections or transparencies are visible and the according objects
appear black instead. Walls are only illuminated directly from the light source.
For d = 2, indirect illumination becomes visible on diffuse materials (walls) and
reflections become visible, while transmission is still not apparent because rays
have to intersect the transparent sphere two times. For d = 3, indirect illumina-
tion becomes visible in the reflection of the left sphere, while the transparency
of the right sphere can also be observed. For d = 4, caustics appear for the right
sphere, which are also reflected in the sphere for d = 5 so they appear on the
right wall. The full global illumination is shown for d = 100, also rendered with
a higher number of samples. Images courtesy of (Zhang 2016)

Chapter 2 Background and Literature Review 10

(a) Direct illumination only (b) Indirect illumination only (c) Full global illumination

Figure 2.3: Direct, indirect, and full global illumination for the Stanford bunny in a Cornell
Box. Images courtesy of (Zhang 2016)

This process is repeated recursively until the maximum recursion depth is reached,

a light source is hit or the ray does not intersect any scene geometry (which means

that it hits the background – which may also serve as a light source – at infinite

distance). The light that is emitted from light sources is then propagated by also

accounting for the specific material properties along the path. Repeating this process

progressively leads to an approximation of Kajiya (1986)’s rendering equation that

was presented in:

Lo(x, ωo) = Le(x, ωo) +

∫

Ω
fr(x, ωi)(ωi · ~n)dωi. (2.1)

Here, Lo is the outgoing radiance transported along the direction ωo from a position

x. Lo is the sum of the emitted radiance Le and the radiance that is integrated

over the hemisphere Ω and then reflected along ωo according to a local bidirectional

reflectance function fr, where the latter determines the amount of radiance that

is reflected towards ωo when the incident direction is ωi. While it is possible to

also account for wavelength and time in the rendering equation, these parameters

are usually omitted unless they are important for the specific method description.

Figure 2.3 shows the effect of also employing indirect illumination in the rendering

process, but also exhibits a pretty significant amount of noise that results from the

stochastic rendering process.

The process of path tracing that has been shortly described above is based on the

underlying concept of Monte Carlo (MC) simulation. As the rendering equation

generally does not have an analytic solution, it is necessary to leverage numerical

integration methods. However, basic approaches that are used for low-dimensional

problems, such as Gaussian quadrature, have a very bad convergence rate for high-

dimensional, discontinuous integrals such as the rendering equation. The stochastic

approach taken by MC methods helps in evaluating integrals without being de-

pendent on the integrand’s dimensionality. While a basic MC approach is usually

relatively simple to implement, the error rate of O(n−1/2) may lead to long rendering

times until the stochastic noise disappears from an image (Pharr and Humphreys

Chapter 2 Background and Literature Review 11

Figure 2.4: Bidirectional path tracing (left) vs. standard path tracing (right), equal-time
comparison. BDPT clearly shows a better overall convergence of the image,
with the issues in standard path tracing mainly caused by the specular object
on the table. Caustics converge much quicker with BDPT, while a large amount
of fireflies and noticeable noise are present when using standard path tracing in
such a scenario. Images courtesy of (Veach and Guibas 1995b)

2010, pp. 637–638).

2.1.4 Bidirectional Path Tracing

bidirectional path tracing (BDPT) has been introduced by Lafortune (1993) as well

as Veach and Guibas (1995a). In his PhD thesis, Veach (1997, pp. 219–247) gives

additional information on BDPT and also describes it within the newly developed

path integral framework thoroughly. Bidirectional path tracing is an approach that

fully adapts the idea of sampling from more than one probability distribution to the

path tracing process. Specifically, its basic principle is to start paths not only at the

camera, but also at emitting surfaces (light sources), and combine these paths by

joining them together. Varying the number of vertices per each of these subpaths

makes it possible to obtain a number of sampling techniques. Combining the samples

from the various techniques is then done using the multiple importance sampling

approach explained below. One of the main advantages of bidirectional path tracing

is its ability to handle phenomena such as caustics – which are difficult for standard

path tracing – pretty well. Figure 2.4 shows an example of a scene that is difficult

for standard path tracing, but can be handled well by BDPT.

Chapter 2 Background and Literature Review 12

Figure 2.5: Bidirectional path tracing with 40 samples per pixel (SPP) (left) vs. Metropolis
light transport with 250 mutations per pixel (right), equal-time comparison. The
placement of the light source in this scene poses a challenge for path tracing,
as light only comes through the slightly open door (according to the author,
around 0.1% of the light from the adjacent room can enter through the door).
The clear improvements in the MLT-based rendering mainly come from MLT’s
ability to maintain path segments that connect the two rooms through the gap,
while BDPT generates completely new subpaths with each iteration. Images
courtesy of (Veach 1997)

2.1.5 Metropolis Light Transport

Another method for solving the rendering equation is Metropolis light transport

(MLT), proposed by Veach and Guibas (1997). By combining the Metropolis sam-

pling method (Metropolis, Rosenbluth, et al. 1953) with the path integral framework,

an importance algorithm is derived for path space. As MLT is based on mutations

of generated paths, its key advantage is the possibility of local path space explo-

ration by carefully adjusting the probability of mutation acceptance. In addition,

the cost for computing a full sample is relatively small: Performing a mutation by

adding a vertex to a path, for example, leads to only two additional rays for a full

new sample. When important paths are found, steering the mutation probabilities

makes it possible to also explore the nearby paths, which is fundamentally impor-

tant for the efficient visualization of effects like caustics. While the presence of a

mutation strategy may remind one of genetic algorithms, it is important to note

that – among other differences – genetic algorithms rather deal with optimization

problems, while Metropolis methods deal with a sampling problem, as stated by

Veach (1997, p. 337). Figure 2.5 shows a scene that is difficult for BDPT, but can

be rendered efficiently in the same time when using MLT.

2.1.6 Standard Extensions of Ray-based Rendering

The rendering systems employed in this thesis follow the theoretic foundations of ba-

sic ray tracing (Chapter 4) and straightforward path tracing (Chapters 3 and 5), but

also include some optimizations such as next event estimation, multiple importance

Chapter 2 Background and Literature Review 13

sampling, russian roulette or low discrepancy sequences for improved convergence

behaviour. We give an overview of some of the most popular modifications and

implementation techniques for variance reduction in ray-based rendering below to

clearly show what the actual renderers used in this thesis are capable of.

Russian Roulette

Russian roulette is a probabilistic approach for limiting recursion depth based on

the current throughput of a transport path. This essentially avoids the choice of

a fixed maximum recursion depth for an image (which also leads to biased results)

and instead moves the issue to a local decision made per sample, based on the

potential energy contribution of the currently reached recursion depth. However,

choosing such an individual depth limit per path will still lead to a biased rendering

result, as the energy that would have been contributed by the additional vertices of

the path is essentially lost. In order to create an unbiased result, russian roulette

works as follows: Given a probability p for continuing a path, if the decision is

positive, the next contribution will be multiplied with the inverse of the probability

p−1. With the number of samples going towards infinity, the result is a correctly

weighted contribution of later vertices of a path even though they may only rarely

be sampled at all.

Next Event Estimation

Next event estimation is a method that explicitly samples one or more light sources

at each vertex along a path. This effectively creates a multiple of the paths that

would be generated without next event estimation. It does so by only adding a

single ray per hitpoint and light source, as it removes the necessity to wait for the

original stochastic process to randomly hit a light source at some point, and rather

creates explicit paths potentially ending at a light source.

(Multiple) Importance Sampling

Importance sampling is a technique for reducing variance in the rendered image.

It relies on the fact that sampling the surrounding of a point on a surface with a

specific material may be largely improved by distributing the samples in a way that

is similar to the surface material’s reflection distribution. While simply relying on

the surface distribution works better the closer a material is to perfect specularity, it

becomes inefficient when a small light source is sampled with a distribution similar

to perfectly diffuse (lambertian) reflectance distribution. To improve this situation,

Chapter 2 Background and Literature Review 14

Figure 2.6: Rendering a combination of glossy surfaces and spherical area light sources at
varying scales. (left) Sampling directions are chosen by uniformly sampling from
the directions subtended by the area light. (center) The direction is chosen
purely based on the local material properties. (right) A combination of both
methods, weighted using the power heuristic. Images courtesy of (Veach and
Guibas 1995b)

importance sampling can be extended to multiple importance sampling. This allows

for making sampling decision based on two probability distributions. For example, in

the next event estimation process, an additional random decision is introduced that

chooses between generating a point directly on the light source based on its emittance

distribution and connecting the current vertex to that point, and generating a ray

based purely on the current surface’s reflection distribution. In order to create

an overall low-variance estimator, these sampling strategies have to be combined

with appropriate methods like the balance, cutoff, power, and maximum heuristics.

A thorough description of multiple importance sampling and the possible weighting

heuristics are provided by Veach and Guibas (Veach and Guibas 1995b; Veach 1997).

Figure 2.6 shows the effect of only using a single probability distribution in various

combinations of materials and light sources, and the improvement that is achieved

by relying on multiple importance sampling.

2.2 Other Ray-based Methods, Extensions and

Optimizations

The rendering systems used as the foundation of our work are relatively straight-

forward in their implementation. Yet, it is important to have an understanding of

other approaches of extending and optimizing ray-based rendering methods in or-

der to estimate the value of the contributions made in this thesis. Also, efficient

implementations of the extended methods presented below may in turn also lead to

implications for our own techniques, because the methods proposed in this thesis

can usually also be used in conjunction with more sophisticated underlying rendering

methods. However, an efficient implementation of the advanced rendering methods

Chapter 2 Background and Literature Review 15

on the GPU is often far more difficult than for basic path tracing, which is why much

research is still based on the straightforward approach that can be parallelized with

relative ease.

In this section, we give an overview of the research regarding some of the most

popular methods in global illumination, i.e., photon mapping and radiosity. These

are also relevant because they follow a caching scheme – something we introduce

ourselves in Chapter 5. Subsequently, we look into research regarding sampling

techniques, after which we provide some insight into the latest work regarding ma-

chine learning, as it has gained a lot of momentum over the last few years, with its

concepts also being applicable for many rendering tasks. An overview of the relevant

research that does not fit the mentioned fields specifically, but is still important for

ray-based rendering in general, is given in the last subsection.

2.2.1 Photon Mapping

Similar to our HashCache method presented in Chapter 5, photon mapping is a

two-pass global illumination method based on the eponymous concept of photon

maps, serving as a cache which GI is reconstructed from. It was first presented

by Jensen (1996). We dedicate a separate section to this popular technique as

the involved photon tracing step could also be used to fill our HashCache system

presented in Chapter 5. The basic idea of this technique is to first compute two

photon maps by shooting photons from emissive surfaces in a scene and storing these

at the intersected surface positions. The two photon maps are used for separate

illumination phenomena. More specifically, there is a caustics photon map that

requires a high resolution in order to directly visualize caustics, which tend to vary

at a high frequency spatially, and a global photon map that is used to store lower

frequency illumination. Using distribution ray tracing, the scene is rendered by

reconstructing illumination from the photon maps. In addition to visualizing the

light transport this way, the information stored in the photon maps can be used to

optimize sampling directions (Jensen 1995). Also, the distribution ray tracing step

should not require a high recursion depth, as the low-frequency photon map serves

as an estimate of the radiance on all surfaces that are not too glossy. To compute

this estimate at an intersection point x, a density estimation is computed by locating

the n closest photons to x and integrating the information carried by these photons

into the rendering equation.

Peter and Pietrek (1998) extend photon mapping by a third pass that employs

particle tracing to compute a global importance map, which is then used to compute

the photon maps more efficiently. This means that the photon density in important

image regions (i.e., regions that exhibit high-frequency contant) is increased by a

Chapter 2 Background and Literature Review 16

factor of up to 8, which allows for a far better reconstruction of effects like caustics.

Suykens and Willems (2000) work on two important issues with the photon mapping

approach, which are memory requirements and estimating how many photons are

required for the representation of light transport in a specific scene. The authors

introduce a local required density criterion that determines whether photons need

to be stored at the current intersection point, which reduces memory requirements

by lowering the amount of unimportant or superfluous stored photons. Caustic and

global photon maps show a reduction in the number of photons between 50 and 80

percent. By providing such an estimate, a combination with Peter’s and Pietrek’s

work may lead to the possibility of determining specific termination criteria while

still maintaining high visual quality.

Ma and McCool (2002) propose a hash-based method that allows for computing the

local neighborhood of an intersection point in the photon maps. Their technique

relies on subdividing a space-filling curve into blocks that contain spatially coherent

photons. With the sub-linear access time and the block-based structure, their ap-

proach already allows for an efficient implementation on GPUs. However, it has to

be noted that the block-wise storage of photons will not deliver the same visuals as

querying the original photon map. Instead, this is an approximate nearest neighbor

method. However, it could be employed in methods that rely on a density estimation

step similar to basic photon mapping.

The order of computations for the final gathering step in photon mapping is es-

sentially reversed in Havran, Herzog, et al. (2005)’s work. The technique employs

two trees for storing not only the photon positions, but also the position of final

gathering rays. There is a notable performance improvement (speedup between 1.3

and 3.3, depending on the scene) that the authors mainly attribute to the logarith-

mic search complexity. Image quality is not affected and additional techniques for

memory reduction of importance sampling can be combined with the method.

Interestingly, Steinhurst, Coombe, et al. (2005) explain that besides the memory

requirements, memory bandwidth will also be a major challenge on the way to a

hardware implementation of real-time photon mapping. Their approach to reducing

the required bandwidth consists of reordering the nearest neighbor queries and using

cache conscious data structures. Using a Hilbert curve for reordering the spatial

queries, the total required bandwidth could be reduced by 99.2%, but with a very

high amount of required intermediate storage. However, with just 1MB of storage,

the required bandwidth could still be reduced by one order of magnitude. Since

to our knowledge most methods do not rely on the order of spatial queries, this

reordering approach can be considered as being rather universal when it comes to

combining it with other optimizations of photon mapping.

Hachisuka, Ogaki, et al. (2008) present a progressive method based on photon map-

Chapter 2 Background and Literature Review 17

ping (therefore called progressive photon mapping). Their multi-pass algorithm relies

on multiple photon tracing passes in order to progressively improve the accuracy of

the GI solution. To achieve this, a new radiance estimate is used that converges

to ground truth when adding more photons. In contrast to standard photon map-

ping, it is not necessary to store the full photon map. Instead, a limited amount of

memory is already enough for computing a solution of arbitrary accuracy.

Spencer and Jones (2009) improve the final gathering step, which is fundamental

to the photon mapping approach, by evaluating the photons over a surface hierar-

chically. An irradiance estimate is computed by using the gather rays’ footprints

rather than relying on local photon density. The presented approach leads to vastly

reduced noise, but may exhibit visual differences to the ground truth, such as overly

soft shadows. Hachisuka and Jensen (2009) extend progressive photon mapping to

efficiently handle distribution effects like depth-of-field. Therefore, stochastic pro-

gressive photon mapping is introduced, a method which shares photon statistics

within an area instead of using a purely point-based approach. The authors demon-

strate how the method provides the same robustness as progressive photon mapping,

while distribution effects are handled efficiently. Hachisuka and Jensen (2010) bring

progressive photon mapping to the GPU, while Chen, Wang, et al. (2011) propose

an improvement to stochastic progressive photon papping by extending it with a

Metropolis-Hastings algorithm that – just like it improves the distribution of paths

in Metropolis light transport – can improve the distribution of photons by exploit-

ing local coherence. Their approach cuts the relative error for various scenes in

half or performs even better. In the most difficult test scene the number of visible

light paths computed by the new method is improved to more than 2000 times the

amount that is visible when uniform sampling is used (30.9% vs. 0.014%), with the

worst case being the Cornell Box scene (92.8% vs. 82.1%).

Knaus and Zwicker (2011) present a new formulation to progressive photon mapping

by using a probabilistic approach that does not require storing the local photon

statistics and supports arbitrary kernel adjustments for computing the radiance

estimate. In addition, volumetric photon mapping is also supported.

Hachisuka, Jarosz, et al. (2012) give an overview of the state-of-the-art in photon

density estimation. The presented methods include basic photon mapping, (proba-

bilistic) progressive photon mapping, participating media and some more concrete

information on the implementation of photon mapping methods in readily available

rendering systems. Based on analyzing the radiance estimate in progressive photon

mapping, Kaplanyan and Dachsbacher (2013) introduce a locally adaptive extension

that minimizes the error in an image by balancing noise and bias. To achieve this,

photon mapping is reformulated as a regression problem, which enables the authors

to estimate a pixel’s measurement. In the same year, Mara, Luebke, et al. (2013)

Chapter 2 Background and Literature Review 18

performed an analysis of various photon mapping approaches, leading to the con-

clusion that tiled, deferred photon gathering in a compute shader is the best variant

when it comes to performance and quality.

Kang, Wang, et al. (2016) present a survey of the state-of-the-art of photon mapping

algorithms and the most important challenges in the field. According to the authors,

at the time of writing their survey article, progressive photon mapping was a very

important field of research. However, they also mention the drawback of having to

adapt the global photon map to the progressive approach in order to visualize it

directly.

Driven by the gradient-domain extensions that have been proposed for MC-based

rendering methods, Hua, Gruson, et al. (2017) improved density-estimation-based

approaches like photon mapping. In the following year, Gruson, Hua, et al. (2018)

also included volumetric effects such as participating media in this adaptation.

An approach that uses the recently introduced hardware ray tracing capabilities for

rendering caustics with photon mapping in image space is presented by Kim (2019).

A major drawback of this method is that it does not perform well wenn the camera

is placed close to a surface that exhibits caustics, as the required photon density

in such a case would be way higher than currently manageable. Zhu, Xu, et al.

(2020) present a novel photon mapping algorithm that is based on deep learning.

The authors train a deep neural network in order to give good estimates on photon

density by extracting local photon properties and using these as an input to their

network. Their evaluation shows that the proposed method can generate accurate

results of scenes that include caustics with one to two orders of magnitude less

photons than required by stochastic or adaptive progressive photon mapping. By

separating caustics from the global photon map and providing additional features,

Zeng, Wang, et al. (2020) achieve very promising results from denoising renderings

generated with stochastic progressive photon mapping.

It can be certainly said that photon mapping has come a long way since its original

publication, and it still is one of the most efficient tools for rendering accurate caus-

tics. Current developments in the field of image processing and machine learning

may have a significant influence on the development of image quality in photon map-

ping approaches, as various modern denoising methods have already vastly improved

the image quality of MC-based methods like path tracing. However, high-frequency

effects like caustics remain challenging for such denoising methods, since guessing

the photon distribution in such complicated effects with their very specific, scene-

dependent appearance is rather challenging.

Chapter 2 Background and Literature Review 19

2.2.2 Radiosity

Radiosity is the first popular algorithm for computing the interreflection between

diffuse surfaces (diffuse global illumination), presented by Goral, Torrance, et al.

(1984). Like photon mapping, it can be seen as a caching method, but only for

diffuse global illumination. It is derived from methods used in thermal engineering

and allows for an observer-independent precomputation of light transport. The

original article on Radiosity published by Goral et al. is also the origin of the

infamous Cornell Box, as it is used here to compare the computed light transport

against reality (i.e., a physically constructed Cornell Box).

The hemi-cube method (Cohen and Greenberg 1985) is essentially an optimized

approach for determining the form-factors between surface patches. These form-

factors are necessary in order to determine the energy exchanged between surfaces

in the radiosity method. By projecting other patches onto each patch’s hemi-cube,

a matrix of form-factors for all patches in the scene is computed, which is then used

to compute a radiosity solution.

A more general radiosity method that is not limited to diffuse interreflection is in-

troduced by Immel, Cohen, et al. (1986). In addition to the diffuse intensities, the

direction-dependent intensities are computed and stored for each non-diffuse surface

patch. Essentially, this can be viewed as a kind of surface light field computation.

When rendering the scene, directional intensities of the global hemi-cubes are in-

terpolated bilinearly to obtain a smooth result. Obviously, storing the directional

intensities per patch results in prohibitively high memory requirements for real-

world scenes, especially at the time of publication. This becomes even worse with

the glossiness of utilized materials approaching perfect specularity.

One possible solution for alleviating the long preprocessing time of radiosity methods

is to modify the original approach by adding a progressive refinement approach.

The first implementation of such a method is presented in Cohen, Chen, et al.

(1988). This can be considered one of the most important publications when it comes

to bringing global illumination methods to interactive applications. The authors

restructure the radiosity algorithm in order to perform the computation of form-

factors on-the-fly instead of requiring a full O(n2) preprocessing step. They update

the radiosity for the entire set of patches that are available all at once, while the

patches are processed in an order sorted by their energy contribution. To provide an

acceptable visual result early on, global illumination of a scene is estimated by its

geometry and materials and then used as an ambient term initially. While Cohen,

Chen, et al. (1988) still relied upon the hemi-cube method, Wallace, Elmquist, et al.

(1989) presented an alternative method to form-factor computation that relies on

a ray tracing approach. Around the same time, Baum, Rushmeier, et al. (1989)

Chapter 2 Background and Literature Review 20

proposed an analytical method for form-factor computation that avoids the visual

errors that could result from applying the hemi-cube approach in a progressively

refining algorithm. Their hybrid approach employs the hemi-cube as long as the

underlying assumptions regarding proximity, visibility and aliasing are not violated,

and switches to the analytical method when violation occurs.

Heckbert (1990) separates material properties into diffuse and specular reflectivity

in order to compute the specular component with a combination of light tracing and

path tracing, and the diffuse component with a radiosity method. Separating the

illumination phenomena resembles some properties of the approach we take in our

implementation of the HashCache method described in Chapter 5. In this article,

Heckbert (1990) also introduces his path notation based on regular expressions.

Hanrahan, Salzman, et al. (1991) propose hierarchical radiosity, a method to repre-

sent the form-factor matrix in a hierarchical way, done by an adaptive, user-guided

subdivision of patches based on an error-bound. Their tests show a reduction of the

number of surface interactions by up to two orders of magnitude, while maintaining

the precision of the resulting image. Lischinski, Tampieri, et al. (1992) present a

method that explicitly considers discontinuities in scene illumination to interpolate

between the respective regions. Combined with a progressive radiosity framework,

their algorithm makes it possible to accurately render fine details.

In their article on wavelet radiosity, Gortler, Schröder, et al. (1993) show that hi-

erarchical radiosity is an actual instance of more general, wavelet-based methods.

The proposed approach provides a novel view on the radiosity methods developed

so far. Based upon this, a set of new algorithms for computing radiosity is pre-

sented that run in O(n) time. The presented results are based on dubbed flatlets

and multi-wavelets and show accurate results. However, the authors emphasize that

their technique still requires additional understanding regarding various properties

of the employed wavelets and their behaviour in the radiosity context. While hi-

erarchical radiosity is based on subdividing surfaces, it cannot utilize preexisting

hierarchies present in the scene geometry, which makes the algorithm inefficient for

geometrically complex scenes.

Smits, Arvo, et al. (1994) propose a technique for clustering surfaces by estimating

the energy that is transferred between clusters and maintaining an error bound for

these interactions, bringing the initial complexity of O(n2) down to O(n log n) for

both computational and storage complexity. The reported speedups show that the

performance can be improved by two orders of magnitude for scenes of moderate

complexity when compared to the standard hierarchical radiosity algorithm. One

year later, Neumann (1995) presented radiosity methods that are nearly linear in

runtime complexity. To achieve such a behaviour, the author employ MC meth-

ods for solving the system of equations, approximating the gathering and shooting

Chapter 2 Background and Literature Review 21

at a lower computational cost than when using the exact solutions. Additionally,

importance sampling is employed throughout the sampling process. Keller (1996)

improves this method by using low discrepancy sequences to create the technique of

quasi-monte carlo radiosity.

A new method for bounding the transfer error of radiosity is presented by Gibson

and Hubbold (1996). The authors apply their approach by using volumes as a repre-

sentation of clustered small surfaces. It is notable that the orientation of the surfaces

is still accounted for, which makes it easier to compute an accurate solution when

compared to neglecting surface orientation. In the article’s conclusion, the authors

already make clear that perceptual considerations will be an important measure for

determining image quality and termination criteria for progressive algorithms like

newer radiosity implementations.

To our knowledge, Keller (1997) was the first to propose an algorithm that could

compute a radiosity solution within a few seconds: Instant radiosity. The presented

approach avoids the use of finite element methods and scene discretization. Instead,

it relies on jittered low discrepancy sequences, the quasi-random walk method and

the utilization of the available graphics hardware. In the same year, Gibson and

Hubbold (1997) showed how perceptually-based measures relating to brightness per-

ception and adaptation can be used in the computation of radiosity solutions, making

it possible to reduce the computational effort that is put into regions of the scene

that hardly benefit from it.

Building upon Neumann (1995)’s earlier work, Bekaert, Neumann, et al. (1998)

eventually combine MC radiosity and hierarchical radiosity to create the technique

of hierarchical MC radiosity. According to the authors, storage requirements are

reduced to about 20% of the original hierarchical radiosity algorithm, while the

computational effort can be reduced by one order of magnitude.

Durand, Drettakis, et al. (1999) introduce a novel global visibility data structure

called the visibility skeleton that allows for the computation of exact form-factors

between polygons and vertices created during a subdivision process, while also sup-

porting general visibility computations. Discontinuity meshing is extended by using

a perceptually-based ranking strategy, leading to a good adaptation of the hierar-

chical subdivision to shadow variations. At the same time, the square table of form-

factors is replaced by a linked structure of polygons and vertices. Scenes that are

illuminated by multiple light sources or even almost exclusively by indirect lighting

can be handled quite well with the presented method, which is a clear improvement

compared to earlier work.

By utilizing the evolving graphics hardware, Coombe, Harris, et al. (2005) developed

a radiosity approach that could compute a full radiosity solution for smaller scenes

Chapter 2 Background and Literature Review 22

within a time frame of less than one second, including adaptive scene subdivision.

Segovia, Iehl, et al. (2006) propose an extension of Keller (1997)’s instant radiosity

similar to the extension that bidirectional path tracing is to regular path tracing.

This means that a combination of multiple estimators is employed in order to gen-

erate a low variance estimate within a short time frame. Even with multiple light

sources and glossy materials, their method could already achieve interactive frame

rates on graphics hardware that was commonly available in 2006.

An approach that is based on utilizing hardware shadow maps for computing the

indirect illumination of virtual point lights is presented by Laine, Saransaari, et al.

(2007). Their method is suitable for a single bounce of GI and generates the virtual

point lights by casting rays from the primary light source. They also provide a

method that makes the virtual point lights reusable by maintaining their distribution

in an incremental way, which leads to only few shadow maps having to be rendered

for each frame as long as no rapid lighting changes are present. The result is an

algorithm that delivers real-time frame rates even when hundreds of virtual point

lights are employed.

The observation of diffuse indirect illumination often exhibiting only low spatial

frequencies is leveraged by Nichols, Shopf, et al. (2009)’s image space radiosity ap-

proach. By bringing the radiosity computations to image space, readily available

hardware support for MipMaps is used for an implicit quadtree implementation. Vir-

tual point lights are computed using a multiresolution splatting technique combined

with lightcuts in image space. The presented method is able to generate results at

interactive frame rates that are similar to a much larger number of regularly sampled

virtual point lights.

Another extension of instant radiosity is presented by Hedman, Karras, et al. (2016).

They state their main goal to be the distribution of virtual point lights in a way that

enables temporally coherent illumination as well as a high-quality radiosity solution.

To achieve this, the authors developed an adaptive distribution of virtual point lights

that also maintains temporal coherence. In addition, the number of virtual point

lights whose position is changed between frames is limited by a heuristic sampling

technique. The presented approach provides the means to compute global illumina-

tion for interactive environments with dynamic light sources and complex occlusion

properties without having to deal with a large amount of temporal flickering.

Like photon mapping, radiosity has come a long way since its original publication.

While it has originally been a purely preprocessing-based method, advancements

have made it suitable for interactive scene exploration. Current advancements in

GPU development, i.e., the availability of hardware support for ray tracing, will

likely influence the use of radiosity-related methods in productive environments and

entertainment content such as games.

Chapter 2 Background and Literature Review 23

2.2.3 General Sampling Techniques

Generally, the sampling process in ray-based rendering techniques can be steered

or influenced in various ways, which we look into in this section. Already in 1955,

Kahn (1955) published his research on variance reduction techniques for MC meth-

ods, which were completely unrelated to photorealistic image synthesis, which obvi-

ously did not exist back then. These techniques are importance sampling, russian

roulette/splitting, combining analytic and probabilistic methods, correlation and

regression, systematic sampling and stratified sampling. Looking at rendering and

post-processing techniques today, all of these approaches have been used in the

synthesis of photorealistic imagery.

Veach and Guibas (1995b) introduce multiple importance sampling as a technique

for combining samples from various distributions with an optimized variance (based

on several heuristics). This approach basically forms the foundation of bidirectional

path tracing, later introduced by the same authors, where multiple distributions are

combined all the time to generate new light transport paths. Owen (1998) introduces

a new sampling technique called Latin supercube sampling. This approach aims for

improving the outcome of high-dimensional MC simulations and is built upon the

combination of Latin hypercube sampling and Quasi-Monte Carlo (QMC) methods.

A grouping of input variables into subsets is used to apply QMC methods for lower

dimensions to each of these subsets. This yields an effective QMC approach for

high-dimensional problems, which works as well as Latin hypercube sampling in the

worst case. Owen (2003) later gives an overview of Quasi-Monte Carlo methods

in his 2003 SIGGRAPH course. He starts with basic, unoptimized MC (referred

to by the author as crude Monte Carlo) as a basis, and then explains what various

stratification approaches can do for the integration task. After introducing the terms

of uniformity and discrepancy, the road towards Quasi-Monte Carlo is paved step-

by-step with the details required for implementing such methods for an individual

rendering system.

A multidimensional adaptive sampling strategy is presented by Hachisuka, Jarosz,

et al. (2008). They focus on synthesizing images that exhibit distribution effects

like soft shadows, motion blur, and depth of field at a high efficiency, i.e., with

low noise levels at relatively few samples. Instead of simply adaptively sampling

the image plane, the authors show how to adaptively sample the multidimensional

space that is given by the rendering equation by putting more computational effort

into regions where local contrast is high. The reconstruction of the final image is

done by determining each sample’s extent in the sampled space, aided by a structure

tensor. Looking at the results, the proposed approach performs better than all other

methods it is compared to (Mitchell, Metropolis, and low discrepancy sequences) in

the exemplary scenes. Note however that the presented approach is tested solely

Chapter 2 Background and Literature Review 24

for ray tracing instead of path tracing, which vastly limits the dimensionality of the

sample space.

Jin, Ihm, et al. (2009) propose a technique for a selective and adaptive supersampling

process in ray tracing on many-core processors such as GPUs or modern CPUs.

The presented approach combines image space attributes such as local contrast

and object space attributes such as material properties in order to reduce aliasing

artifacts as much as possible. The implementation is done for the GPU as well

as the CPU and achieves reported speedups between 2 and 3 when compared to

non-adaptive sampling, and an interactive frame rate between 1 and 4 frames per

second (FPS) depending on the scene, which can definitely be seen as an achievement

back in 2009.

A robust light transport method that unifies photon mapping and bidirectional path

tracing by integrating photon mapping into the path integral framework is presented

by Georgiev, Křivánek, et al. (2012b). The authors show that their approach retains

the advantages of both techniques while also explaining the relative efficiency of

photon mapping in specular-diffuse-specular transport paths.

Using the concept of high-dimensional manifolds, Jakob and Marschner (2012) pro-

pose a method that can vastly improve the handling of difficult specular and near-

specular paths in Markov chain Monte Carlo rendering. Manifolds are used to model

the space of specular paths and explore these in a way that is much more efficient

than previous methods.

Li, Wu, et al. (2012) apply Stein’s unbiased risk estimator (SURE) to MC rendering

in order to generate more effective reconstruction kernels and to treat adaptive

sampling and reconstruction in an optimization framework. SURE makes it possible

to estimate the reconstruction quality of arbitrary filter kernels, thus eliminating the

limitation to symmetric kernels.

Lehtinen, Karras, et al. (2013) introduce a novel rendering algorithm for directly

computing image gradients and reconstructing the final image from these gradients,

based on Metropolis sampling. The authors show that their approach performs well

when compared to state-of-the-art methods and they also present an analysis of the

spectral properties of gradient-domain sampling compared to image space sampling.

In their 2015 article, Zwicker, Jarosz, et al. (2015) provide a survey on adaptive sam-

pling and reconstruction methods for MC-based rendering methods. In their report,

they distinguish between a priori and a posteriori methods. A priori methods rely

on analyzing light transport equations and try to derive appropriate sampling rates

or filter kernels, while a posteriori methods drive the sampling and reconstruction

process by using statistical methods on sample sets.

Chapter 2 Background and Literature Review 25

Kettunen, Manzi, et al. (2015) describe how the estimation of image gradients can

also be done for standard MC methods, reducing the error rate significantly in

many cases. The technique also undergoes a frequency analysis, comparing it to

standard MC rendering. Eventually, gradient-domain path tracing is the result of

applying the suggested method to a real-world MC method, yielding much better

results when compared to basic path tracing. By adding temporal finite differences

and extending the reconstruction method to work in a three-dimensional spatio-

temporal way, Manzi, Kettunen, et al. (2016) modify gradient-domain path tracing

to improve the temporal coherence in rendering animation sequences.

Herholz, Elek, et al. (2016) use the Gaussian mixture model for representing the

illumination and the reflectance factors in GI rendering, which they fit by using

multiple optimization methods. The resulting product distribution is then used

to appropriately parameterize importance sampling instead of only relying on a

single one of these factors, as it is usually done. The authors demonstrate that

their approach performs better than state-of-the-art methods regarding the error

convergence rate in complex environments.

An example for the application of blue-noise is given by Georgiev and Fajardo

(2016)’s work on Blue-noise Dithered Sampling. Instead of relying on the white-

noise error distribution that results from randomly decorrelating pixels, the authors

employ a dithering-based correlation that thresholds individual pixels with a mask

based on blue-noise. This minimizes the low-frequency noise in the output signal,

leading to a much more pleasant image especially at low sampling rates.

Christensen, Kensler, et al. (2018) present a framework for developing algorithms

that generate progressive 2D sample point sequences. Additionally, they propose

three such sample sequences, yielding different stratification properties regarding

the two dimensions. Taking the prefix of arbitrary length of such a sequence will

also yield a well-distributed sequence, which makes them well-suited for progressive

rendering. A method for combining multiple MC-based rendering methods to com-

pute a single image is presented by Bitterli and Jarosz (2019), making it possible to

use straightforward path tracing as a base algorithm, while artifacts such as fireflies

can be dealt with by a metropolised sampling scheme. This brings together the best

of both worlds: The computational overhead for basic path tracing is low, compli-

cated light transport paths can be sampled, and temporal flickering artifacts that

often result from Metropolis-based techniques are eliminated.

2.2.4 Machine Learning

With increasing hardware capabilities and even specific support by GPUs, machine

learning has been an important research topic in many fields for several years now,

Chapter 2 Background and Literature Review 26

including image synthesis. Vorba, Karĺık, et al. (2014) propose a parametric mixture

model which is progressively trained for scattering directions and light source sam-

pling and can be integrated with state-of-the-art rendering methods. The authors

modify the offline stepwise expectation maximization to create an online process

that can potentially handle an arbitrary amount of samples. They describe how

an unbiased guiding method based on density estimation of weighted particles and

distribution caching can be used to improve rendering quality significantly. Most of

the overhead that is generated by the presented technique is caused by cache queries,

which may take almost up to half the full execution time for very simple scenes with

basic path tracing.

Using a data structure similar to irradiance volumes, Dahm and Keller (2017) in-

troduce a modified importance sampling approach that significantly improves the

performance of light transport simulation. The presented method is based on uni-

formly sampling the scene and placing a hemisphere at each sampled point that

stores the incident radiance for a discrete set of directions, which is then used to

guide the importance sampling process when generating the next vertex for a path.

Also, these hemispheres are progressively updated during the rendering process. The

presented results are clearly better than basic path tracing and – for the shown scene

– even improve upon MLT.

Methods to steer importance sampling with neural networks in primary sample

space and in the general case have been proposed by Zheng and Zwicker (2018),

and Müller, Mcwilliams, et al. (2019), respectively. Elek, Thomas, et al. (2019)

propose an approach that tries to produce the best estimate in MC-based image

synthesis on a per-pixel basis by considering the sample distributions for each pixel

individually for varying scene configurations. The technique is based on identifying

recurring patterns in these distributions and using them to train a model for variance

reduction based on neural networks. The resulting estimates are improved when

compared to simply computing the mean value of all samples, while the approach

can also be combined with standard denoising methods. Sanzenbacher, Mescheder,

et al. (2020) show how neural networks can be used to learn light transport for static

and dynamic scenes in three spatial dimensions. Contrasting other approaches, their

technique allows for predicting global illumination effects and also enables the user

to modify the scene geometry interactively. Tewari, Fried, et al. (2020) present

a survey on state-of-the-art methods that leverage machine learning methods to

generate photorealistic imagery.

With increasing computational power and the available hardware support for ma-

chine learning techniques, a machine-learning-based approach to global illumination

and, more specifically, its underlying sampling techniques, may certainly yield out-

comes that would be hard to achieve with other approaches that are not based on

Chapter 2 Background and Literature Review 27

machine learning. However, it is very important to keep the possible challenges of

such techniques in mind, such as the appropriate input selection or overfitting issues.

2.2.5 Other Methods and Aspects

While the methods described in this subsection do not specifically fit into any of the

other subsections, they all have the common goal of accelerating global illumination

rendering.

