

Developing an Intrusion Detection Model for
Distributed Denial of Service Attacks in Cloud

Computing

A thesis submitted for the degree of Doctor of Philosophy

by

Roja Ahmadi

Department of Computer Science

College of Engineering, Design and Physical Sciences

Brunel University London

December 2019

ABSTRACT

Distributed Denial of Service (DDoS) attacks are one of the most significant threats to the
availability of resources offered using the cloud computing model. One way to counter such
attacks is by employing Intrusion Detection Systems which seek to identify attacks so that
countermeasures can be deployed. However, owing to changes in the characteristics of the
attacks, Intrusion Detection Systems can sometimes fail to accurately detect DDoS attacks. In
seeking to improve Intrusion Detection Systems, the scarcity of publicly-available cloud
intrusion detection datasets hinders the development of more precise detection models.
Moreover, existing public cloud intrusion datasets have several notable issues, including
differences in their formats, limited traffic features, and not including all types of DDoS attack.
Additionally, research in this area often has a lack of transparency in terms of the structure and
processing of the datasets and the resulting models, making it difficult to undertake
comparative work. To address the identified issues, the initial stage of this research developed
a detection model using a well-established non-cloud dataset, applying a transfer learning
approach to assess the performance of the model using one of the limited number of public
cloud datasets by remapping the DDoS attack types between the two datasets. The accuracy of
the model was high on the non-cloud dataset; but, when it was applied to the cloud dataset, its
accuracy fell significantly owing to the different structures of the two datasets and the limited
common feature set. To address the identified issues, the obtained result of the first stage
motivated this research to develop an emulated cloud intrusion detection dataset, with a broad
range of features and the same structure as the existing cloud dataset. Using different classifiers,
two detection models were created, and the generated cloud dataset was used to analyse their
performance in a novel way by using different time intervals, or ’slices’. The results showed
a general increase in the accuracy of the detection models as the time interval increased. To
further explore the relationships between features over time, cross-correlation analysis was
used to identify when the most significant correlations occurred between feature pairs at
different time lags. The analysis showed that the highest frequencies of the ‘most significant
correlation values’ occurred at the 0-1 and 7-9 second time periods, but it did not show a
correlation between these frequencies and the accuracy of the models across the time. The
research reported in this thesis has led to four contributions to the field. The first contribution
lies in the novel application of transfer learning to build a detection model. The second
contribution is a practical contribution to the creation of a new cloud-based dataset. The third
contribution centres on the use of a novel approach to the analysis of the generated dataset
using different time intervals as the unit of analysis and comparisons of the accuracy of the
model when applied to them. The fourth contribution is in the provision of a clear and
transparent process for generating an emulated cloud-based dataset and undertaking systematic
analysis of it.

 ii

DEDICATION

This thesis is dedicated to my beloved parents, my brother Roozbeh and my sister Rosa for

their unconditional love, endless support and constant encouragement. Thank you for your

limitless faith in my abilities. I love you so much.

 و ينابیتشپ ،طرش و دیق يب قشع يارب مناج زا رتزیزع ازر و ھبزور ،ردام ،ردپ ھب میدقت
مراد نوتتسود .ناشنایاپ يب قیوشت

 iii

ACKNOWLEDGEMENTS

I	would	like	to	express	my	appreciation	to	all	the	people	who	have	supported	me	while	

completing	this	thesis.	First	and	foremost,	 I	remain	forever	thankful	to	my	supervisor,	

Professor	Rob	Macredie,	for	his	professionalism,	insight,	critiques,	patience,	detailed	and	

prompt	reviews.	This	journey	would	have	never	been	completed	without	his	generous	

support.	No	words	can	express	my	gratitude	for	all	the	endless	care	he	has	provided	me,	

particularly	during	the	most	challenging	time	of	my	PhD	journey.	It	is	my	hope	that	the	

knowledge	 I	 have	 acquired	 from	 him	 will	 continue	 to	 impact	 my	 future	 endeavors	

personally	and	professionally.	Once	again,	thank	you	very	much.	

I	would	also	like	to	extend	my	gratitude	to	my	second	supervisor,	Dr.	Allan	Tucker,	as	he	

has	provided	valuable	advice	and	support	in	all	possible	ways	during	my	research.	

I	would	also	like	to	thank	Dr	Armin	Kashefi,	Dr	Faris	Alwzinani	and	Dr	Alaa	Marshan,	who	

have	always	been	great	friends	to	me	and	have	supported	me	throughout	my	research.	I	

would	also	like	to	offer	my	warmest	thanks	to	all	my	friends	–	near	and	far	–	who	believed	

in	me,	 particularly,	Mashael	 and	 Lilly	who	 assisted	me	 through	 the	 dark	moments	 of	

coding	and	data	analysis.	

Finally,	I	would	like	to	thank	all	my	wonderful	families	in	Iran	and	the	supportive	people	

at	 the	 Brunel	 University	 London’s	 Department	 of	 Computer	 Science,	 especially	 Ela	

Heaney,	who	has	always	been	understanding	and	has	made	sure	that	PhD	researchers	

have	a	conducive	academic	environment.		

 iv

DECLARATION

• The following paper has been published as a direct result of the research presented in
this thesis:

• Ahmadi, R., Macredie, R. D. and Tucker, A (2018). Intrusion Detection Using Transfer
Learning in Machine Learning Classifiers Between Non-cloud and Cloud
Datasets. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). 11314 LNCS: 556-566.

 v

ABBREVIATIONS

SaaS Software as a Service

PaaS Platform as a Service
IaaS Infrastructure as a Service

CSA Cloud Security Alliance

ENISA European Network and Information Security

NIST National Institute of Standards and Technology

DDoS Distributed Denial of Service Attacks

IDS Intrusion Detection Systems

CIDD Cloud Intrusion Detection Dataset

NSL-KDD National Security Laboratory – Knowledge Discovery Dataset

OSI Open System Interconnect

TCP/IP Transmission Control Protocol/Internet Protocol

MAC Media Access Control

ICMP Internet Control Message Protocol

IPV4 Internet Protocol Version 4

IPV6 Internet Protocol Version 6

TTL The Time to Live

PoD Ping of Death

TCP Transmission Control Protocol

UDP User Datagram Protocol

SYN-ACK Synchronize-acknowledge

Land Local Area Network Denial

DNS Domain Name System

HTTP Hypertext Transfer Protocol

SMTP Simple Mail Transfer Protocol

FTP File Transfer Protocol

CAIDA The Centre for Applied Internet Data Analysis

IMPCAT Information Marketplace for Policy and Analysis of Cyber-risk & Trust

ADFA Australian	Defense	Force	Academy

LBNL	 Lawrence	Berkeley	National	Laboratory	

 vi

DARPA	 Defense	Advanced	Research	Project	Agency	

U2R	 User	to	Root	attacks	

R2L	 Remote	to	Local	attacks	

ML	 Machine Learning	

SVM	 Support Vector Machines	

Eucalyptus	 Elastic	Utility	Computing	Architecture	for	Linking	Your	Program	to	

Useful	System	

API	 Application-Programming Interface	

VMs	 virtual machines	

CCF	 Cross-correlation function	

KPPS	 Kwiatkowski–Phillips–Schmidt–Shin 	

ADF	 Augmented Dicky-Fuller	

 vii

TABLE OF CONTENTS
Chapter 1 : Introduction ... 1

1.1 INTRODUCTION .. 1

1.2 THE IMPORTANCE AND IMPACT OF DDOS ATTACKS 2

1.3 EXISTING RESEARCH INTO DDOS ATTACKS ... 4

1.4 RESEARCH AIM AND OBJECTIVES ... 6

1.5 RESEARCH QUESTIONS .. 7

1.6 STRUCTURE OF THE THESIS ... 7

1.7 SUMMARY ... 9

Chapter 2 : Cloud Computing and Distributed Denial of Service Attacks 11
2.1 INTRODUCTION .. 11

2.2 BASIC CLOUD COMPUTING CONCEPTS .. 12

2.2.1 Growth in migration to cloud computing.. 15

2.3 CLOUD COMPUTING SECURITY ... 17

2.4 DISTRIBUTED DENIAL OF SERVICE ATTACKS .. 19

2.5 A TAXONOMY OF DDOS ATTACKS ... 21

2.5.1 The network layer: protocols and attack types 24

2.5.2 The transport layer: protocols and attack types 28

2.5.3 The application layer: protocols and attack types 33

2.6 CLOUD INTRUSION DETECTION SYSTEMS ... 34

2.7 RESEARCH GAP ... 38

2.8 SUMMARY ... 40

Chapter 3 : Developing an Initial Detection Model .. 42
3.1 INTRODUCTION .. 42

3.2 APPROACH TAKEN TO DESIGNING THE DDOS ATTACK DETECTION MODEL IN

A CLOUD-COMPUTING ENVIRONMENT ... 44

3.3 DATASETS AND FEATURE EXTRACTION .. 44

3.3.1 Current non-cloud network intrusion detection datasets 45

3.3.2 The cloud intrusion detection dataset ... 47

3.3.3 Overlapping features between the two datasets 49

3.4 DEVELOPING THE MODEL ... 50

 viii

3.4.1 Data pre-processing .. 51

3.4.2 Machine learning approach for developing the model 54

3.4.3 Machine learning classification algorithm ... 55

3.4.4 Machine learning implementation .. 57

3.4.5 Evaluation of the classifier ... 57

3.5 ANALYSIS OF THE RESULTS ... 59

3.5.1 Transfer learning: applying the classification model to the CIDD dataset

.. 60

3.5.2 Analysis of the results of applying the classification model to the cloud

dataset .. 61

3.6 SUMMARY ... 80

Chapter 4 : Generating the Cloud Intrusion Detection Dataset 81
4.1 INTRODUCTION .. 81

4.2 EXISTING APPROACHES TO GENERATING INTRUSION DETECTION DATASETS

 82

4.3 DETAILED APPROACH TO GENERATING THE CLOUD INTRUSION DETECTION

DATASET ... 85

4.3.1 Platform-level specification .. 86

4.3.2 Elements of the cloud experimental environment 88

4.3.3 Required software tools to generate and capture the network traffic in

the cloud environment .. 89

4.4 DATA COLLECTION PROCESS .. 95

4.4.1 Designed Scenario of the Experiment ... 96

4.4.2 Generating and Collecting the Traffic Data ... 97

4.5 SUMMARY ... 98

Chapter 5 : Developing Intrusion Detection Models .. 99
5.1 INTRODUCTION .. 99

5.2 DATASET ... 99

5.3 DATA PRE-PROCESSING ... 103

5.3.1 Phase 1: parsing the original text data ... 104

5.3.2 Phase 2: finding commonalities .. 106

5.3.3 Phase 3: processing the data .. 109

5.4 THE CLASSIFICATION/DETECTION MODELS .. 112

 ix

5.4.1 The Random Forest classifier ... 113

5.5 ANALYSIS OF THE RESULTS OF APPLYING THE NAÏVE BAYES AND RANDOM

FOREST CLASSIFICATION MODELS TO THE PROCESSED DATASET 114

5.5.1 Predicted versus actual outcomes for the 1 second time interval 115

5.5.2 Predicted versus actual outcomes for the 3 second time interval 119

5.5.3 Predicted versus actual outcomes for the 5 second time interval 121

5.5.4 Predicted versus actual outcomes for the 7 second time interval 124

5.5.5 Predicted versus actual outcomes for the 10 second time interval 127

5.6 APPROACH TO THE ANALYSIS OF THE RESULTS OF THE MISCLASSIFICATION

ERRORS ... 129

5.7 ANALYSIS OF THE RESULTS OF MISCLASSIFICATION ERRORS 134

5.7.1 Setting thresholds for the analysis of the misclassification errors in each

time interval ... 136

5.7.2 Misclassification cases for the 1 second time interval 137

5.7.3 Misclassification cases for the 3 second time interval 139

5.7.4 Misclassification cases for the 5 second time interval 141

5.7.5 Misclassification cases for the 7 second time interval 142

5.7.5 Misclassification cases for the 10 second time interval 144

5.8 REFLECTION AND DISCUSSION .. 145

5.9 SUMMARY ... 149

Chapter 6 : Cross-correlation Analysis .. 151
6.1 INTRODUCTION .. 151

6.2 CROSS-CORRELATION ANALYSIS .. 151

6.3 TRANSFORMATION TASKS ON THE TIME SERIES DATASET 154

6.4 ORGANISING THE RESULTS OF CROSS-CORRELATION ANALYSIS 161

6.5 ANALYSIS OF THE OUTCOME OF THE CCF GRAPHS 163

6.6 DISCUSSION AND REFLECTION .. 167

6.7 SUMMARY ... 171

Chapter 7 : Conclusion and Future Work ... 172
7.1 INTRODUCTION .. 172

7.2 REVIEW OF PRECEDING CHAPTERS OF THE THESIS 172

7.3 REVISITING THE RESEARCH OBJECTIVES ... 174

7.4 REVISITING THE RESEARCH QUESTIONS .. 175

 x

7.5 CONTRIBUTIONS .. 178

7.6 RESEARCH LIMITATIONS ... 179

7.7 FUTURE WORK .. 181

References ... 183

 xi

LIST OF TABLES
Table 2.1 The HTTP header ... 34

Table 3.1 Contemporary network intrusion detection datasets .. 46

Table 3.2 Name of each bin in discretized dataset ... 51

Table 3.3 accuracy of the applied algorithms on the NSL-KDD dataset 56

Table 3.4 Analysis of the results of the ‘above threshold’ cases ... 78

Table 4.1 A summary of the existing approaches for generating intrusion detection datasets and
examples of resulting datasets ... 83

Table 4.2 High-level view of the requirements of the emulation test-bed 86

Table 4.3 Summary of existing software tools for emulated intrusion detection datasets 90

Table 4.4 Network traffic and DDoS attack generator tools (Behal and Kumar, 2017) 92

Table 4.5 Some of the common vulnerable webservers used for penetration testing 95

Table 4.6 The designed scenario for each virtual machine instance in the cloud 96

Table 5.1 Time-based traffic flow features of CIDD dataset ... 109

Table 5.2 Summary of the results of the misclassification errors in each time interval 136

Table 5.3 The chosen thresholds for the misclassification analysis 137

Table 5.4 The frequencies of the different feature patterns for the misclassification of the Naïve
Bayes classifier .. 146

Table 5.5 The frequencies of the different feature patterns for the misclassification of the
Random Forest classifier .. 147

Table 5.6 Analysis of the accuracy of the models in different time intervals 148

Table 6.1 Summary of use of cross-correlation approach in detecting DDoS attacks 154

Table 6.2 The frequency data from Figure 6.11 the accuracy of two classifiers in the different
time intervals considered ... 168

Table 6.3 The feature pairs with the most significant correlation values from the CCF analysis
in each time interval ... 170

 xii

LIST OF FIGURES

Figure 2.1 Essential characteristics of cloud computing (Vaquero et al., 2009) 13

Figure 2.2 The DDoS attack process (Somani et al., 2015) ... 20

Figure 2.3 The TCP/IP network model (Lakshman and Madhow, 1997) 23

Figure 2.4 A taxonomy of DDoS attack types in a cloud computing, organized by the network
layer that they target (Osanaiye, Choo and Dlodlo, 2016) .. 23

Figure 2.5 The structure of the IPV4 and IPV6 packet header (Al-Shaeya, 2010) 25

Figure 2.6 The format of an ICMP message .. 27

Figure 2.7 The format of a TCP message .. 29

Figure 2.8 The format of a UDP Packet header ... 30

Figure 2.9 TCP-SYN DDoS flooding attacks (Radware, 2013) .. 32

Figure 2.10 Intrusion detection approaches, techniques and models (Defence, 2015) 35

Figure 3.1 The phases of the experimental process to develop an initial DDoS IDS model in a
cloud-computing environment ... 44

Figure 3.2 Traffic features of the CIDD dataset .. 49

Figure 3.3 The selected features of NSL-KDD dataset ... 50

Figure 3.4 The initial structure of an extract of the NSL-KDD dataset 52

Figure 3.5 The post-discretization structure of an extract of the NSL-KDD dataset 52

Figure 3.6 The initial structure of an extract of the CIDD dataset .. 53

Figure 3.7 The unpacking the time structure of an extract of the CIDD dataset 54

Figure 3.8 Confusion matrix showing the result of the classification applied to the NSL-KDD
dataset .. 58

Figure 3.9 Result of classification based on testing with CIDD dataset based 60

Figure 3.10 Screenshot of the result of classification on the CIDD .. 62

Figure 3.11 The distribution of Normal instances of CIDD that have been classified as a TCP
SYN attack in the benchmark dataset .. 63

Figure 3.12 Distribution of TCP SYN attack instances that have been classified as normal
instances in the benchmark data .. 65

 xiii

Figure 3.13 The distribution of UDP Flood attack instances that have been classified as normal
instances in benchmark data .. 67

Figure 3.14 The distribution of UDP Flood attack instances that have been classified as TCP
SYN instances in benchmark data ... 68

Figure 3.15 The distribution of UDP Flood attack instances that have been classified as Smurf
attack instances in benchmark data .. 69

Figure 3.16 The distribution of DNS Flood attack instances that have been classified as a
normal traffic instances in the benchmark data ... 71

Figure 3.17 The distribution of DNS Flood attack instances that have been classified as a TCP
SYN attack instances in the benchmark data ... 72

Figure 3.18 Distribution of DNS Flood attack instances that have been classified as a Smurf
attack traffic instances in the benchmark data ... 73

Figure 3.19 Distribution of Land attack instances that have been classified as a Normal traffic
instances in the benchmark data .. 75

Figure 3.20 The distribution of Slowloris attack instances that have been classified as a normal
traffic instances in the benchmark data .. 77

Figure 4.1 All the required elements of the cloud test-bed environment 88

Figure 4.2 The cloud experimental environment ... 97

Figure 5.1 Screenshot of the features of IP packet header and TCP packet header in normal
traffic .. 100

Figure 5.2 Screenshot of the features of IP packet header, ICMP packet header and TCP packet
header in TCP SYN flood attack ... 101

Figure 5.3 Screenshot of the features of IP packet header and ICMP packet header information
in ICMP flood attack .. 101

Figure 5.4 Screenshot of the features of IP packet header and UDP packet header information
in UDP flood attack ... 102

Figure 5.5 Screenshot of the features of IP packet header, ICMP packet header and TCP packet
header in Slowloris attack .. 102

Figure 5.6 Screenshot of the features of IP packet header and ICMP packet header in POD
attack .. 102

Figure 5.7 Screenshot of the features of IP packet header and TCP packet header in DNS attack
.. 103

Figure 5.8 Data pre-processing phases .. 104

Figure 5.9 An extract of the original dataset .. 105

 xiv

Figure 5.10 the screenshot of the Python code to parse the original text data to CSV file ... 106

Figure 5.11 An extract of the result of applying Python code to the original datasets, resulting
in a CSV formatted dataset .. 106

Figure 5.12 The scripts and outputs representing Phase 2 of the data pre-processing 108

Figure 5.13 The scripts and outputs representing Phase 3 of the data pre-processing 111

Figure 5.14 The classification result of the Naïve Bayes model for the 1 second time interval
dataset .. 116

Figure 5.15 The classification result of the Random Forest model for the 1 second time interval
dataset .. 117

Figure 5.16 The classification result of the Naïve Bayes model for the 3 second time interval
dataset .. 119

Figure 5.17 The classification result of the Random Forest model for the 3 second time interval
dataset .. 120

Figure 5.18 The classification result of the Naïve Bayes model for the 5 second time interval
dataset .. 122

Figure 5.19 The classification result of the Random Forest model for the 5 second time interval
dataset .. 123

Figure 5.20 The classification result of the Naïve Bayes model for the 7 second time interval
dataset .. 125

Figure 5.21 The classification result of the Random Forest model for the 7 second time interval
dataset .. 126

Figure 5.22 The classification result of the Naïve Bayes model for the 10 second time interval
dataset .. 128

Figure 5.23 The classification result of the Random Forest model for the 10 second time
interval dataset ... 128

Figure 5.24 Distribution of correctly identified Pod attack instances in terms of the frequency
of the discretized feature values for the 1 second time interval ... 130

Figure 5.25 Distribution of Pod attacks instances misclassified as Slowloris attacks in terms of
the frequency of the discretized feature values for the 1 second time interval 131

Figure 5.26 Analysis Approach for Misclassification Errors of the classification models ... 131

Figure 5.27 Structure of an extract of the processed dataset showing the discretised values 132

Figure 5.28 Structure of the same extract of the processed dataset after having replaced the
discretized values with the relevant integer (1, 2 or 3) .. 132

Figure 5.29 An extract of the processed dataset showing the generated 19-digit integers 133

 xv

Figure 5.30 An extract of the frequency table for misclassified cases 134

Figure 5.31 The distribution of misclassification feature patterns in the 1 second time interval
for the Naïve Bayes classifier .. 138

Figure 5.32 The distribution of misclassification feature patterns in the 1 second time interval
for the Random Forest classifier .. 139

Figure 5.33 The distribution of misclassification feature patterns in the 3 second time interval
for the Naïve Bayes classifier .. 140

Figure 5.34 The distribution of misclassification feature patterns in the 3 second time interval
for the Random Forest classifier .. 140

Figure 5.35 The distribution of misclassification feature patterns in the 5 second time interval
for the Naïve Bayes classifier .. 141

Figure 5.36 The distribution of misclassification feature patterns in the 5 second time interval
for the Random Forest classifier .. 142

Figure 5.37 The distribution of misclassification feature patterns in the 7second time interval
for the Naïve Bayes classifier .. 143

Figure 5.38 The distribution of misclassification feature patterns in the 7 second time interval
for the Random Forest classifier .. 143

Figure 5.39 The distribution of misclassification feature patterns in the 10second time interval
for the Naïve Bayes classifier .. 144

Figure 5.40 The distribution of misclassification feature patterns in the 10 second time interval
for the Random Forest classifier .. 145

Figure 6.1 Transformation process applied to the time series dataset for each feature 155

Figure 6.2 R script for plotting the data ... 157

Figure 6.3 Screenshot of an example of stationarity for the ‘UDP_avg_bytes_OUT’ feature
.. 157

Figure 6.4 R script for ADF test .. 159

Figure 6.5 R script for applying the differencing function .. 159

Figure 6.6 R script for testing the differenced value being stationary 160

Figure 6.7 Screenshot of the output of the ADF test for ‘ICMP_avg_bytes_out’ 160

Figure 6.8 R script for CCF applied to ‘UDP_avg_bytes_OUT’ and ‘TCP_avg_bytes_OUT’
feature pair ... 161

Figure 6.9 An example of CCF features-graph .. 162

Figure 6.10 The process of sorting the CCF feature-pair graphs ... 162

 xvi

Figure 6.11 The matrix of correlation values extracted from the CCF graphs 164

Figure 6.12 An example of CCF graphs relating to each key (NN, NP, NS,0) 166

Chapter	1	: Introduction	 Roja	Ahmadi	

 1

Chapter 1 : Introduction

1.1 Introduction

In	 the	 last	 few	 years,	 Cloud	 Computing	 has	 gained	 popularity	 as	 a	 novel	 distributed	

computing	 paradigm,	 offering	 a	 pay-as-go-based	model	 through	 on-demand	 access	 to	

systems	and	services	which	has	the	benefits	of	scalability	afforded	by	shared	computing	

resources	 (e.g.,	 servers,	 networks,	 applications,	 virtual	 infrastructure)	 (Paxton,	 2016).		

These	 computing	 resources	are	delivered	over	 the	 internet	 in	 three	different	 types	of	

service	–	Software	as	a	Service	(SaaS);	Platform	as	a	Service	(PaaS);	and	Infrastructure	as	

a	Service	(IaaS)	–	and	can	be	deployed	as	private,	public,	community	cloud	or	hybrid	cloud	

configurations	(Kumar,	Lal,	&	Sharma,	2016).	A	popular	example	of	cloud	services	is	the	

Google	App	suite,	which	comprises	a	collection	of	a	web-based	applications	(the	Gmail	

email	 service;	 the	 Google	 Talk	 instant	 messaging	 service;	 and	 the	 Google	 Calendar	

scheduling/time	 management	 service)	 and	 some	 of	 Google’s	 productivity	 tools	 (the	

Google	 Docs	 word	 processor;	 the	 Google	 Sheets	 spreadsheet	 application;	 and	 Google	

Slides	presentation	program).		

This	innovative	model	provides	remarkable	benefits	to	the	computing	domain	as	a	result	

of	minimizing	upfront	investment	in	IT	infrastructure	and	software	licensing,	replacing	

them	with	cost	effective	on-demand	services.	Clients	no	longer	need	to	have	their	own	

servers;	they	can	access	cloud	services	in	a	scalable	form	without	managing	the	complex	

underlying	 technology	 infrastructure	 on	 which	 it	 relies.	 These	 advantages	 have	

motivated	 various	 industries	 to	 adopt	 the	 cloud	 computing	 model	 and	 move	 their	

applications	and	daily	operations	 into	the	cloud.	 Indeed,	according	to	a	recent	Flexera	

(2019)	survey,	94	percent	of	respondents	use	cloud	services	in	some	way.		

Though	 there	 is	noticeable	 growth	 in	 adoption	driven	by	 the	many	advantages	of	 the	

cloud	 computing	 model,	 the	 availability	 of	 cloud	 computing	 services	 is	 a	 significant	

concern.	Because	the	main	function	of	the	cloud	is	to	deliver	services	in	different	forms	

Chapter	1	: Introduction	 Roja	Ahmadi	

 2

on	the	 Internet,	and	also	 to	provide	secure	resources	 for	users,	 lack	of	availability	(or	

‘outages’)	 of	 cloud	 services	 can	 severely	 impact	 the	workload	 of	 enterprises	 and	 the	

experience	of	customers	who	use	such	services.			

The	 Cloud	 Security	 Alliance	 (CSA),	 the	 European	 Network	 and	 Information	 Security	

(ENISA)	and	the	National	Institute	of	Standards	and	Technology	(NIST)	have	identified	

Distributed	 Denial	 of	 Service	 Attacks	 (DDoS)	 as	 one	 of	 the	 greatest	 threats	 to	 the	

availability	 of	 cloud	 services	 and	 servers	 on	 the	 internet.	 	 DDoS	 attacks	 are	 easy	 to	

implement	and	challenging	 to	counter	and	 this	 type	of	attack	 is	growing	dramatically,	

causing	significant	financial	damage	to	organisations	through	outages	to	cloud	services	

across	the	world	(NETSCOUT,	2018).	

This	chapter	will	explain	the	broad	sense	of	the	research,	providing	further	argument	for	

DDoS	attacks	being	one	of	the	main	threats	to	cloud	computing	services	and	providing	a	

high-level	view	of	existing	research	in	this	area	in	order	to	frame	the	research	presented	

in	this	thesis.		

The	 remainder	 of	 this	 chapter	 is	 structured	 as	 follows.	 Section	 1.2	will	 introduce	the	

importance	and	impact	of	DDoS	attacks.	Section	1.3	will	provide	a	brief	review	of	existing	

research	into	DDoS	attacks	to	introduce	the	motivation	for	the	research	reported	in	this	

thesis.	 Section	 1.4	 and	 section	 1.5	 will	 then	 present	 the	 research	 objectives	 and	 the	

research	questions.	Section	1.6	will	explain	the	structure	of	the	thesis,	providing	a	high-

level	description	of	what	will	be	covered	in	each	of	the	remaining	chapters.	

1.2 The Importance and Impact of DDoS Attacks

This	 section	 will	 explain	 DDoS	 attacks	 and	 illustrate	 their	 importance	 by	 presenting	

examples	of	such	attacks	and	their	 impact	on	the	affected	organisations.	DDoS	attacks	

seek	to	make	network	resources,	such	as	websites	and	online	applications,	unavailable	to	

their	users.		A	DDoS	attack	is	typically	accomplished	by	overwhelming	the	target	system	

with	a	high	amount	of	unwanted	network	traffic	in	an	attempt	to	prevent	legitimate	users	

from	accessing	the	target	system’s	services	(David	and	Thomas,	2015).		

Chapter	1	: Introduction	 Roja	Ahmadi	

 3

In	most	DDoS	attacks,	 the	 attacker	uses	multiple,	 compromised,	 vulnerable	machines,	

termed	‘zombies’,	which	are	often	connected	into	‘botnets’.		There	are	different	types	of	

DDoS	 attack,	 depending	 on	 which	 layer	 of	 the	 network	 the	 attacker	 is	 targeting;	 to	

produce	the	attacks,	the	compromised	machines	are	equipped	with	tools	that	are	capable	

of	generating	fake	packets	and	establishing	connections	with	the	targeted	system	which	

cause	the	host	systems	to	suffer	a	range	of	 issues	(which	will	be	discussed	in	detail	 in	

Chapter	2).	For	all	of	the	DDoS	attack	types,	the	actions	of	the	zombies/botnet	result	in	

the	disruption	of	legitimate	users’	access	to	the	resources	of	the	targeted	system.	In	the	

case	of	cloud	computing	environments,	DDoS	attacks	have	a	more	devastating	effect	than	

they	do	on	local	servers	owing	to	the	distributed	nature	of	the	cloud	(Fernandes	et	al.,	

2014).	 Core	 features	 of	 the	 cloud,	 such	 as	multi-tenancy,	where	 the	 cloud	platform	 is	

shared	 by	 potentially	millions	 of	 ‘customers’,	 create	 potential	 issues	 since	 among	 the	

customers	 there	 might	 be	 malicious	 tenants	 whose	 aim	 is	 to	 cause	 harm	 to	 other	

legitimate	tenants/customers	(Hashizume,	et	al.,	2013).		

A	high	number	of	organisations	and	the	services	that	they	offer,	often	through	websites,	

are	 targeted	 by	 DDoS	 attacks,	 with	 revenge,	 financial	 advance,	 governmental	 issues,	

extortion,	reputation	damage	and	competition	between	cloud	providers	being	potential	

motivations	for	DDoS	attacks.		These	issues	may	become	more	common,	and	more	acute,	

for	organisations	in	terms	of	the	disruption	that	they	may	cause	given	the	ever-growing	

reliance	on	cloud	services,	but	DDoS	attacks	have	been	a	persistent	issue	over	the	last	20	

years.			

Indeed,	the	first	DDoS	attack	was	identified	in	1999	(MIT	Technology	Review,	2019).	By	

2000,	large	organisations,	such	as	Amazon,	Yahoo,	CNN	and	eBay,	were	being	targeted	by	

DDoS	attacks,	causing	disruption	in	their	services	for	a	few	hours	at	a	time	(Long,	2012).	

The	type	and	nature	of	DDoS	attacks	continued	to	develop	with,	for	example,	in	2002,	a	

number	 of	 DNS	 root	 servers	 being	 targeted	 simultaneously	 by	 a	 DDoS	 attack	 (Vixie,	

Sneeringer	and	Schleifer,	2012).		The	scale	of	DDoS	attacks	also	began	to	grow	as	such	

attacks	became	more	established.		In	2007,	for	example,	10,000	online	game	servers	were	

targeted	by	a	DDoS	attack	and,	in	2009,	GoGrid,	a	cloud	provider,	suffered	a	DDoS	attack	

that	resulted	in	half	of	its	customers	being	affected	(Kawamoto,	2009).	

Chapter	1	: Introduction	 Roja	Ahmadi	

 4

Very	high-profile	companies	have	also	been	targeted	by	DDoS	attacks,	including	Twitter	

and	Facebook	in	2009,	and	Visa,	MasterCard	and	PayPal	in	2010.		Large	financial	services	

institutions,	including	major	United	States	banks,	have	also	been	subject	to	DDoS	attacks,	

including	Bank	of	America,	Wells	Fargo,	Bancorp	and	others	who	were	affected	by	DDoS	

attacks	 in	 2012	 that	 caused	 simultaneous,	 significant	 disruptions	 to	 their	 systems,	

leading	to	outages	(Constantin,	2012).			

By	2015,	most	major	providers	of	cloud	services	had	become	targets	for	DDoS	attacks,	

including	Amazon	and	Rackspace.	Attacks	are	not,	though,	restricted	to	large	corporate	

organisations.	 	 For	 example,	 in	 the	 same	 year,	 Greatfire.org,	 an	 activist	 site	 which	

monitors	web	sites	that	are	blocked	by	the	Chinese	government,	was	attacked	by	a	heavy	

DDoS	attack	which	left	it	facing	a	bill	of	$30,000	per	day	for	its	use	of	Amazon	EC2	cloud,	

which	scaled	up	in	response	to	the	attack,	using	more	resources	to	respond	to	it	(Munson,	

2015).		

Arguably	the	 largest	DDoS	attack	to	date	took	place	 in	2018,	when	GitHub,	a	platform	

through	which	developers	can	manage	code,	was	attacked	with	(at	its	peak)	an	incoming	

traffic	rate	of	1.3	terabytes	per	second	and	incoming	packets	numbering	126.9	million	

per	second.		At	the	time	of	writing,	there	seems	no	likelihood	of	decline	in	DDoS	attacks,	

with	September	2019,	for	example,	seeing	Wikipedia	disrupted	by	such	an	attack.		

As	well	as	the	 inconvenience	to	an	organisation	and	its	customers	of	suffering	a	DDoS	

attack,	the	average	financial	loss	to	an	organisation	of	such	an	attack	is	estimated	to	be	

$444,000	US	(Darwish,	et	al.,	2013;	Girma,	et	al.,	2015;	Osanaiye,	et	al.,	2016;	Somani,	et	

al.,	2017),	providing	user/customer	experience	and	financial	imperatives	for	seeking	to	

better	understand	and	respond	to	DDoS	attacks.	

The	 next	 section	 will	 introduce	 existing	 research	 into	 DDoS	 attacks	 to	 frame	 the	

motivation	for	the	research	reported	in	this	thesis.		

1.3 Existing Research into DDoS Attacks

In	an	attempt	to	address	DDoS	attacks,	a	range	of	techniques	have	been	developed	and	

incorporated	into	Intrusion	Detection	Systems	(IDS)	in	cloud	environments	to	provide	

Chapter	1	: Introduction	 Roja	Ahmadi	

 5

well-defined	 security	mechanisms	 to	monitor	 and	analyse	 the	behaviour	of	 users	 and	

network	activities	with	 the	aim	of	detecting	possible	DDoS	attacks	and	other	 forms	of	

intrusion.		A	categorisation	of	IDS	and	the	techniques	used	within	them	is	provided	by	

Carlin,	Hammoudeh	and	Aldabbas	(2015).			

However,	IDS	systems	can	fail	to	accurately	detect	DDoS	attacks,	resulting	in	the	creation	

of	 false	 alarms,	owing	 to	 changes	 in	 the	 characteristics	of	 the	attacks (Sari, 2015).	 IDS	

systems	therefore	need	to	develop	over	time	in	order	to	cope	with	the	evolving	nature	of	

DDoS	attacks.		This	leads	to	on-going	work	into	specific	DDoS	attack	types,	and	ways	in	

which	 to	 accurately	 identify	 them,	 so	 that	 IDS	 may	 be	 subsequently	 improved	 by	

incorporating	refined,	or	newly-developed,	attack	identification	techniques/models.			

When	undertaking	research	in	this	area	there	are,	though,	several	broad	issues	that,	this	

thesis	will	argue,	require	consideration	and	attention.		First,	much	of	the	work	that	is	done	

by	industry	is	obviously	commercially	sensitive	and	uses	data	that	are	not	made	available	

to	researchers.	 	As	a	result,	 there	 is	a	 lack	of	public	cloud	datasets,	which	hinders	 the	

academic	development	of	models	 to	detect	DDoS	attacks	 in	cloud	environments.	 	As	a	

result	of	the	lack	of	public	cloud	datasets,	most	of	the	existing	academic	research	uses	the	

currently	available	non-cloud	datasets	to	develop	models	to	detect	DDoS	attacks	and	this	

may	lead	to	limitations	(Sharafaldin,	Lashkari	and	Ghorbani,	2018).		

Second,	datasets	are	often	structured	differently	from	each	other,	with	some	presenting	

packet-based	 data	 and	 others	 data	 that	 is	 time-based.	 	 This	 means	 that	 comparing	

detection	 techniques/models	 across	 different	 datasets	 can	 be	 challenging,	 if	 not	

impossible	(Ahmadi,	Macredie	and	Tucker,	2018).			

Third,	datasets	may	focus	on	different	attack	types	(Nadiammai	and	Hemalatha,	2014),	

meaning	that	even	if	the	datasets	are	publicly-available,	they	are	of	restricted	value	to	

other	researchers	since	they	limit	the	types	of	attack	which	they	may	be	used	to	explore.			

Fourth,	datasets	often	include	a	limited	feature	set	–	that	is,	they	only	contain	information	

on	an,	often	small,	number	of	network	traffic	data	features	(such	as	protocol	type,	byte	

values,	 etc.)	 (Tavallaee,	 Stakhanova	 and	 Ghorbani,	 2010).	 This	 naturally	 limits	 the	

complexity	 (and,	 potentially,	 the	 accuracy)	 of	 the	 detection	models	 that	may	 be	 built	

using	these	datasets.			

Chapter	1	: Introduction	 Roja	Ahmadi	

 6

Finally,	there	is	a	lack	of	transparency	in	some	of	the	research	studies	in	the	field	which	

makes	it	difficult	to	compare	their	results	with	those	of	other	published	studies	(Shiravi	

et	al.,	2011).	For	example,	the	way	in	which	datasets	have	been	created	and	processed	

prior	 to	 creating	 detection	models	 is	 often	 opaque,	 lacking	 the	 details	 that	would	 be	

necessary	for	other	researchers	to	seek	to	replicate	the	work	and	build	on,	or	challenge,	

it.			

Based	 on	 these	 identified	 issues,	 the	 next	 section	 will	 present	 the	 research	 aim	 and	

objectives	that	will	be	addressed	by	this	thesis.		

1.4 Research aim and objectives

To	address	these	broad	issues,	this	thesis	aimed	to	develop	an	accurate	cloud	intrusion	

detection	model	 that	might	be	useful	 in	mitigating	DDoS	 in	 the	cloud	environment	by	

discovering	 the	 relationship	 between	 attack	 features	 pairs	 within	 the	 different	 time	

frames.	As	such,	the	following	objectives	were	established	to	achieve	the	overall	aim	of	

this	research:	

• To	develop	an	intrusion	detection	model	using	two	different	datasets	through	the	

application	of	machine	learning	and	transfer	learning.	

• To	 generate	 a	 cloud	 intrusion	 detection	 dataset	 including	 a	 broad	 range	 of	

network	traffic	and	all	types	of	the	DDoS	attack.		

• To	 develop	 intrusion	 detection	 models	 using	 the	 generated	 cloud	 dataset	 to	

analyse	 the	 performance	 of	 the	 models	 and	 the	 relationships	 between	 attack	

features	within	five	different	time	frames.	

• To	present	a	transparent	approach	to	the	creation	of	the	cloud	dataset,	the	pre-

processing	 steps	 required,	 and	 the	 development	 and	 analysis	 of	 the	 detection	

models.		

The	next	section	will	present	the	research	questions	associated	with	these	objectives.		

Chapter	1	: Introduction	 Roja	Ahmadi	

 7

1.5 Research Questions

To	 address	 the	 objectives	 of	 this	 thesis,	 the	 following	 set	 of	 research	 questions	were	

framed	to	guide	the	research:	

1. Can	a	well-established	non-cloud	dataset	(which	includes	a	range	of	features	and	

attack	types)	be	used,	as	part	of	the	application	of	machine	learning	and	transfer	

learning,	to	develop	an	intrusion	detection	model	that	accurately	identifies	DDoS	

attack	types	in	one	of	the	few	existing	cloud	datasets?	

2. To	address	differences	 in	 the	structure	of	existing	 intrusion	detection	datasets,	

and	 the	variations	 in	 the	 feature	and	attack	 types	 that	 they	contain,	 can	a	new	

cloud	dataset	be	created	that	has	a	similar	structure	to,	broadens	the	feature	set	

of,	and	includes	the	same	attack	types	as,	the	well-established	non-cloud	dataset	

used	in	the	phase	of	the	research	that	addresses	research	question	1?	

3. If	such	a	cloud	dataset	can	be	developed,	can	it	be	used	to	create	accurate	DDoS	

attack	detection	models	and	what	effect	is	there	on	accuracy	if	the	times	periods	

of	analysis	are	varied	(choosing	a	range	of	periods	from	1	second	‘time	slices’	up	

to	10	second	‘time	slices’)?	

4. Does	an	analysis	of	 the	relationship	between	pairs	of	 features	 in	the	developed	

cloud	dataset	help	to	explain	any	variations	in	accuracy	across	the	time	periods,	

found	in	answering	research	questions	3?	

5. Can	the	approach	to	the	creation	of	the	cloud	dataset,	the	processing	of	the	dataset	

prior	 to	 the	 creation	 of	 the	 detection	models,	 the	model	 development,	 and	 the	

analysis	of	the	dataset	be	presented	in	a	transparent	and	clear	way	such	that	other	

researchers	would	be	likely	to	be	able	to	meaningfully	compare	their	results	to	

those	reported	in	this	thesis?		

1.6 Structure of the thesis

The	remainder	of	the	thesis	is	structured	into	six	further	chapters.			

Chapter	1	: Introduction	 Roja	Ahmadi	

 8

Chapter	2	will	explain	the	novelty	of	the	cloud	computing	‘platform’	and	its	services.	It	

will	 illustrate	 several	 issues	 that	 have	 arisen	 from	 the	 adoption	 of	 cloud	 computing,	

highlighting	DDoS	attacks	as	a	critical	negative	issue	in	relation	to	the	availability	of	cloud	

computing	services.	A	taxonomy	of	DDoS	attacks	will	be	presented	and	explained	in	terms	

of	the	network	model	and	its	 layers	 in	order	to	explain	 in	detail	how	each	attack	type	

operates.	 	 The	 chapter	 will	 then	 review	 existing	 approaches	 in	 the	 area	 of	 Intrusion	

Detection	Systems	 (IDS),	which	aim	 to	detect	DDoS	attacks	 in	 the	 cloud	environment,	

discussing	why	IDS	systems	may	fail	to	accurately	detect	DDoS	attacks.		As	a	result	of	this	

discussion,	the	research	gap	that	this	thesis	aims	to	explore	will	be	framed.	

Chapter	3	will	illustrate	the	process	of	developing	a	detection	model	which	aims	to	offer	

high	 levels	 of	 accuracy	 to	 detect	 DDoS	 attacks.	 The	 model	 was	 built	 using	 a	 well-

established	non-cloud	dataset	(NSL-KDD)	and	tested	with	one	of	the	few	available	cloud	

datasets	 (CIDD)	 through	 a	 combination	 of	 a	machine	 learning	 classifiers	 and	 transfer	

learning	to	remap	the	DDoS	intrusion/attack	types	(since	the	two	datasets	do	not	contain	

exactly	the	same	set	of	DDoS	attacks).	The	results	of	the	analysis	will	show	that	the	model	

performed	 well	 on	 the	 non-cloud	 dataset,	 but	 that	 its	 performance	 was	 limited	 in	

classifying	 attacks	 in	 the	 CIDD	 dataset	 owing	 to	 the	 different	 structures	 of	 the	 two	

datasets,	the	small	overlapping	feature	set	and	the	different	attack	types	that	the	datasets	

contained.	 	Chapter	3	will	end	by	arguing	that,	as	a	result	of	the	outcomes	of	this	 first	

phase	of	practical	work,	there	is	a	need	to	develop	an	original	cloud-based	dataset	to	be	

used	in	the	remainder	of	the	research	reported	in	this	thesis.			

Chapter	4	will	first	review	the	different	approaches	that	could	have	been	used	to	create	

such	a	cloud-based	intrusion	detection	dataset,	explaining	why	an	emulation	approach	

was	chosen	in	this	research.	The	chapter	will	present	all	of	the	software	and	hardware	

specifications	that	formed	the	experimental	environment.	 	The	tools	that	were	used	to	

generate	the	different	types	of	DDoS	attack	and	normal	network	traffic	that	comprised	

the	 final	dataset	 (which	had	a	 similar	structure,	 comprised	a	broader	but	overlapping	

feature	set,	and	contained	the	same	set	of	DDoS	attack	types	as	the	CIDD	dataset)	will	also	

be	described.	

Chapter	5	will	explain	the	process	that	was	used	to	build	two	detection	models	(one	using	

Naïve	Bayes	and	the	other	using	Random	Forest)	with	the	generated	dataset.	The	chapter	

Chapter	1	: Introduction	 Roja	Ahmadi	

 9

will	then	present	an	analysis	of	the	models’	performance	in	five	selected	time	intervals	

by	observing	the	accuracy	of	each	model	and	identifying	feature	patterns	associated	with	

any	misclassifications.	Through	the	analysis,	Chapter	5	will	show	that	the	performance	of	

the	two	models	generally	improved	over	time,	that	their	best	performance	was	at	the	7	

second	time	interval,	but	that	no	discernable	patterns	were	found	in	terms	of	the	different	

features	that	made	up	the	misclassification	cases.		The	Chapter	will	suggest	that	further	

analysis	 of	 the	 relationships	 between	 the	 features	 in	 the	 dataset	 might	 be	 useful	 in	

seeking	to	understand	the	accuracy	of	the	models	at	the	different	time	intervals.	

Chapter	6	will	 explain	 the	use	of	 cross-correlation	 analysis,	which	was	 applied	 to	 the	

dataset	 to	discover	 relationships	between	pairs	of	 features	over	 time,	with	 the	aim	of	

understanding	the	accuracy	of	the	models	at	the	different	time	intervals.	The	chapter	will	

explain	 the	 approach	 taken,	 leading	 to	 the	 identification	 of	 the	 ‘highest	 significant	

correlation’	value	between	the	feature	pairs	in	the	generated	CCF	graphs.	Chapter	6	will	

then	present	the	results	of	the	analysis,	which	will	show	that	there	was	a	general	increase	

in	the	frequency	of	‘highest	significant	correlation’	values	between	feature	pairs	as	the	

time	 intervals	 increased,	 but	 that	 there	 was	 not	 a	 direct	 relationship	 between	 the	

frequencies	and	the	accuracy	at	the	different	time	intervals	for	either	model.	

Chapter	 7	 will	 provide	 a	 brief	 review	 of	 each	 of	 the	 chapters	 in	 the	 thesis	 before	

presenting	 answers	 to	 the	 research	 questions	 set	 out	 in	 section	 1.4.	 	 From	 here,	 the	

chapter	will	frame	the	overall	contributions	of	the	research.		Limitations	of	the	work	will	

be	identified	and	discussed	and	areas	for	future	work	will	be	considered.			

1.7 Summary

This	chapter	has	provided	an	introduction	to,	and	overview	of,	this	research	effort.	It	has	

highlighted	the	growing	importance	of	cloud	computing	and	the	prevalence	and	impact	

of	DDoS	attacks	in	cloud	computing	environments.	Further,	 it	has	 introduced	research	

into	DDoS	attack	detection	in	cloud	computing,	illustrating	the	challenges	for	existing	IDS	

systems	in	detecting	DDoS	attacks	in	cloud	environments.		The	chapter	has	introduced	a	

number	of	broad	issues	that	are	important	when	considering	research	in	this	area	and	

used	them	to	frame	a	set	of	research	questions	that	the	remainder	of	the	thesis	will	seek	

Chapter	1	: Introduction	 Roja	Ahmadi	

 10

to	address.		Finally,	this	chapter	has	explained	the	structure	of	the	thesis,	providing	a	brief	

summary	of	each	of	the	remaining	chapters.		

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 11

Chapter 2 : Cloud Computing and Distributed
Denial of Service Attacks

2.1 Introduction

A	definition	of	cloud	computing,	its	essential	characteristics	and	its	different	models	of	

deployment	and	services,	will	be	explained	 in	this	chapter	to	highlight	 the	advantages	

that	 cloud	 computing	 has	 brought	 to	 the	 computing	 domain.	 	 The	 chapter	 will	 then	

describe	number	of	issues	that	have	arisen	as	a	result	of	adopting	cloud	computing.		It	

will	review	these	issues	and	then	focus	on	the	security	threats	that	represent	the	most	

critical	issues	in	the	cloud,	focusing	on	what	is	argued	to	be	the	most	important	security	

issue:	Distributed	Denial	of	Service	(DDoS)	attacks.		The	chapter	will	explain	why	there	is	

this	critical	problem	in	the	cloud	and	introduce	a	taxonomy	of	DDOS	attacks,	discussing	

the	network	model	and	its	layers	to	highlight	the	structural	issues	in	the	protocols	at	the	

layers	 that	are	exploited	by	 the	different	attack	 types,	before	analyzing	 the	associated	

intrusion	detection	systems.	This	will	lead	to	the	identification	of	weaknesses	with	the	

current	detection	systems,	framing	the	research	gap	on	which	this	thesis	will	focus.		

The	chapter	is	structured	as	follows.	 	Section	2.2	will	 introduce	basic	cloud	computing	

concepts	to	set	 the	context	 for	 the	area	of	 interest.	 	Section	2.3	will	explore	the	major	

security	 issues	 in	 cloud	 computing	 before	 arguing,	 in	 section	 2.4	 that	 DDoS	 attacks	

represents	 an	 important	 security	 issue.	 	 Section	2.5	will	 provide	 a	 taxonomy	of	DDoS	

attacks,	explaining	them	in	terms	of	the	network	model	and	its	layers	in	order	to	provide	

a	detailed	understanding	of	how	each	attack	type	operates.		This	will	lead	to	a	discussion	

of	systems	that	seek	to	identify	DDoS	attacks	in	the	cloud	(called	cloud	intrusion	detection	

systems)	of	and	issues	with	them,	which	subsequently	frames	the	research	gap,	proposed	

in	section	2.7.	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 12

2.2 Basic Cloud Computing Concepts

This	section	will	explain	the	growth	in	the	adoption	and	use	of	cloud	computing,	so	it	is	

important	 to	understand	 the	main	characteristics	and	 the	core	 infrastructure	of	 cloud	

computing	that	has	driven	this	growth.	 	The	chapter	will	then	focus	on	security	issues	

that	 are	 associated	with,	 or	 arise	 from,	 these	 features	of	 cloud	 computing,	 setting	 the	

scene	for	the	focus	of	this	thesis	on	a	specific	type	of	security	threat	(DDoS	attacks).		

According	 to	 the	 National	 Institute	 of	 Standards	 and	 Technology	 (NIST),	 “cloud	

computing	is	a	model	for	enabling	convenient,	on–demand	network	access	to	a	shared	

pool	of	configurable	computing	resources	(e.g.,	network,	server,	storage,	application,	and	

services)	that	can	be	rapidly	provisioned	and	released	with	minimal	management	effort	

of	five	essential	characteristics,	three	service	models,	and	four	deployment	models”	(Mell	

and	 Grance,	 2011,	 p.2).	 	 Figure	 2.1	 captures	 the	 fundamental	 characteristics	 of	 cloud	

computing,	and	presents	the	different	types	of	cloud	service	and	deployment	model.		Each	

area	will	be	explained	in	detail	in	the	remainder	of	this	section.	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 13

	

Figure 2.1 Essential characteristics of cloud computing (Vaquero et al., 2009)

As	 Figure	 2.1	 shows,	 in	 the	 top	 layer,	 cloud	 computing	 makes	 use	 of	 five	 essential	

characteristics.		The	‘broad	network	access’	characteristic	is	the	capability	of	providing	

all	 the	 computing	 resources	 that	 are	 available	 over	 the	 network,	 accessed	 through	

standard	mechanisms	that	promote	use	by	heterogeneous	thin-	or	thick-client	platforms	

(e.g.,	smart	mobile	phones,	laptops,	and	PDAs).		The	‘rapid	elasticity’	characteristic	is	the	

capability	of	quickly	and	elastically	managing	computing	resources,	 in	some	 instances	

automatically,	 to	 rapidly	 scale	out	 and	promptly	 release	 resources	 to	quickly	 scale	 in.		

There	 are	 almost	 unlimited	 available	 computational	 resources/capabilities	 for	

provisioning	to	customers/clients	that	can	be	purchased	at	any	time	and	in	almost	any	

quantity.	 	 The	 ‘measured	 service’	 characteristic	 offers	 a	 metering	 capability	 for	 the	

resources	used,	based	on	a	pay-as-you-go	basis.		It	enables	cloud	systems	to	automatically	

govern	and	enhance	resource	usage,	and	provides	transparency	for	both	provider	and	

customer/client.	 	 The	 ‘on-demand,	 self-service’	 characteristic	 is	 the	 capability	 of	

providing	 almost	 unlimited	 computing	 resources,	 such	 as	 network	 and	 storage,	 as	

required,	 without	 any	 interaction	 with	 a	 service	 provider.	 	 Finally,	 at	 this	 layer,	 the	

‘resource-pooling’	 characteristic	 enables	 a	 service	 provider	 to	 pool	 all	 the	 computing	

resources	 to	 serve	 many	 customers/clients	 based	 on	 a	 multi-tenancy	model.	 	 It	 also	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 14

dynamically	 allocates	 or	 reallocates	 the	 computing	 resources	 according	 to	

customer’s/client’s	demands.		

As	 the	second	 layer	of	Figure	2.1	 shows,	 the	 five	 fundamental	 characteristics	of	 cloud	

computing	are	implemented	in	three	different	types	of	service	model	that	are	offered	to	

organisations	 and	 individuals	 on	 a	 pay-as-you-go	 basis:	 Software	 as	 a	 Service	 (SaaS);	

Platform	as	a	Service	(PaaS);	and	Infrastructure	as	a	Service	(IaaS).		

In	the	SaaS	model,	the	cloud	provider	offers	an	application	that	is	hosted	on	the	cloud	

infrastructure	as	a	service	to	customers/clients.		This	level	of	service	is	accessible	from	

various	client	devices	through	a	thin	interface,	such	as	a	web	browser	(e.g.,	web-based	

email)	or	dedicated	apps.		The	clients	are	free	of	managing	or	controlling	any	aspect	of	

the	 underlying	 cloud	 infrastructure,	 including	 storage,	 servers,	 operating	 system	 and	

network.		Dropbox	is	one	of	the	examples	of	this	model,	allowing	users	to	share	files	and	

folders	easily	(Shahzad,	2014).	

In	the	PaaS	model,	a	cloud	provider	offers	a	computing	platform	for	developers,	including	

the	operating	system,	programming	languages,	database,	web	servers,	etc.	These	services	

allow	clients	to	deploy,	manage	and	test	their	own	applications	without	the	need	to	install	

any	 software	on	 their	 local	machine	and	without	 the	need	 to	manage	and	 control	 the	

underlying	 cloud	 infrastructure.	 	 Amazon	 Web	 Service	 (AWS),	 Windows	 Azure,	 and	

Google	 App	 Engine	 are	 examples	 of	 PaaS	 offerings	 (Samimi,	 Teimouri	 and	 Mukhtar,	

2016).		

In	 the	 Infrastructure	 as	 a	 Service	 (IaaS)	model,	 a	 cloud	 provider	 delivers	 virtualized	

computing	resources	such	as	virtual	machines,	network	and	storage.		At	this	service	level,	

clients	also	do	not	manage	or	govern	 the	underlying	cloud	 infrastructure,	but	 they	do	

have	 limited	 control	 of	 some	 networking	 components.	 	 Microsoft	 Azure	 and	 EC2	 are	

examples	of	IaaS	offerings	(Al	Morsy,	Grundy	and	Müller,	2010).	

As	 the	 last	 layer	 of	 Figure	 2.1	 shows,	 the	 three	 levels	 of	 the	 cloud	 computing	 service	

delivery	are	commonly	deployed	 in	 four	different	models:	Public	cloud;	Private	cloud;	

Hybrid	cloud;	and	Community	cloud.	

Public	 cloud	platforms	 are	 those	 that	 are	made	 available	 by	 a	 particular	 organisation	

(who	also	host	 the	service)	 for	general	public	use	or	 for	 the	use	of	a	 large	number	of	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 15

industry	groups,	such	as	government	organisations	and	businesses	(Zhang,	He	and	Liu,	

2008).	 	 In	contrast,	 in	the	Private	cloud	deployment	model,	 the	cloud	infrastructure	 is	

implemented	 only	 for	 a	 single	 organisation's	 use.	 	 This	 type	 of	 deployment	might	 be	

managed	 by	 third	 party	 organisation	 (Zissis	 and	 Lekkas,	 2012).	 	 In	 the	 Hybrid	 cloud	

deployment	 model,	 the	 cloud	 infrastructure	 comprises	 two	 or	 more	 different	 cloud	

infrastructure	types	(private,	community,	or	public)	that	stay	as	unique	entities,	but	are	

bound	 together	 by	 standardized	 or	 proprietary	 technology	 that	 enables	 data	 and	

application	 portability	 (Alam,	 Pandey	 and	 Rautaray,	 2015).	 	 In	 the	 Community	 cloud	

deployment	 model,	 cloud	 infrastructure	 is	 shared	 by	 a	 specific	 community	 of	

organisations	that	have	a	shared	concern.		The	infrastructure	may	be	managed	by	third	

party	organisation	(Akherfi,	Gerndt	and	Harroud,	2016).	

This	section	has	introduced	the	service	delivery	types	and	deployment	models	associated	

with	cloud	computing	to	provide	a	broad	view	of	cloud	computing.		The	security	issues	

on	which	 this	 research	will	 focus	 can	affect	 all	 of	 the	deployment	models	 and	 service	

deliveries	types,	and	are	significant,	not	least	because	of	the	growth	in	cloud	computing,	

which	will	be	addressed	in	the	next	section.			

2.2.1 Growth in migration to cloud computing

This	 subsection	 will	 describe	 how	 the	 novel	 characteristics	 of	 cloud	 computing	 have	

brought	advantages	to	the	computing	domain,	helping	to	explain	why	there	has	been	such	

a	growth	in	the	migration	to	the	cloud	computing.		This	subsection	will	then	describe	the	

most	 common	 issues	 experienced	 when	 adopting	 cloud	 computing	 because	 it	 is	 also	

important	to	appreciate	the	problems	that	may	be	faced	in	order	to	be	able	to	address	

them	so	that	this	model	of	computing	can	be	effectively	utilized.		