Stamminger, Scheel, et al. (2000) present suitable algorithms for interactive walk-

throughs through global illumination solutions that also exhibit distribution effects

like glossy materials. To achieve this, a novel representation of incident illumination

is presented, using a hierarchical radiance clustering algorithm to achieve a finite

element representation of outgoing radiance. At the same time, outgoing radiance

is represented using an adaptive hierarchical basis that only stores radiant intensity

instead of radiance and enables interactive viewing. The presented methods can be

easily implemented as an extension to radiosity systems that only support diffuse

GI. Instead of also representing incoming radiance using a costly finite-element rep-

resentation, the authors present an algorithm they call illumination samples as the

means to store non-diffuse illumination data. The authors describe the illumina-

tion samples method to be similar to photons in Jensen’s photon mapping approach

(Jensen 1996).

Instead of working with concrete illumination samples, the light transport within

a scene can also be analyzed in a preprocessing step. Sloan, Kautz, et al. (2002)

propose such a method for storing precomputed radiance transfer that achieves high

frame rates when rendering low-frequency global illumination for diffuse and glossy

objects and can even handle soft shadows, interreflections and caustics. Their main

contribution is the concept of functions that are distributed over objects’ surfaces

and represent the transfer of incident lighting into transferred radiance. Rigid ro-

tation of objects is possible, and an extension even allows for rigid movement. The

evaluation shows that performance for the shown scenes is clearly interactive (be-

tween 1.7 and 129 FPS), with a preprocessing time between 8 minutes and 4.4 hours.

While such a preprocessing time is too long to use the proposed method in an iter-

ative workflow where previews of a model are required after slight changes of a 3D

model, it is certainly adequate when the modeling process is finished and geometry

and materials are finished.

Bala, Walter, et al. (2003) present a new representation of sparsely sampled global

illumination, the edge-and-point-image. Their approach does not rely on any pre-

processing or storage of the computed illumination of preceding frames, but instead

works purely in image space in order to reconstruct a visually pleasant image from

Chapter 2 Background and Literature Review 28

a sparsely sampled one. Using appropriate interpolation methods, radiance can be

reconstructed instead of computing complex shading per-pixel. The edges repre-

sented in the edge-and-point image are analytically computed and serve to avoid

wrongly interpolated samples across discontinuities. Even soft shadows are suitably

reconstructed with the border between umbra, penumbra and unshadowed regions

being computed analytically. The presented system allows for interactive object ma-

nipulation and delivers a speedup of 20–60 over basic ray tracing while exhibiting

a lower amount of aliasing. One of the main advantages of a system like Bala’s

is its independence of temporal changes in a scene. In contrast to methods that

reuse information from previous frames or knowlegde about the radiance transfer in

a scene, the method at hand can also be used in fully dynamic scenes.

A much more basic and universal approach is the development of advanced strate-

gies for data structure construction that lead to improved traversal times. Improve-

ments to the bounding interval hierarchy (BIH) that allow for better adaptation to

non-uniformly tessellated geometry are presented by Stich, Friedrich, et al. (2009),

leading to the popular SBVH data structure that is also used in NVIDIA’s OptiX

framework. Also, this is the data structure we chose for all rendering components

developed in this thesis, as it combines low construction times with a high traversal

performance. As an alternative to pure offline computation of GI effects, Crassin,

Neyret, et al. (2011) propose voxel cone tracing, a method that uses a sparse voxel

octree and allows for real-time computation of glossy and diffuse GI. Their approach

makes it possible to estimate the light transport along a boundle of rays within a

cone by tracing only a single ray, which is a significant alleviation of the required

computational effort. With two indirect light bounces, the presented method al-

ready achieves 25–70 FPS on an NVIDIA GeForce GTX 480. One drawback of the

presented method is the necessity of maintaining the scene’s voxel representation,

which may limit the scene size due to both computational and memory limitations.

Müller, Gross, et al. (2017) developed a method for light path guiding in standard

path tracing, based on learning an approximate representation of a scene’s radi-

ance field. The authors introduce a novel data structure for the according spatio-

directional information, called the SD-tree, that serves to store and sample the

incident radiance and consists of two parts: A binary tree for spatial subdivision

that forms the upper nodes and a quadtree for directional information that forms

the lower nodes. It is emphasized that the proposed method does not require any

parameter tuning and yields results that are at least on-par with more complicated

state-of-the-art methods, tested with difficult visibility situations, highly-detailed

models and complex light transport. A light path guiding method like this could

also be greatly interesting for building an optimized renderer for the methods con-

tributed in this thesis.

Chapter 2 Background and Literature Review 29

A novel method for using sparse samples of the diffuse light field to interpolate

radiance is presented by Silvennoinen and Lehtinen (2017). Their work essentially

consists of a direct-to-indirect transport method that allows for accurately render-

ing imagery exhibiting diffuse indirect illumination effects. Because of a necessary

preprocessing step, the proposed algorithm works with mostly static scenes, but

allows for fully dynamic lighting, camera and (diffuse) material changes. Radiance

is reconstructed by using a set of radiance probes that are distributed throughout

the scene with global and local parts being dealt with independently. The sampled

radiance field is used as an input to the local reconstruction operators, which yield

the indirect radiance estimate. Radiance probe placement can be done with differ-

ent approaches; a non-uniform way of this placement process is described by Wang,

Khiat, et al. (2019).

Tailored specifically towards open world scenes, Liu, Gao, et al. (2020) present an

approximate GI method based on hybrid cone tracing that works with light maps for

complex meshes and height-field meshes separately. The algorithm consists of two

steps: First, the cone-scene-intersection is performed, followed by light sampling and

sample accumulation. According to the authors, the results are visually pleasing,

while memory requirements are around 12% of similar state-of-the-art methods like

voxel cone tracing.

2.3 Perceptual Considerations and Gaze-Contingent

Rendering

2.3.1 The Human Visual System: Basic Concepts and Limitations

Over the years, there have been various great general reference works in the field

of human visual perception and the HVS. Hubel (1988)’s Eye, Brain, and Vision,

Wandell (1995)’s Foundations of Vision, Adler, Kaufman, et al. (2011)’s Adler’s

Physiology of the Eye, and Goldstein (2013)’s Sensation and Perception form a

great basis for the general understanding of human vision and perception.

There are some concepts of the HVS that are required to fully understand parts

of the main chapters of this thesis, in which specific properties and weaknesses of

human vision are exploited in order to accelerate and improve the process of image

synthesis. To make it easier to understand these parts, we give an overview of basic

mechanisms and properties that are important for the following chapters, based on

the high-level model of the HVS that we developed in our state-of-the-art report

(Weier, Stengel, et al. 2017), shown in Figure 2.7. This model contains the main

stages that have to be passed by a visual stimulus before it is finally turned into

Chapter 2 Background and Literature Review 30

Figure 2.7: A high-level model of the HVS that describes the basic components responsible
for visual perception.

a percept. Following the illustration of our high-level model from top to bottom,

there are two locations (one for each eyeball) where light enters the HVS, which

enables stereo vision. After passing the optical system, light reaches the retina

(called the sensor in our model), which is responsible for passing a stimulus to

the visual pathways. Via this connection, signals are passed to the visual cortex,

that involves various parts of the brain responsible for processing and interpreting

the signals and forming a percept, and thus an image perceived by the individual.

Memory and attention also play an important role in this process. Below, we will

shortly describe the most important properties of these elements in order to convey

the knowledge necessary for understanding some key elements of the main parts of

this thesis. For a more detailed description, see (Weier, Stengel, et al. 2017) and the

reference works described at the beginning of this section.

There are various optical properties of the HVS that partially result from the posi-

tion and shape of the eyes. With their eyes looking straight ahead, humans have a

horizontal field of view (FoV) of approximately 190◦, which increases to 290◦ when

also accounting for eyeball rotation. It is important to note that perception is far

from uniform over the whole visual field because of the spatial varying properties

of the retina, which means that there are significant differences in perception be-

tween central and peripheral vision. Also, the resolution of the HVS is limited to

approximately 60 cycles per degree (CPD) (Wandell 1995, p. 24), which could lead

to aliasing when viewing specific patterns that contain higher frequencies. However,

the optics in the cornea and lens also serve as a lowpass filter that has a cutoff

frequency of approximately 60 CPD, which reduces aliasing artifacts significantly.

Another important element among the optical elements is the pupil, which serves as

an aperture. Mainly, it is responsible for adjusting the sharpness of the perceived

Chapter 2 Background and Literature Review 31

Figure 2.8: Photoreceptor distribution on the retina

image with its adjustable diameter (2–8mm), as it can only control about one order

of magnitude of light intensity.

After traveling through the eye’s optical system, light reaches the retina, which

is the photosensitive layer of the human eye, consisting of two different kinds of

photoreceptors, responsible for brightness and color sensation, respectively: Rods

and cones. Rods are mainly important for brightness perception in scotopic vision,

which occurs when only little light is available. This means that a visual percept in

scotopic vision is mainly caused by the rods, leading to a monochromatic perception

in very low light. Cones, on the other hand, are divided into S-, M- and L-cones,

responsible for short, medium and long wavelengths (often described as blue, green

and red). They enable color perception, also referred to as photopic vision.

As mentioned above, photoreceptors are not distributed uniformly over the surface

of the retina, which is illustrated in Figure 2.8. The fovea is the retina’s central

area with a size that corresponds to approximately 5° of the visual field. As shown

in the diagram, there are no rods in this area, but it is instead fitted with cones

exclusively. At the same time, the density of cones on the retina drops significantly

with increasing eccentricities (denoting the angular distance to the optical axis).

In addition to the fovea, central vision consists of two more areas: The parafovea

(between 5° and 9°) and the perifovea (between 9° and 17°) (Curcio, Sloan, et al.

1990). Areas outside central vision belong to peripheral vision. The density of cones

Chapter 2 Background and Literature Review 32

is crucial for visual acuity, also described as the “keenness of sight”, which is the

highest inside the foveal area, while already being reduced by approximately 75% at

an eccentricity of 6°. While depending largely on the receptor distribution, visual

acuity is also influenced by a stimulus’ contrast. The limit of visual acuity can only

be achieved with a high contrast image under photopic vision, such as reading a

book in daylight.

Another element of perception that is influenced by the varying distribution of pho-

toreceptors is color sensation. The foveal region mainly contains M- and L-cones,

while S-cones are spread out much further, leading to a higher sensitivity to such

wavelengths in peripheral vision. Retinal photoreceptors can also adapt to changes

in light intensity, which also influences color perception and visual acuity (Ledda,

Santos, et al. 2004). The HVS makes it possible to perceive brightness stimuli within

a range of seven orders of magnitude, with varying properties such as reduced color

sensation in scotopic vision. Just like visual acuity drops towards the periphery,

depth perception is also reduced in peripheral vision, mainly because of the reduc-

tion of perceivable details and missing overlap between the two eyes’ stimuli.

Besides the adjustments that can be made by the eye’s optics and photoreceptor cells,

external muscles also allow for highly precise changes of the eyeball’s orientation,

mainly for following an object of interest (OoI) and projecting it onto the fovea in

both eyes for highly detailed perception. Also, this allows for dynamic exploration

of the environment and quickly switching attention between various objects without

having to move one’s head too much. The extraocular muscles are also responsible

for adjusting the lens in order to bring the current OoI into focus. A highly detailed

psychophysical description of human eye movements is provided by Kowler (2011).

Two very important types of movement of the eyeball that happen constantly are

saccades and fixations. While saccades denote the motion that happens when rapidly

jumping between multiple OoIs, also triggering saccadic suppression (a rapid decline

in visual sensitivity), fixations denote the state where the gaze rests on an OoI and

visual information is perceived and processed. It is noteworthy that fixations at

larger eccentricities are usually not kept for a long time and instead head movement

is induced. According to Defense (1999, p. 17), this eccentricity is referred to as the

comfortable viewing angle (CVA) and is approximately 15◦.

While the above description is by no means comprehensive, it conveys the infor-

mation necessary for understanding the approaches and decisions made mainly in

Chapters 3 and 4. For a more detailed description with concrete numbers and a

large body of research related to accelerated rendering in the context of human

perception, see our state-of-the-art report (Weier, Stengel, et al. 2017). In the fol-

lowing sections, we will give a condensed overview of the most important work that

is related to our own research and the methods that we used.

Chapter 2 Background and Literature Review 33

2.3.2 Perceived Image Quality and Quality Assessment

Judging the visual quality of an image is a difficult task not only because of differ-

ences in perception between individuals, but also because of the complex processing

in the HVS, or, more precisely, the visual cortex. While a numeric objective measure

can easily be established, e.g., by computing the root mean square (RMS) error of

individual color channels or luminance values compared to a reference image, this is

not a reliable tool when it comes to perceived quality. Simply adding some random

noise to an image will yield significant differences when using such an approach,

while barely altering the image’s appearance as a whole; the same would happen

when simply adding or subtracting some constant values from each pixel.

Wang, Simoncelli, et al. (2003) and Wang, Bovik, et al. (2004) developed the method

of multi-scale structural similarity (MS-SSIM) for obtaining structural similarity in-

formation that strongly relies on the assumption of the HVS’ high adaptation for the

extraction of structural scene information. This means that the ability of obtaining

such a measure should yield fundamental information about the perceived image

quality. The authors also present experiments that show the superiority of their ap-

proach when compared to single-scale methods when parameterized correctly. When

it comes to the visual fidelity of natural images, Chandler and Hemami (2007) in-

troduce the visual signal-to-noise ratio (VSNR), which is a two-stage approach.

Wavelet-based models of visual masking and summation are used for detecting dis-

tortions in natural images using contrast thresholds in the first stage. In the second

stage, a multi-scale wavelet decomposition is employed to determine the significance

of the present distortion by looking into the visual properties of perceived contrast

and global precedence. However, the proposed method is limited to grayscale images,

which means that purely chromatic errors in an image remain undetected.

Huynh-Thu and Ghanbari (2008) analyse the behaviour of peak signal-to-noise ratio

(PSNR) as a quality measure when different content and video codecs are used and

come to the conclusion that if these parameters are changed, then PSNR is not a

valid quality measure anymore because of the reduced correlation between perceived

quality and PSNR.

Mantiuk, Kim, et al. (2011) present a new visual model that works for all luminance

conditions, which they base a novel visual metric for predicting visibility (discrim-

ination) and quality (mean-opinion-score). The employed visual model is derived

from new measurements of contrast sensitivity and it is calibrated against several

relevant datasets and image quality databases. The evaluation shows the metric

to achieve results at least on-par with MS-SSIM. Note that contrary to Chandler

and Hemami (2007)’s work, this approach supports chromatic information instead

of only working with grayscale images.

Chapter 2 Background and Literature Review 34

Just like many other areas, machine learning has gained interest in the field of image

classification. Rawat and Wang (2017) present a comprehensive review on the use

of deep convolutional neural networks (DCNNs) in image classification, giving an

overview of the history of these learning-based methods and an in-depth analysis

of the important work and the challenges that have been identified. A deep neural

network (DNN)-based method aimed specifically at quality assessment is proposed

by Bosse, Maniry, et al. (2018). The novelty of their approach lies in the adaptability

of the DNN they use, as it can be easily modified to work in no-reference as well

as full-reference scenarios. There are no hand-crafted features or any other prior

knowledge about the involved domains in their system and the presented evaluation

results are superior to the state-of-the-art in both no-reference and full-reference

modes.

2.3.3 Foveated/Gaze-Contingent Rendering

In this section, we give an overview of work that is relevant for the understanding of

our gaze-contingent rendering method and the subsequent analysis of eye tracking

data, as presented in Chapter 4. As described in Section 2.3.1, saccades are a

very important type of movement in the HVS, and at the same time fixations are

only comfortable up to a certain eccentricity. Bahill, Adler, et al. (1975) already

described in 1975 their findings about the typical eccentricities of saccades in natural

environments, which showed that an eccentricity of 15° is rarely exceeded. Instead,

when the focus is shifted between objects that are further apart, head movement is

usually involved. Noorlander, Koenderink, et al. (1983) analysed the sensitivity of

contrast detection in the peripheral visual field and its relation to the actual size of a

colored target. They found that, while color vision deteriorates largely if a stimulus

is moved away from the fovea, suitably enlarging the target size leads to a colour

discrimination comparable to the foveal area, as more cones are involved.

Details about the ability of motion detection and the relation to object size are

discussed by McKee and Nakayama (1984). The authors show that relative motion

detection is possible even when the changes are smaller than the retina’s spatial

resolution. Legge and Kersten (1987) analyse the ability of contrast discrimination

in both central and peripheral vision, finding that, if scaled to the local contrast

sensitivity, contrast discrimination is similar, which implies similar mechanisms of

contrast coding in both areas.

An early gaze-based system for ray-based volume rendering is presented by Levoy

and Whitaker (1990). While the authors did not employ eye tracking in their work,

the number of rays as well as the number of samples that are computed along each

ray are modified based on the eccentricity of the according direction. As such a

Chapter 2 Background and Literature Review 35

sparse sampling method leads to unsampled pixels, an additional reconstruction

method is proposed that adapts the kernel size based on eccentricity.

Ohshima, Yamamoto, et al. (1996) provide a technique for gaze-aware LoD render-

ing, based on information from binocular vision, that allows for interacting with

multiple objects in virtual environments. It is noteworthy that, amongst others,

their approach relies on the discrimination between the characteristics of central

and peripheral vision, which is central to our work presented in Chapter 4. The

approach chosen by Murphy and Duchowski (2001) employs eye tracking for LoD-

based rendering using a spatial degradation function that the authors derived from

a user study. On average, their method delivers a speedup of 4 compared to basic

rendering. Interestingly, research has shown that eye movement patterns may vary

depending on various specifics like the cultural background of a person, as shown

by Chua, Boland, et al. (2005). While the number of participants in a user study

like ours limits the possibility of considering this observation, it is certainly worth

considering in the sampling process and the evaluation of larger experiments, since

experimental results may vary depending on a participant’s cultural origin. Also

according to Dorr, Martinetz, et al. (2010), eye movements and fixations are sig-

nificantly more coherent when viewing a Hollywood movie compared to viewing a

natural scene, where movements are way more subject-specific. Additionally, the au-

thor’s found that presenting the same stimulus to one subject multiple times leads

to more coherent viewing behaviour than presenting the same stimulus to multiple

subjects and comparing their behaviour with each other. However, coherent view-

ing behaviour for one stimulus or set of stimuli does not imply the predictability of

viewing behaviour for another stimulus.

One of the central challenges in the field of human-computer interaction, and even

more so in gaze-contingent rendering, is latency. Loschky and Wolverton (2007)

carried out a user study regarding the detection of eccentricity-based image blur,

finding that in such a scenario update rates below up to 60ms are rarely detected. In

the same year, Duchowski (2007)’s comprehensive work on eye tracking methodology

was released, as well as an article on techniques for simulating arbitrary visual fields

(such as the ones impaired by macular degeneration, glaucoma and similar processes)

for video and still images (Duchowski and Çöltekin 2007). Published several years

later, Kowler (2011) provides a psychophysical survey on many details of human

eye motion, while Strasburger, Rentschler, et al. (2011) published a review/survey

taking the connection between the drop in visual acuity and peripheral vision into

focus.

A method for foveated rendering based on rasterization is presented by Guenter,

Finch, et al. (2012). Based on the peripheral acuity falloff and eye tracking data,

the proposed method renders three image layers at different resolutions, where the

Chapter 2 Background and Literature Review 36

highest resolution layer contains only the foveal region, the medium resolution layer

contains a transitional region and the lowest resolution layer contains the full image.

These three images are smoothly composited to avoid artifacts. While there is

some redundancy in the rendering process here, speedups of 5–6 are achieved on a

1080p desktop display. A foveated ray tracing approach similar to our own system

proposed in Chapter 4 is presented by Fujita and Harada (2014). While they use

a static sampling pattern for reconstruction in conjunction with a nearest-neighbor

approach, our own system relies on temporal reprojection, also allowing for temporal

antialiasing.

A method for measuring the latency of gaze-contingent display systems directly

has been developed by Saunders and Woods (2014), coming to the conclusion that

when simulating visual impairments or similar content, latencies should be as low as

possible, even leading to the recommendation of using high-speed CRT displays in

such cases. An extension to the graphics pipeline that allows for varying sampling

densities across the image plane is proposed by He, Gu, et al. (2014), being a natural

fit for rasterization-based foveated rendering methods like the one by Guenter, Finch,

et al. (2012).

With eye tracking devices in head-mounted displays (HMDs) not being widespread

at the time, Stengel, Grogorick, et al. (2015) developed a solution for the integration

of a binocular eye tracker into an HMD. In an emerging technologies installation,

Patney, Kim, et al. (2016) presented prior work on foveated rendering as well as

their own, novel technique (Patney, Salvi, et al. 2016) that reduces objectionable

artifacts of previous methods while also still significantly reducing rendering cost.

Stengel, Grogorick, et al. (2016) propose a method that focuses on the reduction

of shading costs, as shading produces a large portion of the computational cost in

today’s rendering systems. The authors approach this by only shading visible fea-

tures and interpolating the remainder of the image while avoiding visible artifacts.

In this process, they account for acuity falloff, eye motion, contrast perception and

brightness adaptation. Their technique is integrated into a deferred shading pipeline

with the interpolation mechanism being implemented by using a pull-push approach.

Psychovisual experiments demonstrate the scene- and task-independence of the pro-

posed approach, which reduces the number of shaded fragments by 50 to 80%. Pohl,

Zhang, et al. (2016) present a technique for exploiting lens astigmatism in modern

HMDs to improve rendering performance by approximately 20%. A method specif-

ically tailored towards the needs of 3D artists creating 360° content is presented

by Koskela, Immonen, et al. (2017). With their foveated rendering approach, the

authors improve the workflow by removing much of the computational cost that

originates from scene changes and put the main effort on the artist’s points of in-

terest, which is highly related to our work presented in Chapter 3. Sampling is

performed according to a newly introduced acuity model. Meng, Du, et al. (2018)

Chapter 2 Background and Literature Review 37

propose a closed-form, parameterized foveation method based on the distribution of

photoreceptors in the retina. Their two-pass algorithm is based on rendering to a

reduced resolution buffer in log-polar space based on a kernel transformation in the

first pass, while the inverse transformation is done in the second pass, also includ-

ing antialiasing. When rendering to a 4k display (2160p resolution), the authors

report speedups around 3 while only losing a negligible amount of detail. Similarly,

Koskela, Lotvonen, et al. (2019) also propose to render in visual-polar space before

transforming the result to screen space.

2.4 Denoising

Denoising methods have become a central component of non-interactive and inter-

active photorealistic image synthesis alike, especially within the last decade. In this

section, we will describe some of the most important techniques, including those

that are based on machine learning, which have mainly emerged over the last five

years. Denoising algorithms are also employed in our work presented in Chapters 3

and 5.

Buades, Coll, et al. (2005) provide a framework for the mathematical and method-

ological comparison of denoising methods as well as a novel filtering approach based

on non-local means. With their approach, they try to solve the issue of prior meth-

ods that caused artifacts and removed fine details from denoised images when the

input did not match the algorithm’s underlying assumptions. The same authors

present a unified theory of denoising filters (Buades, Coll, et al. 2008). They discuss

several principles that a denoising method should follow in order to achieve desirable

results without impacting detail and structure of an image, while still reducing the

amount of perceived noise significantly.

With their edge-avoiding, wavelet-based approach, Dammertz, Sewtz, et al. (2010)

propose one of the first interactive methods for denoising images generated using

MC methods. Shortly after that, Bauszat, Eisemann, et al. (2011) published their

method based on guided image filtering. The main idea of their work is not to filter

the path traced image, but instead use it as a guide to filter images containing noise-

free scene characteristics like surface normals or depth. Like many other techniques,

their approach is usually only applied to indirect illumination, since lower-frequency

content can be handled much better by the presented approach. Sen and Darabi

(2012) analyse the functional relationship between MC noise and the chosen random

parameters by calculating the statistical dependency between the system’s input

and output. Each sample is assigned an importance, which is reduced for samples

strongly affected by MC noise. Using this importance as an auxiliary buffer for a

cross-bilateral filter, noise can be reduced to levels that equal renderings with three

Chapter 2 Background and Literature Review 38

orders of magnitude more samples. A high-dimensional filtering method based on

adaptive manifolds is proposed by Gastal and Oliveira (2012). With their approach

of reducing the sample sets and interpolating remaining pixels, they already achieved

framerates as high as 50 frames per second for a resolution of 10 megapixels in

2012. Rousselle, Knaus, et al. (2012) developed a technique that does not only

denoise the image based on a non-linear filter, but also estimates residual errors on

a per-pixel basis and uses this information to adaptively sample the image plane

using a dual-buffer approach. In another article, Rousselle, Manzi, et al. (2013)

propose a method for appropriately combining the noisy color buffer and noise-

free feature buffers in order to efficiently filter noise from an image while avoiding

the overblurring of structural details. The suggested framework is based on non-

local means and cross-bilateral filtering, with the error estimation relying on the

SURE method. Their approach shows significant improvements over preceding work

and also includes adaptive sampling as well as space-time filtering. A histogram-

based multiscale method for denoising is proposed by Delbracio, Musé, et al. (2014),

with an optimized GPU implementation developed by Szeracki, Roth, et al. (2015).

However, due to the necessity of building histograms over samples, this approach

requires a relatively large amount of samples in order to avoid the appearance of

rectangular artifacts in the result, which is prohibitive for interactive applications.

While other filtering approaches described so far work in image space, Keller, Dahm,

et al. (2014) propose a method that smoothes the contribution of samples in path

space before accumulation in image space. Essentially, our own filtering approach

used in Chapter 5 is a hybrid method between path space and screen space, as the

individual vertices of each path are filtered and propagated from bounce to bounce.

Building upon the successful variety of feature-based denoising filters, Khademi

Kalantari, Bako, et al. (2015) use multilayer neural networks to learn the relationship

between image noise and ideal filter parameters with a nonlinear regression model.

After an offline training phase, the network adjusts the filter parameters per pixel in

order to approximate the ground truth as good as possible, also supporting various

distribution effects.

Based on an analysis of existing approaches, Bitterli, Rousselle, et al. (2016) use

their observations to design a new regression-based filter that only relies on auxil-

iary buffers in the fitting phase, but disregards those buffers when computing re-

gression weights. In addition, the authors introduce a new general mean squared

error estimator that is well-suited for the proposed filtering method, while also au-

tomatically parameterizing the regression kernel. Schied, Kaplanyan, et al. (2017)

propose a variance-based filtering approach working with temporal accumulation in

order to generate temporally stable image sequences. Using a hierarchical image

space denoising filter makes it possible to distinguish between fine details and noise

at multiple levels. Their method achieves great visual quality already at 1 SPP, as

Chapter 2 Background and Literature Review 39

temporal accumulation effectively increases the available sample count. Using gra-

dient estimation, the proposed approach is further improved (Schied, Peters, et al.

2018).

Chaitanya, Kaplanyan, et al. (2017) improve denoising methods using deep con-

volutional networks by adding recurrent connections to reduce temporal artifacts.

Their approach is applicable to image sequences generated with very low sample

budgets, which can be denoised at interactive rates, while also automatically model-

ing the relationship between auxiliary buffers and image noise. Bako, Vogels, et al.

(2017) propose a supervised learning approach that enables complex filtering ker-

nels by using DCNNs, which may predict the noise-free values per-pixel directly by

non-linearly combining features from the auxiliary buffers. Path space filtering is

improved with a jittered spatial hashing method by Binder, Fricke, et al. (2018). As

our own filtering approach is related to path space filtering, employing the according

jittering method in our caching system described in Chapter 5 seemed like a natural

fit and helped tremendously with reducing quantization artifats.

The work by Lehtinen, Munkberg, et al. (2018) provides information about how

clean images can be restored from noisy or corrupted input without having any

uncorrupted, noise-free reference data. Their method is applied to MC noise, pho-

tographs and MRI scans. Based on these findings, Krull, Buchholz, et al. (2019)

enhance the method by not requiring noisy image pairs or clean target images, which

makes it possible to apply their approach in almost arbitrary situations. Koskela,

Immonen, et al. (2019) propose a technique that computes regression-based filtering

for individual blocks and works with 1 SPP input in real-time. Using QR factoriza-

tion and stochastic regularization, their method produces high-quality images with a

performance that is at least on-par with other state-of-the-art techniques. A survey

of methods for MC denoising methods is provided by Mir (2020).

2.5 Caching and Reprojection

In this section, we give an overview of the most relevant research regarding caching

and reprojection techniques. While reprojection techniques are relevant for the

methods we chose in Chapter 4, caching is closely related to our contributions pre-

sented in Chapter 5.

An early approach to caching illumination information is proposed by Lafortune and

Willems (1995). With their 5D data structure being a straightforward extension of

an octree to five dimensions, it is easy to implement and allows for producing unbi-

ased results. Instead of directly visualizing the contents of the cache, which would

clearly yield a biased result, it is used to guide an adaptive importance sampling pro-

Chapter 2 Background and Literature Review 40

cess. By extending the definition of irradiance to all points and directions in space,

Greger, Shirley, et al. (1998) present some explorative work on the possibility of us-

ing a volumetric representation of irradiance for approximating illumination effects

in situations where standard GI rendering is just not fast enough. The proposed

method is suitable for semi-dynamic scenes that exhibit a large number of geomet-

ric features. Similar to our own caching technique presented in Chapter 5, queries

can be processed in constant time. With the resulting visualization’s precision, the

technique is mostly expected to be used as a replacement for the ambient term.

Generally, it exhibits large similarities to Ward’s irradiance caching, but mainly

aims for scenes where a large number of objects is static and a smaller number

of objects may be dynamic, while the irradiance cache only supports static scenes

by itself. Bala, Dorsey, et al. (1999) developed methods for exploiting properties

of object space, ray space, image space and temporal coherence to decouple shad-

ing and visibility computation in ray tracing and accelerate them independently.

They introduce quadrilinear surface interpolants that allow for an error-bounded

way of interpolating radiance from the acquired samples, where the error-bound is

a user-specified parameter that makes it possible to individually handle the tradeoff

between quality and performance. The reported speedups against a basic ray tracer

are between 4 and 8.5 for complex scenes with hundreds of thousands of triangles.

For accelerating visibility computation, the presented work utilizes a reprojection

strategy for accelerating visibility computations, which exhibits a strong relation to

our own work on the acceleration of foveated ray tracing. Walter, Drettakis, et al.

(1999) introduce the Render Cache, a method based on per-pixel reprojection and

interpolation of preceding frames that already ran interactively in a pure software

implementation for Whitted-style ray tracing when it was published in 1999. Ward

and Simmons (1999) present the holodeck ray cache, an out-of-core approach for

caching the illumination data of a scene. Allowing for interactive exploration, it

uses progressive, parallel ray tracing and also supports non-diffuse materials. By

providing a suitable driver interface, various display systems can be targeted.

Simmons and Séquin (2000) propose a cache-based system for interactively exploring

dynamically sampled environments, using a mesh-based reconstruction the authors

call Tapestry. This is especially noteworthy because the mesh-based approach is a

fundamental difference to approaches like the Render Cache, which works exclusively

on individual pixels. Their mesh-based display and cache representation allow for

continuous refinement and modification, while the reconstruction step also serves

as a sampling guide for the renderer. With two processors, the system achieved

interactive frame rates at a resolution of 3000× 1000.

An important extension to the original Irradiance Cache by Ward, Rubinstein, et

al. (1988) is introduced by Krivanek, Gautron, et al. (2005). In addition to purely

diffuse materials, their system also supports slightly glossy materials, which are

Chapter 2 Background and Literature Review 41

reconstructed using sparse sampling and interpolation. Spherical or hemispherical

bases are used to represent the incident radiance at a point by a coefficient vector.

The authors provide results that show superior quality when compared to plain

path tracing, although the kind of artifacts that appear in the images are visually

different.

While irradiance caching and radiance caching deliver visually convincing results, the

implementation of the original algorithms on graphics hardware is rather inefficient

because of the constant switching between data insertions and queries. Gautron,

Krivánek, et al. (2005) propose an alternative implementation that avoids such is-

sues and is tailored specifically for GPU implementations. Consequently, the imple-

mentation of their approach yields a significant speedup of more than one order of

magnitude over CPU-based rendering. Křivánek, Bouatouch, et al. (2006) improve

upon their original radiance caching method by introducing a novel technique for

adaptively guiding the spatial density of cache samples according to the frequency

of indirect illumination, reducing visible interpolation artifacts significantly. In ad-

dition, they propose a new approach to reduce light leaks, called neighbor clamping.

In situations of continuous movement, temporal coherence between subsequent frames

is relatively large. Nehab, Sander, et al. (2007) exploit this by caching shaded

fragments and reusing them in consecutive frames, exhibiting only a slight qual-

ity degradation. In addition, the authors provide guidelines for cache management

and the selection of data to be cached. Debattista, Dubla, et al. (2009) introduce

Instant Caching, a hybrid method based on combining irradiance caching and in-

stant radiosity. By reusing computations of neighboring geometry intersections,

they achieve a speedup over previous instant radiosity techniques. Also, they ex-

ploit temporal coherence by avoiding updates of coherent intersection points and

instead only performing updates where necessary. At the same time, the presented

system also supports lighting and material changes. Krivanek and Gautron (2009)

provide a collection of all relevant information for implementing irradiance caching

in arbitrary software frameworks, bringing together all findings and techniques of

recent years.

Papaioannou (2011) describes a method for caching diffuse-only global illumina-

tion in sparsely distributed evaluation points spread throughout the scene, using a

combined method relying on elements from reflective shadow maps and grid-based

radiance caching algorithms. In order to achieve interactive performance with mul-

tiple light bounces, a method for stochastic visibility calculations is suggested.

A bidirectional reprojection technique is introduced by Yang, Tse, et al. (2011).

With speedups of 3 to 4 compared to unoptimized rendering, their technique meets

the expectations of an increased frame rate, while introducing a small amount of lag

which the authors analysed in a user study, finding that it is insignificant. Their

Chapter 2 Background and Literature Review 42

approach is implemented in two variants, one for scenes that are bound by fillrate

(only reducing shading), and another one that reduces both shading and geometry

computations by only relying on image-based buffers.

Georgiev, Křivánek, et al. (2012a) propose a technique for caching importance at

sparsely distributed locations in space. The most significant information included in

this importance is local visibility, which may be a central cause of variance in scenes

that are highy occluded. The authors demonstrate that by using their caching ap-

proach together with the novel multiple importance sampling framework, variance

can be reduced by more than one order of magnitude for identical computation times.

Lehtinen, Aila, et al. (2012) introduce a method for reconstructing a scene’s indirect

illumination through a sparsely sampled light field. The proposed technique can

handle glossy and anisotropic materials and is only responsible for reconstructing

indirect illumination, while direct illumination remains untouched. In the recon-

struction step, scene geometry is not considered; instead, the authors provide a

robust visibility heuristic.

Scherzer, Nguyen, et al. (2012) present an approach for avoiding the storage of

a spherical harmonics function per pixel in radiance caching by replacing it with

MipMap-based pre-filtered data. According to the authors, this results in a con-

stant lookup time per pixel. By storing statistics about geometry, the quality of

each lookup is also improved. Compared to basic radiance caching, pre-convolved

radiance caching is about one order of magnitude faster, while it can be combined

with other methods like instant radiosity or MC-based ray tracing. By introduc-

ing a novel data structure referred to as Equivalent Area Light Sources, Omidvar,

Ribardière, et al. (2015) present a new approach to Radiance Caching that also al-

lows for the detailed reconstruction of highly glossy surfaces. At the same time the

amount of data that has to be stored for reconstruction is reduced when compared

to methods based on spherical harmonics.

In his PhD thesis, Roughton (2019) describes methods for the interactive genera-

tion of path-traced lightmaps, a purpose that our HashCache system could also be

utilized for. Hirvonen, Seppälä, et al. (2019) improved aspects of earlier work like

radiance probes and screen space reflections and added ray tracing to the pipeline.

By doing this, visual errors are significantly reduced and accurate global reflections

can be computed. For rough surfaces, their approach relies on purely cache-based

reconstruction without employing a true ray tracing step. By utilizing a novel strat-

egy for the placement of radiance records and adapting specific error metrics, Zhao,

Belcour, et al. (2019) developed a new radiance caching approach that is much bet-

ter at reconstructing interreflections between glossy materials without introducing

an additional performance impact.

Chapter 2 Background and Literature Review 43

2.6 Discussion and Conclusion

In this chapter, we have reviewed the available literature in the fields that are rele-

vant for this thesis.

For our work on guided high-quality rendering, it is important to note that the

approach we present in Chapter 3 can be combined with many of the presented

optimizations for ray-based rendering, as it is a general scheduling approach. Previ-

ous rendering systems did not allow for comfortably and dynamically adapting the

sampling rates to the user’s requirements by interacting with virtual reality (VR)

input devices on large display systems, which is the central contribution of our work,

leading to significant speedups in relevant scene parts. In this process, we make use

of insights from research on the HVS in order to design the region of interest (RoI)

employed in the system.

With our work published in 2016, our approach presented in chapter Chapter 4 was

among the first to implement a modern gaze-contingent rendering system for HMDs

that uses ray tracing for interactive visualization and meets the HMDs refresh rate.

Today, multiple approaches for foveated rendering in HMDs are available, such as

the ones based on visual-polar space.