The	on-demand	characteristic	of	cloud	computing	leads	to	the	optimization	of	computing	

resources.	 	 The	 resource	 pooling	 characteristic	 provides	 faster	 access	 to	 almost	 all	

computing	resources.	The	measured-service	characteristic	of	cloud	computing,	based	on	

the	pay-as-you-go	pricing	model,	results	 in	minimizing	the	customer’s/client’s	upfront	

costs	of	IT	infrastructure.	Moreover,	this	paradigm	considerably	reduces	the	operational	

cost	 for	 organisations	 and	 improves	 business	 agility	 by	 offering	 highly	 scalable	 and	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 16

available	software	and	hardware	infrastructure	as	a	result	of	the	broad	network	access	

and	 rapid	 elasticity	 characteristics.	 	 This	 is	 reflected	 in	 Forrester’s	 research,	 which	

suggests	that	“80%	of	cloud	adopters	believe	that	it	helps	their	organisation	to	reduce	IT	

cost”	(RapidValue	Solutions,	2015).		The	scale	of	interest	in	cloud	computing	is	captured	

by	Right	Scale,	who	report	that	“The	global	cloud	computing	market	will	grow	more	than	

$241	billion	by	2020”	(RapidValue	Solutions,	2015).	

The	appearance	of	novel	cloud	computing	platforms	represents	a	critical	change	in	the	

way	in	which	Information	Technology	(IT)	services	are	designed,	developed,	deployed,	

scaled,	updated,	paid	for,	and	maintained.		The	novel	characteristics	of	cloud	computing,	

providing	the	three	service	models	and	four	deployment	models	 introduced	in	section	

2.2),	 have	 brought	 substantial	 advantages	 to	 the	 computing	 domain.	 	 All	 of	 these	

advantages	of	 cloud	 computing	have	 led	 to	 it	 gaining	 significant	popularity	 and	being	

broadly	adopted	in	different	industries	and	academia	(Changchit	and	Chuchuen,	2018).	

Despite	there	being	a	noticeable	growth	in	adoption	driven	by	the	benefits	of	the	cloud	

computing	model,	migration	has	created	a	number	of	issues	related	to	the	technological,	

environmental	 and	organisational	aspects	of	 cloud	computing	adoption.	 	According	 to	

relevant	literature,	the	most	important	issues	relate	to	data	security,	availability	and	data	

lock-in	(Morgan	and	Conboy,	2013).		

Data	 security	 is	 the	 top	 concern	 of	 companies	 considering	 moving	 their	 data	 and	

computing	resources	to	the	cloud.		This	may	be	because	they	are	not	fully	aware	of	how	

security	at	all	levels	can	be	achieved	when	their	data	are	held	away	from	their	premises	

(Nedev,	2014).		Availability	related	to	services	and	resources	is	another	risk	when	using	

the	cloud-computing	model.		In	the	case	of	an	outage,	caused	by	network	or	system	failure	

or	by	cyber-attacks,	the	unavailability	of	services	would	critically	affect	the	organisation’s	

and/or	 their	 operation	 overall	 (Behl	 and	 Behl,	 2012).	 	 Data	 lock-in	 issues	 refer	 to	

problems	associated	with	the	lack	of	compatibility	among	existing	cloud	technologies	and	

may	result	in	the	dependency	of	customers	on	their	current	cloud	vendor’s	products	and	

services,	 meaning	 that	 they	 would	 be	 unable	 to	 change	 suppliers	 without	 (often	

significant)	switching	costs	(Nedev,	2014).	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 17

Consequently,	 to	 effectively	 utilize	 the	 innovations	 offered	 by	 cloud	 computing,	 these	

issues	need	 to	be	 taken	 into	consideration.	 	This	research,	 therefore,	aims	 to	 focus	on	

specific	aspects	of	 the	main	concern	associated	with	the	adoption	of	cloud	computing:	

security	issues.	

2.3 Cloud Computing Security

This	section	will	describe	the	major	security	 issues	 in	cloud	computing	in	order	argue	

what	this	research	sees	as	the	most	crucial	security	issue,	before	developing	approaches	

that	seek	to	address	it	though	practical	work.	

Although	 section	 2.2.1	 has	 already	 presented	 the	 core	 characteristics	 associated	with	

cloud	computing,	various	service	delivery	and	deployment	models	of	cloud	computing	

provide	 enhanced	 and	 optimized	 services	 to	 customer/clients.	 	 They	 introduce	 new	

security	 issues	 in	 addition	 to	 the	 existing,	 inherent	 security	 issues	 of	 conventional	 IT	

infrastructure.	 	These	security	 issues	seek	 to	address	 the	vulnerabilities	and	potential	

threats	to	the	infrastructure	and	characteristics	of	cloud	computing	that	are	subject	to	

various	 types	 of	 cyber-attack	 (Gonzalez,	 et	 al.,	 2012).	 	 A	 vulnerability	 is	 defined	 as	 a	

weakness	of	the	cloud	computing	model	that	can	be	exploited	by	a	cyber	attacker	to	gain	

access	to	cloud	resources	(Modi,	et	al.,	2013).		A	threat	in	cloud	computing	is	a	potential	

factor	that	causes	serious	damage	to	the	cloud	resources.		A	cyber-attack	is	an	action	that	

exploits	 the	 vulnerabilities	 of	 the	 cloud	 infrastructure,	 resulting	 in	 disrupting	 and	

compromising	 cloud	 resources	 (Somani,	 et	 al.,	 2015).	 	 The	 security	 issues	 in	 cloud	

computing	 environments	 that	have	been	 ranked	as	 the	 top	 concerns	 in	 relation	 to	 its	

adoption	 are	multi-tenancy,	 insecure	APIs,	 account	 hijacking,	 shared	 technology,	 data	

breaches	and	distributed	denial	of	service	attacks	(Morgan	and	Conboy,	2013).	

The	 security	 issue	 associated	 with	 multi-tenancy	 in	 cloud	 computing	 is	 about	 its	

underlying	 infrastructure	 technology,	 which	 based	 on	 a	 multi-tenancy	 model.	 	 For	

example,	 in	a	cloud	environment	various	operating	systems	will	be	running	on	a	host	

operating	 system.	 	 In	 this	kind	of	 configuration,	 an	attacker	 can	 compromise	 the	host	

operating	system	to	gain	access	to	all	of	the	other	operating	systems	(Modi	et	al.,	2013).			

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 18

Security	issues	related	to	Insecure	Application	Programming	Interfaces	(APIs)	reflect	the	

critical	role	of	APIs	in	cloud	computing	architecture,	as	users	employ	APIs	to	manage	and	

interact	with	cloud	services	(Wagner,	2015).		Unavailable	or	insecure	APIs	have	a	direct	

effect	 on	 the	 accessibility	 of	 cloud	 resources.	 	 Therefore,	 APIs	must	 protect	 properly	

against	any	malicious	attempt	to	access	the	resources	to	which	they	relate.		That	this	is	a	

significant	problem	is	reflected	in	the	fact	that:	“In	2015,	the	US	Internal	Revenue	Service	

(IRS)	exposed	over	300,000	records	via	a	vulnerable	API”	(DarkReading,	2012).	

Account	 hijacking	 represents	 a	 security	 issue	 where	 individual	 or	 organisational	

accounts	are	‘stolen’	to	impersonate	the	account	owner.		Account	hijacking	is	not	a	new	

security	 issue,	 but	 the	 advance	 of	 cloud	 computing	 amplifies	 the	 issue’s	 impact.	 F	 or	

example,	 if	 an	 attacker	 gains	 access	 to	 the	 user’s	 credentials,	 it	 can	 result	 in	

eavesdropping	on	user	activities	and	transactions,	manipulating	data	and	redirecting	a	

user	 to	 malicious	 sites	 (Gonzalez	 et	 al.,	 2012).	 	 In	 2014,	 for	 example,	 Amazon	 Web	

Services	 (AWS)	 was	 compromised	 when	 it	 was	 unable	 to	 guard	 the	 administrative	

console	with	multi-factor	 authentication.	 	 As	 result,	 all	 of	 the	 company’s	 assets	were	

‘cracked’	(Bourne,	2014).	

Security	 issues	 related	 to	 shared	 technology	 refer	 to	 shared	 infrastructure	 and	

application	scalability	in	cloud	computing.		For	example,	an	underlying	component	of	the	

cloud,	that	supports	the	cloud	service	delivery	model,	may	not	be	strongly	designed	to	

support	the	multi-tenancy	nature	of	cloud	architectures	(Gonzalez	et	al.,	2012),	making	it	

subject	 to	 shared	 technology	 vulnerabilities.	 	 This	 issue	 creates	 risk	 in	 the	 cloud	

environment	because	it	can	potentially	disturb	the	whole	cloud	system	at	once.	

The	data	breach	security	issue	is	about	confidential	data	that	may	be	released	as	a	result	

of	unauthorized	access.	A	data	breach	can	result	 from	application	vulnerabilities,	poor	

security	 mechanisms,	 and	 human	 error.	 	 This	 security	 issue	 is	 not	 unique	 to	 cloud	

computing	 –	 traditional	 network	 infrastructures	 are	 subject	 to	 the	 same	 risk;	 but	 the	

cloud’s	 use	 of	 shared	 resources	 and	 the	 highly-accessible	 nature	 of	 cloud	 computing	

services	make	it	a	more	attractive	target	 for	attackers	(Cloud	Security	Alliance,	2016).		

The	scale	of	such	breaches,	which	are	seemingly	quite	common,	can	be	significant.		For	

example,	 the	 UK-based	 TalkTalk	 telecommunications	 company	 had	 a	 security	 breach	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 19

incident	 that	 resulted	 in	 the	 extraction	 of	 four	 million	 clients’	 personal	 banking	

information	(Gibbs,	2015).		

The	Distributed	Denial-of-Service	(DDoS)	attack	 is	one	of	 the	most	significant	security	

issues	for,	and	powerful	threats	to,	cloud	computing	(Sabahi,	2011).		This	type	of	attack	

aims	to	saturate	the	network	with	a	high	volume	of	unwanted	traffic	 to	prevent	users	

from	accessing	services	and	applications.		In	a	cloud	computing	environment,	because	of	

the	 distributed	 nature	 of	 the	 cloud	 and	 its	 nature	 as	 a	 shared-resource	 platform,	 the	

impact	 of	 DDoS	 attacks	 is	 greater	 than	 in	 traditional	 network	 infrastructures.	 	 DDoS	

typically	takes	advantage	of	the	characteristic	of	cloud	computing	in	order	to	launch	the	

attacks	(Gonzalez	et	al.,	2012).		The	impact	of	such	attacks	can	be	high	for	organisations.		

For	example,	a	DDoS	attack	on	the	Amazon	cloud	infrastructure	caused	a	service	outage	

of	over	19	hours	(Metz,	2009).	

This	section	has	introduced	and	explained	the	top	security	issues	in	cloud	computing	to	

provide	the	broad	security	context	in	which	this	research	effort	is	located.		This	research	

will	 focus	 on	 security	 issues	 related	 to	 DDoS	 attacks	 as	 the	 rate	 of	 DDoS	 attacks	 is	

increasing	in	cloud	computing	environments	and	it	is	ranked	as	one	of	the	top	security	

issues	(Modi	et	al.,	2013).		

2.4 Distributed Denial of Service Attacks

This	section	will	introduce	the	DDoS	attack	and	its	process	before	explaining	why	the	rate	

of	 DDoS	 attacks	 is	 increasing	 in	 cloud	 computing.	 	 This	 is	 important	 because	 it	 is	

imperative	 to	understand	what	 is	 different	 about	 cloud	 configurations	 that	 cause	 this	

type	of	attack	to	be	more	successful	in	this	type	of	environment.			

As	has	already	been	explained,	a	DDoS	attack	aims	to	render	unavailable	all	computing	

resource	and	to	disturb	the	offered	services	in	different	ways	(which	will	be	explained	in	

more	detail	in	section	2.5).		Figure	2.2	presents	the	process	of	a	DDoS	attack.		

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 20

Figure 2.2 The DDoS attack process (Somani et al., 2015)

In	the	DDoS	attack	process,	an	attacker	can	be	one	or	more	person.		A	handler	is	(one	of)	

the	 attacker’s	machine(s),	 also	 called	masters	 or	 botnet	 controllers,	 and	 is	 capable	 of	

monitoring	multiple	 zombies/botnets.	 	 Zombies	 (botnets)	 are	 compromised	machines	

that	 are	 running	 a	 program	 that	 is	 responsible	 for	 sending	 a	 stream	 of	 traffic	 to	 the	

targeted	system	(also	known	as	the	victim).		The	attacker	scans	the	network	with	various	

network	 scanning	 tools	 to	 identify	 vulnerabilities.	 	 Afterwards,	 through	 the	 exploited	

vulnerabilities,	the	attacker	can	gain	access	to	the	victim’s	machines	(a	web	server	or	a	

data	server	in	Figure	2.2)	and	compromise	them	with	the	specific	attack	program,	which	

is	called	malware	(Catteddu	and	Hogben,	2009).		

The	 rate	 of	DDoS	 attacks	 is	 growing	 in	 cloud	 computing	 environments	 (Bhushan	 and	

Gupta,	2018).	As	already	noted,	the	main	features	and	characteristics	of	cloud	computing	

(see	 section	 2.2)	 and	 the	 related	 security	 issues	 in	 the	 cloud	 (see	 section	 2.3),	 and	

vulnerabilities	of	the	Internet	in	general,	are	all	factors	that	contribute	to	the	occurrence	

of	DDoS	attacks	in	cloud	computing	(Beitollahi	and	Deconinck,	2012).	Moreover,	one	of	

the	major	reasons	for	the	growth	of	DDoS	attacks	is	the	development	of	the	botnet.		The	

on-demand	characteristic	of	cloud	computing	contributes	to	enabling	the	deployment	of	

powerful	botnets	for	DDoS	attacks,	whereas	in	traditional	network	infrastructures	it	is	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 21

quite	complex	to	compromise	many	machines	in	a	short	period	of	time	and	use	them	as	

botnets	to	launch	a	DDoS	attack	(Santanna	et	al.,	2015).		

The	broad	network	access	and	elasticity	characteristics	of	the	cloud	create	an	attractive	

environment	for	the	attacker	to	produce	more	frequent,	large,	and	complex	DDoS	attacks	

to	overwhelm	the	victim	network,	as	attackers	take	advantage	of	the	cloud’s	high-speed	

broad	network	and	ability	to	deploy	botnets	(Adhianto	et	al.,	2010).	

The	cloud’s	 resource	pooling	characteristic,	based	on	virtualization	and	multi-tenancy	

technologies,	 provides	 opportunities	 for	 an	 attacker	 to	 use	 a	 virtual	machine	 (VM)	 to	

build	more	botnets	for	performing	an	attack,	which	uses	less	memory	and	other	storage	

capacity	with	lower	costs.		In	addition,	in	a	multi-tenancy	environment,	an	attack	against	

one	of	customer	is	an	attack	against	all	customers	in	the	targeted	cloud	system	(Stillwell	

et	al.,	2010).		

Finally,	the	measured	service	characteristic	in	the	cloud,	which	is	based	on	the	pay-as-

you-go	model,	has	the	potential	to	be	exploited	by	an	attacker	in	a	way	that	consumes	

more	 cloud	 resources.	 	 This	 can	 result	 in	 financial	 losses	 and	 service	 downtime	 for	 a	

victim	(Somani	et	al.,	2015).		For	example,	Greatfire.org	was	attacked	by	a	heavy	DDOS	

attack	 leading	 it	 to	 accumulate	 a	high	bill	 of	 $30,000	per	day	on	Amazon’s	EC2	 cloud	

(Munson,	2015).	

Having	 introduced	 the	 general	 idea	 of	 a	 DDoS	 attack,	 and	 explained	 how	 the	 cloud	

environment	may	 be	more	 vulnerable	 to	 such	 attacks,	 the	 next	 section	will	 consider	

different	types	of	DDoS	attack.			

2.5 A Taxonomy of DDoS Attacks

This	section	will	introduce	the	main	ways	that	DDoS	attacks	might	happen	in	a	network.		

It	will	also	present	a	taxonomy	of	DDoS	attacks	to	show	the	similarities	and	differences	

between	the	different	attack	types.		To	understand	the	attack	types,	it	is	important	first	

to	understand	the	network	communication	model	and	related	protocols	associated	with	

each	 layer	 of	 the	 network	 to	 appreciate	 how	 data	 is	 transferred	 over	 the	 network	

according	to	a	set	of	defined	protocols.		Then,	the	functionality	of	each	protocol	in	relation	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 22

to	 each	 layer	 of	 network	 model	 will	 be	 explained;	 as	 the	 protocols	 are	 introduced,	

reference	will	be	made	to	how	some	features	of	these	protocols	might	be	vulnerable	in	

relation	to	the	occurrence	of	specific	DDoS	attack	types	related	to	each	layer	of	network	

model	in	cloud	computing	network	environments.	

The	Open	System	Interconnect	(OSI)	model	and	Transmission	Control	Protocol/Internet	

Protocol	(TCP/IP)	models	are	the	most	popular	network	models	in	use	today.		The	four	

layers	 of	 the	 TCP/IP	 network	model	map	 onto	 to	 the	 seven	 layers	 of	 the	 OSI	model,	

showing	that	they	closely	correspond.		In	this	research,	it	was	decided	to	use	the	TCP/IP	

network	model	because	it	is	a	more	generic	model	to	describe	the	different	layers	of	the	

network	and	the	associated	protocols	than	the	OSI	model.		

The	TCP/IP	network	model	is	one	of	the	most	common	abstract	models	of	networking	or	

Internet	 communications;	 it	 explains	 the	 operation	 of	 a	 network	 in	 terms	 of	 how	

hardware	(computers)	can	connect	and	operate	across	it	(Zaman	and	Karray,	2009).		This	

model,	 often	 referred	 to	 as	 the	 TCP/IP	 suite	 or	 stack,	 specifies	 how	 data	 must	 be	

packaged,	addressed,	broadcast,	directed	and	received	over	the	network	by	defining	a	set	

of	rules	for	each	layer	of	the	model	(Juniper,	2017).		Figure	2.3	presents	the	model	and	

shows	that	it	is	organized	into	four	layers,	with	each	layer	having	a	set	of	communication	

protocols	that	have	their	own	functionality.		Moreover,	according	to	Osanaiye,	Choo	and	

Dlodlo	(2016),	the	different	DDoS	attacks	can	be	grouped	according	to	which	network	

model	layer	that	they	target	(see	Figure	2.4).		

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 23

Figure 2.3 The TCP/IP network model (Lakshman and Madhow, 1997)

	

Figure 2.4 A taxonomy of DDoS attack types in a cloud computing, organized by the

network layer that they target (Osanaiye, Choo and Dlodlo, 2016)

For	example,	when	a	user	(the	‘sender	computer’	in	Figure	2.3)	sends	a	request	to	access	

services	 from	 the	 cloud	 server	 (the	 ‘destination	 computer’	 in	 Figure	 2.3),	 the	 request	

travels	from	the	top	(application)	layer	to	the	lowest	(physical)	layer	to	be	received	by	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 24

the	cloud	server	(as	the	arrow	shows	in	Figure	2.3).		Then,	it	moves	from	the	lower	level	

to	the	top	layer	of	the	destination	computer	to	be	processed.		The	request	takes	the	form	

of	packets	in	the	network.		A	packet	is	a	unit	of	data	that	follows	a	specific	format	to	be	

transmitted	on	a	network	(Unuth,	2017).	 	At	the	 lowest	 level	 in	the	model	(see	Figure	

2.3),	the	physical	layer	(also	called	data	link	layer)	is	responsible	for	interconnecting	host	

computers	 in	 the	 network,	 framing	 (converting	 the	 raw	 bits	 to	 groups	 of	 bits,	 called	

packets,	 and	 adding	 a	 link	 layer	 header	 to	 create	 a	 frame)	 and	 physical	 addressing	

(adding	 a	 hardware-level	 address	 by	 translating	 the	 addressing	 used	 in	 the	 Internet	

Protocol	 layer	to	link	layer	addresses,	such	as	Media	Access	Control	(MAC)	addresses)	

(Incapsula,	2017).		The	physical	layer	is	not	the	focus	of	this	research	and	is	not	directly	

relevant	to	our	consideration	of	DDoS	attacks	so	will	not	be	considered	in	further	detail.			

2.5.1 The network layer: protocols and attack types

The	second	layer	up,	the	network	layer,	checks	the	routing	of	the	data	over	the	Internet.		

Internet	 Protocol	 (IP)	 and	 Internet	 Control	 Message	 Protocol	 (ICMP)	 are	 the	 main	

protocols	 associated	 with	 this	 layer	 (Cobb,	 2017).	 	 IP	 is	 responsible	 for	 routing	 and	

addressing	a	packet	from	a	sender	host	machine	to	a	destination	host	machine	over	the	

network	(Techopedia,	2017).	 	ICMP	is	used	as	an	error	reporting	protocol	for	network	

devices	such	as	routers	(which	forward	the	data	between	devices	on	the	network).		ICMP	

generates	and	sends	error	messages	or	operational	information	to	the	source	IP	address	

(sender)	when	the	network	is	unable	to	deliver	the	sent	IP	packets,	or	a	request	cannot	

be	fulfilled.		Returning	to	our	example,	if	the	desired	cloud	services	are	not	available,	an	

ICMP	 message	 is	 used	 to	 deliver	 the	 information	 to	 the	 sender	 that	 “the	 service	 is	

unavailable”	or	that	“the	host	is	unreachable”	(Cha	and	Kim,	2011).		The	ICMP	protocol	is	

therefore	mostly	used	for	diagnostic	purposes.		

Figure	2.5	illustrates	the	format	of	the	IP	protocol	header	for	Internet	Protocol	Version	4	

(IPV4)	and	 Internet	Protocol	Version	6	(IPV6),	 identifying	a	packet	which	contains	14	

fields	in	IPV4	and	8	fields	in	IPV6.		Each	of	the	fields	will	now	be	explained,	before	the	

ICMP	message	structure	is	addressed.	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 25

Figure 2.5 The structure of the IPV4 and IPV6 packet header (Al-Shaeya, 2010)

There	are	some	fields	in	the	IPV4	header	that	correspond	directly	to	IPV6	header	fields.		

In	 fact,	 IPV6	 has	 been	 designed	 to	 be	 basically	 similar	 to	 IPV4,	 with	 only	 minor	

modifications	 with	 regard	 to	 protocol	 details	 (Comer,	 2006	 p.563).	 	 Figure	 2.5	 uses	

different	colours	to	indicate	the	changes	in	the	fields	from	IPV4	to	IPV6.		The	Version	field	

(4	 bits)	 in	 IPV4	 identifies	 the	 Internet	 protocol	 version	 4.	 	 The	 Version	 field	 in	 IPV6	

contains	the	same	detail,	but	includes	6	bits	for	this	field.		The	IHL	field	(4	bits),	defines	

the	packet	header	size;	but	in	IPV6	this	field	is	replaced	by	the16-bit	Payload	Length	field	

that	specifies	the	size	of	the	packet	plus	the	size	of	header.		The	Type	of	Service	field	in	

IPV4	(8	bits)	specifies	the	quality	of	the	service,	such	as	delay,	throughput,	etc.;	however,	

this	field	has	been	renamed	to	the	Traffic	Class	field	in	IPV6.		The	Total	Length	field	in	

IPV4	(16	bits)	gives	the	sum	of	the	size	of	the	actual	data	being	communicated	and	the	

size	of	the	packet	header,	with	the	maximum	size	being	65,535	octets	(an	octet	is	a	unit	

of	digital	data	that	consist	of	eight	bits).		

The	Identification	field	in	IPV4	(16	bits)	includes	a	specific	number	which	is	related	to	

the	packet	fragment.		Fragmentation	is	a	process	that	breaks	packets	into	smaller	pieces	

(fragments)	in	order	to	pass	them	through	a	transmission	link	so	that	they	may	then	be	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 26

re-assembled	by	the	destination	computer.	 	For	example,	if	an	IP	packet	is	fragmented	

during	transmission,	all	the	fragments	include	the	same	identification	number	to	specify	

the	original	packet	to	which	belong.	 	The	Flag	field	in	IPV4	controls	the	fragmentation	

process	and	includes	3	bits.		The	first	bit	must	be	set	to	0.		The	second	bit	is	called	the	DF	

(don’t	fragment)	flag,	indicating	that	the	packet	should	not	be	fragmented.		The	third	bit	

is	called	the	MF	(more	fragment)	flag,	which	indicates	that	there	are	more	fragments	to	

come.	 	 The	 Fragment	 Offset	 field	 in	 IPV4	 contains	 13	 bits	 and	 is	 usually	 used	 in	 the	

reassembly	of	fragmented	packets	and	indicates	the	position	of	a	fragment	in	the	original	

fragmented	IP	packet.		

The	Time	to	Live	(TTL)	field	in	IPV4	includes	13	bits,	which	identify	the	maximum	time	

that	a	packet	can	stay	on	a	network	and	thus	prevents	a	packet	from	looping	in	a	network	

indefinitely.		The	maximum	value	of	TTL	is	set	to	225	(the	measurement	unit	is	seconds).		

Whenever	the	packet	passes	through	the	router,	the	value	is	decreased	by	one;	once	it	

reaches	zero,	the	router	drops	the	packet.		The	TTL	field	in	IPV4	corresponds	to	the	Hop	

limit	field	in	IPV6.		Unlike	in	IPV4,	IPV6	interprets	the	TTL	value	as	the	maximum	fixed	

value	of	hops	that	the	packets	can	make	before	being	discarded.		

The	Protocol	field	in	IPV4	includes	8	bits	and	specifies	the	protocol	of	the	higher	level	to	

which	 the	packet	should	be	routed.	 	The	Header	Checksum	 field	 in	 IPV4	 indicates	 the	

checksum	value	of	the	whole	header	and	is	used	by	the	destination	machine	to	check	for	

errors	 in	 the	 packet	 header.	 	 The	 Source	 Address	 field	 in	 IPV4	 contains	 32	 bits	 and	

specifies	 the	 source	 address	 from	 which	 the	 packets	 originate/are	 being	 sent;	 this	

corresponds	to	the	field	of	source	address	(128	bits)	in	IPV6.		

The	Identification	field,	Flags	field,	Fragment	Offset	field	and	Header	Checksum	field	have	

been	replaced	with	the	Flow	Label	 field	and	Next	Header	 field	 in	 IPV6.	 	 IPV6	uses	 the	

information	in	these	fields	to	associate	packets	with	precise	flow	and	priority.		

The	Destination	Address	field	in	IPV4	contains	32	bits	that	identify	the	intermediate	or	

final	destination	address	of	 the	packets;	 this	maps	 to	 the	Field	of	Destination	Address	

(128	bits)	in	IPV6.		Finally,	the	Option	field	and	Padding	field	in	IPV4	are	often	used	for	

security	and	control	of	the	packets.		IPV6	does	not	have	these	fields	(Zargar,	2013).		

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 27

As	 has	 already	 been	 noted,	 the	 second	 protocol	 at	 this	 layer	 is	 ICMP.	 	 Figure	 2.6	

demonstrates	the	format	of	an	ICMP	message	that	is	transmitted	as	an	IP	packet	over	the	

network.		The	packet	includes	the	entire	IP	header	that	encapsulates	the	ICMP	message.		

The	Type	section	determines	the	type	of	ICMP	message	that	is	being	sent	to	the	host;	the	

Code	section	includes	more	information	about	the	type	section;	and	the	Checksum	section	

indicates	the	error	during	the	transmission	process.		Therefore,	all	these	three	sections	

of	an	ICMP	packet	plus	the	original	IP	header	identify	whether,	and	if	so	for	what	reason,	

the	packet	failed	to	reach	its	destination.	

Figure 2.6 The format of an ICMP message

As	Figure	2.4	illustrates,	the	network	layer	is	associated	with	two	types	of	DDoS	attack:	

Smurf	and	Ping	of	Death	(PoD).		

In	Smurf	DDoS	attacks,	the	attacker	exploits	the	ICMP	protocol.	 	The	attacker	starts	an	

attack	by	generating	ICMP	packets	and	attaching	the	‘spoofed’	(or	false)	IP	address	of	the	

targeted	computer	(in	our	earlier	example,	a	cloud	server)	to	a	packet	which	is	broadcast	

to	the	network	using	an	IP	broadcast	address.		The	aim	is	to	solicit	echo	responses	from	

all	the	devices	on	the	network.		Since	routers,	through	which	the	packets	will	usually	be	

directed,	often	communicate	with	a	high	number	of	devices,	such	as	VMs	in	the	cloud,	

many	responses	may	be	generated.		This	makes	the	targeted	cloud	server	expend	all	its	

resources	 handling	 the	 requests,	 and	 results	 in	 a	 successful	 DDoS	 attack	 in	 terms	 of	

consuming	 the	available	bandwidth	and	 leaving	 the	 targeted	server	unable	 to	process	

legitimate	requests	(Beitollahi	and	Deconinck,	2012).		

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 28

In	PoD	DDoS	attacks,	 the	attacker	uses	 the	 ‘ping’	 function,	a	utility	 tool	 for	 testing	the	

connectivity	 of	 a	 remote	 host	 which	 operates	 by	 generating	 an	 ICMP	 message	 echo	

request	to	the	targeted	host	expecting	an	echo	reply.		The	attacker	sends	malformed	‘ping’	

packets,	which	 exceed	 the	maximum	packet	 size,	 to	 the	 targeted	 system.	 Since	 a	ping	

packet	greater	than	65,535	bytes	disrupts	the	Internet	Protocol,	the	targeted	system	ends	

up	with	an	over-sized	packet,	causing	buffer	overflow	and	resulting	in	a	crash	(Darwish	

and	Capretz,	2013).	

2.5.2 The transport layer: protocols and attack types

The	Transport	 layer,	 the	 third	 layer	 in	 Figure	2.3,	 is	 responsible	 for	 providing	 logical	

communication	 between	 various	 hosts	 running	 application	 processes	 (such	 as	 cloud	

servers).		These	communication	services	are	implemented	by	two	crucial	protocols	in	this	

layer:	The	Transmission	Control	Protocol	(TCP);	and	the	User	Datagram	Protocol	(UDP)	

(Kristof,	2002).		

TCP	 is	 the	main	protocol	of	 the	network	 layer.	 	This	protocol	allows	host	machines	to	

establish	a	connection	to	exchange	data	packets	over	a	network.		It	ensures	the	delivery	

of	data	packets	to	a	destination	and	guarantees	that	the	sequence	of	the	packets	is	the	

same	by	using	the	times	that	they	were	sent	(Rouse,	2014).		The	TCP	connection	process	

is	known	as	a	“three-way-handshake”.		First,	a	legitimate	user	sends	a	request	(in	the	form	

of	packet)	to	the	server	to	establish	a	connection	by	sending	a	SYN	message	(a	SYN	–	short	

for	synchronize	–	message	is	a	communication	between	two	applications)	to	the	server.		

Next,	 the	 server	 acknowledges	 the	 request	 by	 sending	 a	 SYN-ACK	 (synchronize-

acknowledge)	message	to	the	user.		Finally,	the	user	replies	with	an	ACK	(acknowledge)	

message	 that	means	 an	 acknowledgement	 of	 the	 received	data,	 and	 the	 connection	 is	

established.		Figure	2.7	shows	the	TCP	packet	header	format.	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 29

Figure 2.7 The format of a TCP message

The	 Source	 Port	 field	 (16	 bits)	 identifies	 the	 source	 port	 number	 of	 the	 sender.	 	 The	

Destination	Port	(16	bits)	specifies	the	port	number	of	the	destination	computer.	 	The	

Sequence	Number	field	(32	bits)	includes	a	random	number	that	specifies	the	first	initial	

segment	 number	 that	 was	 sent	 when	 establishing	 the	 TCP	 three-way-handshake	

(explained	above).	 	The	Acknowledgement	Number	field	(32	bits)	 includes	a	sequence	

number	that	is	generated	by	the	destination	computer	to	inform	the	sender	computer	of	

the	expected	octet	number	(Tetz,	2011).		The	HLEN	field	(4	bits),	also	called	data	offset,	

identifies	the	size	of	the	TCP	header.	 	Depending	on	the	option	selected	in	the	“Option	

field”,	the	size	may	vary.		The	Reserved	field	(3	bits)	is	set	to	zero	and	it	is	for	future	use.		

The	Flag	Field	(6	bits)	controls	the	flow	of	the	data	by	the	numbers	of	flags;	the	SYN	flag	

(1	bit)	and	the	FIN	flag	(1	bit)	identify	the	initiation	and	termination	of	the	connection,	

respectively.		The	ACK	flag	(1	bit)	shows	the	acknowledgement	section	of	the	connection.		

The	SYN	flag	(1	bit)	indicates	the	sequence	number	of	the	synchronized	message.		The	

PSH	flag	(1	bit)	is	for	requesting	a	push	function.		The	URG	flag	(1	bit)	is	for	use	when	the	

urgent	pointer	field	is	valid.		

The	Windows	Size	field	(16	bits)	 indicates	the	size	of	the	buffer	set	by	the	destination	

machine	(receiver)	in	each	connection,	pointing	to	the	sender	machine	how	much	data	is	

expected	to	be	received.	 	The	RST	flag	(1	bit)	specifies	the	end	of	the	connection.	 	The	

Checksum	field	(16	bits)	specifies	 the	 integrity	of	 the	TCP	segment	data,	 to	determine	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 30

whether	 any	 segments	 have	 been	 damaged,	 and	 is	mostly	 used	 by	 UDP.	 	 The	 Urgent	

Pointer	field	is	only	significant	when	the	URG	flag	is	set.		

As	has	already	been	mentioned,	the	other	protocol	used	in	the	Transport	Layer	is	UDP	

(User	Datagram	Protocol).		The	UDP	protocol	is	a	connectionless	Internet	protocol	which	

provides	a	mechanism	to	send	the	message	from	an	application	program	on	one	host	to	

the	 application	 program	 on	 another	 host	 in	 the	 cloud	 environment.	 	 Unlike	 the	 TCP	

protocol,	 the	reliability	of	 the	packet	transmission	 is	not	compulsory	for	this	protocol.		

Ordering	 the	 incoming	 messages,	 providing	 feedback	 to	 the	 sender,	 and	 having	 an	

acknowledgement	process	are	not	the	responsibilities	of	the	UDP	protocol.		Therefore,	a	

UDP	message	may	arrive	out	of	order	or	may	be	lost.	 	Examples	of	the	use	of	the	UDP	

protocol	 are	 in	 on-line-chat	 and	 online-gaming	 (Incapsula,	 2017).	 	 All	 of	 these	 issues	

make	this	protocol	vulnerable	to	DDoS	attacks.		

Figure	2.8	illustrates	the	format	of	the	UDP	packet	header,	which	includes	four	fields	plus	

data.	

Figure 2.8 The format of a UDP Packet header

The	Source	Port	and	Destination	Port	fields	include	16	bits	that	specify	the	sender’s	and	

receiver’s	 port,	 respectively.	 	 Different	 ports	 are	 allocated	 to	 common/well-known	

services,	some	are	used	for	registered	services	and	others	may	be	used	for	any	purpose.	

The	Source	Port	number	 is	an	optional	 field	and	is	usually	set	to	zero	 if	 it	 is	not	used.		

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 31

When	it	used,	it	identifies	the	port	to	which	the	replied	message	is	expected	to	be	sent.		

The	length	field	includes	the	total	octets	in	a	UDP	packet,	and	includes	the	header	and	the	

data.		The	minimum	value	for	this	field	is	eight	bits.		The	checksum	field	includes	16	bits,	

is	an	optional	field	and	is	set	to	zero,	which	means	that	it	has	not	been	computed.	

As	Figure	2.4	illustrates,	the	Transport	Layer	is	associated	with	five	types	of	DDoS	attack:	

TCP-SYN	attack,	Teardrop	attack	and	Land	attack	often	exploit	 the	TCP	protocol;	UDP	

Flood	attack	and	DNS	Flood	attack	frequently	exploit	the	UDP	protocol.	

In	 a	 TCP-SYN	 DDoS	 attack	 (see	 Figure	 2.9),	 an	 attacker	 exploits	 the	 TCP	 connection	

(three-way	 handshake)	 by	 first	 sending	 frequent	 SYN	 packets	 to	 the	 targeted	 cloud	

server,	often	using	a	 fake	 IP	address.	 	Subsequently,	a	server	 that	 is	unaware	 that	 the	

attack	 taking	place	replies	 to	each	connection	with	a	SYN-ACK	packet	 from	each	open	

port.		As	a	result,	in	the	third	stage,	either	the	cloud	server	never	receives	the	SYN-ACK,	

in	the	case	of	using	a	spoofed	IP	address,	or	a	malicious	user	never	sends	the	expected	

ACK.	 	 Therefore,	 the	 server	will	 wait	 for	 acknowledgement	 of	 the	 final	 ACK,	 and	 the	

connection	will	 be	 left	 open.	 	 The	 server	 frequently	 receives	 SYN	 requests	 before	 the	

connection	times	out.		This	leaves	a	high	number	of	open	connections	to	the	server,	and	

results	 in	services	being	denied	for	 legitimate	users	and	the	server	crashing	(Mirkovic	

and	Reiher,	2004).	 	One	example	of	a	successful	TCP-SYN	flood	attack	was	on	Amazon	

Cloud	Web	Services	in	2011	(RapidValue	Solutions,	2015).		

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 32

Figure 2.9 TCP-SYN DDoS flooding attacks (Radware, 2013)

In	a	Teardrop	attack,	an	attacker	exploits	the	data	offset	field	of	the	TCP	header	packet,	

sending	malformed	TCP	packets	to	the	targeted	cloud	server.		Once	the	victim	(a	cloud	

server)	has	received	these	packets,	owing	to	the	bug	(with	fragment	overlapping	offset)	

in	the	TCP	packets	the	victim/server	will	be	unable	to	reassemble	these	packets	(Somani	

et	al.,	2015).		As	result,	the	packets	overlap,	and	this	crashes	the	system.	

In	a	Local	Area	Network	Denial	(Land)	attack,	an	attacker	exploits	the	Source	Port	and	

Destination	Port	fields	of	the	TCP	packet	header	(as	explained	earlier;	see	Figure	2.8).	The	

attacker	sends	spoofed	TCP	packets	to	targeted	machines	and	sets	these	packets	in	a	way	

such	 that	 the	host	Source	Port	and	host	Destination	Port	are	 the	same	(Moradian	and	

Science,	2006).		This	makes	an	empty	connection	which	replies	to	itself	until	the	targeted	

machines	are	overwhelmed,	with	all	their	resources	consumed	by	the	attack.	

In	UDP	Flood	attacks,	an	attacker	commonly	exploits	the	protocol’s	vulnerabilities,	such	

as	the	unreliability	property	of	UDP,	to	launch	a	flooding	UDP	attack	(Incapsula,	2017).	

An	attack	is	initiated	by	generating	a	UDP	packet;	as	the	UDP	protocol	does	not	have	a	

specific	packet	 format,	 the	attacker	makes	an	oversize	packet	and	 fills	 it	with	random	

numbers	or	text.		Afterwards,	these	UDP	packets	are	sent	to	many	random	ports	on	the	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 33

targeted	 cloud	 server,	 and	 then	 the	 targeted	 cloud	 server	 checks	 the	 associated	

application	on	the	port	that	‘listens’	to	the	incoming	UDP	packet.		Once	the	targeted	cloud	

server	 observes	 that	 the	 given	 UDP	 packets	 are	 not	 associated	 with	 the	 ‘listening’	

application	 on	 the	 port,	 it	 responds	 with	 an	 “ICMP	 destination,	 unreachable	 packet"	

(Osanaiye	and	Dlodlo,	2015).		As	a	result,	UDP	packets	will	fill	the	reply	queues	and	the	

cloud	server	will	be	unable	to	respond	to	legitimate	clients,	resulting	in	a	denial	of	service	

attack.	

In	a	Domain	Name	System	(DNS)	Flood	attack,	an	attacker	attempts	to	overwhelm	the	

DNS	server.		The	DNS	server	is	known	as	the	‘phone	book	of	the	Internet’	and	provides	

useful	information	about	the	domain	names	of	all	the	connected	devices	on	the	Internet	

and	translates	them	to	Internet	Protocol	(IP)	addresses	(Beal,	2017).	 	 It	also	maps	the	

domain	 name	 of	 services	 to	 IP	 addresses.	 	 All	 Internet-based	 services,	 such	 as	 cloud	

computing,	and	web	browsing,	rely	on	DNS.		A	DNS	attack	is	usually	initiated	by	sending	

a	high	number	of	DNS	requests,	generating	UDP	traffic	which	causes	legitimate	users	to	

be	unable	to	access	to	the	DNS	server	(Hope,	2017).	

2.5.3 The application layer: protocols and attack types

The	Application	Layer,	the	top	layer	in	Figure	2.3,	is	used	to	invoke	application	programs	

that	have	access	to	most	of	the	services	on	the	Internet.		This	layer,	then,	interacts	with	

the	lower	layers,	such	as	the	Transport	Layer,	for	the	sending	and	receiving	of	data.		The	

Hypertext	Transfer	Protocol	(HTTP)	is	one	of	the	most	important	protocols	associated	

with	the	Application	Layer.		It	is	responsible	for	exchanging	information	and	transferring	

various	types	of	file	on	the	Internet	(Cobb,	2017).		The	responsibility	of	this	protocol	is	in	

the	way	in	which	messages	are	configured	and	sent,	and	what	sort	of	actions	web	servers	

and	browsers	should	 take	 to	 reply	 to	different	commands.	 	For	example,	when	a	user	

enters	a	web	address	 in	a	browser,	 the	HTTP	protocol	directs	 this	request	 to	 the	web	

server	(Beal,	2017).		An	HTTP	request	includes	a	header,	a	blank	line	and	the	information	

being	sent.		Table	2.1	presents	the	structure	of	the	HTTP	header	and	the	meaning	of	each	

of	its	fields.	(There	are	also	other	protocols	associated	with	this	layer	such	as	Simple	Mail	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 34

Transfer	 Protocol	 (SMTP),	 File	 Transfer	 Protocol	 (FTP))	 but	HTTP	 is	 used	here	 as	 an	

illustrative	example	given	its	ubiquitous	use).			

Header Meaning

Content-length Size of the item in octet

Content-Type Type of the Item

Content-Encoding Encoding used for the item

Content-Language Languages used in item

Table 2.1 The HTTP header

In	a	Slowloris	DDoS	attack,	 an	attacker	 initiates	 the	attack	by	 sending	 incomplete	but	

legitimate	HTTP	packets	to	the	targeted	cloud	web	service	to	open	a	connection,	and	then	

holds	 the	 connection	 open	 and	 does	 not	 release	 it	 before	 the	 system	 reaches	 the	

maximum	 number	 of	 allowable	 open	 connections.	 	 This	 results	 in	 a	 denial	 of	 service	

attack	(Defense,	2015).		Unlike	the	other	forms	of	DDoS	attack,	Slowloris	attacks	do	not	

require	a	large	number	of	requests	to	be	sent	to	crash	the	system	(Anitha	and	Malliga,	

2013).	

2.6 Cloud Intrusion Detection Systems

Having	introduced	the	different	DDoS	attack	types	and	explained	how	they	relate	to	the	

layers	 of	 the	 network	 model	 and	 its	 protocols,	 this	 section	 will	 discuss	 Intrusion	

Detection	 Systems	 (IDS),	 addressing	 the	main	 configurations,	 approaches,	 techniques	

and	deployment	models	that	are	used.		It	is	important	to	understand	how	traditional	IDS	

can	 deal	 with	 DDoS	 attacks	 in	 the	 cloud-computing	 environment.	 	 Additionally,	 this	

section	will	identify	the	weaknesses	of	these	systems	which	make	it	difficult	for	them	to	

effectively	 detect	DDoS	 attacks	 –	 these	weaknesses	 frame	 the	 ‘research	 gap’	 that	 this	

thesis	aims	to	address.			

Intrusion	covers	attempts	that	aim	to	compromise	the	security	of	different	components	

of	 a	network	–	 in	 the	 case	of	 this	 research	 the	 cloud	–	 such	as	VMs,	 routers,	network	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 35

bandwidth,	 and	 applications.	 	 For	 example,	 a	 common	 intrusion	 type	 in	 the	 cloud	

environment	 is	DDoS	attacks,	as	 the	taxonomy	presented	 in	detail	 in	section	2.4.2	has	

explained	(Modi,	et	al.,	2013).		

In	an	attempt	to	address	such	attacks,	IDS	have	been	implemented	in	cloud	environments	

to	provide	well-defined	security	mechanisms	to	monitor	and	analyse	the	behaviour	of	

users	 and	 network	 activities	 with	 the	 aim	 of	 detecting	 possible	 intrusions.	 	Where	 a	

potential	 intrusion	 is	 identified,	 the	 IDS	automatically	alerts	 the	administrator	 so	 that	

they	make	take	further	action	(Girma,	et	al.,	2015).		

The	two	main	components	of	an	IDS	are	data	collection	and	data	analysis.		Data	collection	

is	the	process	of	capturing	the	audit	data,	such	as	network	traffic	packets,	data	from	a	

network	interface,	and	system	calls	(requests	from	the	user	for	action	from	the	operating	

system).	 	 Data	 analysis	 is	 the	 process	 of	 analyzing	 the	 audit	 data	 using	 well-known	

approaches	and	techniques,	such	as	signature-based	intrusion	detection,	anomaly-based	

intrusion	detection,	statistical	techniques,	data	mining	techniques	and	machine	learning	

techniques.	 	 Figure	 2.10	 illustrates	 the	 associated	 approaches,	 techniques	 and	

deployment	models	used	in	IDS	(Chen,	2014).		Each	of	the	elements	will	be	discussed	in	

the	remainder	of	this	section.			

Figure 2.10 Intrusion detection approaches, techniques and models (Defence, 2015)

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 36

There	are	two	main	detection	approaches	for	IDS:	signature-based	intrusion	detection;	

and	 anomaly-based	 intrusion	 detection.	 	 The	 two	 approaches	 can	 be	 implemented	

together	 or	 separately.	 	 Signature-based	 intrusion	 detection	 is	 also	 called	 misuse	

detection,	 and	 its	 focus	 is	 on	 known	 attacks.	 	 It	 attempts	 to	 build	 a	 model	 with	

characteristics	 of	 the	 attacks	 (each	 characteristic	 is	 called	 a	 signature	 or	 rule).	 	 For	

example,	the	different	types	of	DDoS	attack	may	have	different	signatures	(the	detail	of	

these	signatures	will	be	explained	in	Chapter	3).	The	signature-based	intrusion	detection	

system	observes	the	behaviour	of	the	system	or	network	traffic	and	compares	it	with	a	

pre-defined	 attack	 pattern	 model	 and	 generates	 an	 alarm	 (comprising	 information	

regarding	the	attack	type,	and	the	victim	of	the	system)	if	the	behaviour	of	the	system	or	

network	match	with	existing	attack	signatures	(Meng,	Li	and	Kwok,	2014).		As	a	result,	

known	 attacks	 can	 be	 detected	 through	 signature-based	 detection.	 	 However,	 the	

detection	system	may	not	be	effective	against	unknown	attacks	(Bhuyan,	et	al.,	2014).	

In	anomaly-based	intrusion	detection	systems,	the	system	attempts	to	model	the	normal	

behaviour	of	the	system.		This	model	includes	features	that	represent	user	activities	and	

network	connections	over	a	time	period.		For	example,	returning	to	Figure	2.3,	when	a	

legitimate	user	or	a	malicious	user	(the	sender	computer)	sends	a	request	to	the	cloud	

server	 (the	 destination	 computer),	 this	 request	 travels	 from	 the	 top	 layer	 of	 TCP/IP	

network	layer	under	a	set	of	protocols	(as	explained	in	detail	in	section	2.5)	to	reach	to	

the	cloud	server.		In	the	data	collection	and	data	analysis	phase	of	an	IDS,	this	traffic	can	

be	 collected	 and	 analyzed	 using	 various	 techniques	 and	 approaches	 (which	 will	 be	

explained	in	later	paragraphs	of	this	section).		Afterwards,	the	detection	system	compares	

the	observed	behaviour	of	 the	system	with	 the	stored	model.	 	Any	deviation	 from	the	

normal	behaviour	model	is	considered	to	be	suspicious	behaviour,	leading	the	system	to	

raise	an	alarm	with	the	administrator.		As	such,	anomaly-based	IDS	would	seem	to	have	

an	 advantage	 over	 signature-based	 IDS	 in	 detecting	 unknown	 attacks.	 However,	 they	

might	 suffer	 from	 false	 alarm	 issues,	 as	not	 all	 deviations	 from	 the	normal	behaviour	

model	will	be	attacks	(Chen,	Chen	and	Lin,	2010).	

As	seen	in	Figure	2.11,	there	are	three	main	techniques	that	are	used	for	IDSs,	according	

to	analysis	of	 literature	 in	 the	 field	 (Shelke,	 Sontakke	and	Gawande,	2012).	 	The	 first,	

which	uses	statistical	techniques,	has	the	capability	to	model	the	behaviour	of	the	system,	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 37

including	legitimate	and	malicious	behaviours.		The	models	tend	to	model	a	number	of	

related	features	of	either	attack	or	normal	behaviour	over	a	specific	period	of	the	time.		

For	example,	 the	system	can	create	a	profile	or	a	model	with	the	activities	of	 the	user	

during	the	login	session	–	which	may	include	features	such	as	login	time,	logout	time,	the	

number	of	TCP	connections,	the	amount	and	duration	of	computing	resources	consumed	

during	 the	 session	 –	 captured	 as	 statistical	 distributions.	 	 The	 detection	 system	 then	

creates	two	profiles:	one	saves	the	average	value	of	these	features	and	the	second	detects	

an	attack	if	the	values	exceed	standard	threshold	values	(Thatte,	Mitra	and	Heidemann,	

2011).	

Data	 mining	 represents	 the	 second	 type	 of	 technique	 used,	 and	 is	 the	 process	 of	

discovering	meaningful	 patterns	 in	 a	 large	 dataset	 using	 classification,	 clustering	 and	

association	rule	tools	to	find	useful	patterns	to	help	detect	intrusion/attacks.		The	data	

can	be	mined	from	cloud	system	logs	or	cloud	network	connection	traffic	logs,	such	as	

TCP	dump	data	(these	log	files	will	be	explained	in	detail	in	Chapter	3).		Moreover,	data	

mining	techniques	can	be	applied	to	model	the	normal	behaviour	of	the	cloud	network	

connection	traffic	for	the	system	to	allow	the	differentiation	of	attack	traffic	from	normal	

traffic	(Elshoush	and	Osman,	2011).	

Some	machine	 learning	 techniques	have	 a	 capability	 for	 learning	 and	enhancing	 their	

functionality	 over	 the	 time,	 and	 are	 the	 third	 type	of	 technique	used.	 	 For	 example,	 a	

machine	learning	focus	may	be	used	to	build	a	model	of	either	user	behaviour	or	DDoS	

attack	 behaviour	 that	 can	 optimize	 its	 functionality	 in	 a	 loop	 cycle	 and	 can	 adjust	 its	

implementation	scheme	based	on	feedback	information	(Patel,	Taghavi,	Bakhtiyari	and	

Celestino,	2013).		The	machine	learning	technique	is	similar	to	the	data	mining	technique.		

However,	machine	 learning	 uses	 the	 data	 to	 predict	 the	 attack	 pattern,	whereas	 data	

mining	 uses	 the	 data	 to	 find	 the	 attack	 patterns	 which	 may	 be	 useful	 for	 intrusion	

detection.			

As	Figure	2.10	demonstrates,	host-based	intrusion	detection	systems	and	network-based	

intrusion	 detection	 systems	 are	 two	 forms	 of	 IDS	 deployment	 model	 that	 can	 be	

implemented	based	on	 the	defined	defensive	scope.,	and	 they	can	be	configured	 to	be	

used	together	or	separately	in	an	IDS.		

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 38

A	Host-based	Intrusion	Detection	System	(HIDS)	is	defined	as	protecting	the	host	from	

intrusion.		In	the	cloud	environment,	such	systems	can	be	installed	on	each	VM	or	cloud	

server	that	hosts	cloud	services	and	resources.	 	HIDS	can	either	use	anomaly-based	or	

signature-based	 detection.	 	 HIDS	monitors	 the	 traffic	 within	 VMs	 and	 from	 VMs	 and	

analyses	 the	 information,	 which	 is	 collected	 from	 system	 calls,	 detecting	 possible	

intrusion	through	any	modification	to	them	(Lo,	Huang,	and	Ku,	2010).	

Network-based	Intrusion	Detection	Systems	(NIDS)	focus	on	protecting	the	local	network	

from	intrusion.		The	NIDS	detection	approach	can	be	also	signature-based	or	anomaly-

based.		NIDS	monitor	the	traffic	within	the	connected	hosts	to	detect	intrusion	such	as	a	

DDoS	attack	and	protect	 the	cloud	services	and	resources	 from	any	possible	 intrusion	

(Osanaiye	and	Dlodlo,	2015).			

According	 to	 the	 literature,	 there	 are	 four	main	metrics	 that	 are	used	 to	 evaluate	 the	

performance	of	 IDS	techniques:	True	Positive	(TP);	True	Negative	(TN);	False	Positive	

(FP);	and	False	Negative	(FN)	(Om,	2012).		A	True	Positive	(TP)	is	where	an	anomaly	is	

correctly	classified	as	an	intrusion.		A	True	Negative	(TN)	is	where	an	anomaly	is	correctly	

classified	as	not	being	 intrusion.	 	A	False	Positive	(FP)	 is	where	an	 intrusion	 is	 falsely	

classified	as	being	an	 intrusion.	 	A	False	Negative	(FN)	 is	where	an	 intrusion	is	 falsely	

classified	as	normal	behaviour.	

2.7 Research Gap

There	is	a	lot	of	research	work	in	the	area	of	IDS	that	focuses	on	improving	the	accuracy	

of	the	intrusion	detection	system	to	effectively	detect	intrusions	such	as	DDoS	attacks.		

For	 example,	 Mondal	 et	 al.	 (2017)	 presented	 a	 fuzzy-based	 mechanism	 to	 detect	

anomalous	behaviour	of	the	attacker	in	the	cloud,	while	Zekri	et	al.	(2017)	proposed	a	

DDoS	 attack	 detection	 approach	 using	 a	 decision	 tree	 machine	 learning	 algorithm.	

Bhushan	 and	 Gupta	 (2018)	 presented	 a	 statistical	 approach	 to	 detect	 low	 rate	 DDoS	

attacks	 in	 the	 cloud	 and	 Madhupriya,	 Shalinie	 and	 Rajeshwari	 (2018)	 proposed	 a	

Dimension-Reasoning	Local	Outlier	Factors	(DR-LOF)	approach	to	identify	the	source	of	

DDoS	attacks	in	the	cloud.		Liu	et	al.	(2018)	verified	the	security	policy	of	cloud	computing	

to	 detect	 DDoS	 attacks	 by	 implementing	 hidden	 Markov	 model	 and	 neural	 network	

algorithms,	whileSultana	et	al.	(2019)	proposed	a	Hop	Count	Filtering	(HCF)	mechanism	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 39

to	prevent	and	detect	IP	spoofing	DDoS	attacks	in	the	cloud.	Gupta	and	Chaturvedi	(2019)	

introduced	 a	 method	 to	 detect	 DDoS	 attacks	 using	 the	 features	 of	 Software	 Defined	

Networking	(SDN)	in	the	cloud;	and	recently	Velliangiri,	Karthikeyan	and	Vinoth	Kumar	

(2020)	 developed	 the	 Tylor-Elephant	 Herd	 Optimisation	 based	 Deep	 Belief	 Network	

(TEHO-DBN)	algorithm	to	detect	DDoS	attacks	in	the	cloud,	while	Hezavehi	and	Rahmani	

(2020)	proposed	an	anomaly-based	DDoS	attack	detection	framework	to	detect		attacks	

using	a	third-party	auditor	(TPA).		

As	mentioned	 in	 section	 2.6,	 and	 reinforced	 in	 the	 previous	 paragraph,	 a	 number	 of	

techniques	and	approaches	are	used	in	IDS,	most	notably	signature-based	and	anomoly-

based.		However,	according	to	the	literature,	neither	approach	is	able	to	effectively	detect	

all	types	of	DDoS	attack,	leading	to	false	alarms	and	poor	detection	rate	accuracy	(Meng	

et	al.,	2014;	Dahiya	and	Gupta,	2020).		

For	example,	although	signature-based	detection	has	 the	advantage	of	detecting	DDoS	

attacks	through	matching	signatures,	it	might	generate	large	numbers	of	true	positives	as	

a	result	of	dropping	network	packets	during	the	monitoring	of	large	volumes	of	incoming	

network	traffic,	affecting	its	accuracy	rate	as	a	result	(Luo	and	Xia,	2014).	Moreover,	as	

DDoS	attacks	are	becoming	more	sophisticated,	signature-based	techniques	have	become	

unable	to	identify	these	attacks	effectively;	because	no	prior	signature	of	the	new	attacks	

exists	in	the	database	of	the	detection	system	(Andrabi,	Pandey	and	Nazir,	2020).	Also,	

to	 constantly	 update	 the	 database	 with	 the	 new	 signatures	 of	 the	 attacks,	 requires	

significant	effort	(Premalatha,	2019).	

Additionally,	although	anomaly-based	IDS	approaches	can	overcome	the	noted	limitation	

of	 signature-based	 approaches	 and	 mostly	 detect	 any	 types	 of	 intrusion,	 it	 might	 be	

challenging	to	find	relevant	features	to	create	a	precise	profile	for	normal	behaviour	of	

the	 system	 or	 network	 in	 the	 cloud	 (Mehmood	 et	 al.,	 2013;Singh	 et	 al.,	 2019).	 For	

instance,	this	approach	might	result	in	generating	a	high	number	of	false-positives	where	

the	 anomalies	 are	 a	 normal	 new	 behaviour	 of	 the	 system	 rather	 than	 an	 intrusion	

(Khraisat	et	al.,	2019).		