The caching approach presented in Chapter 5 relies on insights from other caching-

based methods like irradiance caching, radiance caching, radiosity or photon Map-

ping, but to our knowledge it is the first to use a hash-based data structure in order

to quickly reconstruct the cached data. Also, our we improve upon other work by

providing the means for accurately reconstructing non-diffuse illumination. With

the layered filtering approach proposed in the same chapter, we combine insights

from screen space and path space filtering algorithms to provide an actual filtering

framework. This does not rely exlusively on primary hitpoint information, as other

ordinary screen space filtering methods do, but it considers multiple hitpoints for

each path, similar to true path space filtering, but projected to screen space.

Chapter 3

Guided High-Quality Rendering

Part of the work included in this chapter was previously published in (Roth, Weier,

et al. 2015), lead-authored by the author of this thesis. The idea is based on the

work published in (Weier, Maiero, et al. 2014b) and (Weier, Maiero, et al. 2014a),

co-authored by the author of this thesis, who made substantial contributions to the

implementation.

The main goal of the work presented in this chapter is the development of a sys-

tem which allows for guiding the image quality in global illumination (GI) methods

by user-specified regions of interest (RoIs). This can be achieved with either a

tracked interaction device on an large high-resolution display wall (LHRDW) or a

projection-based system, or a mouse-based method in a desktop environment, mak-

ing it possible to create a visualization with varying convergence rates throughout a

single image towards a sufficiently accurate GI solution. To achieve this, we intro-

duce a scheduling approach based on sparse matrix compression (SMC) for efficient

generation and distribution of rendering tasks on the GPU that allows for alter-

ing the sampling density over the image plane while avoiding low GPU utilization.

Moreover, we implemented an approach for filtering the samples computed so far to

a final image that exhibits the correct overall brightness despite the sparse sampling

process. The presented methods are benchmarked and discussed, drawing conclu-

sions regarding possible implications for future research in the field.

3.1 Introduction

Modern, large display setups like 4K projection systems or even LHRDWs, like our

own system HORNET (Applied Sciences 2014) allow for highly detailed visualiza-

tions, while modern PCs enable the implementation of (embarassingly) parallel al-

gorithms like path tracing directly on the GPU. While memory requirements can be

handled quite well by current hardware when computing global illumination even in

a 4K setup or above, real-time Monte Carlo (MC)-based GI at such high resolutions

44

Chapter 3 Guided High-Quality Rendering 45

remains challenging because of the high computational complexity.

In this chapter, we present an approach for coping with the situation at hand,

where designers would like to have a quick, high-quality visualization of products

or a scene preview at high resolutions, while modern GPUs are not yet fast enough

to compute high-resolution, physically-based GI in an acceptable time frame. Our

basic assumption is that in design review, architectural visualization and similar

fields, it is often possible to divide an image into areas of varying significance for

the user. This implies that the focus, i.e., the user’s gaze, will mostly be around

regions with higher significance, making the convergence of areas outside these main

regions less important as they are not perceived in a detailed way by the human

visual system (HVS). Nonetheless, it is still important to provide a visual context

through the areas outside the mainly focused regions.

While the GI rendering method we employ throughout this chapter is path tracing,

the presented methods are applicable to all rendering methods dealing with similar

issues. As our work focuses mainly on large 4k projection systems, which could not

be provided in our lab, we decided to use our own LHRDW HORNET, made from

7 × 5 displays with a 1080p resolution each, to mimic such a system. A schematic

overview of HORNET is shown in Figure 3.5.

3.2 System Description

The basic idea of our work is to develop a framework that enables adaptive high-

quality rendering that is adapted to the user’s current requirements. To achieve

this, a number of building blocks are introduced that take care of the various tasks

that have to be carried out during the rendering process. These building blocks

are described in Section 3.2.1. We also provide exemplary implementations of each

building block and plug them together into a complete system in Sections 3.2.2 to

3.2.7.

3.2.1 Building Blocks

Figure 3.1 shows an overview of the proposed building blocks. The interaction

block is responsible for getting information on how to construct the RoI and also for

computing it, which is done in a per-pixel manner in our exemplary implementation.

It is necessary to provide a method for determining the actual importance of a pixel

in order to compute such an RoI. A user-defined distance measure is used that takes

into account the image resolution, the focused pixel coordinates and a set of user-

defined parameters like the user’s position relative to the display system. Based

Chapter 3 Guided High-Quality Rendering 46

Interaction Scheduling Rendering Post-Processing Display

Distance

Measure

Ray-Gun

Mouse

SMC-based
OptiX-based

Path Tracer Block-based

Filtering

Display Wall

Desktop Display

RoI/DGI Work

Distribution

Adaptively

Sampled

Image

Improved-

Context

Image

Gaussian-based

Filtering

Figure 3.1: Building blocks of the proposed framework, exemplary implementations and data
flow. Blue boxes represent the building blocks, containing exemplary implemen-
tations in green. The orange regions illustrate the data passed between blocks.

on this data, the distance to the RoI is then computed for each individual pixel.

Section 3.2.2 provides an example for such a distance measure.

In the exemplary implementation, the RoI is represented as a per-pixel lookup table

(LUT), referred to as the distance-guide image (DGI). While it would certainly be

possible to perform the actual computation of the DGI values on-the-fly, we chose

the LUT-based approach because the RoI is only modified on-demand in our current

implementation. Additionally, our proposed scheduling approach makes use of the

DGI stored in memory. The DGI is assumed to have the same resolution as the

rendered image and stores values in [0, 1].

This distance information is used by the scheduling block to apply a suitable schedul-

ing algorithm, depending on the representation of distance values as well as the

targeted processor architecture employed for rendering.

The generated task distribution is then used to efficiently render an image accounting

for the user-defined RoI in the rendering block with a suitable rendering method. As

the result is a potentially sparsely sampled image, there may be regions with high

variance due to low sample numbers, including completely unsampled pixels outside

the RoI.

Because these areas tend to be perceptually disturbing, we propose to include a post-

processing block that increases the image quality in order to provide a better visual

context to the user. Image parameters such as brightness can be locally adapted to

yield a more homogenous appearance and filtering techniques like denoising methods

may be applied.

The resulting image is then forwarded to the display block, which is an abstract rep-

resentation of the actual display system. The following subsections provide further

information on how the individual components can be implemented by giving a few

examples.

Chapter 3 Guided High-Quality Rendering 47

3.2.2 Distance Measure

As the distance measure should be viable for both usage scenarios, the exemplary

measure we developed is based on the field of view (FoV)’s elliptical shape in binoc-

ular vision. Hereinafter, RoI refers to a concrete region of interest with a location

and extents, while RoI refers purely to the extents of such an RoI, but not to a

specific location in screen space. The steps to compute the distance measure are

described below in detail. To explain the basic idea, we provide an overview of the

main steps here:

(1) Specify an elliptical shape on a plane perpendicular to the gaze vector of the

utilized interaction device, with the center being positioned at unit distance to

the device. This means we start with an ellipse, defined by its center, vertex

(defining the horizontal radius) and co-vertex (defining the vertical radius).

(2) Generate five rays originating at the interaction device, running through the

ellipse’s according center and four boundary vertices.

(3) Intersect these rays with the display system. At this point, the projection will

likely transform the ellipse to an oval, either due to the shape of the display

system or the interaction device’s orientation.

(4) For all points in the image, find the closest point on that oval. The method

described below shows that because the closest point on the oval is always in

the quadrant in which the query point is located, the necessary computations

are identical to an ellipse. This means that we have come from an originally

elliptical shape to a projected oval and then back to the ellipse, which is easier

to handle because of its symmetry.

To determine the projection on the display system, the view center c and four

boundary points are used, defining the horizontal and vertical extents of the RoI

(xmin ∈ R
−
0 , xmax ∈ R

+
0 for the horizontal boundaries, ymin ∈ R

−
0 , ymax ∈ R

+
0 for

the vertical boundaries). These boundary points are referred to as vertices for

the horizontal boundaries and co-vertices for the vertical boundaries, derived from

the according terms used in the definition of an elliptical shape. For our distance

measure, we require four boundary points instead of just working with the ellipse’s

vertex and co-vertex, as an elliptical shape becomes an oval when the projection onto

a surface is not strictly perpendicular and (different) relative display orientations

have to be considered.

When using our application on the LHRDW, we determine the pixel coordinates of

these points by intersecting rays with a virtual model of the display system, making

no assumptions about its shape, but using an exact geometric representation.

Chapter 3 Guided High-Quality Rendering 48

V

D0

D1
D2

c
xmin

xmax

x'min
x'maxc'

(a) Top view of the projection process: The view
plane V is located at unit distance from the
interaction device and oriented orthogonally
to c′ − c. Projecting the ellipse defined on
V onto the display system, represented by
three displays D0,D1,D2 with a common im-
age space, yields intersection points x′

min, c
′,

x′

max. Using the according coordinates in im-
age space leads to an oval instead of an ellip-
tical shape.

||c - xmin|| = ||c - xmax||

xmin xmaxc

||I(c') - I(x'min)|| > ||I(c') - I(x'max)||

I(x'min) I(c') I(x'max)

projection

(b) Shape transformation through the pro-
jection process: The elliptical shape de-
fined on V (bottom) is transformed into
an oval shape on the display system
(top). The intersection points are con-
verted from the global coordinate system
to pixel coordinates by I : R3

→ R
2

Figure 3.2: Projection process of the ellipse defined on V onto the display system.

For our LHRDW HORNET, the display wall is curved with a 10◦ angle between each

display column. Figure 3.3 shows an example of the resulting DGI when aiming the

ray-gun at our LHRDW.

The asymmetric oval shape o results from the different distances between the user’s

position and the intersection points on the display wall, leading to a change of shape

after the projection, as illustrated in Figure 3.2

The probability prob(p) for sampling each individual pixel p ∈ R
2 is determined by

computing the minimum distance dmin(p, o) to any point inside the projected oval

shape o, normalized to [0, 1]. The normalization factor only depends on the size

of the display system and does not vary between frames. Thus, normalization is

achieved by dividing the actual distance value by the diagonal of the full view space.

As the horizontal and vertical extent of the view space are also normalized to [0, 1]

in the utilized intersector that determines the hitpoints on the display system, this

divisor is
√
2. Therefore,

prob(p) = 1− dmin(p, o)√
2

(3.1)

is the sampling probability for p, where dmin is transformed to [0, 1] based on nor-

malized device coordinates. For pixels inside the projected shape, this results in a

distance value of 0 and thus a sampling probability of 1.

Chapter 3 Guided High-Quality Rendering 49

c

ymax

ymin

xmin xmax

Figure 3.3: Exemplary shape of the resulting DGI when aiming the ray-gun at the display
wall. It is clearly visible how the non-orthogonal perspective leads to an oval
shape of the DGI.

To determine if a point p = (x, y) is within o, it is projected to a unit circle according

to the center and boundary points o is based upon. First, the quadrant Q(o,p) of o

is determined in which p is located:

Q(o,p) =

I, px > cx ∧ py > cy

II, px ≤ cx ∧ py > cy

III, px ≤ cx ∧ py ≤ cy

IV, px > cx ∧ py ≤ cy

(3.2)

Based on the quadrant, the closest boundary points are chosen from xmin, xmax, ymin, ymax

and s ∈ R
2 is computed as:

sx =

xmin, Q(o,p) ∈ {II, III}
xmax, otherwise

(3.3)

sy =

ymin, Q(o,p) ∈ {III, IV}
ymax, otherwise

By computing H(p), we can now determine if p is within o:

Chapter 3 Guided High-Quality Rendering 50

H(p) =

1,
∥

∥abs(p− c) · s◦−1
∥

∥ ≤ 1

0, otherwise
, (3.4)

where A◦−1 is the Hadamard inverse with
(

A◦−1
)

ij
= (Aij)

−1, i.e., the component-

wise inverse of A. 1

If H(p) = 1, dmin is returned as zero, while otherwise we compute dmin(p, o) as the

minimum distance of p to o. As we only consider the specific quadrant of o that p

is located in, we can simplify o by assuming horizontal and vertical symmetry, thus

resulting in an axis-aligned ellipse e with sx as the vertex and sy as the co-vertex.

Assuming such an ellipse is centered at the coordinate system’s origin, each point

Pe(φ) on e can be described as

Pe(φ) =

(

sx cosφ

sy sinφ

)

, 0 ≤ φ < 2π, (3.5)

so that the distance from any point p to a point Pe(φ) on the ellipse can be computed

by

d(p, e, φ) =

√

(px − Pe(φ)x)
2 + (py − Pe(φ)y)

2. (3.6)

To find the closest point q on e, d(p, e, φ) needs to be minimized, i.e., we need to

compute φmin so that d(p, e, φmin) < d(p, e, φ) for any φ in Q(o,p). Eberly (2019)

presents an appropriate method which we describe shortly below. For specific details

on the mathematical approach and the implementation, please refer to the original

work. Eberly makes two key observations that lead to the final algorithm:

• With the query point p being defined in e’s local coordinate system, it is

generally possible to move the query point to another quadrant by changing

the signs accordingly. After determining the closest point, the sign changes

simply need to be undone to find q.

• The vector that is normal to e at q points toward p.

The implicit form of an ellipse is given by

G(q) =

(

qx
sx

)2

+

(

qy
sy

)2

− 1 = 0.

The normal vector of a point on the ellipse can be computed as ~n(q) = 1
2∇G(q).

1The notation of the Hadamard inverse is derived from the Hadamard product, where C = A ◦B

is the component-wise multiplication with Cij = AijBij .

Chapter 3 Guided High-Quality Rendering 51

Since we know that p−q has to be normal to the ellipse, there has to be some scalar

t for which holds:

t
∇G(q)

2
= t

(

qx
s2x

,
qy
s2y

)

= p− q.

Based on this representation and the above observations, p can be written as

px = qx

(

1 +
t

s2x

)

, (3.7)

py = qy

(

1 +
t

s2y

)

,

where t > 0 holds for all points outside e. Because p is always in the first quadrant

due to the conversion above, Equation (3.7) has the following solution for some

scalar t:

qx =
s2xpx

t+ s2x
, (3.8)

qy =
s2ypy

t+ s2y
.

Based on the relation between an ellipse and a unit circle, (x/sx)
2 + (y/sy)

2 = 1 for

all points (x, y) on e. Together with Equation (3.8), we obtain

F (t) =

(

sxpx

t+ s2x

)

+

(

sypy

t+ s2y

)

− 1, t ≥ −s2x (3.9)

and the candidates for pmin are generated by the roots t to F (t) = 0. Eberly suggests

to use bisection as the method for finding the unique root of F (t), which is also the

approach we chose for our implementation. After the minimum distance dmin(p, o)

has been computed, it can be put into Equation (3.1) to compute the sampling

probability for p.

3.2.3 Interaction

For our system, we chose to implement two interaction methods for selecting an RoI,

each suited for its own use case. Besides the methods presented here, experiments

have also been conducted with head tracking, as it seemed to be the most natural

approach to select a RoI. However, forcing the user to stare at the same region until

the desired image quality is achieved is too much of a drawback, as the time necessary

to achieve a satisfactory convergence may be anywhere between mere seconds and,

in complex cases, hours. Thus, we decided that head tracking was not a practically

feasible solution for the task at hand. Clearly, the same reasoning applies for the use

Chapter 3 Guided High-Quality Rendering 52

Figure 3.4: ART’s interaction device FlyStick. Image courtesy of (Tracking 2020)

of eye tracking. In the following two paragraphs, we introduce the “Ray-Gun”-based

as well as the mouse-based interaction.

Ray-Gun This method is based on ART’s interaction device called the FlyStick,

which is used for pointing at the display system and “shooting” a ray through the

center of the desired RoI on demand. Additionally, the horizontal and vertical

extents of the RoI may be adjusted via the FlyStick’s analog stick. Exemplary

pictures of the FlyStick are shown in Figure 3.4.

To determine the RoI’s projection on the display system, a ray is traced from the

FlyStick to the virtual model of the display system, resulting in the RoI’s center.

Accordingly, four additional rays are generated and intersected with the display

system to determine the projection of the RoI-defining ellipse e, which will generally

result in an oval shape (see Section 3.2.2). The orientation of these rays is determined

by placing a plane one unit from the FlyStick’s position, perpendicular to the optical

axis. The intersection of the optical axis with this plane is the center of e, referred

to as c. The boundary vertices can now be computed as follows:

xmin = c−
(

sx

0

)

,xmax = c+

(

sx

0

)

, (3.10)

ymin = c−
(

0

sy

)

,ymax = c+

(

0

sy

)

. (3.11)

The boundary rays are now oriented from the FlyStick’s origin towards the aforemen-

tioned points, so that their intersection with the display system yields the desired

RoI.

Mouse An RoI can also be defined by using a mouse, simply defining its center

with a click at the according location on screen. In a projection system, this is more

of a fallback method when no tracking is available. However, it can prove useful in a

high-resolution desktop environment. Due to the user’s lower distance to the display

Chapter 3 Guided High-Quality Rendering 53

system and the higher pixel density, the aforementioned RoI generation method is

also employed in this case. Although, as we assume that there is no tracking system

in a desktop environment, the direction for projecting the FoV is perpendicular to

the display surface, which is considered to be plane. This projection is performed in

an orthogonal way, as no distance between the user and the display system is known.

Instead, the size of the RoI can be defined in a graphical user-interface when using

the mouse.

3.2.4 Scheduling

With the sampling probability for a pixel p given in Equation (3.1), a binary sam-

pling decision has to be made for each pixel individually. Obviously, it would be

possible to make this decision in the actual kernel execution on the GPU and sim-

ply let the according thread return if the decision is negative. However, for sparse

data like in our case, this may lead to a large amount of thread divergence, with

idle threads leading to a performance hit due to unused resources and low GPU

utilization. Because of this, we choose a different approach by providing an actual

scheduling method that avoids such idle threads. The sampling decision is thus made

in a separate CUDA kernel and stored in a binary image with the same resolution

as the final rendered image, where a pixel value of 0 represents a negative sampling

decision, and 1 a positive one. Because of the probabilistic approach, the actual

number of samples computed in each iteration varies. Our approach to scheduling

only the relevant pixels for rendering is supported by CUDA’s cuSparse library,

which supports sparse matrix compression (SMC). By interpreting the sampling

decision image as a matrix, an SMC algorithm may be applied which effectively

yields the pixel coordinates of non-zero values, i.e., the pixels that actually have to

be sampled. Additionally, this provides the total number of non-zero values, which

enables us to launch the rendering process with the exact number of threads that

are required. At the same time, the pixel area belonging to each thread is directly

determined by looking up the coordinates in the coordinate arrays.

s(p) =

1, if ξ ≤ prob(p), ξ ∼ U(0, 1)

0, otherwise
(3.12)

Sampling decision =

0 0 1 0

0 1 0 1

1 1 0 1

0 0 0 1

SMC
===⇒

Columns = (2 1 3 0 1 3 3)

Rows = (0 1 1 2 2 2 3)
(3.13)

Chapter 3 Guided High-Quality Rendering 54

While the concept of using SMC for this purpose is straightforward, we still need

to determine the actual benefits of this approach. The according measurements and

benchmarks are presented in Section 3.3.

3.2.5 Rendering

The rendering component is implemented using our path tracer Spark, based on

NVIDIA’s OptiX framework, which means that the rendering process is completely

done on the GPU. For a description of features of Spark, see the basic extensions to

path tracing described in Section 2.1.6.

3.2.6 Filtering

In addition to the noise caused by the MC process, Figure 3.6a shows that the

varying noise and sampling density outside the RoI can be visually disturbing. We

propose two optional filters to overcome this issue and provide an improved visual

context to the user:

• A Gaussian-based filter with varying kernel size

• A block-based filter that sets all pixels in a square area to their mean value

The implementation of these filters is still prototypical and would require additional

optimizations for continuous use in an interactive environment. Nonetheless, they

serve to give a general idea of how to improve the visual context in a scenario with

sparse sampling.

As explained above, a probabilistic sampling decision is made for each pixel of the

image, leading to pixels that have not been sampled at all, especially early in the

rendering process. The presented filtering methods only account for pixels that have

already been sampled in order to achieve an overall brightness similar to the final

image right at the beginning.

The Gaussian filter works with the following parameters:

• kmax: Maximum kernel radius, user-defineable

• dmin(p, o): Distance value from the DGI

• wp = max{0, 1 − np/c}, where np is the current number of samples already

computed for the specific pixel and c is a blending constant

• kp = wp · kmax · dmin(p, o): Kernel radius for pixel p, with σ = kp/3

Chapter 3 Guided High-Quality Rendering 55

By using the blending constant, it is possible to provide a visual context to the user

that estimates the ground truth’s overall brightness early in the rendering process,

while the image still converges to the ground truth with n → ∞. The proposed

blending method could be modified so that it relies on pixel variance instead of a

blending constant to account for the actual noise present in the image. With kp

being the kernel size for the Gaussian filter implementation, the same parameter

determines the block size in block-based filtering, while limiting the block sizes

to powers of two for improved alignment of the blocks. The blending method is

identical in both methods. Exemplary results of the filtering methods are shown in

Section 3.3.

3.2.7 Display

As mentioned above, we employ our LHRDW HORNET, consisting of 7× 5 1080p

displays to mimic a curved 4k projection system. Figure 3.5 shows a schematic illus-

tration of the relevant parts of HORNET. Rendering is performed on the Rendering

Node.

3.3 Results

3.3.1 Visual Quality

For the proposed system, our main efforts regarding the optimization of image qual-

ity were aimed towards improving the visual context by approximating the true

image brightness in sparsely sampled image regions, which can be judged visually.

The only numeric quality metric we used here is strictly related to the system’s in-

creased performance, consequently reducing noise, which is explained in more detail

in Section 3.3.2. Figure 3.6 shows an image rendered with our system at 128 samples

per pixel (SPP) in an unfiltered state, filtered with the Gauss-based filter and fil-

tered with the block-based filter. While the brightness variation in the unfiltered

image may be visually disturbing, the visual context provided in the filtered images

is clearly improved.

Figure 3.7 shows photographs of the rendering system on our LHRDW. The effect

of the proposed filtering method is obvious at all sampling rates.

Chapter 3 Guided High-Quality Rendering 56

7x5 1080p LCDs w/ LED Backlight

Display Node 1

Display Node 2

Display Node 3

12x DVI

12x DVI

11x DVI

Switch

20
 G

bi
t/

s 20 Gbit/s

Render Node Video
Grabber 20 G

b
it/s

60 Gbit/sDisplayPort 1 Gbit/s

Figure 3.5: Schematic illustration of the relevant part of our large high-resolution display
wall HORNET. The system consists of 7 × 5 displays, each with a diagonal
of 46” and a 1080p resolution. Each of the Display Nodes is equipped with
three NVIDIA GTX 780 graphics cards with 4 DVI outputs per GPU (with the
exception of one GPU in Display Node 3, as we only have 35 displays). The
Display Nodes are connected with a 20 Gbit/s optical fibre link. The rendering
system generates the image data at a 3840 × 2160 resolution on the Rendering
Node (top left), which is connected to the Grabber Node via DisplayPort. The
Grabber Node then provides the data to the display Nodes via SAGE (University
of Illinois at Chicago’s Electronic Visualization Laboratory and University of
Hawai’i at Manoa’s Laboratory for Advanced Visualization and Applications
2020) as a video stream. The cloud on the top right represents the additional
rendering cluster, which is not used in case of this work. HORNET is also
equipped with a tracking system with one camera for each of the display columns.

(a) Unfiltered image (b) Gaussian-filtered image (c) Block-filtered image

Figure 3.6: Comparison between unfiltered, Gaussian-filtered and block-filtered image, all
rendered at 128 samples per pixel in the RoI. It is clearly visible how the
overall great brightness variation between the RoI and the peripheral area in
the unfiltered image may disturb the viewer. The Gaussian-filtered and block-
filtered images overcome this by only accounting for pixels that have already
been sampled.

Chapter 3 Guided High-Quality Rendering 57

(a) max. 1 sample per pixel, no
filtering

(b) max. 8 samples per pixel, no
filtering

(c) max. 64 samples per pixel,
no filtering

(d) max. 1 sample per pixel,
Gaussian-based filtering

(e) max. 8 samples per pixel,
Gaussian-based filtering

(f) max. 64 samples per pixel,
Gaussian-based filtering

Figure 3.7: Comparison between unfiltered and filtered images displayed on our large high-
resolution display wall. Filtering leads to a good approximation of the ground
truth’s overall image brightness early in the rendering process.

3.3.2 Benchmarks

In this section, we present the results of various measurements for the presented

system components. First, we give an overview of the hardware setup and ren-

dering settings used in our benchmarks. Subsequently, benchmarks for the DGI

generation, measurements of the actual sample density resulting from our approach,

rendering efficiency, scheduling performance and error rate differences between the

RoI and outer regions are presented. Reference renderings for the scenes used for

the rendering benchmarks are shown in Figure 3.8.

Setup

As described above, our implementation targets high-resolution projection systems,

mimicked by our LHRDW. The Render Node in the utilized setup is equipped

with an Intel Xeon E5-2637, 16GiB of RAM and a GeForce GTX 980 graphics card

running Linux. We use two test scenes: The first one is a simple Cornell Box with

specular cuboids, the second one is the more complex city model Urban Sprawl 2 by

Stonemason with around 350k triangles. Both scenes are exclusively lit by a high

dynamic range (HDR) environment map. These models were chosen to evaluate

our method for simple as well as more complex geometry, since real use cases may

include both.

All benchmarks that we performed for rendering on HORNET have been configured

Chapter 3 Guided High-Quality Rendering 58

(a) Cornell Box (b) Urban Sprawl (c) Hairball

Figure 3.8: Reference renderings of the scenes used for benchmarking

with the viewpoint set to an exemplary position 1m in front of the display wall,

looking towards its center. The rendering resolution for these benchmarks is 3840×
2160 pixels.

We also carried out additional benchmarks to analyse the performance gained by the

SMC scheduling approach. These were carried out locally on a machine equipped

with an Intel Core i7-6700k, 64GiB of RAM and a GeForce Titan Xp graphics card

at 1024× 1024 resolution and include the additional Hairball scene, which serves to

represent scenes with very dense geometry.

DGI Generation

The amount of time required to generate the DGI for a 4k resolution was between

2 and 3 milliseconds on the GeForce GTX 980, regardless of the chosen FoV.

Sparsity

The number of pixels rendered with the chosen settings for varying FoVs is illustrated

by the red bars in Figure 3.9a and Figure 3.9b. The percentage of pixels that are

updated per iteration is shown in the following table:

Field of View 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

Percentage of Pixels Updated per Iteration 1.2 2.9 5.7 10.5 19.0 36.3

The chosen FoVs should be seen as examples, as the concrete choice of parameters

depends largely on the concrete use case. If larger portions of the image are relevant,

larger fields of view will be required, while the evaluation of local details will lead to a

Chapter 3 Guided High-Quality Rendering 59

parameterization with a smaller FoV. Our measurements provide insights regarding

the quadratic influence of the FoV on rendering times.

The data shows that the image generated in each iteration is quite sparse for all

FoVs that we experimented with. Because of this high amount of sparsity, the effect

of an optimized scheduling method becomes even more interesting. We compare the

relation of sparsity and rendering performance for both SMC-based scheduling and

unoptimized scheduling below.

Rendering Performance

The decreased ray coherence resulting from the lower sampling density was expected

to have a negative impact on rendering efficiency, i.e., the time required per sample.

Thus, we measured the rendering time per one million samples for various FoVs,

with larger FoVs corresponding to an increased coherence because of the overall

higher sample density. This should in turn lead to a lower thread divergence on the

GPU.

Figure 3.9a and Figure 3.9b show the rendering time per one million samples (re-

ferred to as rendering efficiency) for the benchmark scenes in context with the

amount of rendered samples. Figure 3.9c puts the number of samples and the ren-

dering efficiency into context directly. Rendering efficiency clearly improves with

an increasing amount of samples rendered per iteration. We attribute this to the

reduced number of idle threads, leading to a higher GPU utilization. The effect of

scene complexity is obvious from the diagrams, as the Cornell Box took less than

half the amount of rendering time compared to Urban Sprawl.

Scheduling Performance

We tested the effectiveness of SMC on rendering performance for three scenes: Cor-

nell Box, Urban Sprawl and Hairball.

Figures 3.10 to 3.12 illustrate renderings of the Cornell Box, Urban Sprawl, and

Hairball scenes with the various RoI radii that were used for benchmarking, given

as a fraction of the image width. These renderings were done at 1 sample per pixel.

Figures 3.13 to 3.15 show the influence of SMC-based scheduling on rendering times

for varying RoI sizes in all three tested scenes. For the Cornell Box, each of the

diagrams shows a different maximum recursion depth, ranging from 1 (only primary

rays are traced) to 4 bounces. Increasing the RoI radius brings the rendering times

of unoptimized scheduling and SMC-based scheduling closer togther, with SMC

surpassing unoptimized scheduling between radii of 0.35 and 0.4 for a recursion

Chapter 3 Guided High-Quality Rendering 60

(a) Number of computed samples vs. rendering time per one million sam-
ples for the Cornell Box scene

(b) Number of computed samples vs. rendering time per one million sam-
ples for the Urban Sprawl scene

(c) Rendering Efficiency for Cornell Box

Figure 3.9: Computed samples for various FoVs and rendering times per one million samples
(megasample).

Chapter 3 Guided High-Quality Rendering 61

0.05 0.10 0.15 0.20 0.25

0.30 0.35 0.40 0.45 0.50

Figure 3.10: Tested RoI sizes for the Cornell Box scene.

0.05 0.10 0.15 0.20 0.25

0.30 0.35 0.40 0.45 0.50

Figure 3.11: Tested RoI sizes for the Urban Sprawl scene

0.05 0.10 0.15 0.20 0.25

0.30 0.35 0.40 0.45 0.50

Figure 3.12: Tested RoI sizes for the Hairball scene

Chapter 3 Guided High-Quality Rendering 62

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

10

20

30

40

50

Rendering Time SMC off vs. SMC on
Cornell Box, max. Recursion Depth = 1

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

10

20

30

40

50

Rendering Time SMC off vs. SMC on
Cornell Box, max. Recursion Depth = 2

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

10

20

30

40

50

Rendering Time SMC off vs. SMC on
Cornell Box, max. Recursion Depth = 3

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

10

20

30

40

50

Rendering Time SMC off vs. SMC on
Cornell Box, max. Recursion Depth = 4

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

Figure 3.13: Rendering time for the Cornell Box scene with and without SMC-based
scheduling and RoI radius between 0.05 and 0.5 times the image resolution
(1024 × 1024). Timings already include the compression step for SMC mea-
surements, which takes between 0.2 and 0.3 milliseconds for all tested configu-
rations.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

10

20

30

40

50

60

70

80

Rendering Time SMC off vs. SMC on
Urban Sprawl, max. Recursion Depth = 1

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

10

20

30

40

50

60

70

80

Rendering Time SMC off vs. SMC on
Urban Sprawl, max. Recursion Depth = 2

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

10

20

30

40

50

60

70

80

Rendering Time SMC off vs. SMC on
Urban Sprawl, max. Recursion Depth = 3

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

10

20

30

40

50

60

70

80

Rendering Time SMC off vs. SMC on
Urban Sprawl, max. Recursion Depth = 4

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

Figure 3.14: Rendering times for the Urban Sprawl scene with and without SMC-based
scheduling and RoI radius between 0.05 and 0.5 times the image resolution
(1024 × 1024). Timings already include the compression step for SMC mea-
surements, which takes between 0.2 and 0.3 milliseconds for all tested configu-
rations.

Chapter 3 Guided High-Quality Rendering 63

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

5

10

15

20

25

30

35

40

Rendering Time SMC off vs. SMC on
Hairball, max. Recursion Depth = 1

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

5

10

15

20

25

30

35

40

Rendering Time SMC off vs. SMC on
Hairball, max. Recursion Depth = 2

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

5

10

15

20

25

30

35

40

Rendering Time SMC off vs. SMC on
Hairball, max. Recursion Depth = 3

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

5

10

15

20

25

30

35

40

Rendering Time SMC off vs. SMC on
Hairball, max. Recursion Depth = 4

SMC off

SMC on

RoI Radius

R
e

n
d

e
ri

n
g

 T
im

e
 i
n

 m
s

Figure 3.15: Rendering times for the Hairball scene with and without SMC-based scheduling
and RoI radius between 0.05 and 0.5 times the image resolution (1024× 1024).
Timings already include the compression step for SMC measurements, which
takes between 0.2 and 0.3 milliseconds for all tested configurations.

depth of 1. However, the advance in rendering time for SMC becomes greater with

a higher computational load per pixel. This can be explained by the longer time that

each thread on the GPU is running to compute a full path, with threads belonging to

unsampled pixels just remaining in an idle state, resulting in a low GPU utilization.

For a recursion depth of 4, rendering times with and without SMC are equal between

0.40 and 0.45, which is an increase of 0.1 compared to a recursion depth of 1, or

approximately 1.28 times the amount of pixels inside the RoI.

Figure 3.16 gives an idea of the rendering times with SMC-based scheduling relative

to rendering times without SMC for varying maximum recursion depths. Bench-

marking the scheduling method for varying recursion depths should give us an insight

on how a higher computational load per thread influences the rendering performance

with and without SMC. Again, it is clearly visible that the advantage of SMC at

small RoI radii diminishes with increasing radii. At the same time, this effect is most

significant for a maximum recursion depth of 1. However, when analyzing the Hair-

ball scene shown in Figure 3.18, the difference between recursion depths is marginal

at most. We attribute this to the far higher amount of geometry compared to the

Cornell Box, which is also distributed in a relatively uniform way within the field of

view. Also, the camera is placed in front of the hairball, so the primary rays always

hit the geometry oriented to the outside. This may lead to a high percentage of

rays being terminated early because they hit the background in the second iteration

already. Placing the camera inside the hairball leads to the performance behaviour

shown in Figure 3.19. On the one hand, the advantage of SMC-based scheduling is

slightly higher, but on the other hand, the advantage is consistently higher for the

Chapter 3 Guided High-Quality Rendering 64

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

-7
0
,0

0
 %

-6
0
,0

0
 %

-5
0
,0

0
 %

-4
0
,0

0
 %

-3
0
,0

0
 %

-2
0
,0

0
 %

-1
0
,0

0
 %

0
,0

0
 %

1
0
,0

0
 %

2
0
,0

0
 %

3
0
,0

0
 %

Relative Rendering Time with SMC-based Scheduling, Scene: Cornell Box

SMC off is Reference Value

max depth 1

max depth 2

max depth 3

max depth 4

Relative Rendering Time vs. SMC off

R
o

I
R

a
d

iu
s

Figure 3.16: Relative rendering times for SMC-based scheduling for the Cornell Box scene,
lower is better. Base values are measured with SMC disabled.

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

-7
0
,0

0
 %

-6
0
,0

0
 %

-5
0
,0

0
 %

-4
0
,0

0
 %

-3
0
,0

0
 %

-2
0
,0

0
 %

-1
0
,0

0
 %

0
,0

0
 %

1
0
,0

0
 %

2
0
,0

0
 %

3
0
,0

0
 %

Relative Rendering Time with SMC-based Scheduling, Scene: Urban Sprawl

SMC off is Reference Value

max depth 1

max depth 2

max depth 3

max depth 4

Relative Rendering Time vs. SMC off

R
o

I
R

a
d

iu
s

Figure 3.17: Relative rendering times for SMC-based scheduling for the Urban Sprawl scene,
lower is better., Base values are measured with SMC disabled.

Chapter 3 Guided High-Quality Rendering 65

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

-7
0
,0

0
 %

-6
0
,0

0
 %

-5
0
,0

0
 %

-4
0
,0

0
 %

-3
0
,0

0
 %

-2
0
,0

0
 %

-1
0
,0

0
 %

0
,0

0
 %

1
0
,0

0
 %

2
0
,0

0
 %

3
0
,0

0
 %

Relative Rendering Time with SMC-based Scheduling, Scene: Hairball

SMC off is Reference Value

max depth 1

max depth 2

max depth 3

max depth 4

Relative Rendering Time vs. SMC off

R
o

I
R

a
d

iu
s

Figure 3.18: Relative rendering times for SMC-based scheduling for the Hairball scene, lower
is better. Base values are measured with SMC disabled.

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

-7
0
,0

0
 %

-6
0
,0

0
 %

-5
0
,0

0
 %

-4
0
,0

0
 %

-3
0
,0

0
 %

-2
0
,0

0
 %

-1
0
,0

0
 %

0
,0

0
 %

1
0
,0

0
 %

2
0
,0

0
 %

3
0
,0

0
 %

Relative Rendering Time with SMC-based Scheduling, Scene: Hairball_Inside

SMC off is Reference Value

max depth 1

max depth 2

max depth 3

max depth 4

Relative Rendering Time vs. SMC off

R
o

I
R

a
d

iu
s

Figure 3.19: Relative rendering times for SMC-based scheduling for the Hairball scene with
the camera placed in the middle of the hairball, lower is better. Base values
are measured with SMC disabled.

Chapter 3 Guided High-Quality Rendering 66

lowest recursion depth. While this seems counterintuitive at first, the differences

are pretty small in absolute terms. We attribute this behaviour to an improved ray

coherence for primary rays, which degrades with increasing recursion depths. This

higher amount of coherence may have a larger influence on rendering times when

compared to geometrically simpler scenes like the Cornell Box or even Urban Sprawl,

where a large amount of the scene is occupied by relatively simple building models.

Figure 3.17 shows the according measurements for the Urban Sprawl scene.