Despite	the	strengths	and	weaknesses	of	existing	detection	systems,	the	dynamic	nature	

of	cloud	computing	and	its	specific	characteristics	(as	discussed	in	section	2.1),	and	the	

evolving	 nature	 of	 attack	 tools,	 can	 make	 detection	 intrusion	 of	 DDoS	 attacks	 using	

traditional	IDS	systems	difficult	and	can	result	in	them	producing	false	alarms	and	having	

poor	detection	accuracy	(Sari,	2015).	For	example,	 the	novel	architecture	of	 the	cloud	

computing	 platform	 and	 its	 different	 network	 structure	 lead	 to	 traditional	 anomaly-

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 40

based	detection	systems	becoming	 less	effective	 in	 the	cloud	as	 the	normal	pattern	of	

activities	of	users	are	different	 to	 those	seen	on	conventional	network	 infrastructures	

(Virupakshar	et	al.,	2020).	

In	 addition,	 the	 lack	 of	 cloud	 intrusion	 datasets	 hinders	 the	 evaluation	 of	 intrusion	

detection	systems	 for	 the	 researchers	 in	 this	area.	For	 instance,	 to	accurately	develop	

anomaly-based	 detection	 models,	 itis	 required	 to	 train	 the	 model	 with	 the	 recent	

behaviuor	of	attacks.	 	A	 lack	of	suitable	 training	data	sets	 is	 therefore	a	serious	 issue.		

Moreover,	 the	 computational	 cost	 and	 the	 training	 time	 required	 for	 anomaly-based	

approaches	are	both	very	high	and	abundant	memory	is	required	for	the	associated	data	

analysis	(Hajiheidari	et	al.,	2019).		

The	range	of	 issues	 identified	highlight	 the	 importance	of	developing	accurate	models	

that	may	be	subsequently	used	as	part	of	IDS	to	identify	DDoS	attacks	in	the	cloud.		Failure	

to	detect	accurately	 intrusions	results	 in	degradation	of	security	services	such	as	data	

confidentially,	integrity	and	availability	in	cloud	computing	environments.			

In	summary,	then,	the	analysis	presented	in	this	chapter	has	argued	the	importance	of	

understanding	DDoS	attacks	and	being	able	to	develop	models	that	accurately	support	

their	identification	in	cloud-based	environments	in	order	to	support	effective	intrusion	

detection,	 and	 have	 highlighted	 the	 criticality	 of	 having	 suitable	 cloud-based	 datasets	

from	which	to	develop,	and	then	on	which	to	test,	the	models.			

2.8 Summary

This	 chapter	 has	 provided	 information	 about	 the	 novelty	 of	 cloud	 computing,	 its	

fundamental	 characteristics	 and	 its	 architecture	 that	 have	 resulted	 in	 it	 gaining	

significant	 popularity	 in	 different	 sectors.	 	 It	 has	 demonstrated	 that	 there	 has	 been	

significant	growth	in	adoption	as	a	result	of	its	characteristics,	leading	many	companies	

to	move	their	data	and	operational	services	to	the	cloud.		At	the	same	time,	the	chapter	

has	identified	several	issues	that	have	arisen	from	the	adoption	of	cloud	computing,	and	

has	argued	that	the	most	important	issues	relate	to	security.		Based	on	a	review	of	the	

identified	 security	 issues,	 the	 chapter	 argued	 the	 importance	 of	 DDoS	 attacks	 in	 this	

context	and	of	how	critical	is	to	mitigate	these	types	of	attack.		The	different	types	of	DDoS	

attack	were	then	explored,	and	explained	in	relation	to	the	TCP/IP	network	model	and	

its	 protocols.	 	 The	 chapter	 concluded	 by	 discussing	 existing	 approaches	 to	 intrusion	

Chapter	2:	Cloud	Computing	and	Distributed	Denial	of	Service	Attacks	 Roja	Ahmadi		

 41

detection	and	why	it	can	be	difficult	to	accurately	detect	DDoS	attacks,	in	preparation	for	

reporting	 (in	 Chapter	 3)	 the	 initial	 practical	work	 that	 sought	 to	 develop	 a	model	 to	

improve	DDoS	attack	detection.			

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 42

Chapter 3 : Developing an Initial Detection Model

3.1 Introduction

As	argued	when	presenting	the	research	gap	in	section	2.7,	applying	existing	non-cloud	

IDS	to	cloud-based	environments	may	lead	to	poor	detection	accuracy	and	increased	false	

alarms,	in	the	form	of	false	positives	or	true	negatives.		Given	the	focus	of	this	research,	it	

is	 important	 to	 address	 these	 issues	 and	 understand	whether	 there	 is	 any	 difference	

between	DDoS	attack	types	in	cloud	and	noun-cloud	environments	that	may	cause	these	

issues.		

In	seeking	to	undertake	research	in	this	area,	a	critical	problem	is	the	lack	of	public	cloud	

datasets,	which	hinders	 the	development	of	 detection	models	 for	 attacks	 in	 the	 cloud	

environment.	This	chapter	will	therefore	explore	an	approach	to	address	the	identified	

issues	 that	 uses	 non-cloud-based	 and	 cloud-based	 datasets	 to	 seek	 to	 address	 the	

accuracy	and	false	alarm	issues,	reporting	the	process	of	the	development	of	a	detection	

model.		The	approach	followed	will	be	introduced	in	section	3.2,	with	subsequent	sections	

(sections	3.3-3.5)	reporting	on	each	phase	in	detail.		

As	such,	section	3.3	will	present	the	process	of	selecting	the	datasets	and	features	that	

formed	 the	 input	 to	 the	model.	 	 The	 NSL-KDD	 intrusion	 detection	 dataset	 and	 Cloud	

Intrusion	Detection	Dataset	(CIDD),	which	include	what	are	seen	as	important	features	

of	DDoS	attacks	in	cloud	and	non-cloud	environments	respectively,	were	used	to	develop	

the	model.	A	small	set	of	similar	features	that	were	present	in	both	datasets	was	selected	

as	the	initial	 input	to	the	model	development	activity.	 	This	first	phase	of	the	practical	

work	was	critical,	using	the	overlapping	features	from	the	two	datasets	to	construct	the	

base	of	the	model.		This	then	enabled	us	to	determine	how	to	proceed	with	the	next	stage	

of	the	research	as	a	result	of	understanding	the	correspondence	between	attack	types	in	

the	two	datasets,	developed	through	the	activity	reported	in	sections	3.4	and	3.5,	and	the	

issues	raised	as	a	result	of	the	associated	analysis.		It	is,	though,	important	to	note	that	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 43

the	two	datasets	have	different	structures:	the	NSL-KDD	dataset	contains	packet-based	

captured	 traffic	 whereas	 the	 cloud-based	 dataset	 contains	 network	 traffic	 that	 is	

aggregated	into	time	intervals.		As	will	be	seen,	this	causes	issues	which	frame	later	parts	

of	the	research	(see	Chapter	4)		

Section	3.4	will	then	present	the	process	of	preparing	the	datasets	to	be	free	of	any	noise,	

so	that	they	were	ready	for	the	processing	task,	and	will	explain	the	pre-processing	that	

was	undertaken	on	the	cloud	data	to	‘unpack’	the	time-based	data	into	a	form	that	was	

closer	in	structure	to	(but	still	not	the	same	as)	the	non-cloud	dataset.		In	addition,	this	

section	will	describe	each	stage	of	developing	the	model,	reporting	the	use	of	machine	

learning	techniques	to	classify	the	cloud-based	attacks,	based	on	learning/training	with	

the	non-cloud-based	attack	dataset	 (NSL-KDD).	 	This	 involved	 training	 the	model	 first	

with	NSL-KDD	dataset	to	ensure	that	it	was	a	good	fit	to	the	cloud	data	by	looking	at	its	

performance	using	a	confusion	matrix	to	assess	the	correspondence	between	the	actual	

and	predicted	DDoS	attack	types.	

Section	3.5	will	then	report	the	transfer	learning	approach	that	was	used,	the	result	of	

testing	the	model	with	the	cloud	intrusion	detection	dataset	to	see	whether	cloud-based	

attacks	can	be	predicted	based	on	the	training	on	non-cloud	data.		To	achieve	this,	it	will	

present	the	analysis	of	the	results	of	this	first	piece	of	empirical	work	using	sensitivity	

analysis.		Here,	though,	the	confusion	matrix	will	be	used	to	analyse	the	performance	of	

the	 proposed	 model	 by	 understanding	 how	 the	 model	 (which	 uses	 non-cloud-based	

attack	 types)	 classifies	 the	 types	 of	 cloud-based	DDoS	 attacks	 contained	 in	 the	 cloud-

based	dataset.	Examining	the	resulting	classifications	may	enable	us	to	understand	the	

correspondence	 between	 the	 attack	 types	 in	 the	 two	 datasets.	 	 High	 levels	 of	

correspondence	 between	 attack	 types	 identified	 by	 the	model	 and	 the	 known	 cloud-

based	 attack	 types	 (contained	within	 the	 dataset)	will	 be	 analyzed	 to	 understand	 the	

relationships	between	factors	that	are	important	in	the	non-cloud	and	cloud	attacks.	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 44

3.2 Approach Taken to Designing the DDoS Attack
Detection Model in a Cloud-computing Environment

Figure	3.1	presents	a	schematic	showing	each	phase	of	the	experimental	work	aimed	at	

developing	 an	 initial	 DDoS	 IDS	model	 in	 a	 cloud-computing	 environment.	 	 The	 three	

phases	of	the	work	will	be	described	in	detail	in	sections	3.3-3.5.

	

Figure 3.1 The phases of the experimental process to develop an initial DDoS IDS model

in a cloud-computing environment

3.3 Datasets and Feature Extraction

In	 this	 first	piece	of	practical	work,	we	wanted	 to	understand	whether	 there	was	any	

difference	between	DDoS	attacks	in	the	cloud	environment	and	non-cloud	environment	

that	would	lead	traditional	IDS	systems	to	identify	false	alarms	and	have	poor	detection	

accuracy	 in	 the	 cloud	 environment.	 	 Hence,	 we	 decided	 to	 develop	 a	 model	 using	 a	

traditional	 network	 intrusion	 detection	 dataset	 and	 then	 see	 how	 well	 this	 model	

predicted	 intrusion	 (in	 the	 form	 of	 different	 types	 of	 DDoS	 attacks)	 in	 the	 cloud	

environment.		To	identify	an	appropriate	non-cloud	dataset,	we	investigated	almost	all	of	

the	available	network	intrusion	detection	datasets	–	for	reasons	of	privacy,	some	network	

intrusion	 detection	 datasets	 are	 not	 easily	 available.	 	 Section	 3.3.1	will	 introduce	 the	

datasets	and	explain	and	justify	the	dataset	that	was	chosen	to	be	used	in	this	research.		

The	Cloud	Intrusion	Detection	Dataset	(CIDD),	used	in	the	third	phase	of	the	experiment	

(see	section	3.5)	will	then	be	introduced	(section	3.3.2)	before	being	compared	(in	section	

3.3.3)	to	the	chosen	non-cloud	dataset	to	ensure	that	there	is	suitable	correspondence	

• Datasets
• Selectiong	
overlap	feature

Input:
Dataset	and	
features	
extraction	

• Data	
Preprocessing	

• Machine	
learning	
technigue	
• Training	the	
model

• Classifier
• evaluation	

Develop	a	
model

• Testing	data
• Result	
(confusion	
matrix)

• Anlysing	
confusion	matrix

Output:
Evaluation	
and	analysis	
of	the	result		

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 45

between	the	training	(non-cloud)	and	testing	(cloud)	dataset	considered	in	this	piece	of	

the	research.	

3.3.1 Current non-cloud network intrusion detection datasets

Table	3.1	presents	summary	information	on	the	currently	available	intrusion	detection	

datasets	and	explains	the	type	of	data	included	within	each	dataset,	states	who	created	

each	 dataset,	 provides	 a	 reference	 to	 the	 relevant	 published	 work,	 and	 sets	 out	 any	

limitations	with	the	dataset	with	respect	to	data	type	and	attack	type.		Among	them,	the	

National	Security	Laboratory	–	Knowledge	Discovery	Dataset	 (NSL-KDD),	provided	by	

the	 Canadian	 Institute	 of	 Cyber	 Security	 of	 University	 of	 New	 Brunswick	 (UNB),	was	

determined	to	be	the	most	appropriate	choice	for	this	phase	of	the	research	because	it	

contains	different	types	of	DDoS	attack.	 	More	 importantly,	despite	being	published	 in	

2009,	 it	 remains	 an	 effective	 dataset	 in	 the	 research	 community	 for	 building	 and/or	

comparing	detection	models,	with	more	than	50%	of	published	research	work	in	this	area	

using	 the	 dataset	 for	 intrusion	 detection	 evaluation.	 	 Each	 dataset	 will	 be	 briefly	

discussed,	ending	with	the	NSL-KDD	dataset,	to	further	justify	the	choice	that	was	made.			

CAIDA	 Dataset:	 The	 Centre	 for	 Applied	 Internet	 Data	 Analysis	 (CAIDA)	 dataset	

considered	in	this	research	was	developed	and	published	by	the	Information	Marketplace	

for	Policy	and	Analysis	of	Cyber-risk	&	Trust	(IMPCAT)	repository,	which	is	supported	by	

the	US	Department	of	Homeland	Security’s	Science	and	Technology	Directorate.		CAIDA	

provides	 relevant	 network	 security	 datasets	 and	 tools	 for	 cyber	 security	 researchers,	

systems	evaluator	and	developers.		It	also	offers	a	captured	network	trace,	but	it	does	not	

provide	label	attack	types	in	the	datasets	which	made	it	unsuitable	for	our	purposes	since	

attack	types	had	to	be	identified	in	order	to	test	the	accuracy	of	the	developed	model.		

UNSW-NB15	Dataset:	The	University	of	New	South	Wales	Network-Based	2015	(UNSW-

NB15)	dataset,	generated	by	the	Australian	Cyber	Security	Center,	includes	network	data	

of	DoS	attacks	and	another	eight	types	of	network	attack.		However,	as	with	the	CAIDA	

dataset,	 the	 type	 of	 DoS	 attack	 is	 not	 specified	 in	 the	UNSW-NB15	 dataset,	making	 it	

unsuitable	for	our	purposes.		

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 46

KYTO,	 DEFCON,	 ADFA	 and	 LBNL	 Datasets:	 The	 Kyto	 University	 dataset,	 DEFCON	

dataset,	 Australian	 Defense	 Force	 Academy	 (ADFA)	 dataset	 and	 Lawrence	 Berkeley	

National	Laboratory	(LBNL)	dataset	were	generated	as	datasets	for	intrusion	detection,	

but	the	types	of	intrusion	that	they	cover	are	not	related	to	DDoS	attacks,	making	them	

unsuitable	for	our	purposes.			

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Name	of	dataset	 Data	Type	 Dataset	Creator	 Reference	

Limitations	in	
relation	to	data	
type	and	attack	

type	

CAIDA	dataset

	

Network	
traffic	

Centre	for	
Applied	Internet	
Data	Analysis,	
University	of	
California,	San	
Diego,	USA	

Elshoush	and	
Osman,	2011	

Unlabelled	data	

UNSW-NB15	

	

Network	
traffic	

Australian	Cyber	
Security	Centre	

Moustafa,	2015	 Specific	types	of	
DoS	attack	have	
not	been	
identified	

DEFCON	

	

Network	
traffic	

Hacker	
competition	
called	Capture	
the	Flag	(CTF)	

Bhuyan,	
Bhattacharyya	and	
Kalita,	2015	

It	contains	only	
intrusive	traffic	
without	any	
normal	traffic	

KYOTO	

	

Network	
traffic	

Honeypot	
system	in	Kyoto	
university	

(Song,	Takakura	
and	Okabe,	2012)	

Specific	types	of	
DoS	attack	have	
not	been	
identified	

ADFA	 System	call	
traces	

Australian	
Defence	Force	
Academy	

(Datasets,	
Borisaniya	and	
Patel,	2015)	

It	related	to	Host	
based	Intrusion	
detection	system	

LBNL	 Packet	
trace	

Lawrence	
Berkeley	
National	
Laboratory	
(LBNL),	USA	

(Pang	et	al.,	2005)	 It	does	not	
include	malicious	
traffic	

NSL-KDD	

	

Network	
traffic	

Canadian	
Institute	of	
cyber	security	of	
University	of	
New	Brunswick	

Tavallaee	et	al.,	
2009	

None	

Table 3.1 Contemporary network intrusion detection datasets

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 47

The	NSL-KDD	dataset	contains	instances	of	network	traffic	that	contain	41	features	and	

one	class	attribute,	which	indicates	the	type	of	the	network	connection	traffic	(either	the	

attack	type	or	that	the	data	instance	represents	normal	traffic).		As	such,	it	is	a	packet-

based	dataset.	 	There	are	 four	different	groups	of	attack	 in	the	dataset:	Probe	attacks;	

User	to	Root	attacks	(U2R);	Remote	to	Local	attacks	(R2L);	and	Denial	of	Service	attacks	

(DoS).		As	the	focus	of	this	research	is	on	DoS	attacks,	only	the	group	of	records	where	

DoS	attacks	were	signified	were	selected.		The	DoS	group	comprises	a	number	of	attack	

types	(as	explained	in	detail	in	section	2.5):	Back;	Land;	Neptune;	Ping	of	Death;	Smurf;	

and	Teardrop.			

In	the	dataset,	the	41	features,	or	attributes	of	network	traffic	connection,	are	classified	

into	 three	 groups	 of	 features.	 	 The	 first	 is	 the	 group	 of	 basic	 features	 related	 to	 the	

attributes	of	the	observed	network	packet	headers	(the	packet	structure	is	based	on	the	

relevant	 protocol	 of	 the	network	model,	 as	 described	 in	 section	2.5)	 (Kayacik,	 Zincir-

Heywood	and	Heywood,	2005).		The	second	is	the	group	of	the	features	associated	with	

the	 content	of	 the	packet.	 	 Finally,	 the	 third	 is	 the	group	of	network	 traffic	 features	 –	

statistical	 information	 representing	 all	 connections	 to	 the	 same	 destination	 machine	

within	a	two-second	timeframe.		This	experiment	focused	on	the	basic	feature	group	since	

this	is	where	information	relevant	to	DDoS	attacks	might	be	identified.			

Having	introduced	the	traditional/non-cloud	dataset	that	was	selected	for	the	training	

activity,	 section	3.3.2	will	 introduce	 the	 cloud	 intrusion	dataset	 that	was	used	 for	 the	

subsequent	testing	phase.		

3.3.2 The cloud intrusion detection dataset

Only	 two	 public	 cloud	 datasets	 were	 identified.	 	 The	 first	 contained	 data	 related	 to	

masquerade	attacks,	DoS	attacks,	U2R	attacks	and	R2L	attacks,	but	the	dataset	did	not	

contain	network	packet	 features.	 	 Instead,	 the	dataset	 included	audit	parameters	 that	

were	not	compatible	with	the	NSL-KDD	Dataset	selected	for	the	training	activity.			

The	second	dataset	contained	the	same	attack	types	as	the	NSL-KDD	dataset	and	had	been	

developed	to	focus	on	the	important	features	in	detecting	DDoS	attacks.		Therefore,	it	was	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 48

decided	to	select	this	dataset	for	the	testing	phase.		More	detail	on	the	dataset	will	now	

be	provided.			

The	CIDD	dataset	was	generated	in	2016	from	testbed	experimental	work	on	cloud	DDoS	

attack	detection.		The	simulated	cloud	environment	that	generated	the	data	consisted	of	

six	 nodes	 each	 of	which	 included	 six	 virtual	machines	 (VMs).	 	 In	 the	 scenario	 of	 this	

research	that	generated	the	dataset,	each	VM	was	allocated	a	specific	role.		One	VM	hosted	

the	cloud	server	and	this	was	considered	the	target	machine	for	the	attack(s).		Some	of	

the	VMs	were	 equipped	with	DDoS	attack	 tools	 for	 launching	different	 types	of	DDoS	

attack.	 	 The	 rest	 of	 the	VMs	were	designed	 to	have	 a	normal	 cloud	user	 role,	 such	as	

requesting	webpages	from	the	cloud	server.			

A	connection	was	initiated	by	sending	a	request	from	a	user	(the	user	of	a	VM	that	might	

be	an	attacker	or	a	normal	user)	to	the	servers.		The	request	referred	to	different	types	of	

service,	such	as	downloading	files,	etc.		These	connections	were	sequences	of	TCP	packets	

produced	 under	 well-defined	 protocols,	 such	 as	 the	 TCP	 protocol	 (the	 protocol	 for	

routing	application	packets	to	the	correct	application	on	the	destination	computer	–	see	

section	2.5).		The	generated	traffic	was	recorded	by	the	sniffer,	a	network	packet	analyzer	

in	the	form	of	software	or	hardware	used	to	capture	the	TCP/IP	packets	over	a	network.		

The	subsequent	outcome	of	captured	traffic	included	5274	instances	of	network	TCP/IP	

connections.		Of	these	instances,	682	records	were	different	types	of	DDoS	attack,	such	as	

ICMP	 Flood,	 Ping-of-Death,	 UDP	 Flood,	 TCP	 SYN	 Flood,	 TCP	 LAND,	 DNS	 Flood	 and	

Slowloris.		

A	custom-built	sniffer	was	used	to	extract	the	desired	features	from	the	IP	packet	header	

fields.	 	 Six	 distinct	 features	were	 calculated	per	 incoming	 IP	 address	 for	 each	 type	 of	

transport	 layer	protocol	 (TCP,	UDP,	 ICMP	and	other	 types),	resulting	 in	24	 features	 in	

total.		Figure	3.2	presents	these	features	and	their	descriptions.		The	extracted	data	were	

processed	in	five-second	time	intervals	to	create	a	time-based,	rather	than	packet-based,	

dataset.			

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 49

Figure 3.2 Traffic features of the CIDD dataset

3.3.3 Overlapping features between the two datasets

As	the	previous	discussion	highlights,	the	two	chosen	datasets	are	structured	in	different	

ways:	the	selected	group	of	features	from	the	NSL-KDD	dataset	is	packet-based	whereas	

the	entire	CIDD	dataset	comprises	time-based	traffic,	aggregated	into	records	covering	

five-second	 intervals.	 	 This	 is	 one	 reason	 why	 the	 datasets	 have	 a	 restricted	 set	 of	

overlapping	features,	making	using	them	together	challenging	(and	potentially	limiting	

the	value	of	such	an	approach).			

As	already	noted,	owing	to	the	structure	of	the	proposed	model	(which	will	be	explained	

in	section	3.4),	the	training	set	and	testing	set	had	to	have	similar	features.		Therefore,	to	

be	able	to	train	the	model	with	the	NSL-KDD	dataset	and	then	test	it	with	CIDD	dataset	

we	selected	features	that	were	common	between	the	two	datasets,	using	them	to	form	

the	initial,	small	feature	set	of	the	model.		

As	a	result,	the	initial	model	was	developed	based	on	the	three	features	from	the	NSL-

KDD	dataset	that	were	also	contained	in	the	CIDD	dataset.		Figure	3.3	demonstrates	the	

selected	features	from	the	NSL-KDD	dataset,	each	of	which	will	be	briefly	discussed.			

Average	bytes	
received	per	
incoming	IP	for	
each	of	the	
protocol	
(TCP,UDP,ICMP,	
others)

Bytes_Out

Bytes	sent	to	the	
incoming	IP	for	
each	of	the	
protocols	
(TCP,UDP,ICMP,	
others)	

Bytes_Out

Average	bytes	
received	per	
incoming	IP	for	
each	of	the	
protocol	
(TCP,UDP,ICMP,	
others)	

Avg_Bytes_In
Bytes	recieved	per	
incoming	IP	for	
each	of	the	
protocol	
(TCP,UDP,ICMP,	
others)

Bytes_In	
Averrage	number	
of	incoming	IP	for	
each	of	the	
protocol	
(TCP,UDP,ICMP,	
others)

Avg_Count
Number	of	
occurance	for	
incoming	IP	for	
each	of	the	
protocol	
(TCP,UDP,ICMP,	
others)

Count	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 50

Figure 3.3 The selected features of NSL-KDD dataset

Protocol	type	identifies	the	type	of	connection	to	which	the	network	traffic	belongs.	I	t	

also	 refers	 to	 the	 associated	 type	 of	 protocol	 of	 each	 layer	 of	 the	 network	model,	 as	

explained	in	section	2.5,	such	as	UDP,	TCP	and	ICMP,	etc.	 	The	src_bytes	feature	of	the	

dataset	contains	the	number	of	bytes	transmitted	from	the	sender	computer	(source)	to	

the	destination	computer.		The	dst_bytes	feature	contains	the	number	of	bytes	sent	from	

the	destination	computer	to	the	source	computer.			

In	the	CIDD	dataset,	the	Bytes_In	and	Bytes_Out	features	for	TCP,	UDP	and	ICMP	protocols	

(therefore	also	giving	the	protocol	type	feature)	were	selected	to	subsequently	test	the	

model	with	the	CIDD	dataset.		These	features	are	similar	to	the	three	selected	from	the	

NSL-KDD	dataset.		(Bytes_In	and	Bytes_Out	refer	to	the	bytes	received	from	the	source	to	

destination,	and	from	destination	to	source,	respectively.		As	such	they	correspond	to	the	

src_bytes	and	dst_bytes	features).		The	pre-processing	that	was	undertaken	to	‘unpack’	

the	time-based	data	into	a	form	that	was	closer	in	structure	to	(but	still	not	the	same	as)	

the	non-cloud	dataset	will	be	discussed	in	the	next	section.			

3.4 Developing the Model

This	section	reports	the	techniques	that	were	applied	to	the	datasets	to	prepare	them	for	

the	processing	task	(i.e.,	it	reports	the	data	pre-processing).		It	then	describes	the	machine	

learning	approach,	algorithm	and	tools	that	were	used	to	develop	the	detection	model.		

Finally,	it	presents	the	initial	results	of	training	the	model	with	the	NSL-KDD	dataset	and	

evaluates	the	results	based	on	two	approaches/measures:	cross-validation	and	confusion	

matrix.			

protocol_	
type src_bytes dst_bytes	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 51

3.4.1 Data pre-processing

Data	 pre-processing	 is	 the	 process	 of	 transforming	 the	 dataset	 to	 eliminate	

contradictions	and	noise	from	the	data	to	prepare	it	for	the	processing	task.		As	such,	it	is	

an	 important	 and	 widely-used	 part	 of	 the	 data	 analysis	 process.	 	 A	 data-cleaning	

technique	was	therefore	used	in	this	part	of	the	work	to	make	the	structure	of	the	two	

datasets	suitable	ahead	of	the	model	development	activity.	

A	 discretization	 technique	was	 then	 applied	 to	 the	 dataset	 to	 transform	 the	 different	

values	 contained	 in	 the	 initial	 structure	 of	 the	dataset,	 to	 ensure	 that	 any	 continuous	

values	were	 translated	 in	 suitable	 discrete	 values.	 	 This	 is	 important	 as	 it	 allows	 for	

optimisation	of	the	processing	time	and	provides	a	higher	accuracy	rate	to	be	achieved	in	

the	prediction	model.		The	Weka	tool	(Aljawarneh,	Aldwairi	and	Yassein,	2018)	was	used	

to	undertake	this	discretization	activity,	as	follows.		

The	discretization	filter	was	applied	to	the	‘src_bytes’	and	‘dst_bytes’	features	of	the	two	

datasets	by	‘binning’;	that	is,	the	range	of	numerical	values	for	each	feature	were	divided	

into	three	bins	(or	intervals)	of	equal	size.		After	applying	the	discretization	filter	to	both	

datasets,	 the	 bins	 for	 each	 feature	 were	 named	 A,	 B	 and	 C.	 	 Table	 3.5	 presents	 the	

discretized	range	of	the	two	originally-continuous	features	in	the	datasets.	

Discretized bin of

src_bytes

Name of each

bin

Discretized bin of

dst_bytes

Name of

each bin

0.5-250.5 M 0.5-668.5 M

250.5-inf H 668.5-inf H

-inf-0.5 L -inf-0.5 L

Table 3.2 Name of each bin in discretized dataset

Figures	3.4	and	3.5	show	the	initial	and	final	structure,	respectively,	of	an	extract	of	the	

NSL-KDD	dataset	to	illustrate	the	impact	of	the	discretization	activity	on	it.	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 52

Figure 3.4 The initial structure of an extract of the NSL-KDD dataset

Figure 3.5 The post-discretization structure of an extract of the NSL-KDD dataset

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 53

Next,	resampling	was	undertaken	in	Weka	to	address	imbalances	in	the	distribution	of	

the	data	across	 the	eight	 classes	 in	 the	NSL-KDD	 (training)	dataset,	which	 could	have	

caused	lower	accuracy	in	the	subsequently-developed	model’s	prediction	of	classes.		This	

resulted	in	over-sampling	the	minority	classes	and	under-sampling	the	majority	classes	

to	create	a	more	balanced	distribution	in	the	dataset.		

Finally,	a	process	was	applied	to	‘unpack’	the	time	from	CIDD	dataset.		Figure	3.6	presents	

an	extract	of	the	CIDD	dataset	to	show	its	initial	structure.		As	well	as	the	attack	type	or	

normal	traffic	identifier,	each	row/instance	of	the	CIDD	dataset	includes	five	seconds	of	

aggregated	packet	 data	 organised	under	 four	 types	 of	 protocol:	 TCP;	 ICMP;	UDP;	 and	

others.	Data	related	to	the	‘other’	protocol	category	were	not	used	because	the	types	of	

protocol	were	not	specified.		

Figure 3.6 The initial structure of an extract of the CIDD dataset

To	make	the	structure	of	the	CIDD	dataset	closer	to	that	of	the	NSL-KDD	dataset,	each	

record	was	divided	to	create	three	records,	one	for	each	protocol	type	considered	(TCP;	

ICMP;	and	UDP).	 	Figure	3.7	presents	an	extract	that	shows	the	‘unpacked’	form	of	the	

CIDD	dataset	for	a	set	of	TCP	records.	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 54

Figure 3.7 The unpacking the time structure of an extract of the CIDD dataset

As	can	be	seen	in	Figure	3.7,	the	resulting	dataset	has	four	columns,	which	are	similar	to	

those	extracted	from	the	NSL-KDD	dataset.		At	this	stage,	the	CIDD	pre-processed	dataset	

was	ready	for	use	in	testing	the	model	once	developed.		The	next	sub-section	reports	the	

processes	that	were	involved	in	developing	the	model.			

3.4.2 Machine learning approach for developing the model

A	Machine	Learning	(ML)	approach	was	adopted	to	develop	the	detection	model	as	they	

have	been	widely	used	in	IDS	work	(Keegan	et	al.,	2016).		Moreover,	this	method	offers	

the	ability	to	learn	from	experience	(using	training	data)	to	predict	from	the	unseen	data	

(the	test	data).		ML	approaches	mainly	use	two	different	types	of	learning:	supervised	or	

unsupervised.	 	 Supervised	 learning	 solves	 the	 classification	 problem	 by	 using	 one	 of	

many	well-defined	Artificial	Intelligence	algorithms.		In	a	very	basic	example,	assuming	

there	is	input	X	(training	data)	and	output	Y,	an	algorithm	learns	from	input	X	to	find	the	

relation	between	X	and	Y.		Unsupervised	learning	is	used	when	there	is	input	data	X,	but	

no	output	variables.		The	goal	in	unsupervised	learning	is	to	model	the	structure	in	the	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 55

data	 to	 understand	 more	 about	 the	 data,	 seeking	 to	 discover	 interesting	

structures/relationships.			

Since	the	datasets	in	this	work	(introduced	in	section	3.3)	are	classified	and	labelled,	a	

supervised	learning	approach	was	followed.	

3.4.3 Machine learning classification algorithm

The	process	of	classification	aims	to	use	the	existing	data	to	predict	the	associated	classes	

of	the	data.		For	example,	each	instance	of	the	NSL-KDD	dataset	includes	a	few	features	

that	classified	a	record/line	in	the	dataset	as	either	one	of	a	number	of	DDoS	attack	types	

(see	Figure	3.6	for	examples)	or	as	normal	traffic.		The	classification	algorithm	should	be	

able	 to	 distinguish	 between	 normal	 network	 traffic	 and	 the	 different	 types	 of	 attack	

traffic.		If	able	to	do	so,	it	would	give	a	predictive	model	for	non-cloud	data	which	could	

then	 be	 used	 with	 the	 cloud	 dataset	 to	 provide	 information	 about	 the	 relationship	

between	the	two	datasets,	allowing	us	to	see	how/whether	the	non-cloud	trained	model	

can	predict	cloud-based	attacks.			

With	the	aim	of	developing	the	most	accurate	model	possible	given	the	constraints	of	the	

datasets,	we	applied	different	algorithms	to	the	NSL-KDD	dataset	to	assess	how	accurate	

each	algorithm	was	in	terms	of	prediction.		In	addition	to	the	accuracy	factor,	speed	was	

another	 important	 issue	 used	 to	 select	 the	 classification	 algorithm	 owing	 to	 the	 high	

dimensionality	of	both	datasets.		Based	on	analysis	of	relevant	literature,	the	following	

classification	 algorithms	 were	 identified	 as	 being	 the	 most	 widely-used	 to	 solve	 the	

classification	problem	in	IDS:	decision	tree;	neural	network;	and	Naïve	Bayes	(Ahmed,	

Naser	Mahmood	and	Hu,	2016).			

Table	3.7	reports	the	accuracy	of	the	results	of	applying	each	of	these	three	algorithms	

on	the	NSL-KDD	dataset.	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 56

As	 can	 be	 seen	 in	 Table	 3.3,	 of	 these	 three	 algorithms,	 the	Naïve	 Bayes	 classification	

algorithm	was	the	most	accurate.	(It	also	performed	marginally	faster,	but	this	was	not	a	

key	 issue	 in	 the	 model	 development	 phase).	 	 Therefore,	 it	 was	 decided	 to	 use	 this	

algorithm	 as	 the	 classifier.	 	 The	 algorithm	will	 be	 described	 in	 the	 remainder	 of	 this	

section.			

The	 Naïve	 Bayes	 classification	 is	 a	 supervised	 machine-learning	 algorithm	 and	

probabilistic	classifier	that	has	proved	to	be	effective,	fast	and	accurate	for	a	range	of	real-

world	scenarios	(Om,	2012).	The	Naïve	Bayes	model	also	has	the	advantage	of	being	easy	

and	simple	to	build.		The	Naïve	Bayes	classifier	predicts	the	product	classes	(in	this	case	

the	different	types	of	DDoS	attack)	based	on	the	independence	hypothesis,	which	means	

that	the	presence	of	a	specific	feature	in	a	class	(in	our	case	the	protocol	type,	src_bytes	

and	dst_bytes)	is	not	dependent	on	the	presence	of	the	other	features.		Naïve	Bayes	uses	

Bayes	 theorem,	which	describes	 conditional	 probabilities	 –	 the	 likelihood	 of	 an	 event	

based	on	the	relevant	prior	knowledge	of	that	event.		For	example,	in	the	context	of	our	

model,	 it	 is	 concerned	with	 the	 likelihood	 of	 a	 specific	 attack	 occurring	 based	 on	 the	

values	of	the	existing	three	features	in	the	dataset.		The	following	formula	calculates	the	

conditional	probability	of	the	event:	

P	(H|E)	=	P(E|H)	*P(H)/P(E)	

In	 this	 formula,	 the	 aim	 is	 to	 calculate	 the	 likelihood	 of	 given	hypothesis	 (H).	 	 In	 our	

context,	the	hypothesis	can	be	assumed	to	be	the	probability	of	predicting	the	different	

types	 of	 DDoS	 attack.	 	 The	 sign	 or	 evidence	 (E)	 can	 be	 presumed	 to	 be	 the	 available	

features	in	the	dataset,	such	as	protocol	type,	src_bytes	and	dst_bytes.		For	example,	to	

calculate	the	probability	of	predicting	the	Smurf	attack	(P|E)	among	other	attack	types	

Classification Algorithm Accuracy

Neural network Multi layers

Perceptron

42%

Naïve Bayes 85%

Decision Tree J48 57%

Table 3.3 accuracy of the applied algorithms on the NSL-KDD dataset

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 57

(such	as	PoD	or	UDP	Flood)	and	normal	network	traffic,	we	compute	the	probability	of	

each	type	of	attack	P(H)	and	also	the	probability	of	each	feature	P(E).		The	class	with	the	

highest	score	is	the	predicted	class.			

The	Naïve	Bayes	approach	has	been	introduced	briefly	to	demonstrate	the	performance	

of	this	algorithm	in	classifying	the	non-cloud	dataset.		In	this	study,	all	calculations	were	

automatically	 undertaken	 by	 a	 specific	 tool,	which	will	 be	 introduced	 in	 the	 next	 sub	

section.	

3.4.4 Machine learning implementation

There	 are	 various	machine	 learning	 tools/languages	 that	 are	 commonly	 used	 in	 data	

analysis,	 such	 as	 Python,	 R,	 MATLAB	 and	 the	 Waikato	 Environment	 for	 Knowledge	

Analysis	(Weka).		This	study	used	Weka	version	3.8	to	implement	the	chosen	classier	and	

filter.	 	Most	of	the	available	tools	offer	very	similar	functionality;	Weka	is,	though,	free	

and	widely	used,	making	it	an	appropriate	choice	for	this	work.		Weka	offers	data	mining	

and	 machine	 learning	 capabilities,	 including	 filtering,	 classification,	 clustering	 and	

ranking.		Moreover,	it	has	been	broadly	used	for	research	and	commercial	applications	

(Frank,	Hall	 and	Witten,	 2016)	 and	 it	 easy	 to	use.	 	 For	 all	 of	 these	 reasons,	 it	was	 an	

appropriate	choice	as	the	analysis	environment	for	this	study.			

Having	selected	the	Weka	environment,	the	NSL-KDD	dataset	was	used	to	train	the	model	

and	then	test	it	with	the	testing	dataset	(CIDD).		First,	we	wanted	to	know	how	well	the	

classifier	predicted	the	different	types	of	DDoS	attack	identified	in	the	non-cloud	dataset	

in	 order	 to	 understand	 the	 level	 of	 accuracy	 of	 the	 model.	 	 The	 evaluation	 of	 the	

performance	of	the	classifier	will	be	reported	in	the	next	sub-section.	

3.4.5 Evaluation of the classifier

Cross	 validation	 and	 sensitivity	 analysis	 were	 used	 to	 evaluate	 the	 results	 of	 the	

classifier/resulting	model.	 	First,	a	10-fold	cross	validation	package	was	applied	to	the	

data.		This	software	package	divided	the	NSL-KDD	dataset	into	10	groups,	of	which	nine	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 58

groups	were	selected	for	training	automatically	by	the	Weka	package	and	the	remaining	

group	was	used	to	test	the	model.		

A	confusion	matrix	was	then	used	to	present	a	summary	of	the	prediction	outcomes	of	

the	 classification	 model.	 	 The	 generated	 matrix	 shows	 the	 number	 of	 correctly	 and	

incorrectly	 predicted	 instances	 of	 each	 class,	 providing	 insights	 into	 the	 errors	 being	

made	by	the	classification	model.		Figure	3.8	presents	the	confusion	matrix	resulting	from	

the	classification	model	when	applied	to	the	NSL-KDD	dataset.		

Figure 3.8 Confusion matrix showing the result of the classification applied to the NSL-

KDD dataset

The	 instances	 on	 the	 main	 diagonal	 (top	 left	 to	 bottom	 right)	 indicate	 the	 correct	

prediction	 (i.e.,	where	 each	 attack	 type	 from	 the	dataset	 is	 correctly	predicted	by	 the	

model).	 	 If	 these	 numbers	 are	 high	 for	 all	 rows/attack	 types,	 it	 demonstrates	 a	 good	

classification	outcome.		

In	Figure	3.8,	most	of	the	attack	types	are	classified	correctly.		Of	these	attack	types,	Land,	

PoD	and	some	of	the	normal	cases	have	been	classified	incorrectly.	However,	the	general	

accuracy	of	 the	 classifier	 is	89.103%,	 suggesting	high	overall	 accuracy	with	 the	noted	

exceptions.	

The	next	section	will	report	the	results	of	the	applying	the	model	to	the	cloud	dataset	and	

explain	the	way	in	which	the	confusion	matrix	approach	was	used	in	this	part	of	the	study	

in	relation	to	each	cloud	attack	type.		

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 59

3.5 Analysis of the Results

This	section	will	report	the	results	of	applying	the	classification	model	that	was	trained	

on	the	non-cloud	data	(NSL-KDD)	to	the	cloud	data	(CIDD).		The	predicted	outcomes	of	

the	 classification	 model	 will	 be	 then	 analyzed	 using	 a	 confusion	 matrix,	 but,	 in	 this	

instance,	it	will	be	used	in	a	different/non-standard	way.		The	standard	confusion	matrix	

describes	the	results	of	applying	a	developed	classification	model	on	a	testing	dataset	that	

contains	the	same	classifiers	as	the	training	set.		For	example,	having	trained	our	model	

with	 the	 non-cloud	data,	 it	would	 normally	 be	 tested	with	 another	 non-cloud	dataset	

containing	the	same	features,	with	the	aim	of	the	classification	model	predicting	the	same	

type	of	attacks	in	this	new	dataset.		

However,	in	this	work,	the	types	of	the	DDoS	attack	in	the	two	datasets	are	not	the	same.		

The	Naïve	Bayes	classification	model	was	trained	with,	and	tested	on,	the	non-cloud	data,	

which	contained	identifiers	for	normal	traffic	and	the	following	seven	attack	types:	TCP	

SYN;	Back;	Smurf;	Teardrop;	Ping	of	Death	(PoD);	Land;	and	Mailbomb	(see	description	

of	the	NSL-KDD	dataset	in	section	3.3.1).		The	cloud	data	contained	identifiers	for	normal	

traffic	and	the	following	seven	attack	types:	TCP	SYN;	UDP	Flood;	ICMP	Flood;	DNS	Flood;	

Ping	of	Death	(PoD);	Land;	and	Slowloris.			

Testing	the	model	on	the	cloud	data	leads	to	the	creation	of	a	confusion	matrix	that	shows	

how	the	model	has	classified	the	normal	and	attack	type	instances	in	the	cloud	data	in	

terms	of	normal	traffic	and	the	non-cloud	attack	types.		In	this	way,	the	confusion	matrix	

can	be	used	to	identify	where	there	is	a	set	of	cloud	data	instances	of	one	attack	type	(for	

example,	DNS	Flood)	classified	as	a	particular	non-cloud	attack	type	(for	example,	TCP	

SYN).		The	values	of	the	features/classifiers	in	the	model	for	these	(in	our	example,	DNS	

Flood)	 cloud	data	 instances	 can	 then	be	compared	with	 the	 feature	data	 for	all	of	 the	

instances	of	the	identified/classified	non-cloud	attack	(in	our	example,	TCP	SYN)	in	the	

original	 test	 data	 (NSL-KDD).	 	 This	 may	 help	 us	 to	 understand	 the	 correspondence	

between	cloud	and	non-cloud	attack	types	and	subsequently	identify	areas	in	which	the	

model	would	have	to	be	developed	to	more	effectively	identify	and	classify	cloud	attacks.			

A	threshold	was	set	to	focus	the	analysis	arising	from	the	confusion	matrix,	with	only	the	

cases	where	there	were	30	or	more	instances	of	a	cloud	attack	having	been	identified	as	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 60

a	particular	non-cloud	attack	being	explored.		This	threshold	was	determined	by	simple	

observation	 of	 the	 values	 in	 the	 confusion	matrix	 (see	 Figure	 3.9).	 	 These	 cloud	 data	

instances	 were	 then	 considered	 by	 extracting	 and	 analyzing	 the	 distributions	 of	 the	

(discretized)	values	of	the	three	core	features	(see	section	3.3.3)	and	comparing	them	to	

the	comparable	features	from	the	relevant	non-cloud	attack	instances.			

3.5.1 Transfer learning: applying the classification model to the
CIDD dataset

Transfer	learning	is	the	application	of	a	model	that	was	trained	for	solving	one	particular	

task	 to	 another,	 different	 task	 (Dai	 et	 al.,	 2007).	 In	 contrast	 to	 the	 classical	 machine	

learning	approach,	this	technique	is	more	helpful	where	there	is	a	shortage	of	data	(or	a	

limited	dataset).	Applying	transfer	learning	could	be	useful	in	developing	and	training	the	

model	 using	 the	 non-cloud	 dataset	 to	 facilitate	 the	 prediction	 of	 attacks	 in	 the	 cloud	

dataset.		Making	use	of	the	technique	in	this	research	was,	as	far	as	we	are	aware,	the	first	

time	that	has	been	applied	to	the	area	of	cloud-based	intrusion	detection.			

Here,	we	applied	the	model	 trained	on	the	non-cloud	dataset	 to	classify	 intrusions	(of	

different	 types)	 in	 the	cloud	dataset.	 	Figure	3.9	presents	 the	confusion	matrix	arising	

from	applying	the	model	to	the	CIDD	dataset.			

	

Figure 3.9 Result of classification based on testing with CIDD dataset based

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 61

As	 Figure	 3.9	 shows,	 in	 the	 first	 row,	 normal	 instances	were	 classified	 by	 the	model	

correctly	11653	times,	but	77	instances	were	classified	as	TCP	SYN	attacks.		

In	the	second	row,	all	of	the	cloud	TCP	SYN	instances	were	classified	as	normal	traffic	

instances.	

In	the	third	row,	the	UDP	flood	attack	instances	were	classified	as	normal	 instance	36	

times,	as	TCP	SYN	attacks	34	times,	and	as	Smurf	attacks	35	times.		

In	the	fourth	row,	the	ICMP	Flood	attack	instances	were	classified	as	normal	instances	30	

times.			

In	 the	 fifth	row,	35	DNS	Flood	attack	 instances	were	classified	as	being	normal	 traffic	

instances,	35	were	classified	as	being	TCP	SYN	attacks	and	35	were	classified	as	being	

Smurf	attacks.		

In	 the	 last	 two	 rows	 of	 the	 confusion	matrix,	 all	 of	 the	 instances	 of	 Land	 attack	 and	

Slowloris	attack	were	classified	as	normal	traffic	(69	times	and	1314	times,	respectively).	

The	next	section	will	analyse	the	cases	that	have	been	presented	above.		

3.5.2 Analysis of the results of applying the classification model to
the cloud dataset

To	 understand	 the	 classifications	 made	 by	 the	 model,	 the	 correspondences	 and	 the	

differences	 between	 cloud	 attack	 types	 and	 non-cloud	 attack	 types	were	 explored	 by	

analyzing	the	underlying	data	of	the	cases	identified	in	the	confusion	matrix	that	met	the	

set	threshold	(see	section	3.5.1).		These	‘above	threshold’	instances	of	normal	traffic	and	

then	each	attack	type	in	the	cloud	dataset	(the	rows	in	Figures	3.9)	that	were	classified	

by	 the	model	 as	 specific	 non-cloud	 attack	 types,	 or	 as	 normal	 traffic,	 (the	 columns	 in	

Figure	3.9)	were	isolated	and	examined.		For	example,	Figure	3.10	shows	a	screenshot	of	

the	77	normal	instances	in	the	cloud	data	set	that	were	classified	by	the	model	as	a	TCP	

SYN	 attacks.	 	 This	 extraction	 process	was	 undertaken	 for	 each	 item	 in	 the	 confusion	

matrix	that	met	the	threshold.		Each	case,	row	by	row,	will	now	be	discussed.		

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 62

Figure 3.10 Screenshot of the result of classification on the CIDD

To	 understand	why	 normal	 cloud	 traffic	 instances	may	 have	 been	 classified	 as	 (non-

cloud)	 TCP	 SYN	 attacks,	 we	 looked	 at	 the	 distribution	 of	 the	 data	 for	 the	 three	

features/classifiers	for	the	TCP	SYN	attack	instances	in	the	non-cloud	(benchmark)	data	

and	for	the	77	‘misclassified’	cloud	data	cases.		The	results	are	presented	in	Figure	3.11.		

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 63

Figure 3.11 The distribution of Normal instances of CIDD that have been classified as a

TCP SYN attack in the benchmark dataset

Returning	 to	 the	 description	 of	 the	 TCP	 SYN	 attack	 type	 in	 section	 2.5,	 the	 attacker	

generates	 frequent	TCP	connections	with	 the	 target	by	not	 sending	 the	expected	ACK	

message;	 this	 results	 in	 the	 target	 machine	 generating	 a	 high	 number	 of	 SYN-ACK	

messages.	 	 This	 results	 in	 the	 number	 of	 bytes	 that	 have	 been	 sent	 from	 the	 target	

machine	 to	 the	 attacker	 machine	 (dst_bytes)	 being	 higher	 than	 the	 number	 of	 bytes	

transmitted	from	the	attacker	machine	to	the	target	machine	(src_bytes).		

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 64

In	Figure	3.11,	perhaps	unsurprisingly,	all	77	of	the	normal	cases	in	the	cloud	dataset	that	

are	classified	as	being	TCP	SYN	and	all	of	the	8282	TCP	SYN	cases	in	the	benchmark	data	

have	the	TCP	protocol	type.		Moreover,	the	src_bytes	distribution	categories	of	all	of	the	

cases	are	the	same	(in	the	low	category).		However,	the	distribution	of	the	dst_bytes	in	

the	cloud	cases	are	all	in	the	‘low’	discretized	category	whereas	the	benchmark	cases	are	

all	 in	 the	 ‘high’	discretized	category.	 	This	 suggests	 that	 the	model	 is	 classifying	 these	

normal	cloud	cases	as	being	TCP	SYN	on	the	basis	of	the	protocol	and	src_bytes	features	

only.			

As	 can	 be	 seen	 in	 Figure	 3.12,	 the	 156	 TCP	 SYN	 cases	 in	 the	 cloud	 dataset	 that	 are	

classified	as	being	normal	are	split	across	the	three	protocol	types.		The	normal	instances	

in	the	benchmark	data	are	also	split	across	the	ICMP,	TCP	and	UDP	protocol	types,	though	

there	are	proportionally	fewer	ICMP	instances.		The	src_bytes	values	in	the	cloud	cases	

are	 in	 the	 ‘low’	 and	 ‘high’	 discretized	 categories	whereas	 the	 benchmark	 cases	 are	 in	

spread	 across	 all	 three	 discretized	 categories	 (low,	 medium	 and	 high),	 though	many	

fewer	 in	 the	 ‘medium’	category.	 	Finally,	 there	are	 instances	of	dst_bytes	values	 in	 the	

cloud	cases	are	in	the	‘low’	and	‘high’	discretized	categories,	whereas	in	the	benchmark	

cases	there	are	instances	of	in	all	three	categories	(low,	medium	and	high),	though,	again,	

many	fewer	in	the	medium	category.		This	suggests	that	the	model	is	classifying	these	TCP	

SYN	cloud	cases	as	being	normal	on	the	basis	of	the	protocol	type	and	combination	of	the	

src_bytes	and	dst_bytes	in	the	‘low’	and	‘high’	discretized	categories.		

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 65

Figure 3.12 Distribution of TCP SYN attack instances that have been classified as

normal instances in the benchmark data

Moving	 on	 to	 the	 UDP	 attacks	 type,	 in	 the	 third	 row	 of	 Figure	 3.9,	 it	 is	 important	 to	

remember	that	in	UDP	attacks	the	attacker	generates	UDP	packets	which	are	sent	to	the	

targeted	cloud	server;	 the	 target	 is	not	expecting	 these	UDP	packets	 in	relation	 to	 the	

associated	application	on	the	port,	resulting	in	the	reply	queue	being	filled	and	the	target	

responding	with	continuous	ICMP	packet	messages	to	the	sender	(which	are	not	received	

as	the	attacker	machine	is	using	a	fake/spoofed	IP	address)	(see	section	2.5).		This	results	

in	the	number	of	bytes	associated	with	the	ICMP	packets	that	have	been	sent	from	the	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 66

target	machine	to	the	attacker	machine	(dst_bytes)	being	higher	than	the	number	of	bytes	

transmitted	from	the	attacker	machine	to	the	target	machine	(src_bytes)	

In	Figure	3.13,	the	36	cases	of	UDP	attack	in	the	cloud	dataset	that	were	classified	as	being	

normal	 have	TCP	 (one	 instance)	 and	UDP	 (35	 instances)	 protocol	 types,	whereas	 the	

normal	cases	in	the	benchmark	have	instances	from	all	three	protocol	types	(ICMP,	TCP	

and	UDP).		The	src_bytes	values	in	the	cloud	cases	are	in	the	‘medium’	(35	instances)	and	

‘high’	(1	instance)	discretized	categories,	whereas	there	are	benchmark	cases	in	the	all	

three	categories	(6687	low,	670	medium	and	6092	high).		Finally,	there	are	instances	of	

dst_bytes	values	in	the	cloud	cases	in	each	of	the	three	categories	(1	low,	29	medium	and	

6	high)	and	the	same	is	true	for	the	benchmark	cases	(5740	low,	2165	medium	and	5544	

high).		This	suggests	that	the	model	is	classifying	these	UDP	cloud	cases	as	being	normal	

on	the	basis	of	a	combination	of	TCP	and	UDP	protocols,	‘low’	and	‘high’	discretized	values	

in	src_bytes	and	the	dst_bytes	features.	

As	has	been	noted	earlier	in	relation	to	the	impact	of	unpacking	the	time	on	the	structure	

of	cloud	dataset,	UDP	cases	are	also	bound	to	have	multiple	protocols,	which	is	contrary	

to	the	features	of	this	type	of	attack	(see	section	2.5).	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 67

Figure 3.13 The distribution of UDP Flood attack instances that have been classified as

normal instances in benchmark data

In	Figure	3.14,	the	other	34	cases	of	the	UDP	attack	in	the	cloud	dataset	were	classified	as	

being	TCP	SYN	attack	and	all	the	8282	cases	of	TCP	SYN	attack	in	the	benchmark	data	

have	TCP	protocol	type.		The	src_bytes	value	in	the	cloud	dataset	(34	instances)	and	TCP	

SYN	(8282	instances)	in	the	benchmark	data	are	in	the	‘low’	discretized	category.		Finally,	

there	 are	 instances	 of	 the	 dst_bytes	 value	 in	 the	 cloud	 dataset	 that	 are	 in	 the	 ‘low’	

discretized	category	(34	low)	whereas	the	dst_bytes	value	of	all	8282	cases	of	TCP	SYN	in	

the	benchmark	data	are	in	the	‘high	‘discretized	category.		This	suggests	that	the	model	is	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 68

classifying	 these	UDP	cases	as	being	TCP	SYN	on	 the	basis	of	 the	 combination	of	TCP	

protocol	and	the	‘low’	discretized	value	of	the	src_bytes	feature.	

	

Figure 3.14 The distribution of UDP Flood attack instances that have been classified as

TCP SYN instances in benchmark data

In	Figure	3.15,	the	last	35	cases	of	UDP	attack	were	classified	as	being	Smurf	attacks	and	

all	the	529	cases	of	Smurf	attack	in	the	benchmark	data	have	the	ICMP	protocol	type.		The	

src_bytes	values	of	cloud	cases	are	in	the	‘high’	discretized	category	whereas	there	are	

instances	(529)	in	the	benchmark	data	that	are	in	the	‘low’	discretized	category.		Finally,	

the	value	of	the	dst_bytes	in	the	cloud	cases	are	in	the	‘low’	discretized	category	where	

there	are	cases	in	the	benchmark	data	that	are	in	the	‘medium’	discretized	category.		This	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 69

suggests	that	the	model	is	classifying	these	UDP	cases	on	the	basis	of	the	ICMP	protocol	

type	only.	

	

Figure 3.15 The distribution of UDP Flood attack instances that have been classified as

Smurf attack instances in benchmark data

Moving	to	the	DNS	flood	attack	type,	in	the	fifth	row	of	Figure	3.9,	this	type	of	attack	is	

based	on	the	high	number	of	DNS	requests	to	the	DNS	server	that	lead	to	the	generation	

of	UDP	traffic	to	overwhelm	the	DNS	server.		This	results	in	the	number	of	bytes	of	UDP	

packets	 that	 have	 been	 sent	 from	 the	 targeted	 DNS	 server	 to	 the	 attacker	 machine	

(dst_bytes)	being	higher	than	the	number	of	bytes	transmitted	from	the	attacker	machine	

to	the	targeted	DNS	server	(src_bytes).		

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 70

In	Figure	3.16,	35	cases	of	DNS	Flood	were	classified	as	being	normal	having	the	UDP	

protocol	type	(35	instances)	and	there	are	instances	in	the	benchmark	data	that	have	all	

three	types	of	protocol	(TCP,	UDP	and	ICMP).		The	src_bytes	value	in	the	cloud	cases	are	

in	the	‘medium’	discretized	category	whereas	the	normal	cases	in	the	benchmark	data	are	

spilt	across	all	three	discretized	categories	(low,	medium	and	high),	though	many	fewer	

in	the	‘medium’	category.		Finally,	there	are	instances	of	the	dst_bytes	value	in	the	cloud	

cases	 that	are	 in	 the	medium	discretized	category,	whereas	 the	dst_bytes	value	 in	 the	

normal	 cases	 are	 in	 all	 three	 discretized	 categories	 (low,	medium	 and	 high),	 though,	

again,	 many	 fewer	 are	 in	 the	 ‘medium’	 category.	 	 This	 suggests	 that	 the	 model	 is	

classifying	these	DNS	Flood	attack	cases	on	the	basis	of	the	UDP	protocol	type	and	the	

combination	of	the	‘medium’	discretized	value	of	the	src_bytes	and	dst_bytes	features.	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 71

Figure 3.16 The distribution of DNS Flood attack instances that have been classified as

a normal traffic instances in the benchmark data

The	other	35	cases	of	DNS	attack	in	Figure	3.17	are	classified	as	being	TCP	SYN	attacks;	

all	the	TCP	SYN	cases	in	the	benchmark	data	have	TCP	protocol	type.		The	src_bytes	value	

of	the	35	cloud	cases	and	all	of	the	8282	instances	of	the	benchmark	data	are	in	the	‘low’	

discretized	category.		Finally,	there	are	instances	in	the	cloud	data	that	have	dst_bytes	in	

the	‘medium’	discretized	category	whereas	the	all	the	8282	cases	in	the	benchmark	data	

are	in	the	‘high’	discretized	category.		This	suggests	that	the	model	is	classifying	the	DNS	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 72

Flood	attack	on	the	basis	of	 the	TCP	protocol	and	the	 ‘low’	discretized	category	of	 the	

src_bytes	feature.	