Difference in Convergence Rate

It has to be kept in mind that the rendering time per iteration is a crucial metric, as it

enables us to estimate how far an image has converged within the RoI after a certain

amount of time. Looking at the numbers for several fields of view, we can observe

that for a small RoI the convergence rate in the focused area is very high when

compared to uniformly distributed samples. For the Cornell Box scene, with a 4k

resolution, a 10◦ FoV with SMC-based scheduling yields a rendering time of 12.29ms

vs. 460ms for full-resolution rendering with uniformly distributed samples. This is

a factor of 37.43, corresponding to approximately 84% noise reduction according to

MC methods’ probabilistic error of O(1/
√
n). For a 60◦ FoV, SMC-based scheduling

yields a rendering time of 188ms, which still is a factor of 2.44. Note that with

the rendering process progressing, the error difference between areas converging at

different rates decreases. With a sampling probability of p0 = 1 for pixels inside the

RoI and p1 ∈ [0, 1] for some pixel outside the RoI, the number of drawn samples

after k iterations should be n0 = k for pixels inside the RoI and n1 ≈ p1k for the

outside pixel. With the asymptotic error of O(1/
√
n) the error difference between

pixels inside and outside the RoI is in

O
(

1√
n1

− 1√
n0

)

= O
(

1√
p1n0

− 1

n0

)

= O
(

1−√
p1√

p1n0

)

. (3.14)

Figure 3.20 illustrates how these error rates converge with an increasing amount of

samples.

3.4 Discussion and Conclusion

In this chapter, we have discussed our approach to guided high-quality rendering,

its implementation, and the results of the presented benchmarks and the according

implications in the field.

We have shown how using limited RoIs in a path tracing process can increase per-

Chapter 3 Guided High-Quality Rendering 67

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0

0,5

1

1,5

2

2,5

3

3,5

Asymptotic Error Rate for Various Sampling Probabilities

p = 1

p = 0,1

p = 0,4

p = 0,7

Number of Samples

E
rr

o
r

Figure 3.20: Asymptotic error rate for various sampling probabilities

formance and local quality in global illumination rendering with a focus on, but

not limited to large 4k projection systems. Moreover, we presented an approach

to schedule the rendering tasks guided by an RoI on GPUs, which has proven to

lower rendering times compared to standard scheduling in the benchmarks presented

above.

Additionally, we have developed filtering methods that help to cope with the sparse

sampling in images outside the RoI by improving the visual context early in the

rendering process. To interpret the results correctly, it is important to note that our

work is based on the assumption that there actually is an important area in the image

which is desired to be rendered at a high quality, while the quality of the remaining

image is not as important. However, the visual context that is offered by the image

area outside the RoI is preserved. We achieved our goal by improving performance

for such cases, as shown in the benchmark section, where we also compared the

results with standard full-resolution path tracing.

Similar to the adaptation of the sampling process to specific image parts developed

in this chapter, an adaptation to the user’s perception tailored towards interactive

exploration and the use of a head-mounted display (HMD) is presented in the next

chapter.

Chapter 4

Foveated Ray Tracing and Eye

Tracking Data

Part of the work included in this chapter was previously published in (Weier, Roth,

et al. 2016), co-authored by the author of this thesis, who made substantial con-

tributions to the conception, implementation and writing, and was responsible for

designing the user study and performing the according result/data analysis. A more

detailed description of the recorded tracking data has been published in (Roth,

Weier, et al. 2016; Roth, Weier, et al. 2017), lead-authored by the author of this

thesis.

When using head-mounted displays with high resolutions for virtual reality appli-

cations, high frame rates and low-latency rendering become an absolute necessity,

which is challenging for any rendering approach. In addition to its ability of gen-

erating realistic images, ray tracing offers a number of distinct advantages, but has

been held back mainly by its performance on the available hardware so far, with

NVIDIA RTX and Microsoft’s DirectX Raytracing only being available since 2018,

which is two years after the publication of our work. In this chapter, we present an

approach that significantly improves image generation performance of ray tracing,

which is achieved by combining foveated rendering based on eye tracking with repro-

Small foveal region with (r0 =
5◦, r1 = 10◦, pmin = 0.01)

(a) Small foveal region with
(r0 = 10◦, r1 = 20◦, pmin =
0.05)

(b) Full Renderer

Figure 4.1: Images generated with our foveated renderer showing the effect of different con-
figurations for the foveal region, including an image that was rendered by ray
tracing every pixel.

68

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 69

jection rendering using previous frames in order to drastically reduce the number of

required samples per frame. To reproject samples, a coarse geometry is constructed

from a G-buffer. Possible errors introduced by this reprojection as well as parts that

are critical to perception are scheduled for resampling. Furthermore, a coarse color

buffer provides an initial image, which is refined smoothly by additional samples

where needed. Evaluations and user tests show that our method achieves real-time

frame rates, while visual differences compared to fully rendered images are hardly

perceivable. As a result, we can ray trace non-trivial static scenes for the Oculus

Rift DK2 HMD at a 1182×1464 resolution per eye within the VSync limits without

clearly perceived visual differences.

4.1 Introduction

Presenting a virtual environment to the user in a way that is so compelling and

convincing that the sense of presence becomes almost indistinguishable from the

real world is a long-envisioned dream in the field of virtual reality (VR). Due to the

increased availability of high-quality head-mounted displays (HMDs) with a wide

field of view (FoV) in recent years, interest has been drawn towards the field of

virtual and reality for researchers and consumers alike. Starting with the Forte

VFX1 at 263 × 230 pixels per eye, pixel densities have significantly increased over

the last two decades: current devices such as the Pixmax 8k go up to a 4k resolution

(3840× 2160 pixels) per eye. Figure 4.2 gives an overview of the evolution of HMD

resolutions, including a linear trend.

Despite the increasing pixel densities already available, providing the highest possible

visual quality to the user would require an HMD to match the full retinal resolution,

leading to a resolution of approximately 32, 000 × 24, 000 = 768, 000, 000 pixels for

the human eye’s full dynamic field of view according to Hunt (2015). While our own

work on this subject is from 2016, rendering at such resolutions interactively is still

untractable by current and foreseeable hardware and software solutions. Besides

rendering convincing imagery for high pixel densities, high update rates are crucial

for limiting potential motion sickness (Hale and Stanney 2014, p. 541), posing a

major challenge when bringing image synthesis algorithms to HMDs.

Fortunately, as described in Section 2.3.1, the human visual system (HVS) underlies

several limitations which imply that this challenge can be approached with foveated

and gaze-contingent rendering methods. By omitting largely imperceptible details in

the visual periphery, techniques from this area exploit the limitations of the human

eye, as only our central vision affords high visual acuity. Thus, we may degrade

rendering quality with increasing eccentricity. In such scenarios, the point a user is

currently looking at in image space is referred to as the point of regard (PoR).

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 70

Figure 4.2: The evolution of resolutions in modern HMDs since the release of the Oculus
Rift DK1

The parts of the eye responsible for central vision consist of the fovea (approximately

5◦ in diameter around the central optical axis), the parafovea (approximately 5◦ to

9◦) and the perifovea (approximately 9◦ to 17◦). Peripheral vision refers to the area

outside of central vision (Wandell 1995). While the fovea itself affords high visual

acuity, this rapidly drops with an increasing distance due to the cone density’s

hyperbolic falloff. In contrast, the number of rods is decreasing slower, a property

that leads to a high sensitivity to spatiotemporal brightness and contrast changes

in peripheral vision. This has to be accounted for when developing new techniques,

as noted by Legge and Kersten (1987), Geisler and Perry (1998), and Murphy and

Duchowski (2007). As Lou, Migotina, et al. (2012) describe, colors, patterns and

shapes also have a significant influence on perception, just like motion, as suggested

by McKee and Nakayama (1984). Furthermore, visual attention has been shown to

affect perception through effects such as visual tunneling, where details outside the

area of fixation are largely ignored. This effect has already been described by Miura

(1986).

While at the time of our work rendering for HMDs was mainly based on rasteriza-

tion, it was already clear that ray tracing has several advantages when it comes to

stereo rendering, wide FoVs and low-latency rendering (Hunt 2015). Yet, ray trac-

ing has been mainly held back by the required computational effort, which makes it

challenging to achieve the same performance as rasterization without specific hard-

ware acceleration. However, in recent years, new techniques became available that

provide hardware support for ray tracing, for example through NVIDIA’s Turing

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 71

and Ampere architectures and the according RTX graphics cards. In this section,

we mainly focus on the advantage of ray tracing being able to support the free

distribution of samples on the image plane.

We introduce a novel ray-tracing-based foveated rendering system capable of render-

ing high-quality images at frame rates that are sufficient for modern HMDs running

at their native refresh rate. The sample density is reduced by adapting the ray gen-

eration to the foveal receptor density. To improve perception in foveated rendering

methods, it is necessary to limit the detection of visual artifacts. Using our ap-

proach, missing information from the sampling process can either be reconstructed

by using a support image that is guaranteed to sample the full scene using a lower

uniform resolution or by reprojecting the previous frame to improve the quality of

the final image.

Note that our method does not handle view-dependent effects like reflections or

refractive transmissions explicitly. Rendering such effects using reprojection-based

methods remains a challenge; however, it is slightly alleviated by high frame rates

and the correspondingly smaller visual differences between frames. While the qual-

ity of such effects may suffer due to the reprojection process, the influence on the

perceived quality in a system like ours still has to be analysed. Nonetheless, our

benchmarks demonstrate the high performance of our implementation when com-

pared to standard ray tracing.

We also conducted a user study using an Oculus Rift DK2 equipped with an eye

tracker. This made it possible to substantiate the claimed visual quality provided

by our method for static scenes and revealed a significant influence of the foveal

region’s size, with some observable effects likely caused by visual attention. The

latter can greatly support foveated rendering performance, as fewer samples need

to be generated in the periphery when users concentrate on a specific part of the

scene. Amongst others, the analysis of the recorded eye tracking data revealed

an interesting relation between fixation accuracy and quality ratings for different

fixation modes that seems counterintuitive at first.

4.2 System Description

In this section we describe the building blocks of our foveated rendering system as

well as the setup of the conducted user study. An overview of the entire pipeline

is shown in Figure 4.3. The system’s core is a fast ray tracer based on NVIDIA

CUDA, using an SBVH acceleration structure (Stich, Friedrich, et al. 2009) (Fig-

ure 4.3, Block 2). As shown in Section 4.2.1, the generated sampling pattern depends

on three parameters describing a foveal region to account for the user’s perception

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 72

Buffer Description
Reprojected Image Reprojected color image for computing the current frame
Reprojected Cache Info Reprojected weights for accumulating new samples
Final Image Current frame’s color data
Final Cache Info Current frame’s weights
Resampling Info Used for marking parts that need additional sampling
Support Image Low-resolution color buffer, used for filling in gaps
Support G-Buffer Low-resolution, required to generate a coarse mesh for reprojection

Table 4.1: An overview of the buffers used in the reprojection and accumulation
process

and gaze. The foveated sampling process results in a sparse image. Thus, increasing

eccentricities lead to proportionally larger gaps between sampled pixels. Presenting

such a sparsely sampled image to the user would not meet the perceptual require-

ments, as the gaps would result in the sparse image’s brightness being vastly different

from the fully sampled image. Also, strong temporal flickering would result from

the stochastic nature of the sampling process. This makes it necessary to provide

a method for improving image quality outside the foveal region and generating a

smooth image from the available samples. Certain requirements have to be met

by this method: Performance has to suffice the time constraints necessary to stay

within VSync limits (13.3ms at 75Hz), and image quality should not exhibit artifacts

that are disturbing to human perception.

To reduce the visibility of artifacts, the ray tracer is coupled to a reprojection scheme

(Figure 4.3, Block 1) that provides additional information to improve image quality.

This is done by reconstructing a coarse depth mesh from the scene and rendering it

from the next frame’s perspective to reproject samples, as illustrated in Section 4.2.2.

Subsequently, poorly reprojected image parts and regions critical to peripheral vision

are detected, as shown in Section 4.2.3. These are marked for resampling in an

auxiliary buffer referred to as resampling info.

Eventually, information is stored inside a cache and a final image is computed (Fig-

ure 4.3, Block 3). Missing samples can either be reconstructed from the reprojected

previous frame or from the current frame’s low-resolution color and G-buffers (re-

ferred to as support image and support G-buffer), as these are updated in each

frame (see Section 4.2.4). These buffers’ resolution is a user-defineable fraction of

the target resolution required for the HMD. The support image contains a regular

low-resolution color image, while the support G-buffer contains the geometric nor-

mals and depth values that are later used to reconstruct the coarse geometry for the

next frame. An optional post-processing step (Figure 4.3, Block 4) can further im-

prove image quality when stochastic sampling processes are used (see Section 4.2.5).

Each of the pipeline’s steps will be described in the following sections, while an

overview of the buffers used in the process is given in Table 4.1.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 73

Post-Processor

GL Reprojector
1

Resampling Info

Reprojected Color Image
Reprojected Cache Info

Final Color Image
Final Cache Info
Support G-Buffer

2

3
4

Eye Tracker

Ray Generation

Intersection

Shading

Update Cache Merge

Support Image

Next Frame

Final Image

RGB
Image

Figure 4.3: Building blocks of our reprojection pipeline. Old color and auxiliary cache info
buffers are reprojected using a GL Reprojector (Block 1). New rays are gener-
ated based on the user’s gaze and possible errors introduced by the reprojection
are marked in a resampling info buffer. The ray traced pixel values (Block 2)
are blended using a temporal caching and merging scheme (Block 3). An op-
tional Post-Processor is used to reduce artifacts arising from stochastic sampling
processes like ambient occlusion (Block 4).

4.2.1 Ray Generation and Ray Tracing

When the rendering process is started, a ray generation kernel creates rays by sam-

pling the image plane according to a foveal falloff function. Additional rays are

generated for all pixels marked in the resampling info or belonging to the support

image. The generated rays are intersected with the scene geometry, resulting in

a list of hit points and their respective pixel indices. We employ Aila, Laine, et

al. (2012)’s kernel for ray traversal, extended to speed up the evaluation of fully

transparent alpha values in the innermost loop.

After computing the intersections, the hit points are shaded in another CUDA kernel.

Shading supports Phong lighting with mipmapping, ambient occlusion, point and

area light sources. Besides computing the shaded pixel color, the irradiance from the

area light sources and an ambient occlusion factor for diffuse surfaces are stored in

a separate light buffer, allowing for adapting the running estimate to different rates

for ambient lighting and point lights on the one hand, and area light sources and

ambient occlusion on the other hand. Thus, it becomes possible to reduce the noise

introduced by sampling area light sources or ambient occlusion without touching

ambient and point light information. Furthermore, the stored data can be spatially

reused between neighboring pixels (see Section 4.2.5).

With increasing eccentricities, visual acuity is subject to a hyperbolic falloff (Guenter,

Finch, et al. 2012; Strasburger, Rentschler, et al. 2011). However, we chose to use

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 74

Sampling probability falloff for increasing eccentricities

Degrees from view center v

P
ro

b
a
b
ili

ty

full detail

p(q) = 1

linear falloff

p(q) = 1 − (1 − pmin)
d(x) − r0

r1 − r0

min. sampling prob.

p(q) = pmin

0 r0 r1

0
p

m
in

1

Figure 4.4: Probability p(q) for sampling a specific pixel q based on its eccentricity and
user-defined parameters r0, r1 and pmin. Despite the hyperbolic falloff of cones
towards outer regions, a linear falloff is employed to improve motion perception
in the periphery and to reduce spatial and temporal aliasing artifacts in these
areas.

linear falloff model for determining sampling probabilities, as increasing the sam-

pling rate compared to a hyperbolic falloff supports peripheral motion perception.

Additionally, a higher sampling rate reduces spatial as well as temporal aliasing ar-

tifacts in general, alleviating the challenge posed by the human eye’s high flickering

sensitivity at larger eccentricities. Moreover, a linear model matches visual acuity

well for small angles (Guenter, Finch, et al. 2012). We refer to this model as the

foveal falloff function, which is illustrated in Figure 4.4.

To achieve a linear behavior, ray generation is based on two user-defined eccentricity

thresholds: An inner threshold r0 and an outer threshold r1, both given in degrees in

the visual field. r0 determines the size of the foveal region, i.e., the area rendered at

full detail, while r1 together with the minimum sampling probability pmin determines

the probability falloff beyond r0. All three values together are referred to as a

foveal region configuration (FRC). Pixels with a larger eccentricity than r1 are only

sampled with a probability of pmin. Generally, pixels are only queued for sampling if

ξq ≤ p(q), with ξq ∼ U(0, 1). If a pixel is required for the support image, it is always

scheduled for sampling. It is also sampled if it has been marked in the resampling

info before.

4.2.2 Reprojection

After computing an array of newly shaded samples along with the pixel indices

for the current frame, our reconstruction approach relies on information from the

previous frame. As computing more samples is expensive, reusing information from

previous frames helps to increase performance while it also supports image quality.

To create a perspective-correct reprojection of information from the previous frame,

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 75

Figure 4.5: Reprojection from frame t − 1 to frame t. The perspective change is especially
visible at the image borders and also affects discontinuities caused by disocclu-
sions. The coarse G-buffer enables us to derive the resampling info, which serves
as a guide for where to place additional samples to resolve visible artifacts.

the scene geometry must be taken into account. Possible approaches include the

reprojection methods in (Simmons and Séquin 2000; Tole, Pellacini, et al. 2002),

constructing and updating an irregular mesh with potentially as many vertices as

pixels at the highest quality level. However, such approaches are costly, while the

pure ray tracing step is fast on the utilized hardware, so that expensive methods do

not pay off.

Hence, we decided to use a reprojection strategy based on a coarse uniform mesh.

Reprojection errors resulting from this geometry are resolved by computing addi-

tional samples for these regions instead of constructing a more precise mesh repre-

sentation. The reprojection process (Figure 4.3, Block 1) transforms the final color

image along with the final cache info. The latter is used to keep a state in the

buffer that maintains how samples should be combined temporally. As described

in Section 4.2.4, this buffer is a float4 texture that is reprojected along with the

color information. For each frame, a uniform mesh is generated from the support

G-buffer by creating and displacing a uniform grid of vertices matching the support

G-buffer’s resolution.

To reconstruct the scene geometry from the depth information stored in the support

G-buffer, the vertices are adjusted to the according image space depth values with

a geometry shader. Subsequently, an “unprojecting” step is performed using the

previous frame’s model-view-projection matrices (MVP Matrices). This yields the

vertex positions in world space, representing the surface of the visible scene geometry

from the previous frame. In the next step the vertices are projected to the new

frame using the current MVP Matrices. This mesh is rasterized at the full rendering

resolution, textured with the last frame’s final color image, eventually yielding the

reprojected version of the previous frame. Figure 4.5 shows the reprojection from

frame t− 1 to frame t.

Due to the change in perspective, each pixel’s footprint may cover a couple of texels

of the previous frame’s final color image. Therefore, special care has to be taken

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 76

when filtering this texture during rendering. As computing a mipmap hierarchy

along with anisotropic filtering for the reprojected texture per frame based on the

new footprint is too expensive, another texture filtering method has to be used.

We chose to randomly sample the pixel footprint multiple times using a normal

distribution inside the fragment shader to compute the final reprojected color.

4.2.3 Handling Reprojection Errors

Because the uniform mesh employed for reprojection is not a perfect representation

of the actual scene geometry, perceptible errors may be present, possibly caused

by geometry newly entering the view frustum, disocclusions, and undersampling

(Mark, McMillan, et al. 1997). If a scene part has not been inside the view frus-

tum in the previous frame and sampling has not been triggered after evaluating

the foveal falloff function, missing pixels are reconstructed from the coarse support

image (see Section 4.2.4). As shown in Figure 4.1, disocclusions and undersampling

can both cause strong visual artifacts to appear in the image. This is caused by in-

correctly or incompletely reprojected information. The coarse sampling performed

for the support image adds newly computed samples on top, which may also add

noise. Therefore, we try to detect and create additional samples for those areas,

consequently improving perceived image quality.

First, to detect regions that need further sampling, the scene is rendered using

the coarse resolution matching the support image and support G-buffer using the

reprojection procedure described in Section 4.2.2. If there is a depth or luminance

difference between a pixel and its direct neighborhood in the reprojected image

larger than a user-defined threshold ǫdepth or ǫlum, a pixel is marked for resampling

in the resampling info. This process resembles methods like SMAA, presented by

Jimenez, Echevarria, et al. (2012).

Depending on the value chosen for ǫ, geometry that does not resemble the scene

may be used for reprojection anyway, e.g., in case of relatively flat objects in front

of a wall. If such geometry is looked at frontally in frame t− 1, moving the camera

in frame t can result in undersampling artifacts because the possibly wrongly closed

geometry is reconstructed, connecting the object to the wall. These objects might

expose depth and luminance distances well below the respective ǫ-thresholds, while

the closed geometry resulting from the reprojection process is actually wrong (Mark,

McMillan, et al. 1997). Such surfaces occur along the user’s viewing direction, i.e.,

the angle between the surface normal and the observer is close to 90◦. We detect

such artifacts with an additional test looking at the surface geometry. From the

previous frame’s geometry normal ~n and camera orientation ~d, we compute et =

max
{

~n · −~d, 0
}

. If et < ǫ, the pixel is marked for resampling. Partial derivatives of

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 77

texture coordinates would be another measure to detect regions that need additional

sampling. They yield information about an observer’s angle towards a potentially

undersampled surface. However, we have not found noticeable visual enhancements

by using this information, as head movements are limited when wearing an HMD. As

illustrated in Figure 4.1, in case of complex geometry, a large part of the image may

be covered by possibly undetected and thus undersampled edges. This necessitates

a measure for sample quality accounting for a sample’s age, as presented in the next

section.

4.2.4 Cache Update and Merging

At this point, the current image consists of the previous frame’s reprojected color

image. Newly shaded samples from the ray tracing process have to be combined with

this cache image using a temporal blending method. This accumulation process

should be designed in a way that reduces the weight of older samples, as simply

accumulating samples with equal weights does not make sense for two reasons: First,

due to the sparse sampling process, each pixel may have been sampled last at a

different point in time. Second, assigning a high weight to old samples leads to

visual artifacts like smearing on edges. However, at the same time just using the

new sample without considering cached values can lead to disturbing temporal noise,

especially because of the human eye’s high peripheral flickering sensitivity. This is

caused by correctly reprojected regions having temporally varying color values due

to the stochastic sampling process. To overcome this, we chose to apply a smooth

temporal blending process with a limit to the samples’ age. This age is used to assign

higher weights to samples that should be combined with old samples. While such a

process reduces temporal flickering, large-scale contrast for the visual periphery is

preserved.

A sample’s color is directly written to the output if it belongs to the central foveal

region, is part of the resampling process (marked in the resampling info), or is written

to a part of the image that did not contain any reprojected color due to disocclusion

or movement. Moreover, the support image and support G-buffer are stored as

well, as shown in Figure 4.3. For all other samples, we employ Yang, Nehab, et al.

(2009)’s method for amortized supersampling. This is the foundation which current

temporal antialiasing methods have been derived from due to its robustness and

overall quality. The approach is described shortly below.

Geometry is accounted for by considering the depth difference between πt−1(p) (re-

projected cached position for the current pixel) and p (the new sample position at

time t). If this value is above a threshold ǫ, it is assumed that the reprojection

contains an error, as the ray has hit a part of the scene different from the cache.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 78

Therefore, we take the newly generated sample without considering anything from

the cache. If the depth difference is below the threshold, ft−1(πt−1(p)), which is the

color information from the previous frame, can be combined with st(p). The new

pixel value ft(p) is now computed using a blending value αt(p):

ft(p) = αt(p)st(p) + (1− αt(p))ft−1(πt−1(p))) (4.1)

αt(p) =
1

Nt−1(p) + 1

Nt(p) = Nt−1(p) + 1,

where αt(p), Nt(p) = 1 when p becomes visible for the first time.

To account for the issues caused by scene motion mentioned above, αt(p) has to be

adjusted according to the number of samples accumulated for the current pixel as

well as this pixel’s most recent update-time. To consider the number of accumulated

samples, the update rule for Nt(p) is changed as follows:

Nt(p) =

(

αt(p)
2 +

(1− αt(p)))

Nt−1(πt−1(p))

)−1

(4.2)

To avoid infinite accumulation of samples, we finally compute the weight α′
t(p) as

α′
t(p) = max {αt, k}, with k being the minimum possible weight for the new sample.

In contrast to Yang, Nehab, et al. (2009), we do not sample each pixel per frame.

Therefore, it is best to adapt k dynamically based on a sample’s age. If a pixel

has been sampled a couple of frames ago, it has undergone the potentially imprecise

reprojection process multiple times, especially since the camera is constantly moving

when head tracking is active. If the time span between the previous update and the

current time is large, it is better to account for the current sample with a higher

weight. Thus, instead of a fixed k, we use the following function:

kt(∆t) = min

{

exp

(

x0 +
∆t− 1

tmax − 1
(x1 − x0)

)

, kmax

}

, (4.3)

x0 = ln kmin,

x1 = ln kmax.

It can be parameterized based on a fixed interval [kmin, kmax] and the maximum time

span tmax we allow for accumulating samples. ∆t = t − ttouched is the difference of

the current frame index and the frame index a value has last been updated in the

cache. tmax is the user specified maximum number of frames between two samples.

Computing k this way poses a trade-off: tmax should be chosen according to the

refresh rate and in a way that resolves possible artifacts as early as possible by giving

the new sample a higher weight. At the same time, weighting older samples relatively

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 79

high guarantees a smooth temporal transition and reduces flickering. An additional

cache information buffer is used to keep track of αt(p), Nt, and ttouched, stored per

pixel along with the color image. However, to have these estimates available in the

next frame, it is necessary to reproject this buffer to the new perspective the same

way as it is done for the color values described in Section 4.2.2. Eventually, another

kernel is launched to merge the images with the support image (see Figure 4.3, Block

3). Since both the reprojection process and the foveated sampling can fail for parts

that have not been in the view frustum for frame t − 1, the support image is used

to fill in all missing information.

4.2.5 Post-Processing

When rendering scenes with stochastic sampling processes (e.g., for area lights or

ambient occlusion), the resampling process presented above leads to a discrepancy

in the state of convergence for reconstructed and resampled image regions, as the

latter do not consider any cache information. This may cause a visual difference in

these areas, appearing as high-frequency temporal flickering mostly caused by the

stochastic processes. An optional post-processing filter (see Figure 4.3, Block 4)

can be applied to resampled regions marked in the resampling info to reduce noise.

For each pixel q in such a region, the nearest reconstructed (i.e., non-resampled)

neighbor along the horizontal and vertical axis on the image plane is searched. The

distance to this neighbor is then used to create a search window which is randomly

sampled n times. Subsequently, the closest reconstructed pixel r found during the

sampling step is selected and the information stored in the light buffer for r is applied

to the noisy pixel q.

4.3 Experimental Evaluation: Benchmarks

All benchmarks have been done on a system equipped with a Intel Core i7-3820 CPU,

64GiB of RAM and an NVIDIA GeForce Titan X driving an Oculus Rift DK2. Using

the Oculus SDK, we determined the FoV for a single eye and computed the projection

matrix. Rendering was done at a resolution of 1182× 1464 pixels per eye. Table 4.2

lists the benchmark results of fly-throughs with 1000 frames each. We decided to

use the parameters (r0 = 10◦, r1 = 20◦, pmin = 0.05) to configure the foveal region.

As shown in Section 4.4, users were mostly unable to detect any visual differences

compared to the full renderer for this FRC. For the benchmark process, the foveal

region was statically positioned at the image center. A resolution of 256× 318 was

empirically chosen for the support image and support G-buffer, as it provided a

good trade-off between speed and quality for the utilized HMD and scenes. The

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 80

(a) Sponza (b) Rungholt

(c) Tunnel Geom (d) Sibenik

(e) Urban Sprawl (f) Tunnel Maps

Figure 4.6: Scenes used for benchmarks and user studies of our implementation

four following test scenes were used: Sibenik, Sponza, Rungholt, Urban Sprawl (see

Figure 4.6). The choice of scenes was mainly driven by perceptual considerations and

is elaborated in Section 4.4.1. Each of the scenes was rendered with one point light

source, an area light source with 8 samples per pixel (SPP), and ambient occlusion

using 16 SPP in order to include different illumination complexities.

Table 4.2 and Figure 4.7 show that the speedup of our foveated ray tracer compared

to a full ray tracer scales well with increasing workloads, as it reduces the number of

rays. Hence, the smallest speedup of 1.46 is achieved for rendering the scene Urban

Sprawl with a single point light, while the maximum speedup of 4.18 is achieved

for Sponza with ambient occlusion. It also shows the time required for reprojection,

cache update, merging and the post-processing step, where the latter only has a

minuscule impact on performance for all scenarios, The influence of the FRC on the

rendering performance measured in frames per second (FPS) for Sponza is illustrated

in Figure 4.8.

Even though rasterization is inherently different from ray tracing, we provide a

few numbers for comparison to state-of-the-art approaches employing this method.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 81

Table 4.2: Times in milliseconds for each stage of the pipeline in comparison to a
full renderer showing the speedup of our approach. Times and speedups
are computed for a medium-sized foveal region with (r0 = 10◦, r1 =
20◦, pmin = 0.05) for a single eye with a resolution of 1182 × 1464 pixels
and no oversampling on an NVIDIA GeForce Titan X. For the chosen
foveal region, users were mostly unable to detect any visual difference to
full rendering in the user study.

Sibenik PL

Sibenik AL

Sibenik AO

Sponza PL

Sponza AL

Sponza AO

Rungholt PL

Rungholt AL

Rungholt AO

Usprawl PL

Usprawl AL

Usprawl AO

0 20 40 60 80 100 120 140 160 180

Rendering Time: Full Ray Tracing vs. our Foveated Rendering Method

full ours

Total time in Milliseconds

Figure 4.7: Average total rendering times for each scene for our foveated rendering method
and full ray tracing.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 82

SMALL MEDIUM LARGE

F
P
S

0
4
0

8
0

1
2
0

1
6
0

Full

160.1 130.0 107.9

MRays: 0.37 0.64 1.02

(a) Point Light

SMALL MEDIUM LARGE

F
P

S

0
2
5

5
0

7
5

Full
63.2 43.4 30.5

MRays: 1.68 2.89 4.60

(b) Area Light (8spp)

SMALL MEDIUM LARGE

F
P

S

0
2
5

5
0

Full
35.8 23.4 15.9

MRays: 3.17 5.45 8.69

SMALL: (5°, 10°, 0.01)

MEDIUM: (15°, 25°, 0.05)

LARGE: (15°, 30°, 0.10)

(c) Ambient Occlusion (16spp)

Figure 4.8: Influence of the FRCs on FPS for the scene Sponza and the different lighting
conditions (point light, area light, ambient occlusion). MRays denotes the mean
number of rays per frame. The scene was rendered at a resolution of 1182×1464
pixels using an NVIDIA GeForce Titan X.

Guenter, Finch, et al. (2012)’s method of rasterizing the image in three layers with

different resolutions yields a speedup of 6.2 with only 7% of the pixels being rendered

as the images are strongly undersampled. To still achieve an acceptable visual

quality, this method needs to rely on specific anti-aliasing methods, limiting its

applicability. Moreover, numbers are only reported for a single scene. By using

NVIDIAs Multi-Resolution Shading (Nathan 2015), a speedup of 1.3 to 2 is reported

depending on the configuration. Stengel, Grogorick, et al. (2016) report a speedup

of 1.34 on average, with the number of shaded pixels being decreased by 65% for a

resolution of 1280× 1440 pixels and 83% for twice as many pixels. Our method has

shown a reduction of sampled pixels by 79% on average for all benchmark scenes,

with an average speedup of 2.55. The ray-based approach presented by Fujita and

Harada (2014) has shown similar frame rates compared to our approach even though

they use different and more GPUs rendering at a lower resolution. The performance

of our method could be further improved by generating rays that directly match the

image distortion of the HMD, making it possible to cope with even higher resolutions

and refresh rates.

4.4 Experimental Evaluation: User Study

Since the proposed system is based on perceptual considerations, instead of rely-

ing on a numerical evaluation of image quality, we conducted a user study where

participants had to rate the image quality on a Likert scale regarding the possible

appearance of noticeable artifacts. It was driven by the following research questions:

• RQ1: Can subjects differentiate between scenes with varying graphical con-

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 83

texts, rendered with and without our foveated rendering method?

• RQ2: Do modifications of the foveal region parameters in the ray generation

have an effect on the perceived visual quality?

• RQ3: Does the fixation type have an effect on the perceived visual quality?

4.4.1 Experimental Procedure and Design

The experiment was conducted as a within-subject study (Field and Hole 2003), em-

ploying a 4× 4× 3 full factorial design. Each participant completed 96 trials in ran-

domized order, consisting of a full factorial combination of four scenes {Sponza, Tun-
nel Geom, Tunnel Maps, Rungholt} (see Figure 4.6), four FRCs {small, medium,

large, full}, and three fixation types {fixed, moving, free}. A more detailed descrip-

tion of the FRCs and fixation types is given below. All conditions were presented

twice. Full ray tracing was included as the FRC full, representing our control group.

Each trial consisted of an 8-second-flight with one factor combination. In the fol-

lowing paragraphs we describe how we approached the research questions stated

above.

RQ1: We varied the test scenes to study the effect of graphical contexts on the no-

ticed visual differences (artifacts). The selection of scenes was driven by perceptual

differences of the peripheral visual field as opposed to central vision, including colors,

patterns, shapes (Lou, Migotina, et al. 2012), and contrasts in the near peripheral

field (Legge and Kersten 1987). Sponza represents the most real-world-like scene:

While some discontinuities (and thus hard edges) are usually visible, the scene also

contains some smoother curves resembling real objects. Tunnel Geom contains a

tunnel consisting of noisy, displaced geometry. Depending on the point of view, this

scene can contain both hard edges and smooth, continuous surfaces. Tunnel Maps is

a tunnel textured with a checkerboard map and a noise texture. Rungholt is a scene

generated from a Minecraft map with many visible depth discontinuities, which can

be challenging for our reprojection and resampling method.

RQ2: The FRCs were given by the following eccentricity thresholds and mini-

mum sampling probabilities: small (r0 = 5◦, r1 = 10◦, pmin = 0.01), medium

(10◦, 20◦, 0.05), large (15◦, 30◦, 0.1) and full (∞,∞, 1). FRCs were determined by

using the angular size of the fovea for r0 with a steep falloff for the smallest setting

and increasing the foveal region and minimum sampling probability while reducing

steepness for the other settings. The smallest FRC was expected to yield visible arti-

facts for most participants, as the foveal region used for rendering matched the fovea.

The medium and large FRC extended the foveal region to include the parafovea and

perifovea, respectively.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 84

RQ3: While eye tracking determines a user’s PoR in the scene (defining the foveal

region), fixation may affect visual attention, potentially leading to visual tunneling

effects (Miura 1986). We varied fixation types to trigger different levels of visual

attention. The fixed focus mode contained a static fixation cross at the image center

to be focused for the entire trial. For the moving target mode, a set of paths across

the image plane was generated. A green sphere linearly moved along these paths,

fitted to the according scene depth to support the user’s ability to focus. Paths

varied in all trials except repetitions to avoid learning effects. The foveal regions

for fixed focus and moving target was centered around the fixation target to avoid

the negative influence of the eye tracker’s inaccuracies (relatively low refresh rate,

inaccurate tracking towards outer display regions). Trials with free focus fixation

enabled the user to look around freely with the foveal region following the user’s gaze.

The moving target fixation mode was expected to require more visual attention as

the user had to concentrate on following the target. However, it was not clear how

this would affect the quality ratings given by the participants.

The setup used for the user study differed from the benchmark configuration. It

comprised an Oculus Rift DK2 (SDK 0.8) on a Windows 10 system including an

Intel Xeon E5-2609 (2.4GHz), and 64GiB of RAM. The DK2’s native refresh rate of

75Hz was used as the baseline for our user study. As both the foveated rendering and

the OpenGL-based reprojection process had to be parallelized in order to achieve this

frame rate, it was necessary to deploy two Quadro K6000 cards. These were required

because the unavailability of a Linux driver for the utilized eye tracker tied us to

Windows, which does not allow for multi-GPU rendering on NVIDIA’s consumer

cards. The Oculus was equipped with an SMI binocular eye tracker running at

60Hz (asynchronous). The rendering resolution was equal to the benchmarks with

one image being rendered for each eye at the full resolution of the Oculus Rift

DK2. With some minor optimizations, we achieved frame rates of at least 75Hz

for all scenes, including the final image warping to display them in the Oculus.

However, all sequences used for full ray tracing had to be pre-recorded (excluding

any optimization like reprojection), loaded at runtime, augmented with the specific

trial fixations and displayed at 75Hz.

After signing informed consent and receiving instructions, participants were seated

and equipped with the HMD. Prior to the main experiment, six test trials of an alter-

native flight through Sponza were shown, including the smallest FRC, full rendering

and all fixation types. After each main trial the participants rated their agreement

to the following statements:

Q1: The shown sequence was free of visual artifacts.

Q2: I was confident giving this answer.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 85

Both had to be rated on a 7-point Likert scale from strongly disagree (-3) to strongly

agree (3).

4.4.2 Results

15 subjects (10 male/5 female, all with academic background) aged between 26 and

51 (M = 33, SD = 7.24), with normal or corrected-to-normal vision participated

in the user study. A multi-factor analysis of variance (ANOVA) (Field and Hole

2003) was performed on the data (1440 trials). We analysed significant interactions

and the observed main effects with post-hoc t-tests using Holm’s method for p-value

adjustment. Confidence values (Q2) were mostly high (M = 1.62, SD = 1.14), with

very small differences. Consequently, we do not consider differences in confidence in

our analysis any further.