	

Figure 3.17 The distribution of DNS Flood attack instances that have been classified as

a TCP SYN attack instances in the benchmark data

The	last	35	cases	of	DNS	Flood	in	Figure	3.18	are	classified	as	being	Smurf	attacks;	all	the	

Smurf	attacks	in	the	benchmark	data	have	the	ICMP	protocol	type.		The	src_bytes	value	

of	the	cloud	cases	is	in	the	‘high’	discretized	category,	whereas	there	are	instances	in	the	

benchmark	data	that	all	are	the	‘low’	discretized	value.	Finally,	the	dst_bytes	value	of	the	

cloud	 cases	 are	 in	 the	 ‘low’	 discretized	 category	 whereas	 all	 the	 529	 cases	 of	 the	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 73

benchmark	data	are	in	the	‘medium’	discretized	category.		This	suggests	that	the	model	

is	classifying	the	DNS	flood	cases	on	the	basis	of	the	ICMP	protocol	only.		

Figure 3.18 Distribution of DNS Flood attack instances that have been classified as a

Smurf attack traffic instances in the benchmark data

Moving	to	the	Land	attack,	in	the	seventh	row	of	Figure	3.9,	this	type	of	attack	is	generated	

based	on	the	mal-formed	TCP	packets	that	have	the	same	source	port	and	destination	

port.		This	makes	an	empty	connection	reply	to	itself	until	all	of	the	resources	have	been	

consumed	by	 the	attack.	 	This	 results	 in	 the	number	of	bytes	associated	with	 the	TCP	

packets	that	have	been	sent	from	the	target	machine	to	the	attacker	machine	(dst_bytes)	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 74

being	 higher	 than	 the	 number	 of	 bytes	 transmitted	 from	 the	 attacker	machine	 to	 the	

target	machine	(src_bytes).	

In	Figure	3.20,	the	69	cases	of	Land	attack	in	the	cloud	dataset	that	are	classified	as	being	

normal	are	split	across	the	three	protocol	types.		The	normal	cases	in	the	benchmark	data	

are	 also	 split	 across	 the	 TCP,	 ICMP	 and	 UDP	 protocol	 types,	 though	 there	 are	

proportionally	fewer	ICMP	instances.		The	src_bytes	values	in	the	cloud	cases	are	in	the	

‘low’	and	‘high’	discretized	categories,	whereas	the	benchmark	cases	are	spread	across	

all	three	discretized	categories	(low,	medium	and	high),	though	there	are	many	fewer	in	

the	‘medium’	category.	Finally,	there	are	instances	of	dst_bytes	values	in	the	cloud	cases	

are	in	the	‘low’	and	‘high’	discretized	categories,	whereas	in	the	benchmark	cases	there	

are	instances	in	all	three	categories	(low,	medium	and	high),	though,	again,	many	fewer	

in	the	‘medium’	category.		This	suggests	that	the	model	is	classifying	these	TCP	SYN	cloud	

cases	as	being	normal	on	the	basis	of	the	protocol	type	and	a	combination	of	the	src_bytes	

and	dst_bytes	in	the	‘low’	and	‘high’	discretized	categories.	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 75

Figure 3.19 Distribution of Land attack instances that have been classified as a Normal

traffic instances in the benchmark data

Moving	to	the	Slowloris	attack	type,	in	the	last	row	of	the	Figure	3.19,	this	type	of	attack	

is	generated	based	on	incomplete	HTTP	packets.		The	attacker	holds	the	connection	open	

and	does	not	release	it	until	the	system	reaches	the	maximum	number	of	allowable	open	

connections.		This	results	in	the	number	of	bytes	associated	with	the	HTTP	packets	that	

have	been	sent	from	the	target	machine	to	the	attacker	machine	(dst_bytes)	being	higher	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 76

than	the	number	of	bytes	transmitted	from	the	attacker	machine	to	the	target	machine	

(src_bytes).		

As	 can	 be	 seen	 in	 Figure	 3.20,	 the	 1314	 Slowloris	 cases	 in	 the	 cloud	 dataset	 that	 are	

classified	as	being	normal	are	split	across	the	three	protocol	types.		The	normal	instances	

in	the	benchmark	data	are	also	split	across	the	ICMP,	TCP	and	UDP	protocol	types,	though	

there	are	proportionally	fewer	ICMP	instances.		The	src_bytes	values	in	the	cloud	cases	

and	 the	 benchmark	 cases	 are	 in	 the	 ‘low’,	 ‘medium’	 and	 ‘high’	 discretized	 categories,	

though	 there	are	many	 fewer	 in	 the	 ‘medium’	category.	Finally,	 there	are	 instances	of	

dst_bytes	values	in	the	cloud	cases	and	benchmark	data	in	each	of	the	‘low’,	‘medium’	and	

‘high’	 discretized	 categories,	 though,	 again,	 there	 are	 many	 fewer	 in	 the	 ‘medium’	

category.	 	 This	 suggests	 that	 the	 model	 is	 classifying	 these	 Slowloris	 cases	 as	 being	

normal	on	the	basis	of	the	protocol	type	and	combination	of	the	src_bytes	and	dst_bytes	

feature.	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 77

Figure 3.20 The distribution of Slowloris attack instances that have been classified as a

normal traffic instances in the benchmark data

3.5.3 Reflection and discussion

This	sub	section	will	represent	high-level	analysis	of	the	confusion	matrix	results	and	it	

will	then	analyse	the	impact	of	the	‘unpacking	the	time’	issue	on	the	classification	results.		

The	 analysis	 identifies	 a	 number	 of	 issues	 related	 to	 the	 developed	model	which	will	

frame	the	focus	of	the	next	chapter.			

Table 3.4 represents those cloud cases in Figure 3.9 that are above the threshold (as such, the

PoD and ICMP Flood attack types are excluded).

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 78

Table 3.4 Analysis of the results of the ‘above threshold’ cases

Each	row	in	Table	3.4	reports	cloud	cases	that	are	classified	as	other	types	of	attack.		The	

classification	model	classifies	these	cases	on	the	basis	of	the	protocol	type	(TCP,	UDP	and	

ICMP),	src_bytes	and	dst_bytes	(L,	M	and	H	indicate	the	discretized	values).		The	first	row	

of	Table	3.4	represents	Normal	cases	that	are	being	classified	as	TCP	SYN	attacks.		The	

rest	of	the	table	represents	TCP	SYN,	UDP	Flood,	DNS	Flood,	Land	and	Slowloris	cases	

that	are	being	classified	as	Normal,	TCY	SYN	or	Smurf	attacks.	 	For	the	UDP	Flood	and	

DNS	Flood	types,	three	rows	for	each	are	presented	as	they	are	being	classified	as	more	

than	 one	 non-cloud	 type	 (Normal,	 TCP	 SYN	 and	 Smurf).	 	 The	 table	 then	 shows	 the	

classifier	 values	 on	which	 analysis	 of	 the	 underlying	data	 suggests	 the	model	may	be	

classifying	in	each	case.			

As	can	be	seen	in	Figure	3.9,	all	of	the	cloud	cases	are	classified	as	Normal	traffic,	TCP	SYN	

and	Smurf	attacks.		From	the	cloud	data,	most	of	the	instances	of	TCP	SYN,	UDP	Flood,	

DNS	Flood,	Land	and	Slowloris	have	been	classified	as	Normal	traffic	(see	rows	3,	6,	9	and	

10	of	Table	3.4).		This	is	because	there	is	the	whole	range	of	protocol	types	and	values	for	

src_bytes	and	dst_bytes	in	these	instances,	and	there	are	no	other	features	through	which	

the	model	can	discern	them	as	the	other	types	of	attack.	 	The	classification	as	Normal	

traffic	in	these	cases	is	likely	to	be	because	in	the	non-cloud	dataset	on	which	the	model	

was	trained,	there	are	many	‘Normal’	packet-based	cases	with	different	combinations	of	

values	for	the	features,	making	it	the	‘default	choice’	for	the	model.		

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 79

There	are	also	instances	of	CIDD	Normal	traffic,	and	UDP	Flood	and	DNS	Flood	attacks	

that	are	being	classified	as	TCP	SYN	attacks	on	the	basis	of	the	TCP	protocol	type	and	a	

‘low’	discretized	value	for	the	src_bytes	classifier.		Finally,	it	seems	that	some	instances	of	

UDP	Flood	and	DNS	Flood	in	the	cloud	data	are	being	classified	as	Smurf	attacks	on	the	

basis	of	the	ICMP	protocol	only.			

As	Figure	3.8	shows,	the	outcome	of	the	classification	model	when	applied	to	the	NSL-

KDD	dataset	is	quite	accurate,	even	with	the	small	feature	set.		Although	there	are	cases	

such	as	Land,	PoD,	and	some	of	the	Normal	cases	that	have	not	been	classified	correctly,	

the	overall	performance	of	the	model	is	good	on	the	non-cloud	dataset.		

When	the	model	is	applied	to	the	cloud	dataset,	its	performance	is	markedly	different,	as	

can	be	seen	in	Figure	3.9.		For	example,	the	TCP	SYN,	PoD	and	ICMP	flood	(another	name	

for	Smurf)	attack	types	are	common	to	both	datasets	which	should	lead	to	them	being	

classified	as	 the	same	 type	of	attack	by	 the	model.	 	However,	 the	model	mis-classifies	

every	instance	of	these	three	attack	types	in	the	CIDD	dataset.		

This	problem	seems	to	arise	from	the	structure	of	the	cloud	dataset	where	the	‘unpacking	

time’	issue,	explained	in	section	3.4.1,	has	influenced	the	structure	of	the	cloud	dataset.		

The	structure	of	the	cloud	dataset	means	that	each	instance/row	in	the	cloud	dataset	is	

very	 likely	 to	have	multiple	protocol	 types	 (since	packets	are	being	aggregated	 into	a	

single	 data	 instance/row)	 whereas	 each	 instance	 in	 the	 NSL-KDD	 dataset	 includes	 a	

single	protocol	type	as	it	represents	a	single	packet.	 	As	a	result,	TCP	SYN	cases	in	the	

cloud	data	are	very	likely	to	have	multiple	protocol	types,	and	that	is	why	they	have	been	

classified	as	Normal	cases.		This	is	also	true	for	UDP	Flood,	DNS	Flood,	Land	and	Slowloris.		

Moreover,	 where	 the	 UDP	 flood	 cases	 include	 TCP	 protocol	 packets	 they	 have	 been	

classified	as	TCP	SYN	attacks,	and	where	they	include	ICMP	protocol	packets	they	have	

been	classified	as	Smurf	attacks.		This	also	happens	for	DNS	Flood	cases:	where	DNS	cases	

include	TCP	protocol	packets	they	have	been	classified	as	TCP	SYN	attacks,	and	where	

they	include	ICMP	protocol	packets	they	have	been	classified	as	Smurf	attacks.		

In	 addition	 to	 the	 structural	 issue	 of	 the	 datasets,	 the	 limited	 number	 of	 overlapping	

features	causes	the	model	to	classify	some	instances	of	UDP	flood	as	Normal,	TCP	SYN	or	

Smurf	(see	Figure	3.9)	because	there	are	no	other	features	than	can	be	discerned	by	the	

Chapter	3:	Developing	an	Initial	Detection	Model	 Roja	Ahmadi		

 80

model	to	classify	the	instances	as	the	UDP	attack	type.	 	This	 is	also	true	for	DNS	flood	

cases	that	have	been	classified	as	Normal,	TCP	SYN	and	Smurf.			

3.6 Summary

This	 chapter	 aimed	 to	 leverage	 one	 of	 the	 well-established	 non-cloud	 datasets	 and	

analyse	 it	 in	relation	to	one	of	 the	 few	available	cloud	datasets	 to	develop	a	detection	

model.	 	This	was	explored	through	a	combination	of	a	machine	 learning	classifier	and	

transfer	learning	to	remap	the	intrusion	types.		However,	the	results	of	the	analysis	show	

that,	while	the	model	performed	well	on	the	non-cloud	dataset,	it	is	of	limited	value	in	

classifying	 attacks	 in	 the	 CIDD	 dataset	 owing	 to	 the	 different	 structures	 of	 the	 two	

datasets,	the	small	overlapping	feature	set	and	the	different	attack	types.		Given	that	there	

are	 very	 few	 publicly-available	 cloud	 intrusion	 detection	 datasets,	 there	 is	 a	 need	 to	

generate	new	datasets	of	this	type	that	have	a	common	structure,	address	a	standard	set	

of	attack	types	(which	can	be	expanded	as	new	attack	types	emerge)	and	include	a	wider	

range	of	features	to	be	able	to	use	them	to	compare	results	with	those	of	existing	work	in	

the	 area	 and	 allow	 researchers	 to	 validate	 their	 work/findings	 on	 other	 comparable	

datasets.		This	will	be	the	focus	of	the	next	chapter.	

	

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 81

Chapter 4 : Generating the Cloud Intrusion
Detection Dataset

4.1 Introduction

As	argued	in	chapter	3,	the	analysis	related	to	the	developed	model	showed	that	while	

the	model	performed	well	when	applied	to	the	non-cloud	dataset,	its	performance	was	

limited	in	classifying	attacks	in	the	CIDD	dataset	because	of	the	different	structures	of	the	

two	datasets,	the	small	overlapping	feature	set,	and	the	different	attack	types.		Given	that	

there	are	only	a	few	publicly-available	cloud	intrusion	detection	datasets,	to	be	able	to	

improve	the	model	and	use	it	to	undertake	comparative	analysis	with	existing	work	in	

this	area,	 there	 is	a	need	to	generate	a	new	dataset	 that	has	a	similar	structure	to	the	

available	non-cloud	dataset(s),	contains	the	same	types	of	DDoS	attack,	and	comprises	a	

broader	 range	 of	 features.	 	 Therefore,	 this	 chapter	 reports	 the	 work	 undertaken	 to	

generate	a	cloud	intrusion	detection	dataset	to	address	the	identified	issues.		

The	remainder	of	the	chapter	is	structured	as	follows.	 	Section	4.2	will	review	existing	

approaches	 for	 generating	 intrusion	 detection	 datasets	 in	 order	 to	 determine	 which	

approach	best	meets	the	requirements	of	this	research.		Section	4.3	will	then	present	the	

method	that	the	research	followed	in	this	phase,	detailing	the	test-bed-architecture	that	

was	 developed	 for	 this	 piece	 of	 the	 experimental	 work,	 including	 the	 software	 and	

hardware	specification.		Section	4.4	will	explain	the	process	of	running	the	experiment	to	

generate	the	cloud	intrusion	dataset.		Finally,	section	4.5	will	present	the	resulting	dataset	

on	which	the	next	stage	of	the	research	depended.	

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 82

4.2 Existing Approaches to Generating Intrusion Detection
Datasets

As	explained	in	chapter3,	there	are	only	two	publicly-available	cloud	intrusion	detection	

datasets,	 and	 there	 is	 no	 standard	 benchmark	 cloud	 intrusion	 detection	 dataset	 for	

researchers	to	use.	Moreover,	there	is	a	lack	of	systematic	approaches	in	the	literature	

that	may	be	applied	to	generate	intrusion	detection	datasets.	In	order	to	move	towards	

developing	 a	 standard	 benchmark	 dataset,	 it	 is	 important	 to	 review	how	 the	 existing	

standard	intrusion	detection	datasets	were	generated.	(Chapter	3	has	already	introduced	

the	existing	non-cloud	and	cloud	intrusion	detection	datasets,	in	sections	3.3.1	and	3.3.2,	

respectively).		

Table	4.1	categorizes	these	datasets	in	terms	of	the	approach	by	which	they	were	created	

–	synthetic,	real-time	and	emulation	–	and	provides	a	definition	of	each	approach	type	

and	sets	out	the	tools	that	each	approach	type	typically	uses.	It	is	worth	noting	that	using	

a	simulation	approach	might	also	have	been	be	a	viable	alternative	method	to	employ	in	

generating	the	cloud	intrusion	detection	dataset.	To	the	best	of	our	knowledge,	however,	

there	is	no	appropriate	literature	about	this	approach	in	the	area	of	intrusion	detection.	

Therefore,	 it	was	decided	 to	 consider	 the	 three	 identified,	 existing	methods	 that	have	

been	commonly	used	to	generate	intrusion	detection	datasets	in	other	research	in	order	

to	 identify	 the	 most	 suitable	 approach	 to	 adopt	 for	 this	 work.	 Each	 of	 the	 three	

approaches	will	now	be	explained	in	more	detail.	

	

	

	

	

	

	

	

	

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 83

Approach	 Definition	 Related	datasets	
to	each	approach		

Synthetic	 Synthetic	data	is	artificial	data	that	is	generated	by	various	
machine	learning	algorithms.	These	algorithms	have	the	
capability	to	learn	from	sample	data	to	create	a	model	that	
may	subsequently	generate	a	synthetic	dataset.	

Not	specified		

Real-time	 Real-time	data	is	collected	from	a	real	environment.	This	
type	of	data	is	related	to	incoming	and	outgoing	network	
traffic	of	real	workstations	(PCs)	of	users	in	organisations.	
All	the	generated	traffic	of	this	environment	could	be	
captured	from	the	edge	of	the	router	by	using	network	
traffic	tools	such	as	Tcpdump	and	so	on.		

KYOTO	

Emulation	 Emulated	data	is	collected	from	a	recreated	environment.	
This	test-bed	environment	provides	all	the	software	and	
hardware	requirements	for	cybersecurity	experiment,	such	
as	a	router,	firewall,	PCs,	etc.		This	enables	researchers	to	
configure	the	network	topology	to	generate	the	desired	
dataset.

CIDD,	NSL-KDD,	
CAIDA,	DEFCON,	
LBNL,	
ADFAUNSW-NB15	
	

Table 4.1 A summary of the existing approaches for generating intrusion detection

datasets and examples of resulting datasets

The	 first	 category	 to	be	 considered	 is	 the	 ‘Synthetic’	 approach.	This	 approach	 creates	

datasets	of	artificial	data	by	utilizing	machine	learning	algorithms.	For	example,	Pham,	

Nguyen	and	Nguyen	(2014)	generated	a	synthetic	intrusion	dataset	from	the	KDD	dataset	

by	 using	 machine	 learning	 algorithms	 with	 Support	 Vector	 Machines	 (SVM).	 	 These	

algorithms	include	a	set	of	mathematical	functions	that	are	capable	of	learning	from	input	

data	(in	this	case	the	KDD	dataset).	The	input	data	(also	called	the	training	data)	includes	

a	number	of	features	and	sample	data	points/items.	The	algorithm	maps	the	input	data	

to	 the	 features	of	 the	dataset	and	 learns	 from	 the	 input	data	 in	order	 to	generate	 the	

model.	This	model	is	then	used	to	generate	the	required	synthetic	data.		

There	 are	 useful	 tools,	 such	 as	Weka	 (Frank,	 Hall	 and	Witten,	 2016)	 and	 ID2T,	 that	

support	 the	 generation	of	 synthetic	 datasets	 (see,	 for	 example,	Vasilomanolakis	et	 al.,	

2016).	The	main	requirement	for	generating	a	dataset	using	this	approach	is	to	have	at	

least	a	small	set	of	sample	data	to	use	as	input/training	data.		In	our	case,	where	there	is	

no	sample	cloud	dataset	with	the	required	features,	it	was,	though,	not	an	appropriate	

approach	to	use.			

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 84

The	 second	 category	 is	 the	 ‘Real-Time’	 approach,	which	 generates	 datasets	 from	 real	

environments,	such	as	by	capturing	the	data	from	the	edge	router	of	an	organisation.		The	

KYOTO	 dataset	 was	 generated	 using	 this	 category	 of	 approach;	 it	 is	 made	 up	 of	 a	

collection	of	real-time	network	traffic	from	the	‘honeypots	project’	at	Kyoto	University	

(Song,	Takakura	and	Okabe,	2012).	 For	 commercial	organisations,	however,	 there	are	

often	 confidentiality	 issues	 they	 mean	 that,	 even	 if	 they	 gather	 datasets	 using	 this	

approach,	they	are	understandably	reluctant	to	make	public	the	data.	As	such,	using	the	

‘Real-Time’	approach	was	not	feasible	in	this	research.		This	is	to	be	expected;	because	of	

the	unavailability	of	real-time	datasets	from	commercial	organisations,	most	academic	

research	applies	the	synthetic	or	emulation	approaches	to	generate	the	datasets	(Rao	and	

Naidu,	2017).			

The	 final	 category	 is	 the	 ‘Emulation’	 approach	 which	 uses	 a	 computer	 laboratory	

environment	that	emulates	a	real-work	network	configuration	to	generate	datasets.	The	

environment	will	include	several	physical	machines	(which	may	run	on	various	operating	

systems),	switches,	firewalls,	network	connections,	and	so	on,	to	form	the	topology	of	the	

test	network.	 	Depending	on	the	defined	goal	of	 the	specific	research	work,	as	well	as	

generating	normal	network	traffic,	the	physical	machine/PCs	will	be	equipped	with	tools	

to	generate	particular	types	of	attack.	 	The	network	traffic	 is	captured	by	the	network	

traffic	recorder	and	analyzer	tools,	with	the	recorded	file	constituting	the	dataset.			

The	research	reported	in	the	remainder	of	this	thesis	used	the	emulation	approach.		It	is	

the	approach	used	to	create	most	of	the	commonly-available	intrusion	detection	datasets,	

including	CIDD,	NSL-KDD,	CAIDA,	DEFCON,	LBNL,	ADFA	and	UNSW-NB15.		As	such,	the	

majority	 of	 research	 publications	 in	 the	 field	 are	 based	 on	 (or	make	 use	 of)	 datasets	

generated	 using	 this	 approach.	 	 Moreover,	 relevant	 hardware	 was	 available	 in	 the	

university,	 making	 it	 more	 straightforward	 and	 affordable	 to	 conduct	 the	 dataset	

generation	and	associated	experimental	work	using	this	approach.		

Having	explained	and	 justified	the	overall	approach	taken	to	generate	 the	dataset,	 the	

next	 section	 will	 present	 the	 detail	 of	 the	 approach	 and	 explain	 the	 hardware	 and	

software	configuration,	 justifying	choices	 that	were	made,	 for	example	 in	 terms	of	 the	

specific	tools	employed.			

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 85

4.3 Detailed Approach to Generating the Cloud Intrusion
Detection Dataset

This	 section	 will	 explain	 the	 detailed	 application	 of	 the	 emulation	 approach	 for	 this	

research	and	will	 set	out	 the	 software	and	hardware	 requirements	 for	generating	 the	

dataset	in	the	cloud	testbed	environment,	justifying	the	choices	that	were	made.		

As	mentioned	in	section	4.2,	 this	research	aimed	to	generate	a	dataset	 in	an	emulated	

cloud	environment.		In	order	to	inform	the	test-based	design	for	the	research,	the	starting	

point	was	to	review	the	approach	taken	to	generating	the	CIDD	dataset,	in	terms	of	the	

cloud	 configuration	 used;	 however,	 not	 enough	 information	 about	 its	 test-bed	

architecture	 was	 publicly	 available.	 	 Therefore,	 to	 determine	 suitable	 software-	 and	

hardware-level	requirements	for	the	test--bed	configuration,	the	architectures	of	other	

relevant	emulation	systems,	and	the	tools	that	they	used,	were	analyzed.	The	findings	will	

be	presented	in	subsequent	sections	as	the	different	parts	of	the	test-bed	are	presented.			

Before	moving	into	the	detail,	Table	4.2	presents	a	high-level	view	of	the	requirements	of	

the	emulation	test-bed	for	generating	the	cloud	intrusion	dataset.	This	shows	three	main	

layers	in	the	test-bed	configuration:	the	platform-level	specification;	the	elements	of	the	

cloud	experimental	environment;	and	the	software	tools	needed	to	generate	and	capture	

network	traffic	in	the	cloud	environment.		The	platform-level	specification	includes	all	of	

the	software	and	hardware	requirements	of	the	OpenStack	cloud	platform	(see	section	

4.3.1).	The	cloud	experimental	environment	layer	contains	all	of	the	entities	required	to	

form	the	experimental	environment	(see	section	4.3.2).	The	final	piece	in	Table	4.2	details	

all	of	the	tools	that	were	required	to	be	installed	on	the	relevant	elements	in	the	created	

cloud	environment	in	order	to	generate	the	required	dataset	(see	section	4.3.3).		

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 86

Cloud	test-bed	environment	

Platform-level	specification		

Software	requirements	 Choices	 Hardware	requirements	 Choices	

Cloud	operating	system	 OpenStack	 Memory	
Hard	disk	
Network	
CPU	(2	processors)	

23	GB	
466.8	GB	
	
2	processors	

Linux	operating	system	
	

Ubuntu	

Elements	of	the	cloud	experimental	environment	

Requirements		 Choices	

Image	(bootable	operating	system)	 Linux server image- Python server image

	
Network		

External	network	
Internal	network	
Subnets	
Network	interface	
IP	addresses	
Router	

Virtual	machine	Instance	 8	virtual	machines	

Required	software	to	generate	and	capture	the	network	traffic	in	the	cloud	environment		

Requirements		 Choices	

Normal	traffic	script	 Python

DDoS	attacks	script	 Python	

Web	server	 Python

Web	browser		 Lynx	

Network	traffic	capture	
	

Tcpdump

 Table 4.2 High-level view of the requirements of the emulation test-bed

4.3.1 Platform-level specification

As	shown	in	table	4.2,	to	develop	the	cloud-based	test-bed	environment,	it	was	essential	

to	 install	 a	 cloud	 computing	 platform.	 	 This	 sub-section	will	 introduce	 the	 platform’s	

software	and	hardware	requirements.		

A	 range	 of	 elements	 were	 required	 to	 form	 the	 platform	 (the	 infrastructure	 of	 the	

experimental	environment),	including	virtual	machines,	a	virtual	network	and	a	virtual	

router.		To	inform	the	choice	of	exactly	how	to	implement	these	elements,	various	cloud	

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 87

computing	platforms	that	offer	IaaS	were	considered.	Based	on	an	analysis	of	relevant	

literature,	 Eucalyptus	 and	 OpenStack	 were	 found	 to	 be	 the	 two	most	 common	 cloud	

computing	 platforms	 that	 have	 been	 used	 for	 the	 evaluation	 of	 intrusion	 detection	

systems	in	cloud-computing	environments.		

The	Elastic	Utility	Computing	Architecture	 for	Linking	Your	Program	to	Useful	System	

(Eucalyptus)	is	an	open	source	cloud	platform,	released	in	2008,	that	provides	IaaS	for	

organisations.	 The	 Eucalyptus	 cloud	 platform	 was	 used	 as	 the	 infrastructure	 for	

generating	the	CIDD	dataset	and	has	also	been	used	in	other	research	in	the	field.		As	such,	

Eucalyptus	would	have	been	a	reasonable	choice	for	the	cloud	platform.		

However,	 the	 researcher	 had	 no	 experience	 in	 using	 Eucalyptus.	 	 In	 contrast,	 prior	

experience	had	been	gained	with	OpenStack,	so	it	was	decided	to	install	an	OpenStack	

instance	as	the	cloud	computing	platform	for	this	phase	of	the	research.		OpenStack	offers	

very	similar	functionality	to	Eucalyptus	and	has	also	been	widely	used	in	the	research	

area	(Lindgren,	2013).		The	remainder	of	this	sub-section	will	introduce	the	OpenStack	

cloud	platform.	

OpenStack	 is	 an	 open	 source	 cloud	 platform	 developed	 by	 NASA	 and	 Rackspace.	 It	

provides	Infrastructure	as	a	Service	(IaaS)	by	offering	great	pools	of	computing,	storage	

and	 networking	 resources	 through	 a	 dashboard	 that	 gives	 control	 to	 the	 user	 on	 the	

provision	 of	 these	 resources.	 OpenStack	 includes	 three	 main	 components:	 Nova;	

Neutron;	and	Swift.	 	Nova	supports	the	creation	of	virtual	machines	and	also	provides	

provisioning	of	virtual	compute	instances.	Neutron	offers	an	Application-Programming	

Interface	 (API)	 that	 allows	 network	 connectivity	 to	 be	 set	 up	 and	 the	 creation	 and	

management	of	virtual	networking	devices	such	as	switches,	routers	and	subnets.	Finally,	

Swift	 is	cloud	storage	software	which	supports	the	creation	of	virtual	machine	images	

and	allows	the	storage	and	retrieval	of	large	amounts	of	data	using	an	API.		

OpenStack	 has	 certain	 software	 and	 hardware	 dependencies.	 First,	 there	 is	 a	 need	 to	

install	 Ubuntu	 Linux	 as	 a	 host	 operating	 system.	 Second,	 though	 there	 are	 various	

configurations	 for	 the	 hardware	 specification	 of	 Open	 Stack	 (for	 example,	 different	

components	of	OpenStack	can	run	on	different	PCs),	each	physical	machine	that	is	used	

must	have	at	least	one	processor	and	4GB	of	memory	(RAM).			