RQ1: Differentiation between foveated and full rendering. Mostly, users

cannot reliably differentiate between full and foveated rendering. This is the case

for foveal regions not smaller than roughly 10◦, and scenes with little to moderate

amounts of high-frequency geometry. Figure 4.9 shows responses for varying FRCs

and all scenes. However, statistical data reveals that differentiation depends sig-

nificantly on all factors: FRC size, fixation mode and the displayed scene. While

FRC shows a significant main effect (F ≈ 30.54, p ≈ 0), we also found a strong

interaction between FRC and SCENE (F ≈ 3.09, p < 0.005). Hence, we performed

t-tests, which showed that significant differences between the medium, large, and

full FRC were only present in the scene Tunnel Maps. All other scenes only showed

significant differences when the small FRC was involved. We mainly attribute this

to the regular, high-contrast checkerboard pattern displayed in Tunnel Maps.

RQ2: The effect of foveal region size. As noted in RQ1, if the foveal region

is medium-sized or larger, users will hardly notice visual artifacts for most scenes.

Figure 4.10 shows the responses for varying FRCs, including the mean values and

standard deviations. The small FRC scored significantly lower, while medium and

large FRCs were almost identical regarding perceived visual artifacts. Compared

to full rendering, the mean rating was slightly lower, with an identical median and

a similar standard deviation. As Figure 4.9 illustrates, this can again be mainly

attributed to the artifacts visible in Tunnel Maps.

RQ3: The effect of fixation types. Fixation types, associated with different

levels of visual attention, had a significant main effect (F ≈ 3.46, p ≈ 0.03) on the

perceived visual quality. While free (M = 0.43, SD = 1.89) and fixed (M = 0.43,

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 86

18%

21%

23%

17%

76%

72%

64%

78%

26%

30%

44%

17%

62%

62%

48%

79%

18%

24%

48%

16%

74%

69%

43%

77%

46%

29%

71%

46%

47%

66%

24%

46%

FULL

LARGE

MEDIUM

SMALL

SPONZA

TUNNEL_GEOM

TUNNEL_MAPS

RUNGHOLT

SPONZA

TUNNEL_GEOM

TUNNEL_MAPS

RUNGHOLT

SPONZA

TUNNEL_GEOM

TUNNEL_MAPS

RUNGHOLT

SPONZA

TUNNEL_GEOM

TUNNEL_MAPS

RUNGHOLT

0 25 50 75 100

Percentage

STRONG DISAGREE DISAGREE RATHER DISAGREE NEUTRAL

RATHER AGREE AGREE STRONG AGREE

Foveal Region Configuration vs. Responses to Q1

Figure 4.9: Likert-scale ratings for Q1 (The shown sequence was free of visual artifacts.) for
all scenes grouped by foveal region configurations. The percentages on the left
and right represent the fraction of all participants that had a tendency towards
disagree and agree, respectively. It is clearly visible that the smallest FRC re-
vealed a significant amount of artifacts, while the larger foveal regions were close
to the full renderer in this regard.

−3 −2 −1 0 1 2 3

FRCs vs. Responses to Q1

Response

S
M

L
F

M=−0.11 SD=1.92

M=0.77 SD=1.69

M=0.73 SD=1.77

M=1.08 SD=1.57

Figure 4.10: Likert-scale ratings of perceived visual artifacts for Small, Medium, Large and
Full foveal regions. While small caused neutral ratings on average, ratings for
medium and large were not significantly different from full rendering.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 87

SD = 1.81) modes showed nearly identical responses, the moving target was rated

significantly better (M = 0.99, SD = 1.63). Thus, fewer visual artifacts were

noticed with presumed higher visual attention caused by the moving target, as users

were likely less aware of details outside the focus area (Miura 1986). This is highly

interesting as it could lead to the possibility of further reducing the sampling rate

outside the foveal region. Furthermore, the foveal region matched the gaze when the

target was perfectly followed. We assume visual tunneling did not affect the other

fixation modes, which made it easier to spot artifacts in the periphery.

4.5 Experimental Evaluation: Analysis of Eye Tracking

Data

In this section, we analyse the recorded tracking data and the corresponding quality

ratings for the presence of any noteworthy effects related to visual attention. Such

perceptual effects may have an impact on quality ratings that may not be expected

from a simple look at the raw data. We would also like to give a deeper insight into

tracking quality by providing information on the relation between a user’s gaze and

the given quality ratings. For distance values, we used the average of the individual

measurements for the left and the right eye.

4.5.1 Methods

First of all, we tried to determine the actual tracking precision in order to ensure

that the recorded data is valid. As mentioned above, when using a tracking device,

degradation of the tracking precision towards outer image areas was quite noticeable.

This may also be one reason why the calibration process of SMI’s SDK only employs

a relatively small area around the image center. We estimate the tracking precision

by looking at the deviations of the recorded PoR from the fixation target’s current

position.

We assume that the fixation accuracy, which describes how well a user can fixate

a target, is largely independent of the target’s position in the image. This implies

that worse fixation towards outer areas results mainly from tracking inaccuracies.

To give an estimate of tracking precision, the data is sorted into bins and the mean

value for each of these bins is computed. Each bin has a width of w = 0.1◦, and

there is a total of n = ⌈max{Fp,t(i)}/w⌉ bins Bj =
(

F̄j , Ḡj

)

, 0 ≤ j < n, where

Fj = {Fp,t|j · w ≤ Fp,t(i) < (j + 1) · w} , (4.4)

Gj = {Gp,t|Fp,t(i) ∈ Fj} . (4.5)

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 88

M
e

a
n

 g
a

ze
 D

e
v
ia

ti
o

n
 (

D
e

g
re

e
s)

Target Eccentricity (Degrees)

Figure 4.11: Tracking precision vs. fixation target’s distance to the image center. The area
used for calibration by the tracking device is also denoted here by Ch (horizontal
extent) and Cv (vertical extent). The result of linear regression with a quadratic
equation is represented by the blue line. The red area illustrates the residuals.

Here, Fp,t(i) is the distance between the fixation target’s current position and the

image center, and Gp,t(i) represents the distance between the gaze and the fixation

target in trial t at frame i for participant p. Thus, Ḡj is the average value of

this distance for bin j. It provides an approximate tracking quality measure for

the eccentricities contained within the interval [j · w, (j + 1) · w]. This data is

analysed further by performing a linear regression, the results of which are described

in Section 4.5.2. The results of the binning-and-comparing process are shown in

Figure 4.11.

Because of the inaccuracies towards outer regions, we filtered the logged data used

for analyzing the tracking information to only include the region utilized by SMI’s

calibration method. This region extends to maximum eccentricities of approximately

Ch = 10.3◦ horizontally and Cv = 11.68◦ vertically, resulting in a maximum eccen-

tricity of
√

C2
h + C2

v = 15.57◦ diagonally. These numbers were taken from SMI

SDK’s 9-point calibration method and converted to angles.

The average fixation accuracy of participants is then compared for all tested scenes.

Subsequently, the measured accuracies are compared to quality ratings for each

scene individually and we try to give explanations for the apparent effects. In order

to support our findings regarding tracking precision, the relation between quality

ratings given by the users and the average eccentricities of the PoRs in free focus

mode is looked into.

According to Adler, Kaufman, et al. (2011), adults can physically rotate the eye

up to 50◦ horizontally, 42◦ up, and 48◦ down around the main optical axis in the

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 89

eye’s resting position. It has to be noted however that in practice, humans usually

do not exhaust these physiological limits. Instead, after exceeding a certain angu-

lar deviation, humans will tend to turn their head. According to Defense (1999,

p. 17), this angular deviation is referred to as the comfortable viewing angle (CVA)

and is approximately 15◦. Thus, we chose not to account for fixation target ec-

centricities larger than the CVA in our tracking precision measurements. Also, the

9-point calibration used by SMI’s eye tracking SDK only uses eccentricities that are

approximately 0.5◦ above the CVA.

Head tracking was not implemented in our user study, as it was necessary to present

identical visual stimuli to all participants. If we enabled users to freely move their

head in the virtual environment, this would not have been possible. However, for

fixation target positions further away from the image center than the CVA, users

would most likely not just rely on eye movement to fixate a target, but instead

incorporate head movement.

4.5.2 Results

In this section we present the results of our analysis of the recorded eye tracking

data. Tracking precision, fixation accuracy, as well as the relation between fixation

modes and perceived quality are looked into.

Tracking Precision

To analyse the relation between the tracking precision and the PoR’s actual eccen-

tricity, which we assume to be identical to the fixation target position at this point,

we perform a linear regression with Ĝ = β0 + β1Fj + β2F
2
j . This results in a cor-

relation of 0.989 with β = (1.05, 0.024, 0.008) and R2 = 0.978 with the constant

(p ≈ 0), linear (p < 0.01), and square (p ≈ 0) terms being statistically significant.

The quadratic prediction for gaze deviation is illustrated in Figure 4.11, where the

plot of the regression result clearly shows the dependency between eccentricity and

tracking precision.

Fixation Accuracy

We analysed angular differences between the fixation point and the tracked gaze.

Participants stayed closer to the fixation point for the fixed mode (M = 0.31◦,

SD = 0.4◦) than for the moving target (M = 1.9◦, SD = 1.52◦). Keeping in mind

that Tunnel Maps had the greatest amount of visible artifacts for the participants,

it is important to mention that the median angular differences for Sponza, Tun-

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 90

nel Geom and Rungholt were between 1.25◦ and 1.58◦, while for Tunnel Maps, a

median difference of 2.24◦ was found. As this larger distance to the foveal region’s

center indicates that the gaze was closer to sparsely sampled regions, it is one expla-

nation for the relatively low Likert ratings for this scene. There were no significant

differences between angular differences for varying FRCs. The median values over

all scenes for the four FRCs were all within [1.62◦, 1.7◦] for the moving target and

[0.22◦, 0.25◦] for the fixed mode.

Figure 4.12 shows the cumulative distribution functions (CDFs) for the fixed and the

moving fixation target for all tested scenes. The horizontal axis represents the angu-

lar distance between the user’s gaze and the fixation target. A significant difference

between the fixation accuracy for the fixed target (95% of the measurements were

below 1.1◦ in the worst case) and the moving target (95% of the measurements were

below 4.5◦ in the worst case) is clearly visible. In Section 4.6, we explain the result

that would normally be expected from this difference in accuracy and compare it to

the users’ actual quality ratings. Figure 4.13 shows heatmaps for the distribution of

gaze deviation for fixed and moving targets, respectively.

As the color range indicates, it is also illustrated how often the participants have

looked at the respective relative positions to the fixation target. The slight right

shift for the gaze deviation can be explained by the utilized fixation paths not

being equally distributed regarding the fixation target’s movement. Looking into

the paths, it became clear that the fixation target moved left more often than right,

which is a possible explanation for the PoR’s right shift.

We attribute the differing fixation accuracy between the moving target and the static

fixation cross to the presence of smooth pursuit eye movements (SPEMs). While

the moving object’s speed did not exceed a velocity of 100◦/s, where a decrease in

accuracy is expected due to physiological constraints, the target’s movement was not

predictable for the user, which leads to a reduced SPEM precision. Additionally,

precision is reduced due to the fact that the background is at the same distance as

the pursuit target, which leads to the inability to use other signals to discriminate

between target and background (Adler, Kaufman, et al. 2011, p. 229).

Subjective Perceived Quality: Fixed and Moving Target

Figure 4.14 shows that the average quality for the moving target was rated better

for all scenes on average. In order to shed some light on the influence of the actual

rendering detail, Figures 4.15 to 4.18 illustrate the data for the individual scenes,

each with all three fixation modes and all foveal region configurations up to full ren-

dering. The red lines show the means for each of the fixation modes, exhibiting that

the aforementioned effect is present in all tested scenes. It also becomes apparent

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 91

0 1 2 3 4

0
.2

0
.4

0
.6

0
.8

1
.0

Sponza

Fixed
Moving

Gaze deviation (degrees)

P
(X

≤
x
)

0 1 2 3 4

0
.2

0
.4

0
.6

0
.8

1
.0

TunnelGeom

Fixed
Moving

Gaze deviation (degrees)

P
(X

≤
x
)

0 1 2 3 4

0
.2

0
.4

0
.6

0
.8

1
.0

TunnelMaps

Fixed
Moving

Gaze deviation (degrees)

P
(X

≤
x
)

0 1 2 3 4 5

0
.2

0
.4

0
.6

0
.8

1
.0

Rungholt

Fixed
Moving

Gaze deviation (degrees)

P
(X

≤
x
)

CDF (Fixation Accuracy)

Figure 4.12: CDFs of the measured fixation accuracy for fixed and moving targets. The
95% quantiles of gaze deviations for each scene are illustrated with dotted lines.
There are significant differences between the fixation accuracy for the fixed and
the moving fixation targets. X is the actual gaze deviation.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 92

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

dx

d
y

1000

2000

3000

countSponza, fixed

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

dx

d
y

1000

2000

3000

countTunnelGeom, fixed

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

dx

d
y

1000

2000

countTunnelMaps, fixed

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

dx

d
y

1000

2000

countRungholt, fixed

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

dx
d

y

50

100

150

200

250
countSponza, moving

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

dx

d
y

50

100

150

200

countTunnelGeom, moving

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

dx

d
y

50

100

150

200

countTunnelMaps, moving

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

dx

d
y

50

100

150

200

countRungholt, moving

Figure 4.13: Gaze deviation for all individual scenes, fixed and moving targets.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 93

fixed

moving

free

fixed

moving

free

fixed

moving

free

fixed

moving

free

✁3 ✁2 ✁1 0 1 2 3

Perceived quality for scenes and fixation modes

Subjective Perceived Quality

S
p
o
n
za

Tu
n
n
e
l

G
e
o
m

Tu
n
n
e
l

M
a
p
s

R
u
n
g
h
o
lt

Figure 4.14: Quality for all combinations of scenes and fixation modes. Quality ratings were
the highest for all scenes when the moving target fixation mode was selected,
although the fixation accuracy was worse for the moving target than for the
fixed target. The black dots inside the boxes represent the respective mean
quality ratings. They are connected to better illustrate differences.

that the increase in rendering detail between the medium and the large FRC did

not result in a consistent improvement of subjective perceived quality. For the mov-

ing fixation target, differences from a medium FRC up to full rendering are mostly

negligible. Interestingly, in some cases a larger FRC even results in lower subjec-

tive perceived quality. We try to explain the given quality ratings in the discussion

section, as they contradict intuition at first.

Subjective Perceived Quality: Free Focus

In the free focus mode, users were allowed to move their eyes freely instead of having

to follow a prescribed path. As we have shown above, tracking quality seemingly

degrades with increasing eccentricities. To prove that this apparent degradation does

not only come from fixations, saccades and other disturbances not being filtered from

the raw data, we take a look at the eccentricity-dependent quality ratings in the free

focus mode. Figure 4.19 shows illustrations of the according data (eccentricity and

quality ratings) for all scenes. The left column contains scatter plots for each scene.

The horizontal axis represents the eccentricity, while the vertical axis represents the

mean quality per bin, which has been computed for bins of size w = 0.1◦. Each

bin contains the mean quality rating of all trials where the according eccentricity

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 94

small

medium

large

full

small

medium

large

full

small

medium

large

full

−3 −2 −1 0 1 2 3

Perceived quality, Fixation mode vs. FoV, Rungholt

Perceived Quality

F
ix

e
d

M
ov

in
g

F
re

e

Figure 4.15: Quality ratings for fixation modes and foveal region configurations, scene
Rungholt. The red lines represent the mean quality ratings per fixation mode.

small

medium

large

full

small

medium

large

full

small

medium

large

full

−3 −2 −1 0 1 2 3

Perceived quality, Fixation mode vs. FoV, Sponza

Perceived Quality

F
ix

e
d

M
ov

in
g

F
re

e

Figure 4.16: Quality ratings for fixation modes and foveal region configurations, scene
Sponza. The red lines represent the mean quality ratings per fixation mode.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 95

small

medium

large

full

small

medium

large

full

small

medium

large

full

−3 −2 −1 0 1 2 3

Perceived quality, Fixation mode vs. FoV, TunnelGeom

Perceived Quality

F
ix

e
d

M
ov

in
g

F
re

e

Figure 4.17: Quality ratings for fixation modes and foveal region configurations, scene Tun-
nel Geom. The red lines represent the mean quality ratings per fixation mode.

small

medium

large

full

small

medium

large

full

small

medium

large

full

−3 −2 −1 0 1 2 3

Perceived quality, Fixation mode vs. FoV, TunnelMaps

Perceived Quality

F
ix

e
d

M
ov

in
g

F
re

e

Figure 4.18: Quality ratings for fixation modes and foveal region configurations, scene Tun-
nel Maps. The red lines represent the mean quality ratings per fixation mode.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 96

Eccentricity (degrees)

Eccentricity (degrees)

Eccentricity (degrees)

Eccentricity (degrees)

Eccentricity (degrees)

Eccentricity (degrees)

Eccentricity (degrees)

Eccentricity (degrees)

Eccentricity Distributions and Quality Ratings

Figure 4.19: Eccentricity-dependent mean quality measurements and eccentricity distribu-
tions for all scenes in free focus mode. It is clearly visible that the subjective
perceived quality degrades with increasing eccentricities. Eccentricity distribu-
tions are similar and almost uniform for all scenes.

had been measured at least once. Another possible approach would be to average

eccentricities for all individual trials and bin the data based on that. In addition to

the mean quality for each of the bins, we performed linear regressions with quadratic

equations, which are included in each of the plots as a red curve. The right column

shows eccentricity distributions for each scene, i.e., it gives an idea about how far

away from the image center the user inspected the shown scenes. Differences between

scenes turn out to be mostly minuscule or at least too small to draw any further

conclusions. Further remarks regarding these illustrations are made in the discussion

section.

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 97

4.6 Discussion and Conclusion

In this chapter, we presented a novel approach for foveated rendering using adaptive

ray tracing and reprojection from previous frames. Our method is well-suited for

wide-FoV HMDs equipped with an eye tracking device. Sparsely sampled image data

is reprojected to new views using a depth mesh generated from a low-resolution

G-buffer. The influence of errors arising from reprojection or regions critical for

perception is lowered by an update strategy that allows for resampling critical image

regions incorporating the samples’ age, which is linked to the samples’ quality as

well.

Our method enables the visualization of static scenes with millions of triangles within

the Oculus Rift DK2 at a refresh rate of 75Hz. The benchmarks have shown signif-

icant performance gains, while the user study revealed the perceived visual quality

for even moderately sized FRCs is almost on-par with full rendering. Anti-aliasing is

crucial to rendering for HMDs: Pixels are distributed over a large FoV, making the

pixel raster visible. Therefore, jagged edges and undersampling may easily become

apparent.

Our strategy is to shoot more rays by jittering the ray positions over the pixel area.

To improve the reprojected image’s quality and handle errors while accounting for

the user’s gaze, each pixel that is either part of the foveal region or marked in the

resampling info is sampled by shooting a ray. The results are then combined using

the running estimate.

We also presented an analysis of the eye tracking data recorded in the conducted ex-

periments. Tracking precision has been analysed regarding its angular dependencies,

revealing a clear drop of tracking quality for higher eccentricities. Accordingly, qual-

ity ratings for free focus mode also show a clear drop towards larger eccentricities.

Such properties of tracking devices have to be accounted for when implementing

foveated rendering methods, as the PoR is a crucial measurement in such setups.

Having measured these inaccuracies of the tracking device, it becomes clear that

applications that rely on methods from this field have to adjust the specific param-

eterizations for the given circumstances, e.g., by enlarging the area rendered at full

detail.

We have analysed the ability of users to fixate static and moving fixation targets.

While we found the PoR being scattered over larger areas for the moving target

mode, the results seemed to contradict the intuitive assumption that worse fixations

should result in worse quality ratings. The mean quality ratings were best for the

moving target mode in all scenes, even though the match between the measured PoR

and the actually focused PoR was worse than for the static fixation mode. Even

Chapter 4 Foveated Ray Tracing and Eye Tracking Data 98

though this may lead to subsampling and reprojection artifacts being exposed to the

user, the ratings were still better, which we attribute to the potential presence of

visual tunneling effects that are induced by the mental load of the task that has to

be carried out, although the task has just been to follow a moving point. Effectively,

this reduces the user’s FoV.

We have also found that an increase in rendering detail did not always result in

improved quality ratings. One possible cause for this is the reprojection method

hiding visual artifacts by effectively putting a low-pass filter over them, as even full

rendering still is a subsampling of the rendered scene, just with a finer and more

regular pixel grid. A more detailed explanation of blur effects that occur when using

reprojection methods is given by Yang, Nehab, et al. (2009).

In the next chapter, we discuss our method for accelerating preview rendering of

global illumination (GI) solutions with a hash-based caching method. With a fast

enough reconstruction, such methods could certainly be combined with a foveated

rendering process in order to bring them to an immersive virtual environment dis-

played on an achmd.

Chapter 5

Hash-based Hierarchical Caching and

Layered Filtering

Part of the work included in this chapter was previously published in (Roth, Weier,

et al. 2019) and (Roth, Weier, et al. 2020), lead-authored by the author of this thesis.

Modern Monte-Carlo-based rendering systems still suffer from the computational

complexity involved in the generation of noise-free images, making it challenging to

synthesize interactive previews. We present a framework suited for rendering such

previews of static scenes using a caching technique that builds upon a linkless octree.

Our approach allows for memory-efficient storage and constant-time lookup to cache

diffuse illumination at multiple hitpoints along the traced paths. Non-diffuse surfaces

are dealt with in a hybrid way in order to reconstruct view-dependent illumination

while maintaining interactive frame rates. By evaluating the visual fidelity against

ground truth sequences and by benchmarking, we show that our approach compares

well to low-noise path-traced results, but with greatly reduced rendering times. This

way, our caching technique provides a useful tool for global illumination previews

and multi-view rendering.

5.1 Introduction

We introduce the HashCache, a hierarchical world space caching method for GI ren-

dering of static scenes, based on Choi, Ju, et al. (2009)’s linkless octree. Using a

hash-based approach makes it possible to perform the reconstruction of cached illu-

mination in constant time, depending only on the actual screen resolution (assuming

that the visible geometry is known). This makes our technique well-suited for the

exploration of static scenes. Despite only caching diffuse illumination, our system

explicitly supports non-diffuse materials through a hybrid reconstruction scheme.

This is an approximate final gathering step similar to Photon Mapping (Jensen

1996; Spencer and Jones 2009), which is performed before the actual reconstruction.

99

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 100

For non-diffuse materials, this step is composed in a hybrid way: Rays are traced up

to the first hitpoint that is interpreted as a diffuse material, where the pre-gathered

information is then queried from the cache and modulated with the path through-

put. This process is described in more detail in Sections 5.2.2 to 5.2.4. Compared to

precomputed radiance transfer, our preprocessing time is much shorter, as we only

need to determine geometric cell occupations.

In order to reduce quantization artifacts, we employ a spatial jittering method in-

spired by Binder, Fricke, et al. (2018)’s work on hash-based path space filtering.

To increase image quality by reducing noise, we suggest a layered filtering frame-

work, basically projecting Keller, Dahm, et al. (2014)’s original path space filtering

method to image space. The practicability of our approach is demonstrated by ex-

tending a basic cross-bilateral denoising filter by integrating it into our framework

and adjusting it to the kind of noise present in our system, enabling it to filter the

image content per light bounce. With this method, we especially aim for improving

the visual quality of non-diffuse materials, compared to filtering only at the primary

hitpoint without any information about the transport paths. Most image space fil-

tering methods may be integrated into the suggested framework in order to improve

their handling of specular or glossy material types.

Eventually, we present image quality comparisons, performance benchmarks, and

an analysis of memory requirements, showing the practicability of our approach.

While maintaining interactive frame rates, the noise in the image can be reduced

significantly. We show that our approach performs comparably to much higher

sampling rates in path tracing regarding relative mean-square error (relMSE) and

multi-scale structural similarity (MS-SSIM) metrics.

5.2 Method

In this section, we give an overview of the employed cache structure and describe

how it can be used to cache the data generated by stochastic rendering methods.

Subsequently, we give more details on how samples are generated during the render-

ing process in order to reuse recursively generated hitpoints. Here, it is also shown

how the actual cache updates are performed. Eventually, we provide information

about the reconstruction process, including the support of non-diffuse materials, as

well as our proposed layered filtering framework.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 101

5.2.1 Cache Structure

Monte Carlo (MC)-based rendering methods provide the means to solve Kajiya

(1986)’s Rendering Equation numerically. In our implementation, a straightforward

path tracer with next-event estimation and multiple-importance sampling is used

for computing the illumination data. The path tracing process generates millions of

randomly and sparsely distributed hitpoints located on the scene geometry in each

iteration. This means that we are not supporting participating media to be cached.

Consequently, a data structure that allows for efficient caching of such data must

allow for querying large amounts of randomly distributed keys at a high performance.

The core of our HashCache system is Choi, Ju, et al. (2009)’s concept of a link-

less octree, consisting of a number of hash maps implemented with Amenta and

Alcantara (2011)’s Cuckoo Hashing. This hashing method allows for a worst-case

constant lookup time, making its choice especially suitable for real-time previews.

Cuckoo hashing resolves collisions by employing an additional hash function in order

to compute two candidate indices in the hash table for one key. When a collision

is detected on key insertion, the already-existing entry is replaced by the new en-

try. Then, the old entry is inserted at its alternative position. Potential collisions

are handled the same way iteratively until all entries have been successfully placed.

This process may get stuck in an infinite loop if the hash functions are not chosen

correctly. However, this issue can be detected and the process is then restarted with

automatically chosen alternative hash functions.

Although it would be possible to use a plain grid instead of an octree, we chose to use

the hierarchical approach for its inherent level-of-detail support. When rendering a

scene from an arbitrary point of view using a non-hierarchical data structure, parts

of this data structure will be potentially subsampled, resulting in aliasing artifacts.

With a hierarchical data structure like the HashCache, it is possible to choose the

hierarchy’s level whose resolution most closely resembles the projected pixel size in

object space, hiding subsampling artifacts effectively.

While the hash-based octree representation is a compact structure, there still is

a trade-off between memory consumption and access time. In order to construct

the compact hash map, all cells occupied with geometry have to be marked at

the highest resolution available in the octree. This information is determined by

testing all grid cells within each triangle’s bounding box for an intersection with

the triangle, resembling typical grid construction algorithms, such as in the work by

Pérard-Gayot, Kalojanov, et al. (2017). Because of the large number of grid cells at

high resolutions, we choose to represent each cell by a single bit in a field of 32 bit

types. Each 32 bit chunk forms a block, which is subdivided spatially at a resolution

of 4 × 4 × 2 bits = 32 bits. The implementation uses CUDA’s atomic operations

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 102

7 10 11 13 14 15

16 20 21 24 25 28 29

34 35 39

48 49 52 53 56 57 58 62

7 10 11 13 14 625857565352. . .

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

000000000

1 1 1 1 1 1

1111111

1 1 1

1 1 1 1 1 1 1 11

compute AABB
intersect
cells w/ Triangles

uniform subdivision into blocks
with one bit field each

bit fields

scene

compute cell indices

store in
 lin

ear m
em

ory

. . .

compute

hash map

application

request

index 7 10 11 13 14 625857565352. . .

0 1 2 3 4 232221201918data array indices

data arrays

. . .
fetch data

Figure 5.1: Two-dimensional example for the computation of the occupied grid cells and the
hash map computation. First, the scene is divided into a uniform grid, where
each 4×4 block forms a bit field with 16 elements. In the three-dimensional case,
these blocks have a depth of 2 and thus form a bit field with 32 elements each. A
rough approximation of the occupied cells is computed by using an axis-aligned
bounding box. For each cell of this bounding box, it is then computed whether or
not the cell intersects the triangle; if there is an intersection, the according bit is
set to 1, if not, it is set to 0. After computing the bit fields, the according linear
cell indices are computed and stored in a linear array. This is then passed to the
hash map initialization in order to compute the appropriate hash functions that
enable access to the data arrays through the linear cell indices without having
to store superfluous data.

on the respective chunks, effectively yielding the number of occupied cells. For an

illustration of our approach for determining occupied cells, see Figure 5.1.

During the hash map initialization, the number of occupied cells is used in com-

bination with a space-usage factor to limit the actual memory requirements. We

choose an initial space-usage factor of f0 = 1.1. If the hash map construction fails,

another attempt is made with fn = 1.01 · fn−1 = 1.1 · 1.01n until construction suc-

ceeds. This construction process is performed for each octree level, with cell indices

being adapted accordingly. As the utilized hash map implementation is bound to

32 bit keys and an octree’s extents are limited to powers of two, the maximum rep-

resentable resolution is 10243. Higher resolutions are represented by splitting space

into multiple hash maps per octree level.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 103

The values stored in the octree’s underlying hash maps are actual indices to global

data arrays. These arrays occupy exactly the space required to store all of the infor-

mation computed throughout the process. Note that the presented implementation

relies on caching only the outgoing diffuse illumination without any directional infor-

mation other than the front and back of each cache cell, where the front is determined

to be the inverse orientation of the first ray that hits any geometry within a cell.

While it would be possible to store information for more directions, this would neg-

atively affect storage requirements and performance. However, storing at least two

directions is necessary, since even infinitesimally thin geometric primitives may be

illuminated differently from both sides. To store more accurate GI information for

these cases, we construct the arrays to contain the following data per cell:

• Diffuse illumination for the front and back of each cell as six half values (96

bits),

• Compressed cell normal (32 bits),

• Currently accumulated number of samples (32 bits),

• Reset information: frame index denoting when the cell has last been wiped

(32 bits).

The cell normal is compressed as follows:

compress(~n) = ~nc =

~nc,x

~nc,y

~nc,z

(5.1)

~nc,x = (215 − 1) · ~nx + 1

2
(5.2)

~nc,y = (215 − 1) · ~ny + 1

2
(5.3)

~nc,z =

1, ~nz ≥ 0

0, otherwise
. (5.4)

This transforms the x and y component to the interval [0, 215 − 1] and the z com-

ponent to either 0 or 1, depending on the original sign in the uncompressed nor-

mal. Rounding the first two components to integers results in a total amount of

15 + 15 + 1 bits of information, which is stored in a 32 bit integer. Thus, the total

amount of memory required for the data of one cell is (12 + 4 + 4 + 4) Bytes =

24 Bytes. The reset information is required to rebuild the cache when illumination

changes occur. Note that the diffuse illumination is not attenuated by the diffuse

material color (albedo) at this point. Instead, albedo is accounted for after recon-

struction, which allows for a higher-quality representation of spatial variation in the

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 104

IrradianceNormalsHitpoints

query

HashGrid
Indices

generatePath
Tracing

HashGridManager
HashGrids

Data
Arrays

Binary
Orientation

Cached
normals

Global Data
Indices

Sort and
Reduce

update Unique
Cell Info

Pe
r O

ctr
ee

 L
ev

el

Figure 5.2: An overview of the caching process. Hitpoints, normals, and irradiance samples
are generated by the path tracing process. Based on the hitpoint coordinates,
the HashGrid indices for each hitpoint are then determined. Using these indices,
the HashGridManager is queried for the global indices to the data arrays and
the cached normals. A binary orientation for each irradiance sample, the actual
irradiance sample, and the global data indices are now utilized to collate the
data in a sort-and-reduce operation. Finally, the resulting unique information
per grid cell is then merged with the current cache data.

appearance of diffuse surfaces. In order to determine the front normal of each cell,

which is required to discern the stored orientations of each cache cell, an atomic

compare-and-swap is used to store the current normal in a cache cell if no normal

is stored so far. All generated samples can then be assigned to the front or back by

comparing their stored normals with the front normal.

There are no specific constraints for the number of triangles per octree cell (or, vice

versa, the number of octree cells per triangle), as the required resolution largely

depends on the lighting situation and the actual camera settings and position. For

quick previews during the modeling process of individual objects, lower resolutions

such as 2563 or 5123, may already yield satisfactory results.

5.2.2 Caching

While Figure 5.2 already gives a general overview of the process described in this

section, including the general data flow and algorithmic elements, a further descrip-

tion is given below. During the caching process, rays are shot into the scene from the

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 105

x0

x1

x2

x3

x4

ℓstore = 3

ℓlen = 2

ℓrec = k = ℓstore + ℓlen

Figure 5.3: Parameters for a single path. The parameter ℓstore determines the maximum
depth to which values are stored in the cache. After that depth, the illumination
along subpaths is computed up to a maximum length of ℓlen. The length of both
determines the maximal recursion depth ℓrec.

current point of view and traced along randomly generated paths x̄ = x0x1 . . .xk,

with xi being that path’s individual vertices located on scene surfaces, and k = ℓrec

being the maximum recursion depth. As we want to cache data not only for the

first hitpoint (which would effectively only represent directly visible geometry), we

compute illumination along subpaths with a maximum length of ℓlen and store these

for the first ℓstore hitpoints. Thus, since all vertices of a path should account for

the energy transported along the same number of consecutive vertices in order to

provide consistent data, the maximum path length is ℓstore + ℓlen, and the indirect

illumination contributed to each vertex xi along the path has to be limited to the

subpath vertices xi+1, . . . ,xi+ℓlen , i+ ℓlen ≤ ℓrec. This is illustrated in Figure 5.3.

As soon as the local illumination and the reflected direction ωi for the current vertex

xj have been computed, the energy transported along the current path is updated

by computing the throughput Ti = fr(xi,xj)/prob(xj)(ωi · ~n) according to the

locally evaluated bidirectional reflectance distribution function (BRDF). The first

vertex along the current path that should still account for energy originating at

the current vertex is at index p = max{0, j − ℓlen}. In order to take into account

the accumulated throughput for the current subpath from vertex xj back to vertex

xj′ , each preceding vertex xj′<j is updated with the reflected local energy Lj by

computing the Hadamard product

Ej′ = Lj ◦
Tj′

Cj′
◦

j
∏

m=j′+1

Tm. (5.5)

Here, the diffuse material color (or albedo) Cj′ is not accounted for in vertex xj′ .

It is instead taken into account after reconstruction in order to avoid loss of spatial

variation in the appearance of diffuse materials. All vertices from each path that

belong to a Lambertian material are stored in the respective arrays indexed by the

hash map. This includes diffuse illumination values Ej , compressed normal vectors

~nj , the linear map index H (only required if the hash map’s resolution exceeds

10243), and the linear cell index C, where H and C are necessary to store the data

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 106

in our data structure correctly.

Now, the respective cells of the HashCache are updated with the newly computed

light transport data. When updating the individual octree levels, the collected data

is pre-accumulated before performing an update on the global data arrays in order

to avoid synchronization issues. Pre-accumulation is implemented by first sorting

the data using a radix sort approach and consecutively performing a reduction on

the data with the global data index as the primary key and the binary orientation

information (front or back) as the secondary key for both the sorting and reduction.

In order to use the orientation information as the secondary key in the reduction,

the individual sample’s normal vectors have to be replaced with binary front/back

information: 1, if the sample lies within the front-facing hemisphere, and -1 other-

wise. If storage is not an issue, more directions can be represented, which may also

allow for caching slightly glossy materials. Afterwards, the data is coarsened for the

preceding octree level and the process is repeated until all levels have been updated.

The full octree update is in O(n log n), with n being the number of updated cache

cells.

5.2.3 Reconstruction

As rendering scenes with Lambertian materials exclusively may cause them to appear

visually dull and unrealistic, our system provides the means for handling materials

with glossy or specular properties. An overview of the process described in this

section is given in Figure 5.4, while a further description is given below.

For the reconstruction step, primary geometry hitpoints are determined for each

individual pixel, with the exception of glossy and specular materials, where the spe-

cific rays are traced further until they eventually arrive at maximum depth ℓrec, a

diffuse material, or hit the background. For each path, the accumulated throughput

is stored for the first ℓp−1 vertices as Tacc =
∏

i<ℓp−1Ti together with the diffuse

material color, the local normal, and the appropriate octree level (selected by pro-

jecting the pixel area in object space). The reconstruction is executed per-level and

accumulated in the image by selecting the correct orientation from each cell and

multiplying the retrieved diffuse illumination value with Tacc ·Cℓp−1.

In order to reduce the blocky appearance caused by low cache resolutions, we employ

a spatial jittering method to compute the actual cell index. This jittering method

is based on the hitpoint’s local tangent plane:

p′ = p+ sc · sj
(

ξ0 · ~t+ ξ1 ·~b
)

. (5.6)

Here, p and p′ are the original and the jittered hitpoints, ξi ∼ U(−1, 1) are uniformly

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 107

Ray
Tracing Hitpoints

Trace to diffuse material
or background

Normals

query

HashGrid
Indices

return

HashGridManager
HashGrids

Data
Arrays

Irradiance

Color +
G-Buffer

Running Estimate

Output

Sort by
octree level

Denoising

Pe
r D

ep
th

 L
ay

er

Layered
back-to-front

Filtering

Figure 5.4: An overview of the reconstruction process. A ray tracing step is performed to find
the actual hitpoints that have to be reconstructed from the cache. In order to
support non-lambertian materials, this step includes tracing of rays until a diffuse
surface is found, the background is hit, or a user-definable maximum recursion
depth is reached. The HashGrid indices computed from the hitpoints are then
sorted by the appropriate octree level, and the cache is queried for the actual
data indices. Together with hitpoint-wise texture and geometry information, the
acquired irradiance is filtered in a denoising step in a layered back-to-front-way.
This means that each recursion level is filtered individually and then combined
with the next (closer) level, until the primary hitpoints are reached. The result
is then combined in a running estimate to achieve higher image quality when the
camera is not moving.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 108

distributed random numbers in [−1, 1], ~t and ~b are the tangent and the binormal, sc

is the actual cell size, and sj is the user-adjustable scale of the jittering. Finally, a

basic edge-aware cross-bilateral denoiser filters remaining noise for each depth layer

individually, and also fills gaps with neighboring information where cache informa-

tion is not available.

Figure 5.5 shows the effect of jittering and denoising in two areas: While the wall

in the back shows more high-frequency noise, the statue in the front reveals quan-

tization artifacts due to the great differences between neighboring cache values.

However, such artifacts are efficiently removed by the spatial jittering.

Note that spatial jittering may result in slight artifacts when cells are processed

which do not have geometry in all neighboring cells that lie on the respective tangent

plane, as shown in Figure 5.6.

This is mainly caused by the fact that our data structure does not support enhanced

sparsity encoding, but rather relies on constrained access (Lefebvre and Hoppe 2006)

to avoid further memory consumption. Two cases may appear:

(1) The hash key for the neighboring grid cell may belong to another cell that

belongs to the scene’s geometry. In such a case, visual artifacts may occur.

(2) The hash key for the neighboring grid cell may yield an empty entry in the

hash map. In this case, the irradiance value is set to the average of the pixel’s

neighbors, i.e., invalid or unsampled pixels resulting from spatial jittering are

filled in.

However, during our evaluation, we did not observe any major artifacts resulting

from this. Thus, we decided not to include any way of querying a cell for its grid

coordinates.

In Section 5.2.4, it is described how we extend our system with a filtering approach

that accounts for multiple bounces of glossy and specular reflections and refractions

in order to improve visual quality. Note that in our implementation, caching and

reconstruction are independent of each other. The caching process can be executed

with an arbitrary sampling scheme at freely selectable resolutions, while the recon-

struction just retrieves the stored illumination values from the data structure. Thus,

the caching process may actually rely on arbitrary distributions of rays throughout

the scene, which also enables strategies like randomly or adaptively sampling the

scene along camera paths or creating importance-based sampling schemes. As for

the sampling along camera paths, this may be a viable approach for accelerating

the rendering of fly-throughs with fixed camera paths. Where and how to sample

specifically to optimize performance has to be analysed thoroughly, though, as just

randomly casting samples along a path will impact performance due to the reduced

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 109

Figure 5.5: (Top left) HashCache-based reconstruction without any spatial jittering or de-
noising applied. (Top right) While spatial jittering cannot get rid of the high-
frequency noise visible in the upper inset, it works well for hiding quantization
artifacts. (Bottom left) Denoising alone does work well for fine-grained noise,
but cannot remove quantization artifacts very well. (Bottom right) Combining
jittering and denoising works well for both kinds of artifacts.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 110

p p+(r,0)

p+(0,r)

n

Figure 5.6: Two dimensional example of the possible issue with spatial jittering: For a hit-
point p on an arbitrary scene surface with a jitter radius of r, the sampled cell

resulting from p′ = p + ~j, J =
{

~j |~j ∈ [−r, r]2
}

may not contain any scene

geometry. Consequently, the according cell has no memory explicitly reserved in
the hash map. The computed hash key may thus lead to empty or even plainly
wrong cells. The filled area represents the set of possible jittered points. The
green area is the subset of points that result in valid keys, while the red area
depicts the subset of invalid points.

ray coherence. Additionally, the separate caching step can be performed with arbi-

trary numbers of samples. In our case, we tested the caching performance at various

resolutions, as shown in Section 5.3.

5.2.4 Layered Filtering

While the plain octree reconstruction described so far may suffice in some scenar-

ios, it is known from regular path tracing that convergence can be slow in many

scenes. This makes it necessary to employ filtering methods in order to achieve

noise-free images within an acceptable time frame. The kind of noise remaining

in the generated images largely depends on the employed rendering method, while

quantization artifacts are effectively reduced by the aforementioned spatial jitter-

ing method. However, it is important to note that the existing filtering methods

developed for path tracing will not work for the kind of noise our approach ex-

hibits, as noise scales with the distance to a surface because of the limited cache

resolution. Our suggested filtering approach aims to increase visual fidelity under

such circumstances, while explicitly accounting for glossy, specular, and refractive

materials.

The main idea of our method is to split the traditional filtering step that is carried

out on the final image into multiple steps by filtering each bounce of light in an

individual layer (cf. Figure 5.7). With a non-layered filtering approach, the scene

information available to the actual algorithm is limited to the first hitpoint, and

multiple bounces between reflective and refractive materials have to be processed

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 111

Figure 5.7: Layered filtering process. The reconstructed illumination Erec for hitpoints that
reached cached materials is added to the current result at each level. Together
with the auxiliary buffers, such as the local G-buffer, it is then processed by
the denoising method. Afterwards, albedo is taken into account, and the data
is propagated to the next layer. This process is repeated until the first layer,
formed by the primary hitpoints, is reached, and the final image is reconstructed.

with the information at hand. This may result in a loss of detail or the need for

more samples in order to achieve satisfactory results.

At the core of our layered filtering approach is an image space denoising filter that

needs to be able to deal with noise appearing at varying scales. In this exemplary

case, we used a slightly extended cross-bilateral filter with a sparse sampling pat-

tern based on the voxel filtering technique presented by Laine and Karras (2011).

In contrast to proposing a concrete filtering method, we present a layered filtering

framework, which is inherently independent of the filtering method used. This way,

more recent filtering approaches could also be integrated and adapted to further im-

prove the results. In order to provide the necessary information to this filter for each

bounce of illumination, we expand upon the stored data described in Section 5.2.3.

For each vertex x
(p)
i belonging to the path x̄(p), the following information is stored:

• Path segment length: Di = ‖xi − xi−1‖,

• Accumulated path length: DΣ
i =

∑

j≤iDj , serving as an extended depth

buffer,

• Geometric normal for the current vertex: ~ni,

• Throughput for the next generated ray Ti,

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 112

• Shininess of the current material αi,

• Reconstructed diffuse illumination Ei,

• Diffuse material color (albedo): Ci.

The edge-stopping functions we use for the bilateral filter are defined as follows:

• Normals: wn = snmax {0, ~np · ~nq},

• Path length: wd = 1− sd∆DΣ,

• Path segment length: wd′ = 1− sd′∆D,

• Albedo: wc = 1− sc∆c/(∆c+ 1),

• Luminance: wl = max {0, 1− log (1 + sl∆l/ (∆l + 1))},

with

∆DΣ = |DΣ
p −DΣ

q |,
∆D = |Dp −Dq|,
∆c = log(1 + κ‖cp − cq‖)/κ,
∆l = κ|lp − lq|.

As each bounce is filtered individually and the results are propagated towards the

preceding bounce, we omit the depth index i from the description of the edge-

stopping functions. The pixel indices are denoted p and q. Shininess is required

to distinguish diffuse from glossy materials and parameterize the filter adequately.

Albedo is required for preserving texture details, while throughput is required to

apply the layered approach to non-diffuse materials properly. The parameters

s{n|d|d′|c|l′} are user-defined scaling factors for normals, accumulated depth, local

depth, color differences, and luminance differences, respectively. The color- and

luminance-based edge-stopping functions have an additional weighting factor κ. The

color difference is computed in L*a*b* color space. Generally, user-definable param-

eters have been chosen empirically by the best subjective visual impression. The val-

ues used for the evaluation are mentioned in Section 5.3. Note that non-lambertian

materials have a separate weighting factor for the color difference, which is not

explicitly mentioned here.

All aforementioned information is available on a per-pixel, per-layer basis, which

means that there is an actual image per light bounce (which we refer to as a layer).

While later bounces of individual paths may arrive at different points in the scene,

this is partially accounted for by using the accumulated ray depth as a filter guide.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 113

Figure 5.8: Top: Unfiltered propagation of light bounces from the third hitpoint to the
primary hitpoint (left to right). Bottom: The diffuse material colors (albedo)
of each bounce above, multiplied after each filtering step. Note that non-diffuse
materials appear white because they do not change the appearance of cached
illumination values, which are strictly diffuse. The grey appearance of these
materials resulted from tonemapping.

Although this yielded satisfactory results in our tests, there may be scene arrange-

ments and material properties that cause this to be an issue. In such cases, we

suggest using hitpoint world coordinates or HashGrid cell coordinates as possible

additional or alternative filter guides.

Consequently, we process this data in a per-layer fashion, starting at the maximum

bounce, filtering the result, and propagating it to the previous bounce. Each time the

filtered result is propagated from layer i to i−1, it is multiplied with Ti−1 to account

for the actual path throughput. The result is then added to the reconstructed

diffuse illumination Ei−1, and the accumulated image is filtered and propagated

again until the primary hitpoints are reached. Additionally, after each layer has

been filtered, it is multiplied with the local albedo Ci in order to account for high-

frequency content, as it is often contained in diffuse textures and shaders. Figure 5.8

shows the reconstructed diffuse illumination propagated from the third bounce to

the secondary and then to the primary bounce.

Our approach to caching, filtering, and accumulating is essentially an approximate

final gathering step split into two separate steps: For diffuse materials, the illumi-

nation is approximated by integrating the energy arriving at each octree cell in the

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 114

Figure 5.9: Interleaved comparison between filtering the first three accumulated bounces
with traditional (red insets) and layered filtering (green insets). The image has
been reconstructed with one sample per pixel after filling the cache with four
samples per pixel just for the illustrated viewpoint. The utilization of local
geometry information through layered G-buffers shows clear improvements in
image quality. Filter weights for color and luminance differences have been
adjusted in comparison to the weights chosen in the evaluation measurements.

caching phase. For all non-lambertian materials, rays are traced until a diffuse ma-

terial is hit in the reconstruction step. Then, the pre-gathered diffuse illumination is

queried from the cache at these points. This hybrid approach is directly supported

by our layered filtering method, which makes it possible to filter the illumination

gathered in the octree cells separately based on local scene information, even if it

is only indirectly visible in an image. Figure 5.9 shows a comparison between tra-

ditional first-bounce-only and our own layered filtering approach for the first three

bounces.

5.3 Results and Evaluation

In this section, we evaluate the visual quality, performance, and GPU memory re-

quirements of the presented system. All measurements in this section were performed

on a Linux system equipped with a GeForce GTX Titan X (Maxwell), a Core i7-

7700 CPU, and 32 GiB of main memory. Scaling factors for the layered filtering

were statically chosen to be sn = 1, sd = 100, sd′ = 400, sc,diffuse = 1.5, sc,glossy = 3,

and sl = 3. Images were rendered at a resolution of 1024× 1024 pixels.

5.3.1 Visual Quality

The proposed methods in this chapter lead to an approximate reconstruction of

the scene’s true illumination. To judge image quality here, we employ purely com-

putational methods for estimating image quality. At the same time, perceptual

considerations are taken into account by using MS-SSIM in addition to the purely

pixel-based relMSE. To determine the visual error, we rendered the scenes Country

Kitchen (CK) and Streets of Asia (SoA) using a camera fly-through of 500 frames

with different configurations of the HashCache and regular path tracing for compar-

ison. CK was chosen because the illumination results mainly from a lamp in the

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 115

room, but is also influenced by the environment map illuminating the scene through

the window, which poses a rather difficult scenario for a standard path tracer. On

the other hand, SoA was chosen because it can be sufficiently illuminated by exclu-

sively relying on an environment map, which is a less difficult scenario when using

path tracing. On the one hand, standard path tracing was rendered for 1, 8, 64,

512, 4096 and 16384 samples per pixel (SPP) for both scenes and additionally for

131072 SPP for CK, as lower sample counts still revealed visible noise, especially in

shadowed regions. The outputs with the highest sample counts are used as refer-

ence images for error computation. On the other hand, results using the HashCache

system were generated with 1, 8, 64 and 512 SPP with the presented reconstruction

technique. The hash map resolution was chosen to be 40963 for CK and 20483 for

SoA. All rendered images underwent the same tone-mapping process. The results

illustrated in Figure 5.10 show a comparison of the visual quality measured as (top)

the relMSE and (bottom) the MS-SSIM (Wang, Simoncelli, et al. 2003) for varying

sample counts. MS-SSIM mimics the multi-scale processing of the human visual

system (HVS) and is an important tool to judge the perceived image quality. The

reuse of already computed information in combination with a cross-bilateral filtering

method already leads to the HashCache at 64 SPP yielding a visual quality similar

to path tracing at 4096 SPP for the scene CK, even coming close to the reference

image at 131072 SPP in the middle of the sequence. For SoA, the HashCache does

not show an improvement in relMSE between 64 and 512 SPP. At 64 SPP, the

relMSE is similar to path tracing at 512 SPP. The scene SoA was rendered using a

HashCache with a lower maximal resolution of only 20483. As the spatial extent of

the scene is high and the camera gets close to certain objects in the scene during the

fly-through, quantization artifacts are likely to occur and cause a larger difference

between the reference solution and the cached irradiance.

We expect even better quality at low sample densities when more advanced state-of-

the-art filtering methods are integrated into our layered filtering framework. Nonethe-

less, they have to be adapted to the specific appearance of noise resulting from the

HashCache (see Section 5.3).

Applying a denoising method that is developed for standard path tracing is not

suitable because of the visual appearance of noise in the HashCache system, mainly

because it appears at varying scales that may be larger than just individual pixels.

See Figure 5.11 for an example of noise appearance in our system. However, applying

an additional denoiser on top of our filter may improve image quality even further by

removing the fine-grained noise more reliably, while allowing for more conservative

settings in our own filtering process.

Figure 5.12 shows a visual comparison of the quality improvements by increasing

the cache resolution.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 116

Figure 5.10: relative mean-square error (lower is better) and multi-scale structural similarity
(higher is better) for the scene Country Kitchen (cache resolution 40963) and
Streets of Asia (cache resolution 20483) at various sampling densities using path
tracing and the HashCache system. The shaded area in the diagrams outlines
the respective relMSE and MS-SSIM ranges for the other rendering method for
better comparison.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 117

Figure 5.11: The appearance of noise when using the HashCache. Without filtering and
jittering, the distance-dependent scale of noise becomes clearly visible. Turning
jitter on improves the visual appearance of quantization artifacts. Turning
denoising on clearly improves regions with low sample counts, even filling in
areas where no samples have been cached at all. The bottom right image shows
the result with Intel’s Open Image Denoising (https://openimagedenoise.
github.io/) instead of our denoiser. It becomes clear that the method cannot
cope with the kind of noise exhibited by the HashCache.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 118

Figure 5.12: The effect of adjusting the cache resolution is especially visible at high-
resolution details like the transition between shadows and illuminated regions.
The rightmost pictures show the reference rendering at 131,072 spp. The rest
of the images show cache resolutions from 20483 down to 2563 , decreasing by
powers of two (from right to left). It can be seen that the decreased spatial
resolution leads to quantization artifacts which are effectively filtered by jitter-
ing and denoising. However, fine-grained details would not be resolvable at low
resolutions, and a complete loss of spatial details may occur.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 119

Figure 5.13: Comparison of images generated with pure path tracing and with the support of
HashCache. (Left) The full image subdivided horizontally into areas rendered
with HashCache at 1, 8, 64, and 512 spp, as well as with Path Tracing at 131,072
spp. Insets in green are magnified on the right for the various settings. (Right)
Zoomed-in rendering for comparison, rendered with Path Tracing, HashCache
(with three more frames in the sequence rendered before), and HashCache indi-
vidual (the camera position has been rendered without filling the cache in the
preceding frames). For the upper inset, the HashCache system already yields
a quality at 64 spp (512 spp for individual rendering) that is on-par with the
path-traced image at 131,072 spp. However, the lower inset shows more arti-
facts than the reference, even at 512 spp, for the HashCache rendering. The
main reason for this is that we tuned the denoising filter to maintain shadows.
Different denoising methods used with our layered framework should be able to
resolve this well.

Figure 5.13 shows a comparison of images from three rendering modes: Pure path

tracing, HashCache rendering an image sequence, and HashCache rendering an in-

dividual frame. Glossy reflections appear at a high quality early in the process, and

details in such reflections are preserved very well.

Figure 5.14 shows how well our system performs with a reflective surface. Due to

the layered filtering approach, a quality similar to the reference rendering is already

achieved with a fraction of the samples required for regular path tracing. The

effect of layered filtering for glossy and specular (refractive) materials is shown in

more detail in Figure 5.15. Overblurring of details in refractions and reflections is

avoided by the layered approach. Instead, the diffuse surface hit by the reflected

and refracted rays is filtered in its own layer, and it is then propagated along the

path.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 120

Figure 5.14: Comparison of images generated with pure path tracing and with the support
of HashCache. (Left) The full image rendered at the reference sample count
of 217. The green inset is magnified on the right for the various rendering
settings. (Right) Zoomed-in rendering for comparison, rendered with Path
Tracing, HashCache (with four more frames in the sequence rendered before as
a warm-up phase), and HashCache individual (without filling the cache in the
preceding frames). For the upper inset, the HashCache system already yields
a quality at 64 spp (512 spp for individual rendering) that is at least visually
on-par with the path-traced image at 131,072 spp.

Figure 5.15: The effect of layered filtering for glossy and specular materials. The cache was
filled irregularly over 128 frames at 1 spp for a random fly-through. (Left)
Unfiltered image at 128 reconstruction samples per pixel. (Center) Layered
filtering at 128 reconstruction samples per pixel. (Right) Magnified insets. It
is clearly visible how the noisy illumination from the back wall is reflected in the
glossy surface on the ground when layered filtering is deactivated. With layered
filtering, the noise can be filtered in a separate layer and then be accounted for
in the glossy reflection. For the refractive material on the right, a similar effect
is visible: Refracted rays pick up the noisy cache values from the back wall
when layered filtering is deactivated. With layered filtering turned on, this
noise can be effectively filtered before it is propagated to preceding bounces.
This allows for removing the noise locally without loss of details. An example
for the individual layers being filtered is shown in Figure 5.9.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 121

5.3.2 Performance

The rendering times and the average number of samples cached per frame for two

different cache settings, (ℓstore = 3, ℓlen = 3) and (ℓstore = 8, ℓlen = 8), are shown

in Figure 5.16. The caching resolution factor (CRF) serves to adjust the number

of rays cast in the caching phase. If set to 1, the number of primary rays will be

the same as the chosen image resolution in the reconstruction step. While the cache

construction times behave quadratically with regard to the CRF (because resolution

is multiplied with the CRF both horizontally and vertically), reconstruction times

do not depend on this setting.

The average filtering time measured for the bilateral filter is 22 ms, while the cache

query took 4.5 ms and the ray tracing phase for determining the visible geometry

took around 31 ms. Thus, at a frame rate of around 17 fps, the reconstruction itself

is well-suited for interactive previews.

The additional time taken by the caching procedure depends largely on the rendering

and caching parameters. Setting low values for ℓstore and ℓlen causes the ray-tracing

step to work not only with shorter, but also more coherent paths, which is beneficial

for its performance. However, despite the top configuration delivering the fastest

caching times, the number of updated cache cells on the right also shows that cache

convergence should be expected to be relatively slow.

Only storing the first vertex for each path also causes issues with glossy, specular,

or transparent materials where the positions of subsequent vertices have not yet

been seen directly by the user. Imagine a white wall reflected inside a mirror. It

will only show a correctly rendered reflection if it has already been viewed before

directly. However, this issue can be easily avoided by choosing a higher setting for

ℓstore, which is desirable anyway in order to cache illumination for scene parts that

are not directly visible.

The relatively slow cache update times for high CRF settings and high recursion

and storage settings visible in Figure 5.16 are not a real issue for the interactive

exploration; in order to keep the process interactive, we modified our implementation

to adjust the CRF to maintain a certain framerate while the camera is moving and

only perform caching at the full resolution in the absence of movement.

As shown in Figure 5.17, the actual reconstruction time is low enough to allow for

fully interactive camera movements when the CRF is lowered. While the initial

construction of the cache may take a couple of seconds depending on the set res-

olution, it is faster than Radiance Caching approaches (Krivanek, Gautron, et al.

2005; Omidvar, Ribardière, et al. 2015). Yet, this means that the HashCache is too

slow to support fully dynamic scenes. It may be possible to omit the necessity of an

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 122

Figure 5.16: Statistics for the scene Country Kitchen with different cache settings at a res-
olution of 20483. (Left) Total rendering times, split into different steps. It
becomes clear that the tracing and cache update steps take by far most of
the time, while the cache query can almost be disregarded entirely. (Right)
Average number of cells updated per frame of the 500 frame sequence. These
numbers include the update of all octree levels. Note that the resolution factor
can be adjusted dynamically to the current situation, e.g., when the user is
moving.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 123

explicit hash map construction step by using non-perfect hashing schemes in future

research.

5.3.3 Memory Requirements

The amount of required GPU memory for both CK and SoA is shown in Table 5.1.

While data density decreases by a factor of roughly 0.5 from level i to i+1, memory

requirements still increase by a factor of roughly 4 to 5. In total, the 40963 represen-

tation of CK required an amount of 2.17 GiB for the data arrays and 406.92 MiB for

the hash maps, while SoA required 691.37 MiB for the data arrays and 126.75 MiB

for the hash maps at a total resolution of 20483. One possible approach to handling

the memory requirements resulting from higher resolutions is the integration of an

out-of-core component into our system, dynamically loading currently required data

from host memory into GPU memory.

5.3.4 Comparison to State-of-the-Art

Methods such as the work by Schied, Kaplanyan, et al. (Schied, Kaplanyan, et al.

2017; Schied, Peters, et al. 2018) have lower filtering run times (e.g., 4–5 ms on

Titan X vs. 22 ms for the unoptimized HashCache filter) and produce a high vi-

sual quality, but cannot simply be applied to HashCache renderings because of the

different appearance of noise. In addition, these techniques rely on strong temporal

coherence between subsequent views. In contrast, the HashCache allows for inte-

gration of GI data from arbitrary spatial locations. Thus, we are certain that all of

these techniques can benefit from the knowledge from world space caches. With the

HashCache’s hybrid reconstruction method, specular materials can be supported

with ease (see Figure 5.14). Notwithstanding, querying the world space cache is

slower than a cache in image space (4.5 ms for HashCache vs. ∼0.5–1 ms for Schied,

Peters, et al. (2018)). Yet, in contrast to techniques such as NVIDIA’s machine

learning solution presented by Chaitanya, Kaplanyan, et al. (2017) that needs spe-

cific training data or might produce inconsistent results, the HashCache can be filled

at run time. Admittedly, the caching itself is a costly operation (see Figure 5.17),

but the CRF can be freely adapted. The Figure also shows how the actual camera

settings may influence caching and rendering times. For CK, rendering at the be-

ginning takes only a little time because the camera is still outside the room, which

means that a lot of rays actually hit the background. As the camera gets closer to

the room, recursion depth increases because the rays are reflected between surfaces

a lot more often. For the reconstruction, there is no vast difference caused by such

a scenario. The only increase in recursion depth is caused by non-diffuse materials.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 124

Figure 5.17: Path-tracing and HashCache rendering times for Country Kitchen and Streets
of Asia fly-throughs. Rendering time is given for 1 spp. PT: Trace is the time
for pure path tracing at a maximum recursion depth of 8, HC: Caching is the
caching part of HashCache computations which includes path tracing and cache
updates, and HC: Reconstruction is the reconstruction part of the HashCache
computations, which includes ray tracing, fetching the respective data from
the cache, and reconstructing an image from the computed data (including
filtering). While caching times are significantly higher than pure path-tracing
times, data is reused between frames so that the actual caching resolution factor
(CRF) can be reduced either permanently or deactivated during user input,
allowing for smooth interaction.

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 125

Country Kitchen

Level Res Density Data Mem. Hash Mem.
0 1 1 24 B 4.4 B
1 2 0.5 96 B 17.6 B
2 4 0.375 576 B 105.6 B
3 8 0.193 2.32 kiB 435.6 B
4 16 0.124 11.93 kiB 2.19 kiB
5 32 0.070 54.07 kiB 9.91 kiB
6 64 0.038 234.47 kiB 42.99 kiB
7 128 0.023 1.11 MiB 209.23 kiB
8 256 0.012 4.66 MiB 874.83 kiB
9 512 0.006 19.43 MiB 3.56 MiB

10 1024 0.003 81.60 MiB 14.96 MiB
11 2048 0.002 362.09 MiB 66.38 MiB
12 4096 0.001 1.71 GiB 320.90 MiB

Sum 2.17 GiB 406.92 MiB

Streets of Asia

Level Res Density Data Mem. Hash Mem.
0 1 1 24 B 4.4 B
1 2 0.5 96 B 17.6 B
2 4 0.266 408 B 74.8 B
3 8 0.197 2.37 kiB 444.4 B
4 16 0.135 12.91 kiB 2.37 kiB
5 32 0.074 57.14 kiB 10.48 kiB
6 64 0.043 265.92 kiB 48.75 kiB
7 128 0.025 1.21 MiB 226.35 kiB
8 256 0.014 5.50 MiB 1.01 MiB
9 512 0.008 25.68 MiB 4.71 MiB

10 1024 0.004 114.77 MiB 21.04 MiB
11 2048 0.003 543.88 MiB 99.70 MiB

Sum 691.37 MiB 126.75 MiB

Table 5.1: Data densities and memory requirements. The data density is the quo-
tient of occupied cells and the actual number of cells for a full grid of
resolution n3. Data memory is the amount of memory required to store
the full data arrays. Hash Memory is the amount of memory reserved for
the hash map representation for the respective level.

Once caches are filled to a certain extent, it is possible to limit the CRF largely

and thus significantly reduce the cache update times. Moreover, the run time and

caching behaviour can be adapted dynamically to the user’s requirements to stay

within certain frame rate limits.

5.4 Discussion and Conclusion

We presented a method for caching diffuse global illumination in a hash-based data

structure and reconstructing diffuse and non-diffuse illumination from the cached

data. Performance-wise, the reconstruction process only depends on determining the

correct hitpoints for each pixel, which is a ray tracing process. For diffuse materials,

data is directly reconstructed from the HashCache, while non-diffuse materials allow

Chapter 5 Hash-based Hierarchical Caching and Layered Filtering 126

for tracing the rays further through the scene and performing reconstruction at the

first diffuse hitpoints. This allows for supporting arbitrary non-diffuse materials as

well.

To reduce memory requirements, the employed hashmaps rely on 32bit keys, which

effectively limits the size of an octree based on such hash maps. For octree reso-

lutions above 10243, we split the scene into multiple octrees that are individually

managed by the HashGridManager. As even higher octree resolutions still exhibit

quantization artifacts (cell borders) when visualized directly, we employed a spa-

tial jittering strategy that effectively approximates trilinear filtering temporally, but

avoids having to store additional structural information that would increase memory

requirements. Visual artifacts that may result from this jittering approach did not

cause any disturbances in our tests.

In addition to the caching and reconstruction mechanism working directly on the

cache, we developed a framework for filtering the reconstructed illumination in a

layered way, based on the idea of path space filtering. With a limited recursion

depth of n, we store n buffers with the original image resolution, each holding only

an individual bounce/vertex of each pixel’s path. The idea is to filter each bounce

individually, while our framework does not enforce a specific filtering algorithm.

Instead, the cross-bilateral filter and the auxiliary buffers it relies on are merely an

exemplary implementation and it would be certainly interesting how other recent

denoising approaches could be adapted to the layered framework and the specific

noise appearance in our system.

Benchmarks showed the reconstruction from the HashCache to be clearly interactive,

while the caching process may be computationally demanding at times. Therefore,

we suggested to perform the caching process with an adaptive resolution depending

on the required time and desired frame rate. Visual quality has been compared with

a purely numeric method (relMSE) as well as a perceptual method (MS-SSIM);

comparing it to reference renderings showed that our approach performs equal to

one to two orders of magnitude more samples from a basic path tracer.

Chapter 6

Conclusion

6.1 Summary

In this thesis, we have presented multiple approaches for improving the quality

and performance of ray-based rendering methods in several different environments.

After giving an introductory overview of the most important research in the fields of

ray-based, perception-based and gaze-contingent rendering, denoising and caching

methods, we described the methods and findings of our approach to guided high-

quality rendering.

In the context of designing this user-centered method for steering the Monte Carlo

(MC)-based rendering process in global illumination (GI) rendering on large display

systems, we have developed a model that adapts the rendered detail based on a user-

selectable region of interest (RoI) using a tracked input device. With this device,

the RoI can be placed and scaled freely by aiming at the display system. This region

is then rendered with a high sampling rate, while the periphery is scheduled with

much lower sampling rates. To avoid extreme brightness variations in the image due

to varying sampling rates, we presented examplary implementations for appropriate

filtering methods that approximate the ground truth brightness of the image early

in the rendering process over the whole image plane.

In order to accelerate the rendering process for sparsely placed samples, we intro-

duced a novel scheduling scheme based on sparse matrix compression, that led to

significant speedups for small to medium-sized RoIs. With a small RoI correspond-

ing to a field of view (FoV) of 10°, only 1.2% of the total pixels of the image had

to be rendered, while a FoV of 60° required 36.3% of the pixels. We have shown

that our approach accelerates the convergence rate inside the RoI significantly when

compared to full rendering. The measured speedups ranged from 37.43 for a 10°

FoV to 2.44 for a 60° FoV. This gives the user, who might be an artist modeling a

scene and previewing it on the display system, the means to analyse specific parts

of the scene much quicker than with full rendering.

127

Chapter 6 Conclusion 128

Subsequently, we shifted our focus from large display systems to head-mounted

displays (HMDs) in our work on foveated ray tracing for HMDs. We described

the building blocks of our reprojection-based foveated rendering pipeline that relies

on adapting the sampling rate using a piecewise linear falloff function and reusing

image information from preceding frames as well as a low-resolution support image

to fill in gaps from the sparse sampling process. In addition, we described the

temporal accumulation and potential post-processing methods to improve image

quality. Experimental results have shown significant speedups between 1.46 and 4.18

for the tested scenes. Users did not experience any significant difference between

foveated rendering and full rendering for the chosen parameters, as shown in the

user study.

Based on the ´latter, we took a closer look at the recorded eye tracking data to

analyse the tracking precision and connections between fixation accuracy and quality

ratings. We found tracking accuracy to be around 1° in the central region, while at

larger eccentricities the accuracy was reduced (to about 3.5° at an eccentricity of 15°).

With regard to the quality ratings, we found potential evidence of visual tunneling

effects, as despite the reduced fixation accuracy, quality ratings were highest for the

moving fixation target.

In the subsequent chapter, contrary to the preceding two chapters, we did not focus

on a specific display system, but rather on a specific acceleration technique for GI

rendering. Building upon the concept of linkless octrees Choi, Ju, et al. (2009), we

developed a hash-based world space caching strategy for global illumination data

acting as an interactive process. Using a hybrid reconstruction approach, the pre-

sented technique also allows for the visualization of glossy and specular materials.

We showed how spatial jittering improves the quantization artifacts that were oth-

erwise present in the direct visualization of the cached data.

Combined with an exemplary filtering technique implemented in our novel layered

filtering framework, we demonstrated the viability of our approach for interactive

scene exploration. By using multi-scale structural similarity (MS-SSIM) to compare

image sequences rendered with various numbers of samples per pixel for both basic

path tracing and the HashCache system, we showed that it provides an effective way

to maintain the visual quality at a much faster rendering rate. The results showed

an improvement by one to two orders of magnitude with regard to sample reduction

for a similar image quality when compared to basic path tracing.

Chapter 6 Conclusion 129

6.2 Contributions

In Chapter 2, we found that despite the large body of research in the field of ray-

based rendering, bringing such methods to interactive systems is still an ongoing

process. Looking at the long history of ray-based rendering, which has been around

for more than 50 years, it becomes clear that there has been a lack of hardware

support for a large portion of that time. Freely programmable graphics devices

have only appeared in 2007 in conjunction with NVIDIA’s CUDA, while specific ray

tracing support in hardware has been available since 2018.

Therefore, our aim was to improve the applicability of ray-based methods in several

rendering contexts: for preview rendering of GI of a static viewpoint on large display

systems, for real-time rendering (without GI) in virtual reality (VR) environments

with an HMD, and for preview rendering of full GI with the possibility of interactive

scene exploration.

Knowing that the research in the field of ray-based rendering still develops rapidly,

all our methods are mostly independent of the underlying rendering method that

is employed. This means that the specifics of the sampling process for acquiring

relevant paths as described in Chapters 3 and 5 remain untouched, so that the GI

renderer itself could be replaced with ease. Similarly, our foveation and reprojection

method described in Chapter 4 could be used with an arbitrary rendering system

that allows for fully adaptive sampling of the image plane, or even full GI rendering

in the future.

Based on appropriate methods identified in the work described in Chapter 2, we

achieved the aims stated in the introduction.

First of all, we have developed a method for selectively focusing on specific image

regions on a large display system using an appropriate interaction device. This

enables the user to select parts of an image that are important in a process like

design review or an iterative process that alternates between modeling and preview

rendering.

Regarding interactive ray tracing on HMDs, we have developed a foveation method

that utilizes the eye tracker in the HMD to adapt the sampling rate to the user’s

gaze. At the same time, the acquired speedup is sufficient for the whole system to

provide the necessary rendering times for staying within the HMD’s VSync limit.

Interactive scene exploration with GI rendering is made possible with our caching

and reconstruction method, that also allows for using non-diffuse material descrip-

tions, which was explicitly stated as a main goal for this system. At the same time,

our novel layered filtering framework allows for further improving the appearance of

Chapter 6 Conclusion 130

such materials.

A more detailed description of the individual contributions we made in each chapter

is given below.

6.2.1 Guided High-Quality Rendering

We developed a general framework for adaptively rendering an image on a large

display system in a user-centered context. This includes two interaction metaphors

for placing and scaling the relevant image regions, the model for density adaptation

itself, and a novel scheduling method based on sparse matrix compression (SMC),

that turned out to yield a significant speedup in our system. This way, an image

with varying sample density can be efficiently rendered on the GPU. In addition,

we propose a basic filtering approach that improves the user’s visual context by

reducing brightness variations resulting from sparse sampling of the image plane.

6.2.2 Foveated Ray Tracing in Head-Mounted Displays

With our foveated rendering system, we provide a high-performance, adaptive sam-

pling approach for ray tracing driven by eye tracking and limitations of human

perception. By using a coarse approximation of the scene geometry, the utilized

reprojecting and merging process aids the reconstruction of the final image from

sparse samples at a high performance. We conducted a user study showing that

our method has only minimal impact on the perceived quality when considering

foveal region limits. Also, the outcome of the study reveals a great potential of

deploying visual attention to further optimize rendering techniques. An analysis of

the recorded eye tracking data made it possible to give an estimate of the utilized

eye tracker’s tracking precision, supported by the evaluation of eccentricity-based

quality ratings. Furthermore, the achieved fixation accuracy was inspected and a

connection could be established between the subjective perceived visual quality and

the specifically measured fixation accuracy, providing possible evidence of the pres-

ence of visual tunneling effects and the magnitude of their influence on the user’s

perception.

6.2.3 Hash-based Hierarchical Caching and Layered Filtering

We developed a hash-based approach for caching and reconstructing the global il-

lumination of a scene, tailored specifically towards fast reconstruction and the im-

plementation on GPUs. In addition to diffuse materials, our system also supports

glossy and specular materials with a hybrid reconstruction method similar to final

Chapter 6 Conclusion 131

gathering. We proposed a layered filtering technique, derived from the idea of path

space filtering: multiple layers of illumination information are held per pixel. These

are denoised separately, subsequently propagating them along the recorded paths’

image representation. The main effect of this filtering approach is an improved

quality of non-diffuse materials, as overblurring is avoided by providing additional

details to the filtering method.

6.3 Future Research and Impact of Technological

Developments

On the one hand, future research may include further development of some individual

methods we presented. On the other hand, some of our techniques may also be

combined with each other. We believe that several of the central aspects of the

research presented in this thesis are useful contributions to the graphics community,

which is supported by the publications made during the process.

6.3.1 Guided High-Quality Rendering

Possible future research regarding guided high-quality Rendering includes schedul-

ing methods for increased ray coherence, which may result in further performance

benefits. Sparsely sampled as well as focused areas could be processed with modern

denoising methods discussed in Chapter 2. It has to be analysed whether denois-

ing should be performed at the full image resolution or at area-specific fractions

of the original resolution. Also, when performing reconstruction and filtering steps

of this kind, performance and perceptual aspects have to be taken into account.

Even though the basics of gaze-contingent rendering are well-understood, a user

study should be performed on how the noise introduced by the stochastic nature

of path tracing affects the perceived quality of rendered images using RoIs based

on the user’s gaze. Depending on their performance, reconstruction methods could

also be implemented to be executed once every few seconds or iteratively for static

viewpoints.

Generally, a next step to our work would be rendering at the full resolution of a large

high-resolution display wall (LHRDW). As rendering at the according resolutions for

such a display system is a large computational effort, rendering clusters with dozens

of GPUs come into play. Hybrid scheduling approaches for adaptive resolutions are

one of the major challenges when implementing such a distributed rendering system.

Technological developments that happened since this work has been published cer-

tainly have an influence on the results. The availability of hardware support simply

Chapter 6 Conclusion 132

implies a higher performance of our system, but the benefit of our technique remains

untouched. However, more recent denoising methods that already yield visually

pleasant results at very low sampling rates may raise the question of our approach’s

utility nowadays. While image quality provided by such methods is great, our ap-

proach delivers unbiased results within the image regions defined as important. At

the same time, applying a denoising filter in this region would introduce bias, so

whether or not our approach can be seen as useful in the light of recent techno-

logical devlopments depends largely on the requirements regarding the generated

visualization. It is also noteworthy that denoising methods that work at very low

sampling rates often rely on temporal accumulation, while we mainly aimed for ren-

dering a static image, not moving around interactively. In such a case, temporal

accumulation comes down to the usual running estimate employed in path tracing.

6.3.2 Foveated Ray Tracing in Head-mounted Displays

Looking at both Chapters 3 and 4, including the SMC-based scheduling approach

from guided high-quality Rendering may accelerate the foveated rendering system

significantly. Depending on the resulting speedup, additional effects could be in-

cluded and higher resolutions would become viable, reducing potential aliasing ar-

tifacts. However, it still has to be analysed how strong the effect of reprojection on

the rendering of non-diffuse materials might be; adaptive reconstruction methods

could be necessary in order to avoid visual artifacts, but at the same time, ray trac-

ing gives us the advantage of being able to (re-)sample individual pixels efficiently.

This could be used to include view-dependent effects in the resampling process, but

it should be considered that this could lead to a fully sampled image, which would

degrade performance too far to provide the required refresh rates. Still, improved

frame rates would also increase the coherence between subsequent frames, which in

turn also supports the quality delivered by the reprojection process and reduces the

required amount of resampling.

Adaptive vertical synchronization techniques, nowadays ubiquitous in desktop dis-

plays, would greatly support immersion and the avoidance of motion sickness in

HMDs. Generally, the foveal falloff as well as the minimum sampling probability

could be altered dynamically, making our system adaptive to the complexity of the

visual content.

Frameless rendering is an additional potential field for future research. It may be a

viable approach to run the rendering and reprojection components of our foveated

rendering system in separate threads, so they would generate and merge new samples

and resolve reprojection errors in an asynchronous way.

Our findings regarding the correspondence of eye tracking data and quality ratings

Chapter 6 Conclusion 133

in foveated rendering lead us to the assumption that there are circumstances which

make it possible to reduce visual quality without the user noticing. This is the case

in games, where events can be triggered that produce a change in the visuals, or

task-driven environments, where task or navigation complexity may lead to high

mental workloads. Moreover, certain events may allow for deriving a hint which

part of the scene attracts attention. Thus, visual quality could be reduced even

further without the user noticing. However, attentional models and gaze predictions

are far from accurate (Weier, Stengel, et al. 2017). Nonetheless, more recently, the

flicker observer effect and the higher temporal resolution for peripheral vision has

successfully been used to direct the user’s gaze by Waldin, Waldner, et al. (2017).

Future research may also include the analysis of how optimal foveal region configura-

tions (FRCs) can be determined and how the point of regard (PoR) can be optimally

placed even with imprecise tracking. Also, it may be possible to exploit visual tun-

neling effects directly to improve performance or, alternatively, visual quality for

central vision. In addition, it may be worth looking into the comparative behaviour

of tracking devices with different update rates for analyses such as the one we have

presented here.

At the time our system has been developed, explicit hardware support for ray tracing

was unavailable, which is why we had to leverage two NVIDIA Quadro GPUs to meet

the actual frame rate requirements of 75Hz. For the HMD used in our evaluation,

with current graphics hardware, a single GPU will certainly suffice to meet these

requirements, but while GPUs have developed quite a lot, so have HMDs. With

high-end models providing a 4k resolution per eye and a refresh rate of 90Hz or

even higher, ray-based rendering at sufficient frame rates is still challenging. Also,

we have reasoned in the according chapter that the resolution of HMDs is required

to increase a lot until it comes even close to what the human visual system (HVS)

can actually perceive. This implies that our approach – and foveated rendering

in general – is still an important tool today, and it is even likely to become more

important in the future, since very high resolution displays may also suffer from

the limited bandwidth of the display connection. Combining foveated rendering

with hardware support by display controllers could in turn lead to the possibility

of adaptively refreshing individual pixels of a display, consequently reducing the

required bandwidth of such a connection.

6.3.3 Hash-based Hierarchical Caching and Layered Filtering

Utilizing the fast reconstruction step of our HashCache, improvements of guided

rendering as well as foveated rendering are thinkable. However, in order to make

the approach suitable for the high frame rates required for foveated rendering, the

Chapter 6 Conclusion 134

caching and reconstruction processes have to be separated further in order to avoid

the performance impact that occurs when alternating between the caching and re-

construction processes on a single GPU. Instead, employing a secondary GPU or

even a centralized client-server architecture would allow for filling the cache parallel

to the reconstruction process.

Another possibility of utilizing such a parallelized architecture would be to employ

it for stereo rendering or multiple viewports in general, as in a multi-user system.

While a central system would be responsible for updating and maintaining the cache,

clients would only request cache entries from the server and perform the remaining

reconstruction themselves. The resulting network traffic and latencies would have

to be thoroughly analysed in order to judge the viability of such an approach.

To improve the general convergence rate of the presented methods that are based on

GI rendering, other, more sophisticated rendering techniques could be employed,

such as bidirectional path tracing (BDPT) (Lafortune 1993; Veach and Guibas

1995a) or Metropolis light transport (MLT) (Veach and Guibas 1997). Extend-

ing the HashCache with an additional component that supports adaptive impor-

tance sampling based on the currently available illumination information would be

an enhancement to significantly boost the system’s performance. However, special

attention needs to be directed to the adjustment of the individual samples’ contri-

butions, as modified probability distributions would also have a “temporal” aspect:

taking the same sample at two points in the progressive process would yield different

contributions if not done correctly due to varying probability densities. With mod-

ern filtering methods that produce visually pleasant results even at 1 sample per

pixel, an extension of our foveated ray tracing system towards global illumination

could also be a viable effort.

Integrating more elaborate filtering techniques into our layered filtering framework

and adapting them to the kind of noise present in the HashCache would be inter-

esting especially for the reconstruction of glossy materials. We are certain that the

HashCache has great potential, especially in conjunction with methods that rely

upon temporal integration in image space (Schied, Kaplanyan, et al. 2017; Schied,

Peters, et al. 2018), or other (machine-learning-based) techniques (Chaitanya, Ka-

planyan, et al. 2017). However, the latter may require new training sets due to the

more stable output produced by the HashCache and the noise appearing at different

scales.

An adaptive resolution of the HashCache or an additional caustics cache may im-

prove the possible support of caustics in the system. Performance improvements

may be achieved by looking into different addressing schemes for the octree cells,

following a more localized scheme like Morton order.

Chapter 6 Conclusion 135

One option would be to provide a dynamic local caching mechanism that works at

higher resolutions and adjusts to a scene’s light distribution. Additionally, instead

of storing each level of the octree in a separate hash map, we could store all levels

in one hash map with occupation information. This approach avoids separate hash

map queries per octree level, making it possible to compute the correct data array

indices from the occupation information. However, memory requirements would

increase.

Besides the general hardware support for ray-based rendering, there are two main

developments we see as influential for a method like ours. First, the amount of

available GPU memory is very important for a method that stores a large amount

of data describing a scene’s appearance in world space and improves with higher

resolutions. Second, the bandwidth of mass storage is increasing with M.2 SSDs

being widely available. Already with PCIe 3.0, such devices may achieve a theoretical

maximum transfer rate of almost 4GiB/s, which is already doubled with PCIe 4.0.

This opens new possibilities regarding the implementation of an out-of-core approach

that actually uses more than only GPUmemory for caching illumination, and instead

also leverages system memory and mass storage, which would make it possible to

cache illumination at a very high resolution.

Bibliography

Adler, F. H., P. L. Kaufman, et al. (2011). Adler’s Physiology of the Eye. 11th ed.
Elsevier Health Sciences.

Aila, Timo, Samuli Laine, et al. (2012). Understanding the Efficiency of Ray Traver-
sal on GPUs - Kepler and Fermi Addendum. Technical Report NVR-2012-02.
HPG2012 poster. NVIDIA.

Amenta, Nina and Dan A. Alcantara (2011). Efficient hash tables on the gpu. Library
Catalog: www.semanticscholar.org. url: %5Curl%7B/paper/Efficient-hash-
tables- on- the- gpu- Amenta- Alcantara/fb56eada079ad85d9224a9b9fbf

763b5ba921eb9%7D (visited on 06/10/2020).
Appel, Arthur (Apr. 1968). “Some techniques for shading machine renderings of

solids”. In: Proceedings of the April 30–May 2, 1968, spring joint computer con-
ference. AFIPS ’68 (Spring). Atlantic City, New Jersey: Association for Com-
puting Machinery, pp. 37–45. isbn: 978-1-4503-7897-0. doi: 10.1145/1468075.
1468082. url: https://doi.org/10.1145/1468075.1468082 (visited on
06/30/2020).

Applied Sciences, Hochschule Bonn-Rhein-Sieg University of (2014). Big Data on the
Big Screen — Hochschule Bonn-Rhein-Sieg (H-BRS). url: https://www.h-
brs.de/en/inf/news/big-data-big-screen (visited on 04/15/2020).

Bahill, A. T., D. Adler, et al. (June 1975). “Most naturally occurring human saccades
have magnitudes of 15 degrees or less”. In: Investigative Ophthalmology 14.6,
pp. 468–469. issn: 0020-9988.

Bako, Steve, Thijs Vogels, et al. (2017). “Kernel-Predicting Convolutional Networks
for Denoising Monte Carlo Renderings”. In: ACM Transactions on Graphics
(TOG) (Proceedings of SIGGRAPH 2017) 36.4. url: http://cvc.ucsb.edu/
graphics/Papers/SIGGRAPH2017_KPCN/ (visited on 04/16/2018).

Bala, Kavita, Julie Dorsey, et al. (July 1999). “Radiance interpolants for accelerated
bounded-error ray tracing”. In: ACM Transactions on Graphics 18.3, pp. 213–
256. issn: 0730-0301. doi: 10.1145/336414.336417. url: https://doi.org/
10.1145/336414.336417 (visited on 08/19/2020).

Bala, Kavita, Bruce Walter, et al. (July 2003). “Combining edges and points for
interactive high-quality rendering”. In: ACM Transactions on Graphics (TOG)
22.3, pp. 631–640. issn: 0730-0301. doi: 10.1145/882262.882318. url: https:
//doi.org/10.1145/882262.882318 (visited on 02/10/2020).

Baum, D. R., H. E. Rushmeier, et al. (July 1989). “Improving radiosity solutions
through the use of analytically determined form-factors”. In: ACM SIGGRAPH
Computer Graphics 23.3, pp. 325–334. issn: 0097-8930. doi: 10.1145/74334.
74367. url: https://doi.org/10.1145/74334.74367 (visited on 07/20/2020).

Bauszat, Pablo, Martin Eisemann, et al. (2011). “Guided Image Filtering for Interac-
tive High-quality Global Illumination”. In: Computer Graphics Forum. Vol. 30,
pp. 1361–1368.

136

Bibliography 137

Bekaert, Philippe, László Neumann, et al. (1998). “Hierarchical Monte Carlo Radios-
ity”. In: Rendering Techniques ’98. Eurographics. Vienna: Springer, pp. 259–268.
isbn: 978-3-7091-6453-2. doi: 10.1007/978-3-7091-6453-2_24.

Binder, Nikolaus, Sascha Fricke, et al. (Aug. 2018). “Fast path space filtering by
jittered spatial hashing”. In: ACM SIGGRAPH 2018 Talks. SIGGRAPH ’18.
Vancouver, British Columbia, Canada: Association for Computing Machinery,
pp. 1–2. isbn: 978-1-4503-5820-0. doi: 10.1145/3214745.3214806. url: https:
//doi.org/10.1145/3214745.3214806 (visited on 06/10/2020).

Bitterli, Benedikt and Wojciech Jarosz (Nov. 2019). “Selectively metropolised Monte
Carlo light transport simulation”. In: ACM Transactions on Graphics 38.6,
153:1–153:10. issn: 0730-0301. doi: 10.1145/3355089.3356578. url: https:
//doi.org/10.1145/3355089.3356578 (visited on 08/17/2020).

Bitterli, Benedikt, Fabrice Rousselle, et al. (2016). “Nonlinearly Weighted First-
order Regression for Denoising Monte Carlo Renderings”. In: Computer Graph-
ics Forum. Vol. 35. Wiley Online Library, pp. 107–117. url: http://onlineli
brary.wiley.com/doi/10.1111/cgf.12954/full (visited on 11/18/2016).

Bosse, Sebastian, Dominique Maniry, et al. (Jan. 2018). “Deep Neural Networks for
No-Reference and Full-Reference Image Quality Assessment”. In: IEEE Transac-
tions on Image Processing 27.1. Conference Name: IEEE Transactions on Image
Processing, pp. 206–219. issn: 1941-0042. doi: 10.1109/TIP.2017.2760518.

Buades, A., B. Coll, et al. (Jan. 2005). “A Review of Image Denoising Algorithms,
with a New One”. In: Multiscale Modeling & Simulation 4.2, pp. 490–530. issn:
1540-3459. doi: 10.1137/040616024. url: http://epubs.siam.org/doi/abs/
10.1137/040616024 (visited on 11/16/2015).

Buades, Antoni, Bartomeu Coll, et al. (Feb. 2008). “Nonlocal Image and Movie
Denoising”. In: International Journal of Computer Vision 76.2, pp. 123–139.
issn: 1573-1405. doi: 10.1007/s11263-007-0052-1. url: https://doi.org/
10.1007/s11263-007-0052-1 (visited on 08/20/2020).

Chaitanya, Chakravarty R. Alla, Anton S. Kaplanyan, et al. (July 2017). “Interactive
reconstruction of Monte Carlo image sequences using a recurrent denoising au-
toencoder”. In: ACM Transactions on Graphics 36.4, pp. 1–12. issn: 07300301.
doi: 10.1145/3072959.3073601. url: http://dl.acm.org/citation.cfm?
doid=3072959.3073601 (visited on 08/01/2018).

Chandler, Damon M. and Sheila S. Hemami (Sept. 2007). “VSNR: A Wavelet-Based
Visual Signal-to-Noise Ratio for Natural Images”. In: IEEE Transactions on Im-
age Processing 16.9. Conference Name: IEEE Transactions on Image Processing,
pp. 2284–2298. issn: 1941-0042. doi: 10.1109/TIP.2007.901820.

Chen, Jiating, Bin Wang, et al. (2011). “Improved Stochastic Progressive Pho-
ton Mapping with Metropolis Sampling”. In: Computer Graphics Forum 30.4.
ePrint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2011.01979.x, pp. 1205–1213. issn: 1467-8659. doi: 10.1111/j.1467-
8659.2011.01979.x. url: https://onlinelibrary.wiley.com/doi/abs/10.
1111/j.1467-8659.2011.01979.x (visited on 07/15/2020).

Choi, Myung Geol, Eunjung Ju, et al. (2009). “Linkless Octree Using Multi-Level
Perfect Hashing”. In: Computer Graphics Forum. Vol. 28. Wiley Online Library,
pp. 1773–1780.

Christensen, Per, Andrew Kensler, et al. (2018). “Progressive Multi-Jittered Sample
Sequences”. In: Computer Graphics Forum 37.4. ePrint: https://onlinelibr
ary.wiley.com/doi/pdf/10.1111/cgf.13472, pp. 21–33. doi: 10.1111/cgf.

Bibliography 138

13472. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.
13472.

Chua, Hannah Faye, Julie E Boland, et al. (2005). “Cultural variation in eye move-
ments during scene perception”. In: Proceedings of the National Academy of
Sciences 102.35. Publisher: National Acad Sciences, pp. 12629–12633.

Cohen, Michael F., Shenchang Eric Chen, et al. (June 1988). “A progressive re-
finement approach to fast radiosity image generation”. In: Proceedings of the
15th annual conference on Computer graphics and interactive techniques. SIG-
GRAPH ’88. New York, NY, USA: Association for Computing Machinery, pp. 75–
84. isbn: 978-0-89791-275-4. doi: 10.1145/54852.378487. url: https://doi.
org/10.1145/54852.378487 (visited on 07/20/2020).

Cohen, Michael F. and Donald P. Greenberg (July 1985). “The hemi-cube: a ra-
diosity solution for complex environments”. In: Proceedings of the 12th annual
conference on Computer graphics and interactive techniques. SIGGRAPH ’85.
New York, NY, USA: Association for Computing Machinery, pp. 31–40. isbn:
978-0-89791-166-5. doi: 10.1145/325334.325171. url: https://doi.org/10.
1145/325334.325171 (visited on 07/17/2020).

Coombe, Greg, Mark J. Harris, et al. (July 2005). “Radiosity on graphics hardware”.
In: ACM SIGGRAPH 2005 Courses. SIGGRAPH ’05. Los Angeles, California:
Association for Computing Machinery, 179–es. isbn: 978-1-4503-7833-8. doi:
10.1145/1198555.1198782. url: https://doi.org/10.1145/1198555.
1198782 (visited on 07/20/2020).

Crassin, Cyril, Fabrice Neyret, et al. (2011). “Interactive Indirect Illumination Using
Voxel Cone Tracing”. In: Computer Graphics Forum 30.7, pp. 1921–1930. issn:
01677055. doi: 10.1111/j.1467-8659.2011.02063.x. url: http://doi.
wiley.com/10.1111/j.1467-8659.2011.02063.x (visited on 09/29/2014).

Curcio, Christine A., Kenneth R. Sloan, et al. (1990). “Human photoreceptor to-
pography”. In: Journal of Comparative Neurology 292.4. eprint: https : / /

onlinelibrary.wiley.com/doi/pdf/10.1002/cne.902920402, pp. 497–523.
issn: 1096-9861. doi: 10.1002/cne.902920402. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cne.902920402 (visited on 08/19/2020).

Dahm, Ken and Alexander Keller (July 2017). “Learning light transport the rein-
forced way”. In: ACM SIGGRAPH 2017 Talks. SIGGRAPH ’17. New York, NY,
USA: Association for Computing Machinery, pp. 1–2. isbn: 978-1-4503-5008-2.
doi: 10.1145/3084363.3085032. url: https://doi.org/10.1145/3084363.
3085032 (visited on 08/18/2020).

Dammertz, Holger, Daniel Sewtz, et al. (2010). “Edge-avoiding À-Trous wavelet
transform for fast global illumination filtering”. In: Proceedings of the Conference
on High Performance Graphics, pp. 67–75.

Debattista, K., P. Dubla, et al. (Dec. 2009). “Instant Caching for Interactive Global
Illumination”. In: Computer Graphics Forum 28.8, pp. 2216–2228. issn: 01677055,
14678659. doi: 10.1111/j.1467-8659.2009.01435.x. url: http://doi.
wiley.com/10.1111/j.1467-8659.2009.01435.x (visited on 08/01/2018).

Defense, Department of (1999).MIL-STD-1472 F, Design Criteria Standard, Human
Engineering. url: http://everyspec.com/MIL-STD/MIL-STD-1400-1499/
MIL-STD-1472F_208/ (visited on 05/13/2019).

Delbracio, Mauricio, Pablo Musé, et al. (Feb. 2014). “Boosting Monte Carlo Ren-
dering by Ray Histogram Fusion”. In: ACM Trans. Graph. 33.1, 8:1–8:15. issn:

Bibliography 139

0730-0301. doi: 10.1145/2532708. url: http://doi.acm.org/10.1145/
2532708 (visited on 06/23/2014).

Dorr, Michael, Thomas Martinetz, et al. (Aug. 2010). “Variability of eye movements
when viewing dynamic natural scenes”. In: Journal of Vision 10.10. Publisher:
The Association for Research in Vision and Ophthalmology, pp. 28–28. issn:
1534-7362. doi: 10.1167/10.10.28. url: https://jov.arvojournals.org/
article.aspx?articleid=2121333 (visited on 08/20/2020).

Duchowski, Andrew T. (2007). Eye tracking methodology: theory and practice. 2nd
ed. London: Springer. isbn: 978-1-84628-608-7.

Duchowski, Andrew T. and Arzu Çöltekin (Dec. 2007). “Foveated Gaze-contingent
Displays for Peripheral LOD Management, 3D Visualization, and Stereo Imag-
ing”. In: ACM Trans. Multimedia Comput. Commun. Appl. 3.4, 6:1–6:18. issn:
1551-6857.

Durand, Frédo, George Drettakis, et al. (Apr. 1999). “Fast and accurate hierarchi-
cal radiosity using global visibility”. In: ACM Transactions on Graphics 18.2,
pp. 128–170. issn: 0730-0301. doi: 10.1145/318009.318012. url: https:
//doi.org/10.1145/318009.318012 (visited on 07/20/2020).

Eberly, David (Feb. 2019). “Distance from a Point to an Ellipse, an Ellipsoid, or a
Hyperellipsoid”. RedmondWA 98052. url: https://www.geometrictools.com
(visited on 04/21/2020).

Elek, Oskar, Manu Mathew Thomas, et al. (2019). “Learning Patterns in Sample
Distributions for Monte Carlo Variance Reduction”. In: CoRR abs/1906.00124.
url: %5Curl%7Bhttp://arxiv.org/abs/1906.00124%7D.

Field, A.P. and G. Hole (2003). How to Design and Report Experiments. Sage pub-
lications Limited. isbn: 978-0-7619-7383-6.

Frericks, Philipp, Thorsten Roth, et al. (2017). “A Framework for Cluster-based
Rendering and Postprocessing”. In: presented at the 10th Workshop on Software
Engineering and Architectures for Realtime Interactive Systems (SEARIS).

Fujita, Masahiro and Takahiro Harada (May 2014). Foveated Real-Time Ray Tracing
for Virtual Reality Headset. url: http://research.lighttransport.com/
foveated-real-time-ray-tracing-for-virtual-reality-headset.

Gastal, Eduardo S. L. and Manuel M. Oliveira (July 2012). “Adaptive manifolds for
real-time high-dimensional filtering”. In: ACM Transactions on Graphics 31.4,
33:1–33:13. issn: 0730-0301. doi: 10.1145/2185520.2185529. url: https:
//doi.org/10.1145/2185520.2185529 (visited on 06/10/2020).

Gautron, Pascal, Jaroslav Krivánek, et al. (2005). Radiance Cache Splatting: A
GPU-Friendly Global Illumination Algorithm. Accepted: 2014-01-27T14:48:24Z
ISSN: 1727-3463. The Eurographics Association. doi: 10.2312/EGWR/EGSR05/
055-064. url: https://diglib.eg.org:443/xmlui/handle/10.2312/EGWR.
EGSR05.055-064 (visited on 08/20/2020).

Geisler, Wilson S. and Jeffrey S. Perry (1998). “A real-time foveated multiresolution
system for low-bandwidth video communication”. In: in Proc. SPIE, pp. 294–
305.

Georgiev, Iliyan and Marcos Fajardo (July 2016). “Blue-noise dithered sampling”.
In: ACM SIGGRAPH 2016 Talks. SIGGRAPH ’16. New York, NY, USA: As-
sociation for Computing Machinery, p. 1. isbn: 978-1-4503-4282-7. doi: 10.
1145/2897839.2927430. url: https://doi.org/10.1145/2897839.2927430
(visited on 08/17/2020).

Bibliography 140

Georgiev, Iliyan, Jaroslav Křivánek, et al. (2012a). “Importance Caching for Com-
plex Illumination”. In: Computer Graphics Forum 31.2pt3. ePrint: https://
onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03049.x,
pp. 701–710. issn: 1467-8659. doi: 10.1111/j.1467-8659.2012.03049.x.
url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
8659.2012.03049.x (visited on 08/20/2020).

Georgiev, Iliyan, Jaroslav Křivánek, et al. (2012b). “Light transport simulation with
vertex connection and merging”. In: ACM Transactions on Graphics (TOG)
31.6, p. 192.

Gibson, S. and R. J. Hubbold (1996). “Efficient Hierarchical Refinement and Cluster-
ing for Radiosity in Complex Environments”. In: Accepted: 2014-10-21T07:45:31Z
Publisher: Blackwell Science Ltd and the Eurographics Association. issn: 1467-
8659. url: https://diglib.eg.org:443/xmlui/handle/10.2312/7069
(visited on 07/20/2020).

Gibson, Simon and Roger J. Hubbold (1997). “Perceptually-driven radiosity”. In:
Computer Graphics Forum. Vol. 16. Issue: 2. Wiley Online Library, pp. 129–141.

Goldstein, E. (Mar. 2013). Sensation and Perception. International ed of 9th revised
ed. Belmont, CA: Wadsworth Publishing Co Inc. isbn: 978-1-285-08514-2.

Goral, Cindy M., Kenneth E. Torrance, et al. (Jan. 1984). “Modeling the interaction
of light between diffuse surfaces”. In: ACM SIGGRAPH Computer Graphics
18.3, pp. 213–222. issn: 0097-8930. doi: 10.1145/964965.808601. url: https:
//doi.org/10.1145/964965.808601 (visited on 07/17/2020).

Gortler, Steven J., Peter Schröder, et al. (Sept. 1993). “Wavelet radiosity”. In: Pro-
ceedings of the 20th annual conference on Computer graphics and interactive
techniques. SIGGRAPH ’93. Anaheim, CA: Association for Computing Machin-
ery, pp. 221–230. isbn: 978-0-89791-601-1. doi: 10.1145/166117.166146. url:
https://doi.org/10.1145/166117.166146 (visited on 07/20/2020).

Greger, Gene, Peter Shirley, et al. (Mar. 1998). “The Irradiance Volume”. In: IEEE
Computer Graphics and Applications 18.2, pp. 32–43. issn: 0272-1716. doi: 10.
1109/38.656788. url: https://doi.org/10.1109/38.656788 (visited on
08/19/2020).

Gruson, Adrien, Binh-Son Hua, et al. (July 2018). “Gradient-domain volumetric pho-
ton density estimation”. In: ACM Transactions on Graphics 37.4, 82:1–82:13.
issn: 0730-0301. doi: 10.1145/3197517.3201363. url: https://doi.org/10.
1145/3197517.3201363 (visited on 07/15/2020).

Guenter, Brian, Mark Finch, et al. (Nov. 2012). “Foveated 3D Graphics”. In: ACM
Trans. Graph. 31.6, 164:1–164:10. issn: 0730-0301. doi: 10.1145/2366145.
2366183. url: http://doi.acm.org/10.1145/2366145.2366183 (visited on
09/07/2015).

Hachisuka, Toshiya, Wojciech Jarosz, et al. (2008). “Multidimensional adaptive sam-
pling and reconstruction for ray tracing”. In: ACM Transactions on Graphics
(TOG). Vol. 27, p. 33.

Hachisuka, Toshiya, Wojciech Jarosz, et al. (Aug. 2012). “State of the art in photon
density estimation”. In: ACM SIGGRAPH 2012 Courses. SIGGRAPH ’12. Los
Angeles, California: Association for Computing Machinery, pp. 1–469. isbn: 978-
1-4503-1678-1. doi: 10.1145/2343483.2343489. url: https://doi.org/10.
1145/2343483.2343489 (visited on 07/15/2020).

Hachisuka, Toshiya and Henrik Wann Jensen (Dec. 2009). “Stochastic progressive
photon mapping”. In: ACM Trans. Graph. 28.5, 141:1–141:8. issn: 0730-0301.

Bibliography 141

doi: 10.1145/1618452.1618487. url: http://doi.acm.org/10.1145/
1618452.1618487 (visited on 09/23/2013).

Hachisuka, Toshiya and Henrik Wann Jensen (2010). “Parallel Progressive Pho-
ton Mapping on GPUs”. In: ACM SIGGRAPH ASIA 2010 Sketches. SA ’10.
New York, NY, USA: ACM, 54:1–54:1. isbn: 978-1-4503-0523-5. doi: 10.1145/
1899950.1900004. url: http://doi.acm.org/10.1145/1899950.1900004.

Hachisuka, Toshiya, Shinji Ogaki, et al. (Dec. 2008). “Progressive photon mapping”.
In: ACM Transactions on Graphics 27.5, p. 1. issn: 07300301. doi: 10.1145/
1409060.1409083. url: http://portal.acm.org/citation.cfm?doid=
1409060.1409083 (visited on 08/01/2018).

Hale, Kelly S. and Kay M. Stanney (2014). Handbook of Virtual Environments:
Design, Implementation, and Applications. 2nd. Boca Raton, FL, USA: CRC
Press, Inc. isbn: 978-1-4665-1184-2.

Hanrahan, Pat, David Salzman, et al. (July 1991). “A rapid hierarchical radiosity
algorithm”. In: Proceedings of the 18th annual conference on Computer graphics
and interactive techniques. SIGGRAPH ’91. New York, NY, USA: Association
for Computing Machinery, pp. 197–206. isbn: 978-0-89791-436-9. doi: 10.1145/
122718.122740. url: https://doi.org/10.1145/122718.122740 (visited on
07/20/2020).

Havran, Vlastimil, Robert Herzog, et al. (2005). “Fast Final Gathering via Reverse
Photon Mapping”. In: Computer Graphics Forum 24.3. ePrint: https://onl
inelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2005.00857.x,
pp. 323–332. issn: 1467-8659. doi: 10.1111/j.1467-8659.2005.00857.x.
url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
8659.2005.00857.x (visited on 07/13/2020).

He, Yong, Yan Gu, et al. (July 2014). “Extending the graphics pipeline with adap-
tive, multi-rate shading”. In: ACM Transactions on Graphics 33.4, 142:1–142:12.
issn: 0730-0301. doi: 10.1145/2601097.2601105. url: https://doi.org/10.
1145/2601097.2601105 (visited on 08/20/2020).

Heckbert, Paul S. (Sept. 1990). “Adaptive radiosity textures for bidirectional ray
tracing”. In: ACM SIGGRAPH Computer Graphics 24.4, pp. 145–154. issn:
0097-8930. doi: 10.1145/97880.97895. url: https://doi.org/10.1145/
97880.97895 (visited on 07/20/2020).

Hedman, Peter, Tero Karras, et al. (Feb. 2016). “Sequential Monte Carlo instant
radiosity”. In: Proceedings of the 20th ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games. I3D ’16. Redmond, Washington: Association
for Computing Machinery, pp. 121–128. isbn: 978-1-4503-4043-4. doi: 10.1145/
2856400.2856406. url: https://doi.org/10.1145/2856400.2856406 (vis-
ited on 07/20/2020).

Herholz, Sebastian, Oskar Elek, et al. (July 2016). “Product Importance Sampling
for Light Transport Path Guiding”. In: Computer Graphics Forum 35.4, pp. 67–
77. issn: 1467-8659. doi: 10.1111/cgf.12950. url: http://onlinelibrary.
wiley.com/doi/10.1111/cgf.12950/abstract (visited on 09/01/2016).

Hinkenjann, André, Oliver Jato, et al. (Mar. 2015). High Quality Rendering and
Visualization at the Institute of Visual Computing, Sankt Augustin, Germany.
Published: IEEE Virtual Reality (IEEE VR).

Hirvonen, Antti, Atte Seppälä, et al. (2019). “Accurate Real-Time Specular Reflec-
tions with Radiance Caching”. In: Ray Tracing Gems: High-Quality and Real-
Time Rendering with DXR and Other APIs. Berkeley, CA: Apress, pp. 571–

Bibliography 142

607. isbn: 978-1-4842-4427-2. doi: 10.1007/978-1-4842-4427-2_32. url:
https://doi.org/10.1007/978-1-4842-4427-2_32 (visited on 02/10/2020).

Hua, Binh-Son, Adrien Gruson, et al. (May 2017). “Gradient-Domain Photon Den-
sity Estimation”. In: Computer Graphics Forum 36.2, pp. 31–38. issn: 0167-
7055.

Hubel, David H. (1988). Eye, brain, and vision. Open Library ID: OL2393916M.
New York: Scientific American Library. isbn: 978-0-7167-5020-8.

Hunt, Warren (Aug. 2015). Virtual Reality: The Next Great Graphics Revolution.
Published: Keynote Talk HPG. url: http://www.highperformancegraphics.
org/wp-content/uploads/2015/Keynote1/WarrenHuntHPGKeynote.pptx.

Huynh-Thu, Q. and M. Ghanbari (June 2008). “Scope of validity of PSNR in im-
age/video quality assessment”. In: Electronics Letters 44.13. Conference Name:
Electronics Letters, pp. 800–801. issn: 0013-5194. doi: 10.1049/el:20080522.

Immel, David S., Michael F. Cohen, et al. (Aug. 1986). “A radiosity method for
non-diffuse environments”. In: Proceedings of the 13th annual conference on
Computer graphics and interactive techniques. SIGGRAPH ’86. New York, NY,
USA: Association for Computing Machinery, pp. 133–142. isbn: 978-0-89791-
196-2. doi: 10.1145/15922.15901. url: https://doi.org/10.1145/15922.
15901 (visited on 07/17/2020).

Jakob, Wenzel and Steve Marschner (2012). “Manifold Exploration: a Markov Chain
Monte Carlo technique for rendering scenes with difficult specular transport”.
In: ACM Transactions on Graphics (TOG) 31.4, p. 58.

Jato, Oliver, Martin Weier, et al. (Sept. 2016). “OLIVE: Simulation within Human-
Centric Lighting Environments”. In: Proceedings of the 13. Workshop Virtuelle
Realität und Augmented Reality der GI-Fachgruppe VR/AR.

Jensen, Henrik Wann (1995). “Importance driven path tracing using the photon
map”. In: Rendering Techniques ’95, pp. 326–335.

— (1996). “Global illumination using photon maps”. In: Rendering Techniques’ 96.
Springer, pp. 21–30. isbn: 3-211-82883-4.

Jimenez, Jorge, Jose I. Echevarria, et al. (2012). “SMAA: Enhanced subpixel mor-
phological antialiasing”. In: Computer Graphics Forum. Vol. 31. Wiley Online
Library, pp. 355–364.

Jin, Bongjun, Insung Ihm, et al. (Aug. 2009). “Selective and adaptive supersampling
for real-time ray tracing”. In: Proceedings of the Conference on High Perfor-
mance Graphics 2009. HPG ’09. New York, NY, USA: Association for Comput-
ing Machinery, pp. 117–125. isbn: 978-1-60558-603-8. doi: 10.1145/1572769.
1572788. url: https://doi.org/10.1145/1572769.1572788 (visited on
08/16/2020).

Kahn, Herman (1955). Use of Different Monte Carlo Sampling Techniques: Product
Page. Library Catalog: www.rand.org Publisher: RAND Corporation. url: htt
ps://www.rand.org/pubs/papers/P766.html (visited on 07/27/2020).

Kajiya, James T. (1986). “The rendering equation”. In: ACM SIGGRAPH Computer
Graphics. Vol. 20, pp. 143–150.

Kang, Chun-meng, Lu Wang, et al. (Mar. 2016). “A survey of photon mapping
state-of-the-art research and future challenges”. In: Frontiers of Information
Technology & Electronic Engineering 17.3, pp. 185–199. issn: 2095-9230. doi:
10.1631/FITEE.1500251. url: https://doi.org/10.1631/FITEE.1500251
(visited on 07/15/2020).

Bibliography 143

Kaplanyan, Anton S. and Carsten Dachsbacher (Apr. 2013). “Adaptive progressive
photon mapping”. In: ACM Transactions on Graphics 32.2, 16:1–16:13. issn:
0730-0301. doi: 10.1145/2451236.2451242. url: https://doi.org/10.1145/
2451236.2451242 (visited on 07/15/2020).

Keller, Alexander (1996). “Quasi-Monte Carlo Radiosity”. In: Rendering Techniques
’96. Eurographics. Vienna: Springer, pp. 101–110. isbn: 978-3-7091-7484-5. doi:
10.1007/978-3-7091-7484-5_11.

— (Aug. 1997). “Instant radiosity”. In: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques. SIGGRAPH ’97. USA: ACM
Press/Addison-Wesley Publishing Co., pp. 49–56. isbn: 978-0-89791-896-1. doi:
10.1145/258734.258769. url: https://doi.org/10.1145/258734.258769
(visited on 07/20/2020).

Keller, Alexander, Ken Dahm, et al. (2014). “Path Space Filtering”. In: ACM SIG-
GRAPH 2014 Talks. SIGGRAPH ’14. New York, NY, USA: ACM, 68:1–68:1.
isbn: 978-1-4503-2960-6. doi: 10.1145/2614106.2614149. url: http://doi.
acm.org/10.1145/2614106.2614149 (visited on 11/16/2015).

Kettunen, Markus, Marco Manzi, et al. (2015). “Gradient-Domain Path Tracing”.
In: ACM Trans. Graph., to appear.

Khademi Kalantari, Nima, Steve Bako, et al. (2015). “A Machine Learning Approach
for Filtering Monte Carlo Noise”. In: Proceedings of SIGGRAPH 2015. ACM
Transactions on Graphics 4.34.

Kim, Hyuk (2019). “Caustics Using Screen-Space Photon Mapping”. In: Ray Trac-
ing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs.
Berkeley, CA: Apress, pp. 543–555. isbn: 978-1-4842-4427-2. doi: 10.1007/978-
1-4842-4427-2_30. url: https://doi.org/10.1007/978-1-4842-4427-
2_30 (visited on 07/15/2020).

Knaus, Claude and Matthias Zwicker (May 2011). “Progressive photon mapping: A
probabilistic approach”. In: ACM Transactions on Graphics 30.3, 25:1–25:13.
issn: 0730-0301. doi: 10.1145/1966394.1966404. url: https://doi.org/10.
1145/1966394.1966404 (visited on 07/15/2020).

Koskela, Matias, Kalle Immonen, et al. (2017). “Foveated Instant Preview for Pro-
gressive Rendering”. In: SIGGRAPH Asia 2017 Technical Briefs. SA ’17. New
York, NY, USA: ACM, 10:1–10:4. isbn: 978-1-4503-5406-6. doi: 10 . 1145 /

3145749.3149423. url: http://doi.acm.org/10.1145/3145749.3149423
(visited on 03/02/2018).

Koskela, Matias, Kalle Immonen, et al. (June 2019). “Blockwise Multi-Order Feature
Regression for Real-Time Path-Tracing Reconstruction”. In: ACM Transactions
on Graphics 38.5, 138:1–138:14. issn: 0730-0301. doi: 10.1145/3269978. url:
https://doi.org/10.1145/3269978 (visited on 08/20/2020).

Koskela, Matias, Atro Lotvonen, et al. (2019). Foveated Real-Time Path Tracing
in Visual-Polar Space. Accepted: 2019-07-14T19:22:28Z ISSN: 1727-3463. The
Eurographics Association. isbn: 978-3-03868-095-6. doi: 10.2312/sr20191219.
url: https://diglib.eg.org:443/xmlui/handle/10.2312/sr20191219
(visited on 08/20/2020).

Kowler, Eileen (July 2011). “Eye movements: the past 25 years”. In: Vision Research
51.13, pp. 1457–1483. issn: 1878-5646. doi: 10.1016/j.visres.2010.12.014.

Krivanek, J., P. Gautron, et al. (Sept. 2005). “Radiance caching for efficient global
illumination computation”. In: IEEE Transactions on Visualization and Com-

Bibliography 144

puter Graphics 11.5, pp. 550–561. issn: 1077-2626. doi: 10.1109/TVCG.2005.
83.

Křivánek, Jaroslav, Kadi Bouatouch, et al. (2006). “Making Radiance and Irradiance
Caching Practical: Adaptive Caching and Neighbor Clamping”. In: Proceedings
of the 17th Eurographics Conference on Rendering Techniques. EGSR ’06. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, pp. 127–138. isbn:
3-905673-35-5. doi: 10.2312/EGWR/EGSR06/127-138. url: http://dx.doi.
org/10.2312/EGWR/EGSR06/127-138 (visited on 11/06/2015).

Krivanek, Jaroslav and Pascal Gautron (Jan. 2009). “Practical Global Illumination
with Irradiance Caching”. In: Synthesis Lectures on Computer Graphics and
Animation 4.1, pp. 1–148. issn: 1933-8996, 1933-9003. doi: 10.2200/S00180E
D1V01Y200903CGR010. url: http://www.morganclaypool.com/doi/abs/10.
2200/S00180ED1V01Y200903CGR010 (visited on 08/20/2020).

Krull, Alexander, Tim-Oliver Buchholz, et al. (Apr. 2019). “Noise2Void - Learning
Denoising from Single Noisy Images”. In: arXiv. arXiv: 1811.10980. url: http:
//arxiv.org/abs/1811.10980 (visited on 08/20/2020).

Lafortune, Eric P. (1993). “Bi-Directional Path Tracing”. In: Proceedings of Com-
pugraphics ’93, pp. 145–153.

Lafortune, Eric P. and Yves D. Willems (1995). “A 5D Tree to Reduce the Variance
of Monte Carlo Ray Tracing”. In: Rendering Techniques ’95, pp. 11–20. url:
http://www.graphics.cornell.edu/%20eric/Dublin.html.

Laine, Samuli and Tero Karras (2011). “Efficient Sparse Voxel Octrees”. In: IEEE
Transactions on Visualization and Computer Graphics 17.8, pp. 1048–1059.
issn: 1077-2626. doi: 10.1109/TVCG.2010.240.

Laine, Samuli, Hannu Saransaari, et al. (June 2007). “Incremental instant radiosity
for real-time indirect illumination”. In: Proceedings of the 18th Eurographics
conference on Rendering Techniques. EGSR’07. Grenoble, France: Eurographics
Association, pp. 277–286. isbn: 978-3-905673-52-4. (Visited on 07/20/2020).

Ledda, Patrick, Luis Paulo Santos, et al. (Nov. 2004). “A local model of eye adap-
tation for high dynamic range images”. In: Proceedings of the 3rd international
conference on Computer graphics, virtual reality, visualisation and interaction in
Africa. AFRIGRAPH ’04. New York, NY, USA: Association for Computing Ma-
chinery, pp. 151–160. isbn: 978-1-58113-863-4. doi: 10.1145/1029949.1029978.
url: https://doi.org/10.1145/1029949.1029978 (visited on 08/25/2020).

Lefebvre, Sylvain and Hugues Hoppe (2006). “Perfect spatial hashing”. In: ACM
Transactions on Graphics (TOG). Vol. 25. ACM, pp. 579–588. url: http://
dl.acm.org/citation.cfm?id=1141926 (visited on 03/24/2015).

Legge, Gordon E. and Daniel Kersten (Aug. 1987). “Contrast discrimination in
peripheral vision”. In: J. Opt. Soc. Am. A 4.8, pp. 1594–1598.

Lehtinen, Jaakko, Timo Aila, et al. (2012). “Reconstructing the indirect light field
for global illumination”. In: ACM Transactions on Graphics (TOG) 31.4, p. 51.

Lehtinen, Jaakko, Tero Karras, et al. (July 2013). “Gradient-domain Metropolis
Light Transport”. In: ACM Trans. Graph. 32.4, 95:1–95:12. issn: 0730-0301.
doi: 10.1145/2461912.2461943. url: http://doi.acm.org/10.1145/
2461912.2461943 (visited on 03/28/2014).

Lehtinen, Jaakko, Jacob Munkberg, et al. (Oct. 2018). “Noise2Noise: Learning Image
Restoration without Clean Data”. In: arXiv. arXiv: 1803.04189. url: http:
//arxiv.org/abs/1803.04189 (visited on 08/20/2020).

Bibliography 145

Levoy, Marc and Ross Whitaker (1990). “Gaze-directed Volume Rendering”. In:
Proceedings of the 1990 Symposium on Interactive 3D Graphics. I3D ’90. New
York, NY, USA: ACM, pp. 217–223. isbn: 978-0-89791-351-5. doi: 10.1145/
91385.91449. url: http://doi.acm.org/10.1145/91385.91449 (visited on
02/01/2019).

Li, Tzu-Mao, Yu-Ting Wu, et al. (Nov. 2012). “SURE-based Optimization for Adap-
tive Sampling and Reconstruction”. In: ACM Trans. Graph. 31.6, 194:1–194:9.
issn: 0730-0301. doi: 10.1145/2366145.2366213. url: http://doi.acm.org/
10.1145/2366145.2366213 (visited on 05/27/2015).

Lischinski, Dani, Filippo Tampieri, et al. (Nov. 1992). “Discontinuity Meshing for
Accurate Radiosity”. In: IEEE Computer Graphics and Applications 12.6, pp. 25–
39. issn: 0272-1716. doi: 10.1109/38.163622. url: https://doi.org/10.
1109/38.163622 (visited on 07/20/2020).

Liu, Tao, Jin Gao, et al. (2020). “An Approach to Global Illumination Calculation
Based on Hybrid Cone Tracing”. In: IEEE Access 8. Conference Name: IEEE Ac-
cess, pp. 92061–92071. issn: 2169-3536. doi: 10.1109/ACCESS.2020.2994597.

Loschky, Lester C. and Gary S. Wolverton (Dec. 2007). “How Late Can You Up-
date Gaze-contingent Multiresolutional Displays Without Detection?” In: ACM
Trans. Multimedia Comput. Commun. Appl. 3.4, 7:1–7:10. issn: 1551-6857. doi:
10.1145/1314303.1314310. url: http://doi.acm.org/10.1145/1314303.
1314310 (visited on 05/13/2019).

Lou, Chin Ian, Daria Migotina, et al. (2012). “Object Recognition Test in Peripheral
Vision: A Study on the Influence of Object Color, Pattern and Shape”. In: 2012
International Conference on Brain Informatics. Macau, China: Springer-Verlag,
pp. 18–26. isbn: 978-3-642-35138-9.

Ma, Vincent C. H. and Michael D. McCool (Sept. 2002). “Low latency photon map-
ping using block hashing”. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware. HWWS ’02. Saarbrucken, Germany: Euro-
graphics Association, pp. 89–99. isbn: 978-1-58113-580-0. (Visited on 07/13/2020).

Mantiuk, Rafat, Kil Joong Kim, et al. (2011). “HDR-VDP-2: A Calibrated Visual
Metric for Visibility and Quality Predictions in All Luminance Conditions”.
In: ACM SIGGRAPH 2011 Papers. SIGGRAPH ’11. event-place: Vancouver,
British Columbia, Canada. New York, NY, USA: ACM, 40:1–40:14. isbn: 978-
1-4503-0943-1. doi: 10.1145/1964921.1964935. url: http://doi.acm.org/
10.1145/1964921.1964935.

Manzi, Marco, Markus Kettunen, et al. (Nov. 2016). “Temporal gradient-domain
path tracing”. In: ACM Transactions on Graphics 35.6, 246:1–246:9. issn: 0730-
0301. doi: 10.1145/2980179.2980256. url: https://doi.org/10.1145/
2980179.2980256 (visited on 08/17/2020).

Mara, Michael, David Luebke, et al. (Mar. 2013). “Toward practical real-time photon
mapping: efficient GPU density estimation”. In: Proceedings of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games. I3D ’13. Orlando,
Florida: Association for Computing Machinery, pp. 71–78. isbn: 978-1-4503-
1956-0. doi: 10.1145/2448196.2448207. url: https://doi.org/10.1145/
2448196.2448207 (visited on 07/15/2020).

Mark, William R., Leonard McMillan, et al. (1997). “Post-rendering 3D Warping”.
In: Proceedings of the 1997 Symposium on Interactive 3D Graphics. Providence,
Rhode Island, USA: ACM, 7–ff. isbn: 0-89791-884-3.

Bibliography 146

McKee, S. and K. Nakayama (Jan. 1984). “The detection of motion in the peripheral
visual field”. In: Vision research 24.1, pp. 25–32. issn: 0042-6989.

Meng, Xiaoxu, Ruofei Du, et al. (July 2018). “Kernel Foveated Rendering”. In:
Proceedings of the ACM on Computer Graphics and Interactive Techniques 1.1,
5:1–5:20. doi: 10.1145/3203199. url: https://doi.org/10.1145/3203199
(visited on 08/20/2020).

Metropolis, Nicholas, Arianna W. Rosenbluth, et al. (1953). “Equation of state cal-
culations by fast computing machines”. In: The journal of chemical physics 21,
p. 1087.

Mir, Sermet (2020). “A SURVEYOFMONTE CARLODENOISING: CHALLENGES
AND POSSIBLE SOLUTIONS”. In: Journal of Modern Technology and Engi-
neering 5.1, pp. 85–96.

Miura, T. (1986). “Coping with situational demands: A study of eye movements and
peripheral vision performance”. In: Vision in Vehicles, pp. 206–216.

Müller, Thomas, M. Gross, et al. (2017). “Practical Path Guiding for Efficient Light-
Transport Simulation”. In: Comput. Graph. Forum. doi: 10.1111/cgf.13227.

Müller, Thomas, Brian Mcwilliams, et al. (Oct. 2019). “Neural Importance Sam-
pling”. In: ACM Transactions on Graphics 38.5, 145:1–145:19. issn: 0730-0301.
doi: 10.1145/3341156. url: https://doi.org/10.1145/3341156 (visited on
08/18/2020).

Murphy, Hunter and Andrew T. Duchowski (2001). “Gaze-Contingent Level Of De-
tail Rendering”. In:

— (2007). “Hybrid Image-/Model-based Gaze-contingent Rendering”. In: 4th Sym-
posium on Applied Perception in Graphics and Visualization. Tubingen, Ger-
many: ACM, pp. 107–114. isbn: 978-1-59593-670-7.

Nathan, Reed (2015). NVIDIA GameWorks VR. Technical Report. SIGGRAPH
2015.

Nehab, Diego, Pedro V. Sander, et al. (2007). “Accelerating Real-time Shading with
Reverse Reprojection Caching”. In: 22Nd ACM Symposium on Graphics Hard-
ware. San Diego, California: Eurographics Association, pp. 25–35. isbn: 978-1-
59593-625-7.

Neumann, Laszlo (1995). “Monte carlo radiosity”. In: Computing 55.1. Publisher:
Springer, pp. 23–42.

Nichols, Greg, Jeremy Shopf, et al. (June 2009). “Hierarchical image-space radiosity
for interactive global illumination”. In: Proceedings of the Twentieth Eurograph-
ics conference on Rendering. EGSR’09. Girona, Spain: Eurographics Associa-
tion, pp. 1141–1149. doi: 10.1111/j.1467-8659.2009.01491.x. url: https:
//doi.org/10.1111/j.1467-8659.2009.01491.x (visited on 07/20/2020).

Noorlander, C., J. J. Koenderink, et al. (1983). “Sensitivity to spatiotemporal colour
contrast in the peripheral visual field”. In: Vision Research 23.1, pp. 1–11. issn:
0042-6989. doi: 10.1016/0042-6989(83)90035-4.

Ohshima, T., H. Yamamoto, et al. (Mar. 1996). “Gaze-directed adaptive rendering
for interacting with virtual space”. In: Proceedings of the IEEE 1996 Virtual
Reality Annual International Symposium, pp. 103–110. doi: 10.1109/VRAIS.
1996.490517.

Omidvar, Mahmoud, Mickaël Ribardière, et al. (Oct. 2015). “A radiance cache
method for highly glossy surfaces”. In: The Visual Computer, pp. 1–12. issn:
0178-2789, 1432-2315. doi: 10.1007/s00371- 015- 1159- y. url: http://

Bibliography 147

link.springer.com/article/10.1007/s00371- 015- 1159- y (visited on
10/28/2015).

Owen, Art B. (Jan. 1998). “Latin supercube sampling for very high-dimensional
simulations”. In: ACM Transactions on Modeling and Computer Simulation 8.1,
pp. 71–102. issn: 1049-3301. doi: 10.1145/272991.273010. url: https://doi.
org/10.1145/272991.273010 (visited on 07/27/2020).

— (2003). “Quasi-Monte Carlo Sampling”. In: ACM SIGGRAPH 2003 Courses.
SIGGRAPH ’03. Los Angeles, California: Association for Computing Machinery.

Papaioannou, Georgios (2011). “Real-time Diffuse Global Illumination Using Ra-
diance Hints”. In: Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics. HPG ’11. New York, NY, USA: ACM, pp. 15–24. isbn:
978-1-4503-0896-0. doi: 10.1145/2018323.2018326. url: http://doi.acm.
org/10.1145/2018323.2018326 (visited on 11/16/2015).

Patney, Anjul, Joohwan Kim, et al. (2016). “Perceptually-based Foveated Virtual
Reality”. In: ACM SIGGRAPH 2016 Emerging Technologies. SIGGRAPH ’16.
New York, NY, USA: ACM, 17:1–17:2. isbn: 978-1-4503-4372-5. doi: 10.1145/
2929464.2929472. url: http://doi.acm.org/10.1145/2929464.2929472
(visited on 09/01/2016).

Patney, Anjul, Marco Salvi, et al. (Nov. 2016). “Towards foveated rendering for
gaze-tracked virtual reality”. In: ACM Transactions on Graphics 35.6, pp. 1–
12. issn: 07300301. doi: 10.1145/2980179.2980246. url: http://dl.acm.
org/citation.cfm?doid=2980179.2980246 (visited on 08/01/2018).

Pérard-Gayot, Arsène, Javor Kalojanov, et al. (2017). “GPU Ray Tracing using
Irregular Grids”. In: Computer Graphics Forum 36.2, pp. 477–486. issn: 0167-
7055. doi: 10.1111/cgf.13142. url: https://doi.org/10.1111/cgf.13142
(visited on 06/10/2020).

Peter, Ingmar and Georg Pietrek (1998). “Importance Driven Construction of Pho-
ton Maps”. In: Rendering Techniques ’98. Eurographics. Vienna: Springer, pp. 269–
280. isbn: 978-3-7091-6453-2. doi: 10.1007/978-3-7091-6453-2_25.

Pharr, Matt and Greg Humphreys (2010). Physically based rendering: From theory
to implementation. Morgan Kaufmann. isbn: 0-12-375079-2.

Pohl, Daniel, Xucong Zhang, et al. (Mar. 2016). “Combining eye tracking with op-
timizations for lens astigmatism in modern wide-angle HMDs”. In: 2016 IEEE
Virtual Reality (VR). ISSN: 2375-5334, pp. 269–270. doi: 10.1109/VR.2016.
7504757.

Rawat, Waseem and Zenghui Wang (Sept. 2017). “Deep convolutional neural net-
works for image classification: A comprehensive review”. In: Neural Computa-
tion 29.9, pp. 2352–2449. issn: 0899-7667. doi: 10.1162/neco_a_00990. url:
https://doi.org/10.1162/neco_a_00990 (visited on 08/19/2020).

Roth, Scott D (Feb. 1982). “Ray casting for modeling solids”. In: Computer Graphics
and Image Processing 18.2, pp. 109–144. issn: 0146-664X. doi: 10.1016/0146-
664X(82)90169-1. url: http://www.sciencedirect.com/science/article/
pii/0146664X82901691 (visited on 06/30/2020).

Roth, Thorsten, Martin Weier, et al. (2015). “Guided High-Quality Rendering”. In:
11th International Symposium on Visual Computing (ISVC).

Roth, Thorsten, Martin Weier, et al. (2016). “An Analysis of Eye-Tracking Data in
Foveated Ray Tracing”. In: Proceedings of the 2016 Workshop on Eye Tracking
and Visualization. ETVIS.

Bibliography 148

Roth, Thorsten, Martin Weier, et al. (2017). “A Quality-Centered Analysis of Eye
Tracking Data in Foveated Rendering”. In: Journal of Eye Movement Research
10.5. issn: 1995-8692. url: https://bop.unibe.ch/index.php/JEMR/articl
e/view/3729.

Roth, Thorsten, Martin Weier, et al. (2019). Hash-based Hierarchical Caching for
Interactive Previews in Global Illumination Rendering. Tam, Roberts (Eds.):
Computer Graphics and Visual Computing (CGVC 2019). The Eurographics
Association. isbn: 978-3-03868-096-3. doi: 10.2312/cgvc.20191261.

— (2020). “Hash-Based Hierarchical Caching and Layered Filtering for Interactive
Previews in Global Illumination Rendering”. In: Computers 9.1. issn: 2073-
431X. doi: 10.3390/computers9010017. url: https://www.mdpi.com/2073-
431X/9/1/17.

Roughton, Thomas (2019). “Interactive Generation of Path-Traced Lightmaps”.
PhD Thesis. Victoria University of Wellington.

Rousselle, Fabrice, Claude Knaus, et al. (Nov. 2012). “Adaptive rendering with
non-local means filtering”. In: ACM Transactions on Graphics 31.6, p. 1. issn:
07300301. doi: 10.1145/2366145.2366214. url: http://dl.acm.org/citati
on.cfm?doid=2366145.2366214 (visited on 08/01/2018).

Rousselle, Fabrice, Marco Manzi, et al. (Oct. 2013). “Robust Denoising using Feature
and Color Information”. In: Computer Graphics Forum 32.7, pp. 121–130. issn:
1467-8659. doi: 10.1111/cgf.12219. url: http://onlinelibrary.wiley.
com/doi/10.1111/cgf.12219/abstract (visited on 08/18/2015).

Sanzenbacher, Paul, Lars Mescheder, et al. (2020). Learning Neural Light Transport.
arXiv: 2006.03427 [cs.CV].

Saunders, Daniel R. and Russell L. Woods (June 2014). “Direct measurement of
the system latency of gaze-contingent displays”. In: Behavior Research Methods
46.2, pp. 439–447. issn: 1554-3528. doi: 10.3758/s13428-013-0375-5. url:
https://doi.org/10.3758/s13428-013-0375-5 (visited on 05/13/2019).

Scherzer, Daniel, Chuong H. Nguyen, et al. (2012). “Pre-convolved Radiance Caching”.
In: Computer Graphics Forum 31.4, pp. 1391–1397. issn: 1467-8659. doi: 10.
1111/j.1467-8659.2012.03134.x. url: https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1467-8659.2012.03134.x (visited on 02/10/2020).

Schied, Christoph, Anton Kaplanyan, et al. (July 2017). “Spatiotemporal Variance-
Guided Filtering: Real-time Reconstruction for Path Traced Global Illumina-
tion”. In: Proceedings of High Performance Graphics. Los Angeles, California,
USA: ACM. isbn: 978-1-4503-5101-0. doi: 10.1145/3105762.3105774.

Schied, Christoph, Christoph Peters, et al. (Aug. 2018). “Gradient Estimation for
Real-time Adaptive Temporal Filtering”. In: Proceedings of the ACM on Com-
puter Graphics and Interactive Techniques 1.2, 24:1–24:16. doi: 10 . 1145 /

3233301. url: https://doi.org/10.1145/3233301 (visited on 04/21/2020).
Segovia, B., J. C. Iehl, et al. (June 2006). “Bidirectional instant radiosity”. In: Pro-

ceedings of the 17th Eurographics conference on Rendering Techniques. EGSR
’06. Nicosia, Cyprus: Eurographics Association, pp. 389–397. isbn: 978-3-905673-
35-7. (Visited on 07/20/2020).

Sen, Pradeep and Soheil Darabi (2012). “On filtering the noise from the random
parameters in Monte Carlo rendering”. In: ACM Trans. Graph. 31.3, p. 18.

Sigitov, Anton, Thorsten Roth, et al. (Mar. 2015). “Enabling Global Illumination
Rendering on Large, High-Resolution Displays”. In: 8th Workshop on Software
Engineering and Architectures for Realtime Interactive Systems (SEARIS).

Bibliography 149

Silvennoinen, Ari and Jaakko Lehtinen (Nov. 2017). “Real-time global illumina-
tion by precomputed local reconstruction from sparse radiance probes”. In:
ACM Transactions on Graphics 36.6, pp. 1–13. issn: 07300301. doi: 10.1145/
3130800.3130852. url: http://dl.acm.org/citation.cfm?doid=3130800.
3130852 (visited on 04/16/2018).

Simmons, Maryann and Carlo H. Séquin (2000). “Tapestry: A Dynamic Mesh-based
Display Representation for Interactive Rendering”. In: Proceedings of the Eu-
rographics Workshop on Rendering Techniques 2000. Springer-Verlag, pp. 329–
340. isbn: 3-211-83535-0.

Sloan, Peter-Pike, Jan Kautz, et al. (2002). “Precomputed Radiance Transfer for
Real-time Rendering in Dynamic, Low-frequency Lighting Environments”. In:
Proceedings of the 29th Annual Conference on Computer Graphics and Inter-
active Techniques. SIGGRAPH ’02. New York, NY, USA: ACM, pp. 527–536.
isbn: 1-58113-521-1. doi: 10.1145/566570.566612. url: http://doi.acm.
org/10.1145/566570.566612 (visited on 09/29/2014).

Smits, Brian, James Arvo, et al. (July 1994). “A clustering algorithm for radiosity
in complex environments”. In: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques. SIGGRAPH ’94. New York, NY,
USA: Association for Computing Machinery, pp. 435–442. isbn: 978-0-89791-
667-7. doi: 10.1145/192161.192277. url: https://doi.org/10.1145/
192161.192277 (visited on 07/20/2020).

Spencer, B. and M. W. Jones (Jan. 2009). “Hierarchical Photon Mapping”. In: IEEE
Transactions on Visualization and Computer Graphics 15.1, pp. 49–61. issn:
1077-2626. doi: 10.1109/TVCG.2008.67.

Stamminger, Marc, Annette Scheel, et al. (2000). “Efficient Glossy Global Illumi-
nation with Interactive Viewing”. In: Computer Graphics Forum 19.1. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00385,
pp. 13–25. issn: 1467-8659. doi: 10.1111/1467- 8659.00385. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00385 (visited
on 08/19/2020).

Steinhurst, Joshua, Greg Coombe, et al. (May 2005). “Reordering for cache con-
scious photon mapping”. In: Proceedings of Graphics Interface 2005. GI ’05.
Victoria, British Columbia: Canadian Human-Computer Communications Soci-
ety, pp. 97–104. isbn: 978-1-56881-265-6. (Visited on 07/13/2020).

Stengel, Michael, Steve Grogorick, et al. (Oct. 2015). “An Affordable Solution for
Binocular Eye Tracking and Calibration in Head-mounted Displays”. In: Pro-
ceedings of the 23rd ACM international conference on Multimedia. MM ’15. New
York, NY, USA: Association for Computing Machinery, pp. 15–24. isbn: 978-
1-4503-3459-4. doi: 10.1145/2733373.2806265. url: https://doi.org/10.
1145/2733373.2806265 (visited on 08/20/2020).

Stengel, Michael, Steve Grogorick, et al. (June 2016). “Adaptive Image-Space Sam-
pling for Gaze-Contingent Real-time Rendering”. In: Proc. Eurographics Con-
ference on Rendering Techniques (EGSR) 2016 35.4. Won the ’EGSR’16 Best
Paper Award’.

Stich, Martin, Heiko Friedrich, et al. (2009). “Spatial Splits in Bounding Volume
Hierarchies”. In: High Performance Graphics 2009. New Orleans, Louisiana:
ACM, pp. 7–13. isbn: 978-1-60558-603-8.

Strasburger, Hans, Ingo Rentschler, et al. (Jan. 2011). “Peripheral vision and pattern
recognition: A review.” In: Journal of vision 11.5, pp. 1–82. issn: 1534-7362.

Bibliography 150

Suykens, Frank and Yves D. Willems (2000). “Density Control for Photon Maps”. In:
Rendering Techniques 2000. Eurographics. Vienna: Springer, pp. 23–34. isbn:
978-3-7091-6303-0. doi: 10.1007/978-3-7091-6303-0_3.

Szeracki, Sebastian, Thorsten Roth, et al. (Sept. 2015). “Boosting Histogram-Based
Denoising Methods with GPU Optimizations”. In: 12. Workshop Virtuelle Re-
alität und Augmented Reality der GI-Fachgruppe VR/AR. Shaker Verlag.

Tewari, A., O. Fried, et al. (2020). “State of the Art on Neural Rendering”. In:
Computer Graphics Forum 39.2. ePrint: https://onlinelibrary.wiley.com/
doi/pdf/10.1111/cgf.14022, pp. 701–727. issn: 1467-8659. doi: 10.1111/
cgf.14022. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.14022 (visited on 08/18/2020).

Tole, Parag, Fabio Pellacini, et al. (July 2002). “Interactive global illumination in
dynamic scenes”. In: ACM Transactions on Graphics (TOG) 21.3, pp. 537–546.
issn: 0730-0301. doi: 10.1145/566654.566613. url: https://doi.org/10.
1145/566654.566613 (visited on 02/10/2020).

Tracking, ART Advanced Realtime (2020). Flystick 2 - Interaction - Products - ART
Advanced Realtime Tracking. url: https://ar- tracking.com/products/
interaction/flystick-2/ (visited on 05/06/2020).

University of Illinois at Chicago’s Electronic Visualization Laboratory and University
of Hawai’i at Manoa’s Laboratory for Advanced Visualization and Applications
(2020). SAGE. url: https://sagecommons.org/ (visited on 04/30/2020).

Veach, Eric (1997). “Robust Monte Carlo methods for light transport simulation”.
PhD thesis. Stanford University.

Veach, Eric and Leonidas Guibas (1995a). “Bidirectional Estimators for Light Trans-
port”. In: Photorealistic Rendering Techniques. Focus on Computer Graphics.
Berlin, Heidelberg: Springer, pp. 145–167. isbn: 978-3-642-87825-1. doi: 10.
1007/978-3-642-87825-1_11.

Veach, Eric and Leonidas J. Guibas (Sept. 1995b). “Optimally combining sampling
techniques for Monte Carlo rendering”. In: Proceedings of the 22nd annual con-
ference on Computer graphics and interactive techniques. SIGGRAPH ’95. New
York, NY, USA: Association for Computing Machinery, pp. 419–428. isbn: 978-
0-89791-701-8. doi: 10.1145/218380.218498. url: https://doi.org/10.
1145/218380.218498 (visited on 07/02/2020).

— (1997). “Metropolis light transport”. In: Proceedings of the 24th annual confer-
ence on Computer graphics and interactive techniques, pp. 65–76.

Vorba, Jǐŕı, Ondřej Karĺık, et al. (July 2014). “On-line Learning of Parametric Mix-
ture Models for Light Transport Simulation”. In: ACM Trans. Graph. 33.4,
101:1–101:11. issn: 0730-0301. doi: 10.1145/2601097.2601203. url: http:
//doi.acm.org/10.1145/2601097.2601203 (visited on 09/03/2015).

Waldin, N., M. Waldner, et al. (May 2017). “Flicker Observer Effect: Guiding Atten-
tion Through High Frequency Flicker in Images”. In: Comput. Graph. Forum
36.2, pp. 467–476. issn: 0167-7055. doi: 10.1111/cgf.13141. url: https:
//doi.org/10.1111/cgf.13141 (visited on 05/13/2019).

Wallace, J. R., K. A. Elmquist, et al. (July 1989). “A Ray tracing algorithm for
progressive radiosity”. In: ACM SIGGRAPH Computer Graphics 23.3, pp. 315–
324. issn: 0097-8930. doi: 10.1145/74334.74366. url: https://doi.org/10.
1145/74334.74366 (visited on 07/20/2020).

Bibliography 151

Walter, Bruce, George Drettakis, et al. (June 1999). “Interactive Rendering using
the Render Cache”. In: Rendering Techniques (Proceedings of the Eurographics
Workshop on Rendering). Vol. 10. Springer-Verlag, pp. 235–246.

Wandell, Brian A. (1995). Foundations of Vision. Stanford University.
Wang, Yue, Soufiane Khiat, et al. (May 2019). “Fast non-uniform radiance probe

placement and tracing”. In: Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games. I3D ’19. Montreal, Quebec, Canada:
Association for Computing Machinery, pp. 1–9. isbn: 978-1-4503-6310-5. doi:
10.1145/3306131.3317024. url: https://doi.org/10.1145/3306131.
3317024 (visited on 02/10/2020).

Wang, Z., E. P. Simoncelli, et al. (Nov. 2003). “Multiscale structural similarity for
image quality assessment”. In: The Thrity-Seventh Asilomar Conference on Sig-
nals, Systems Computers, 2003. Vol. 2, 1398–1402 Vol.2. doi: 10.1109/ACSSC.
2003.1292216.

Wang, Zhou, A.C. Bovik, et al. (Apr. 2004). “Image quality assessment: from error
visibility to structural similarity”. In: IEEE Transactions on Image Processing
13.4. Conference Name: IEEE Transactions on Image Processing, pp. 600–612.
issn: 1941-0042. doi: 10.1109/TIP.2003.819861.

Ward, Gregory J., Francis M. Rubinstein, et al. (1988). “A Ray Tracing Solution
for Diffuse Interreflection”. In: Proceedings of the 15th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’88. New York,
NY, USA: ACM, pp. 85–92. isbn: 0-89791-275-6. doi: 10.1145/54852.378490.
url: http://doi.acm.org/10.1145/54852.378490 (visited on 11/16/2015).

Ward, Gregory and Maryann Simmons (Oct. 1999). “The holodeck ray cache: an
interactive rendering system for global illumination in nondiffuse environments”.
In: ACM Transactions on Graphics (TOG) 18.4, pp. 361–368. issn: 0730-0301.
doi: 10.1145/337680.337722. url: https://doi.org/10.1145/337680.
337722 (visited on 02/10/2020).

Weier, M., M. Stengel, et al. (May 2017). “Perception-driven Accelerated Render-
ing”. In: Computer Graphics Forum 36.2, pp. 611–643. issn: 0167-7055. doi:
10.1111/cgf.13150. url: https://doi.org/10.1111/cgf.13150 (visited on
04/21/2020).

Weier, Martin, Jens Maiero, et al. (Sept. 2014a). “Enhancing Rendering Performance
with View-Direction-Based Rendering Techniques for Large, High Resolution
Multi-Display Systems”. In: 11. Workshop Virtuelle Realität und Augmented
Reality der GI-Fachgruppe VR/AR.

— (2014b). Lazy Details for Large High-Resolution Displays. Published: SIGGRAPH
ASIA.

Weier, Martin, Thorsten Roth, et al. (Oct. 2016). “Foveated Real-Time Ray Tracing
for Head-Mounted Displays”. In: Computer Graphics Forum. Vol. 35-7. Oki-
nawa, Japan.

Weier, Martin, Thorsten Roth, et al. (Sept. 2018a). “Foveated Depth-of-Field Filter-
ing in Head-Mounted Displays”. In: ACM Transactions on Applied Perception
15.4, 26:1–26:14.

— (2018b). “Foveated Depth-of-field Filtering in Head-mounted Displays”. In: Pro-
ceedings of the 15th ACM Symposium on Applied Perception. SAP ’18. New
York, NY, USA: ACM, 18a:1–18a:1. isbn: 978-1-4503-5894-1. doi: 10.1145/
3225153.3243894. url: http://doi.acm.org/10.1145/3225153.3243894.

Bibliography 152

Weier, Martin, Thorsten Roth, et al. (June 2018c). “Predicting the Gaze Depth in
Head-mounted Displays using Multiple Feature Regression”. In: Proceedings of
the 2018 ACM Symposium on Eye Tracking Research and Applications. ETRA
18. ACM, 19:1–19:9.

Whitted, Turner (June 1980). “An improved illumination model for shaded display”.
In: Communications of the ACM 23.6, pp. 343–349. issn: 0001-0782. doi: 10.
1145/358876.358882. url: https://doi.org/10.1145/358876.358882
(visited on 06/30/2020).

Yang, Lei, Diego F. Nehab, et al. (2009). “Amortized supersampling”. In: ACM
Trans. Graph. 28.5, 135:1–135:12.

Yang, Lei, Yu-Chiu Tse, et al. (2011). “Image-based Bidirectional Scene Reprojec-
tion”. In: Proceedings of the 2011 SIGGRAPH Asia Conference. SA ’11. New
York, NY, USA: ACM, 150:1–150:10. isbn: 978-1-4503-0807-6. doi: 10.1145/
2024156.2024184. url: http://doi.acm.org/10.1145/2024156.2024184
(visited on 09/07/2015).

Zeng, Zheng, Lu Wang, et al. (Apr. 2020). “Denoising Stochastic Progressive Photon
Mapping Renderings Using a Multi-Residual Network”. In: Journal of Computer
Science and Technology 35. doi: 10.1007/s11390-020-0264-1.

Zhang, Cecilia (2016). Assignment 3: PathTracer. https://people.eecs.berkele
y.edu/~cecilia77/graphics/a3/. Accessed: 2020-06-30.

Zhao, Yangyang, Laurent Belcour, et al. (June 2019). “View-dependent Radiance
Caching”. In: Proceedings of the 45th Graphics Interface Conference on Proceed-
ings of Graphics Interface 2019. GI’19. Kingston, Canada: Canadian Human-
Computer Communications Society, pp. 1–9. isbn: 978-0-9947868-4-5. doi: 10.
20380/GI2019.22. url: https://doi.org/10.20380/GI2019.22 (visited on
02/10/2020).

Zheng, Quan and Matthias Zwicker (2018). Learning to Importance Sample in Pri-
mary Sample Space. arXiv: 1808.07840 [cs.LG].

Zhu, Shilin, Zexiang Xu, et al. (Apr. 2020). “Deep Photon Mapping”. In: arXiv.
url: http://arxiv.org/abs/2004.12069 (visited on 07/15/2020).

Zwicker, M., W. Jarosz, et al. (May 2015). “Recent Advances in Adaptive Sampling
and Reconstruction for Monte Carlo Rendering”. In: Computer Graphics Forum
34.2, pp. 667–681. issn: 1467-8659. doi: 10.1111/cgf.12592. url: http:
//onlinelibrary.wiley.com/doi/10.1111/cgf.12592/abstract (visited on
09/07/2015).

	Introduction
	Motivation
	Aims and Objectives
	Thesis Overview

	Background and Literature Review
	Concepts of Ray-based Rendering
	Ray Casting
	Ray Tracing
	Path Tracing
	Bidirectional Path Tracing
	Metropolis Light Transport
	Standard Extensions of Ray-based Rendering

	Other Ray-based Methods, Extensions and Optimizations
	Photon Mapping
	Radiosity
	General Sampling Techniques
	Machine Learning
	Other Methods and Aspects

	Perceptual Considerations and Gaze-Contingent Rendering
	The Human Visual System: Basic Concepts and Limitations
	Perceived Image Quality and Quality Assessment
	Foveated/Gaze-Contingent Rendering

	Denoising
	Caching and Reprojection
	Discussion and Conclusion

	Guided High-Quality Rendering
	Introduction
	System Description
	Building Blocks
	Distance Measure
	Interaction
	Scheduling
	Rendering
	Filtering
	Display

	Results
	Visual Quality
	Benchmarks

	Discussion and Conclusion

	Foveated Ray Tracing and Eye Tracking Data
	Introduction
	System Description
	Ray Generation and Ray Tracing
	Reprojection
	Handling Reprojection Errors
	Cache Update and Merging
	Post-Processing

	Experimental Evaluation: Benchmarks
	Experimental Evaluation: User Study
	Experimental Procedure and Design
	Results

	Experimental Evaluation: Analysis of Eye Tracking Data
	Methods
	Results

	Discussion and Conclusion

	Hash-based Hierarchical Caching and Layered Filtering
	Introduction
	Method
	Cache Structure
	Caching
	Reconstruction
	Layered Filtering

	Results and Evaluation
	Visual Quality
	Performance
	Memory Requirements
	Comparison to State-of-the-Art

	Discussion and Conclusion

	Conclusion
	Summary
	Contributions
	Guided High-Quality Rendering
	Foveated Ray Tracing in Head-Mounted Displays
	Hash-based Hierarchical Caching and Layered Filtering

	Future Research and Impact of Technological Developments
	Guided High-Quality Rendering
	Foveated Ray Tracing in Head-mounted Displays
	Hash-based Hierarchical Caching and Layered Filtering