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 88

As	part	of	the	set-up	of	the	test-bed,	OpenStack	was	installed	on	PCs	with	the	minimum	

hardware	requirement	to	test	its	performance	in	terms	of	speed.	It	was	observed	that	the	

performance	 was	 very	 slow,	 so	 the	 hardware	 specification	 was	 increased.	 	 Two	

processors	were	added	to	the	PC	and	its	memory	was	increased	to	23GB.	This	resulted	in	

an	improved	performance	of	Open	Stack	once	installed.			

Having	set	up	the	cloud	platform,	the	next	step	was	to	develop	the	software	environment	

through	 which	 to	 generate	 the	 dataset.	 The	 following	 sub	 section	 explain	 all	 of	 the	

elements	that	made	up	this	environment.	

4.3.2 Elements of the cloud experimental environment

As	shown	in	Table	4.2,	to	make	the	cloud	experimental	environment,	it	was	necessary	to	

create	a	number	of	elements	on	the	cloud	platform	including	images,	external	network,	

internal	 network,	 subnets,	 network	 interface,	 IP	 address,	 router,	 and	 virtual	machine	

instances.	Figure	4.1	represents	all	elements	of	the	OpenStack	environment,	comprising	

eight	 virtual	machine	 instances,	 internal	network,	 router,	 and	external	network.	 	This	

subsection	will	introduce	all	of	the	required	elements	that	were	created	to	build	the	cloud	

test-bed	environment.		

Figure 4.1 All the required elements of the cloud test-bed environment	

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 89

The	cloud	test-bed	environment	was	initiated	by	building	cloud	images,	as	it	was	the	first,	

required	step.	This	is	a	file	including	a	virtual	disk	that	has	a	bootable	operating	system	

installed	on	it.		Cloud	images	were	utilized	to	create	virtual	machine	instances	within	the	

OpenStack.	To	launch	virtual	machine	instances,	it	was	necessary	to	first	build	the	virtual	

network	infrastructure.	To	do	this,	it	was	required	to	create	the	external	network,	which	

was	connected	to	the	physical	network	infrastructure.	The	external	network	provided	IP	

addresses	to	virtual	machine	instances	in	the	cloud	and	supplied	a	means	of	access	to	the	

outside	world	through	internal	network	

As	such,	 it	was	necessary	to	create	the	internal	network	since	it	was	a	requirement	of	

connecting	 to	 the	 external	 network.	 To	 connect	 the	 external	 network	 to	 the	 internal	

network,	 a	 router	was	 created	 to	 provide	 the	 required	 connectivity	 between	 the	 two	

networks.	

Once	all	of	the	fundamental	components	of	the	network	infrastructure	had	been	created,	

eight	 virtual	machine	 instances	were	 launched	 –	 this	was	deemed	 to	 be	 a	 reasonable	

number	 for	 generating	 the	 desired	 traffic.	 The	 images,	 internal	 network	 and	 external	

network	 were	 allocated	 to	 each	 virtual	 machine.	 Associated	 IP	 addresses	 were	 then	

assigned	to	each	of	the	virtual	instances	to	allow	them	to	communicate	with	each	other	

and	the	outside	world.		

Section	4.3.3	will	report	the	next	stage	of	the	experiment,	explaining	the	tools	that	were	

installed	 on	 each	 virtual	 machine	 in	 order	 to	 generate	 normal	 traffic	 as	 well	 as	 the	

different	types	of	DDoS	attack	traffic.		

4.3.3 Required software tools to generate and capture the network
traffic in the cloud environment

Once	 the	 required	cloud	 infrastructure	had	been	developed,	 it	was	essential	 to	 set	up	

relevant	software	tools	to	generate	DDoS	attacks	against	the	test-bed	cloud	architecture	

as	well	as	to	generate	normal	traffic,	and	to	capture	the	generated	traffic	for	further	study.		

Based	 on	 the	 analysis	 of	 relevant	 literature,	 Table	 4.2	 shows	 all	 of	 the	 software	

requirements,	and	the	list	of	chosen	tools	employed	in	this	research,	 including	Python	

normal	 traffic	 script,	 Python	 DDoS	 attack	 scripts,	 Tcpdump	 network	 traffic	 capture,	

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 90

Python	web	server,	Lynx	web	browser.	Moreover,	as	it	was	necessary	to	analyse	all	of	the	

existing	software	tools	for	generating	the	dataset,	this	stage	of	this	research	reports	in	

more	detail	than	the	first	two	stages.	All	of	the	details	related	to	the	justification	of	the	

choices	made	in	terms	of	the	software	tools	employed	will	now	be	explained.			

As	mentioned	earlier,	all	of	the	required	software	tools	were	determined	by	reviewing	

the	list	of	software	specifications	used	to	generate	the	CIDD	dataset	and	other	emulation-

based	datasets.		However,	not	enough	information	in	terms	of	software	specification	tools	

was	publicly	available	in	relation	to	the	emulated	datasets.	Therefore	Table	4.3	presents	

the	 result	 of	 the	 analysis	 of	 software	 requirement	 tools	 used	 in	 the	 generation	of	 the	

UNSW-NB15,	 ADF,	 NSL-KDD	 and	 CIDD	 datasets.	 As	 Table	 4.3	 shows,	 the	 required	

software	 includes	 a	 network	 normal	 traffic	 generator,	 DDoS	 attack	 generator	 tool,	

network	traffic	capture	and	analyzer	tool,	web	server	and	web	browser,	each	of	which	

will	now	be	explained.		

	

	

	

	

	

	

	

A	 network	 traffic	 generator	 tool	 was	 used	 to	 generate	 normal	 network	 traffic	 in	 the	

controlled	lab	environment	(in	our	case	OpenStack).	There	are	various	network	traffic	

generator	tools	defined	for	a	specific	purpose	 in	terms	of	 testing	network	devices,	 the	

supported	 operating	 system,	 the	 supported	 network	 layer,	 the	 type	 of	 traffic,	 being	

embedded	in	the	test-bed,	and	so	on	(Botta,	Dainotti	and	Pescapé,	2012).	For	example,	

Table	4.3	presents	the	ixia	PerfectStorm	tool	used	for	generating	network	traffic	as	well	

as	DDoS	attacks	in	UNSW-NB15,	and	show	that	the	Metasploit	tool	was	used	in	the	ADFA	

dataset	for	both	traffic	generation	and	DDoS	attack	traffic.	However,	no	information	on	

Name	of	
dataset	

Traffic	
generator	tool	

DDoS	attack	
simulation	
tool	

Network	traffic	
capture	and	
analyzer	tool	

Web	
Resources	 References	

UNSW-
NB15	

LXIA	
PerfectStorm	

LXIA	

PerfectStorm	
Tcpdump/BroIDS	 SQL	 Moustafa	

(2015)	

ADFA	 Metasploit	 Metasploit	 Not	specified	 SSH,	FTP,	
SQL,PHP	

Creech	and	
Hu	(2013)	

CIDD	 Not	specified	 Hping3	 Custom-bases	
Sniffer	 Siege	

(Kumar,	Lal	
and	Sharma,	
2016))	

Table 4.3 Summary of existing software tools for emulated intrusion detection datasets

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 91

the	 technical	 details	 of	 these	 tools	 was	 available.	 Therefore,	 to	 determine	 the	 most	

suitable	tool	to	generate	normal	network	traffic,	relevant	literature	on	existing	network	

generator	tools	was	analyzed.	Table	4.4	presents	findings	on	the	most	commonly-used	

network	 traffic	 generator	 tools	 and	 DDoS	 attack	 generator	 tools	 (Behal	 and	 Kumar,	

2017).		

	

	

Chapter	4:	Generating	the	Cloud	Intrusion	Detection	Dataset	 Roja	Ahmadi	

 92

Table 4.4 Network traffic and DDoS attack generator tools (Behal and Kumar, 2017)

Chapter	4:	Generating the Cloud Intrusion Detection Dataset Roja Ahmadi

 93

However,	most	of	these	tools	were	not	compatible	with	OpenStack	in	terms	of	supported	

operating	system,	command	line	and	interface-based	features,	image	size	and	image	type.	

For	example,	it	was	initially	decided	to	choose	Metasploit,	which	is	a	popular	penetration	

testing	platform	that	includes	all	of	the	required	tools	to	test	network	security.	However,	

it	 was	 observed	 that	 the	 large	 image	 size	 and	 the	 interface-based	 features	 of	 the	

Metasploit	caused	issues	within	OpenStack	and	crashed	the	system.	Therefore,	literature	

analysis	was	 undertaken	 in	 relation	 to	 other	 tools	 that	 had	 a	 smaller	 image	 size	 and	

command	line	features	which	were	compatible	within	the	cloud.	As	result,	Python	was	

chosen	to	be	employed	on	OpenStack	for	this	research.		

Python	is	an	object-oriented	high-level	programming	language	with	dynamic	semantics	

used	for	web	and	app	development.	It	is	also	a	scripting	language	that	is	easy	to	use,	and	

it	supports	libraries	and	packages.	Moreover,	a	large	majority	of	web	application	such	as	

Google,	YouTube	and	so	on	are	based	on	Python.	The	availability	of	a	normal	traffic	script,	

its	compatibility	with	OpenStack	and	its	command	line-based	feature,	meant	that	it	was	

seen	as	being	the	best	tool	to	use.		

To	generate	DDoS	attacks,	it	was	essential	to	install	a	DDoS	attack	simulation	software	

tool.	This	tool	generates	different	types	of	DDoS	attack	against	its	target,	which	is	either	

based	on	bandwidth	or	the	server.	It	includes	a	range	of	features	for	each	type	of	DDoS	

attack,	such	as	fluctuated	and	continuous	attack	rates,	protocol	type	and	so	on.	Since	the	

focus	of	 this	research	was	to	generate	network,	 transport	and	application	 layer	attack	

types	(see	Figure	2.4),	it	was	required	that	the	software	tool	generate	ICMP,	UDP,	HTTP	

and	TCP	protocols	with	a	continuous	attack	rate.	Based	on	the	relevant	literature	analysis	

related	to	DDoS	simulation	tools	such	as	Metasploit,	Hping	3,	and	lxia	(as	presented	in	

Table	 4.3)	 and	 other	 relevant,	 existing	 tools,	 Python	was	 seen	 as	 being	 closer	 to	 the	

requirements	of	this	research.	This	was	because	lxia	 is	a	commercial	tool	and	was	not	

freely	 accessible;	 Metasploit	 was	 not	 compatible	 with	 the	 test-bed	 environment,	 and	

Hping	 3	 was	 not	 capable	 of	 generating	 a	 DDoS	 attack.	 As	 already	 mentioned,	 the	

command	line	feature	of	Python,	its	compatibility	with	OpenStack	and	the	availability	of	

different	types	of	DDoS	attack	scripts	made	it	a	more	suitable	tool	to	use	than	others.	

To	 capture	 normal	 and	 DDoS	 attack	 traffic,	 it	 was	 essential	 to	 use	 a	 network	 traffic	

capture	 and	 analyzer	 tool.	 This	 class	 of	 tool	 is	 capable	 of	monitoring	 and	 saving	 the	

Chapter	4:	Generating the Cloud Intrusion Detection Dataset Roja Ahmadi

 94

incoming	and	outgoing	live	traffic.	As	such,	it	provides	useful	statistical	information	about	

network	traffic	flow,	network	packets	and	so	on.	This	knowledge	is	beneficial	in	terms	of	

understanding	 network	 behaviours,	 detecting	 network	 attacks	 and	 improving	 the	

network	planning	strategy.	For	example,	source	and	destination	IP	address	information	

shows	who	is	originating	and	receiving	the	network	traffic;	port	information	displays	the	

utilization	of	the	network	application.;	the	packet	and	byte	counts	indicate	the	amount	of	

network	 traffic.	 There	 are	 various	 tools	 that	 address	 all	 of	 these	 purposes,	 including	

Tcpdump,	Bro	and	sniffer	tools	(see	Table	4.3).	Wireshark	and	T-shark	are	also	popular	

network	capture	and	analyzer	tools	and	include	the	same	functionality,	with	only	minor	

differences	in	terms	of	whether	they	are	command	line,	offer	an	easy	to	use	interface,	and	

how	they	present	network	flow	and	packet	features.	Since	this	research	was	seeking	a	

command	 line	network	 traffic	capture	 tool	 to	be	compatible	with	OpenStack,	and	 that	

could	extract	specific	features	for	detection	of	DDoS	attacks,	the	Tcpdump	network	traffic	

capture	and	analysis	tool	was	seen	as	being	the	best	choice	from	the	available	tools.	

Tcpdump	is	a	command-line	network	analyzer	and	monitoring	tool	that	allows	a	high-

level	view	of	the	whole	network	and	its	graphical	visualization.	It	is	capable	of	real-time	

packet	 capture,	 network	 monitoring	 and	 protocol	 analysis.	 More	 importantly,	 the	

Tcpdump	 tool	provided	 the	possibility	 for	 this	 research	 to	 export	 and	 capture	a	wide	

range	of	features	of	normal	and	attack	network	traffic	for	further	analysis.	

As	the	target	of	the	DDoS	attack	is	web	servers	or	network	resources,	it	was	necessary	to	

install	servers	in	the	defined	target	zone	(see	Figure	4.2)	of	OpenStack.	A	web	server	is	a	

software	 that	 uses	 Hyper	 Transfer	 Protocol	 (HTTP)	 to	 serve	web	 resources	 (such	 as	

emails,	 downloading	 a	 request	 for	 file	 transfer	 and	 so	 on)	 to	 the	 incoming	 Internet	

request	to	the	end	user.	A	user	can	send	the	request	to	access	all	of	the	authorized	web	

resources	through	a	web	browser.	

As	 shown	 in	 table	 4.3	 SQL,	 SSH,	 FTP	 and	PHP	web	 servers	were	used	 in	 creating	 the	

UNSW-NB15,	ADFA	and	CIDD	datasets.	However,	not	enough	information	about	the	type	

of	 these	 services	 was	 available.	 Therefore,	 the	 relevant	 literature	 on	 the	 required	

resources	associated	with	DDoS	attack	was	analyzed.	The	findings,	summarized	in	Table	

4.5,	include	vulnerable	servers	and	websites	that	are	defined	for	the	purpose	of	ethical	

hacking	(such	as	Metaspoiltable,	Google	Gruyere	and	BWAPP).			

Chapter	4:	Generating the Cloud Intrusion Detection Dataset Roja Ahmadi

 95

The	name	of	
the	server		

Description		 References	

Metaspoiltable	

	

This	is	a	Linux-based	virtual	machine	that	is	used	for	
penetration	testing.	It	is	created	by	the	Rapid7	Metasploit	
team	and	includes	intentional	vulnerabilities	to	be	
exploited	for	research	purposes.	

(Metasploit,	2019)	

Google	
Gruyere	

	

This	website	contains	vulnerabilities,	such	as	DoS	attacks,	
that	are	designed	for	educational	hacking	experiments.	It	
helps	security	researchers	and	web	developers	to	
understand	how	hackers	exploit	these	weaknesses	of	the	
website	to	improve	security	mechanisms.	

(Leban,	Bendre	and	
Tabriz,	2017)	

Buggy	Web	
Application	
(BWAPP)	

	

This	is	an	insecure	PHP	web	application	that	contains	a	
MYSQL	database.	It	is	used	for	educational	and	web	
security	testing	purposes	to	help	researchers	to	discover	
and	prevent	web	vulnerabilities.			

(Mesellem,	2014)	

Table 4.5 Some of the common vulnerable webservers used for penetration testing

However,	 these	 servers	 were	 not	 compatible	 with	 OpenStack	 owing	 to	 issues	 with	

graphical	 interface	 features	 and	 large	 image	 size.	 	 Instead,	 a	 Python	web	 server	 and	

Python	web	browser	were	seen	as	suitable	choices	for	this	research	to	use	as	they	offer	a	

command	line	interface,	are	compatible	with	OpenStack	and	simplify	the	configuration	of	

the	 Python	 server.	 As	 mentioned	 earlier,	 the	 standard	 library	 of	 Python	 includes	

integrated	modules,	 including	 those	of	web	server	and	web	browser.	 	A	Python	HTTP	

server	 and	 Lynx	web	 browser	were	 used	 in	 this	 research.	 	 Lynx	 is	 a	 text-based	web	

browser	which	uses	a	command-line	interface.	These	modules	can	be	invoked	for	client	

web	server	communication,	as	required	in	this	research.			

4.4 Data Collection Process

This	section	will	explain	the	process	of	data	collection.	To	this	end,	it	presents	the	actions	

of	a	cloud	user	performing	a	range	of	different	DDoS	attacks	and	normal	activities	in	the	

emulated	 cloud	 environment	 to	 generate	 the	 desired	 network	 traffic	 dataset	 by	

employing	the	essential	tools	that	were	explained	in	the	previous	section.

Chapter	4:	Generating the Cloud Intrusion Detection Dataset Roja Ahmadi

 96

4.4.1 Designed Scenario of the Experiment

Once	 the	 infrastructure	 of	 the	 experimental	 environment	 had	 been	 developed	 and	

equipped	with	 all	 of	 the	 required	 software	 tools,	 the	 next	 stage	was	 to	 generate	 the	

normal	as	well	as	the	DDoS	attack	network	traffic	data.	To	generate	the	dataset	by	using	

the	 installed	 tools,	 it	was	 necessary	 to	 design	 a	 scenario	 in	which	 a	 specific	 role	was	

allocated	to	each	virtual	machine	(VM)	within	the	OpenStack	set-up.	Table	4.7	explains	

all	of	the	task	that	were	assigned	to	each	VM,	identifying	the	target	VM,	DDoS	attacker	

VMs	and	normal	VMs.		

Type	of	scenario		 Name	of	the	
entity		

Allocated	roles		

Target	zone		 Virtual	Machine	
Instance	1	(VM1)	

VM1	hosted	the	HTTP	python	server,	and	the	target	of	all	types	
of	DDoS	attack.	

Tcpdump	captured	all	the	incoming	traffic	to	this	zone.	

Attack	scenario		 Virtual	Machine	
Instance	2	(VM2)	

VM2	generated	a	Slowloris	attack.		

Attack	scenario	 Virtual	Machine	
Instance	3	(VM3)	

VM3	generated	UDP	flood	and	DNS	Flood	attacks.	

Attack	scenario	 Virtual	Machine	
Instance	4	(VM4)	

VM4	generated	a	TCP	SYN	attack.	

Attack	scenario	 Virtual	Machine	
Instance	5	(VM5)	

VM5	generated	a	ICMP	Flood	attack.	

Legitimate	
scenario	

Virtual	Machine	
Instance	6	(VM6)	

VM6	sent	a	normal	request	to	the	server	in	VM1	through	a	Lynx	
browser.	

Legitimate	
scenario	

Virtual	Machine	
Instance	7	(VM7)	

VM7	sent	a	normal	request	to	the	server	in	VM1	through	a	Lynx	
browser.	

Legitimate	
scenario	

Virtual	Machine	
Instance	8	(VM8)	

VM8	sent	a	normal	request	to	the	server	in	VM1	instance	1	
through	a	lynx	browser.	

Table 4.6 The designed scenario for each virtual machine instance in the cloud

As	Table	4.6	shows,	VM1	was	used	to	host	the	HTTP	Python	server	and	was	defined	to	be	

the	target	of	the	DDoS	attacks.		As	such,	the	Tcpdump	tool	was	installed	on	VM1	to	capture	

all	 of	 the	 incoming	 traffic	 to	 this	 zone.	VM2,	VM3,	VM4	and	VM5	were	determined	as	

attacker	machines	and	included	all	of	the	required	DDoS	Python	scripts	–	Slowloris,	UDP	

Chapter	4:	Generating the Cloud Intrusion Detection Dataset Roja Ahmadi

 97

Flood,	TCP	SYN,	DNS	Flood,	PoD	and	ICMP	Flood.	VM6,	VM7	and	VM8	were	defined	as	

machines/PCs	of	legitimate	users,	equipped	with	Python	Lynx	and	used	for	normal	user	

activities,	such	as	downloading	files,	accessing	web	pages,	and	so	on.	Section	4.4.2	will	

provide	an	explanation	of	how	each	of	the	scenarios	detailed	in	Table	4.6	was	run.	

4.4.2 Generating and Collecting the Traffic Data

Once	all	of	the	scenarios	that	comprised	the	experiment	had	been	designed,	the	next	stage	

was	to	implement	each	of	the	scenarios	and	collect	all	of	the	generated	network	traffic.		

Figure	 4.2	 presents	 a	 pictorial	 representation	 of	 the	 cloud	 test-bed	 environment,	

including	all	of	the	required	entities	that	were	explained	in	Table	4.2.	In	the	data-capture	

period,	as	Figure	4.2	shows,	the	server	was	running	on	VM1	and	‘listening’	to	all	of	the	

incoming	traffic	to	this	zone.	Then,	a	relevant	Python	script	associated	with	each	attack	

type	was	 separately	 run	 in	 a	different	 time	period	 to	 attack	 the	 server.	 Each	of	 these	

attack	scripts	were	designed	based	on	 the	behaviour	of	 the	relevant	DDoS	attack	(see	

sections	2.5.1	and	2.5.2).		The	Tcpdump	tool	that	had	been	installed	on	VM1	captured	and	

saved	all	of	the	different	type	of	attack	and	normal	traffic	for	subsequent	analysis.		

Figure 4.2 The cloud experimental environment	

Chapter	4:	Generating the Cloud Intrusion Detection Dataset Roja Ahmadi

 98

4.5 Summary

This	chapter	has	reported	the	approach	taken	to	generating	the	cloud-based	intrusion	

detection	dataset	for	subsequent	analysis	in	the	remainder	of	the	thesis.	To	achieve	this	

aim,	this	chapter	first	reviewed	and	analyzed	the	different	approaches	that	could	be	used	

to	create	the	intrusion	detection	dataset	in	order	to	assess	which	approach	best	met	the	

requirement	of	this	work.	Based	on	this	analysis,	the	emulation	approach	was	chosen	to	

generate	the	dataset.	The	chapter	then	created	the	software	and	hardware	specifications	

to	form	the	experimental	environment	and	selected,	with	justifications,	the	tools	to	be	

used	to	generate	the	different	types	of	DDoS	attack	and	normal	network	traffic.	Having	

created	the	specified	environment,	the	desired	dataset	was	generated	using	the	emulated	

OpenStack	 cloud	 environment	 using	 various	 Python	 modules.	 The	 next	 chapter	 will	

analyse	the	resulting	dataset.			

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 99

Chapter 5 : Developing Intrusion Detection Models

5.1 Introduction

Chapter	4	presented	the	method	for	generating	the	desired	dataset	to	be	used	to	improve	

the	intrusion	detection	model	and	to	undertake	comparative	analysis	with	existing	work	

in	this	area.	To	be	able	to	build	a	classification	model	and	analyse	its	performance	there	

was	a	need	for	pre-processing	to	be	undertaken	on	the	dataset	to	ensure	that	it	was	in	an	

appropriate	 form.	 This	 chapter	 therefore	 reports	 the	 pre-processing	 work	 that	 was	

undertaken	to	ensure	that	the	structure	of	the	data	was	appropriate	for	the	classification	

task	and	subsequent	analysis.		

The	 remainder	 of	 this	 chapter	 is	 structured	 as	 follows.	 Section	 5.2	 will	 present	 the	

features	 and	 structure	 of	 the	 dataset	 to	 demonstrate	 the	 importance	 of	 the	 data	 pre-

processing	that	was	undertaken	the	dataset	that	was	created/captured	as	a	result	of	the	

work	reported	in	chapter	4.	Section	5.3	will	then	present	all	of	the	details	of	the	data	pre-

processing,	including	finding	the	commonalities	in	the	different	types	of	malicious	and	

legitimate	 network	 traffic	 datasets,	 and	 the	 parsing	 and	 processing	 of	 the	 dataset	 to	

transform	its	structure	into	a	suitable	format	for	the	classification	task.		The	choices	of	

the	time	intervals/slices	that	were	used	for	comparative	analysis	will	also	be	explained	

in	this	section.	Section	5.4	will	then	present	the	results	of	the	classification	task	on	the	

processed	dataset.	Finally,	section	5.5	will	present	the	subsequent	analysis	of	the	results	

of	the	classification	model	using	different	time	slices.	

5.2 Dataset

This	section	will	introduce	the	structure	of	the	generated	dataset,	including	its	features,	

in	order	to	define	the	required	preprocessing	steps.			

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 100

The	experiment	described	in	chapter4	generated	datasets	comprising	legitimate/normal	

network	traffic	and	six	types	of	DDoS	attacks:	DNS	flood;	ICMP	flood;	UDP	flood;	TCP	SYN	

flood;	Slowloris;	and	Ping-of-Death	(PoD).	The	original	dataset	was	collected	by	tcpdump	

in	the	experimental	environment	(see	chapter	4).	As	tcpdump	tool	was	installed	on	the	

server,	it	captured	all	different	type	of	the	network	traffic	that	passed	the	TCP/IP	network	

model	 to	 the	 target	 zone	 (server)	 (see	 section	 2.5	 for	 detailed	 explanation).	 All	 the	

collected	instances	of	network	traffic	consisting	all	the	protocol	header	information	such	

as	 IP	packet	 header	 information	namely:	 (timestamp,	 tos,	 ttl,	 id,	 offset,	 flags,	 protocol	

type,	length,	source	IP	address,	destination	IP	address);	TCP	packet	header	information:	

(source	port	number,	destination	port	number,	flags,	Checksum,	seq	,ack,	win,	options,	

length);	 ICMP	packet	 header	 information:	 (Type	 of	 the	message,	 ICMP	 length,	 id,	 seq,	

checksum);	UDP	packet	header	information:	(source	port,	destination	port,	UDP	length	

and	 UDP	 checksum)	 (see	 sections	 2.5.1	 and	 2.5.2	 for	 detailed	 explanations).	 When	

instances	of	network	connection	utilised	a	different	type	of	protocol,	such	as	TCP,	UDP	or	

ICMP	protocol,	the	relevant	network	traffic	instance	also	contained	the	associated	packet	

header	information	for	the	relevant	protocol	type.	Figures	5.1	to	5.7	present	and	explain	

the	different	protocol	header	information	of	normal	traffic,	TCP	SYN	flood,	ICMP	flood,	

UDP	flood,	Slowloris,	Pod	and	DNS	flood	respectively,	 to	 illustrate	the	structure	of	 the	

headers	of	each	attack	type.	

Figure	5.1	presents	the	screenshot	of	instance	of	normal	traffic	in	which,	a	user	sent	a	

request	(this	request	is	in	the	form	of	the	packet)	to	the	server	to	access	the	web	browser	

via	 the	 establishment	 of	 the	 TCP	 SYN	 connection	 (see	 section	 2.5.5	 for	 detailed	

description).	Therefore,	normal	instances	of	the	output	of	the	tcpdump	data	including	all	

the	 transmitted	 and	 received	 information	 that	 derived	 from	 the	 protocol	 header	 in	

packets	such	as	IP	packet	header	and	TCP	packet	header	(see	sections	2.5.1	and	2.5.2	for	

the	detailed	explanation	of	packet	headers	information).	

Figure 5.1 Screenshot of the features of IP packet header and TCP packet header in

normal traffic

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 101

Figure	5.2	presents	the	screenshot	of	the	features	of	an	IP	packet	header,	a	TCP	packet	

header,	and	an	ICMP	packet	header	information.	As	explained	in	section	2.5.2,	in	the	TCP	

SYN	attack,	the	attacker	exploits	the	TCP	connection	by	first	sending	the	frequent	SYN	

packet	to	the	target	to	establish	the	connection.	Therefore,	a	tcpdump	displays	a	TCP	and	

IP	packet	header	information	in	the	first	section	of	Figure	5.2.	In	the	second	phase	of	the	

TCP	SYN	attack,	a	server	sent	the	SYN-ACK	message	to	the	sender	(attacker),	and	because	

of	the	nature	of	the	attack,	the	server	never	received	the	expected	ACK	message	from	the	

attacker.	 It	 leaves	 the	 connection	 open	 and	 resulting	 in	 inaccessibility.	 Moreover,	

according	to	the	TCP/IP	network	model,	when	the	server	is	unavailable,	an	ICMP	packet	

sent	to	the	server	that	the	“host	is	unreachable”.	Therefore,	tcpdump	displays	the	ICMP	

packet	 header	 information	 and	 IP	 packet	 header	 information	 in	 the	 second	 part	 of	

tcpdump	data	in	Figure	5.2.		

	

	

Figure 5.2 Screenshot of the features of IP packet header, ICMP packet header and TCP

packet header in TCP SYN flood attack

Figure	5.3	presents	the	screenshot	of	the	features	of	an	IP	packet	header	and	an	ICMP	

packet	 header	 in	 the	 ICMP	 flood	 attack.	 An	 attacker	 exploited	 the	 ICMP	 protocol	 by	

sending	ICMP	packets	with	the	“ICMP	echo	request”	message	to	the	server	(see	section	

2.5.1	 for	 detailed	 explanation).	 Therefore,	 the	 output	 of	 the	 tcpdump	 in	 Figure	 5.3	

presents	the	information	of	the	IP	and	ICMP	packet	header	information.	

	

Figure 5.3 Screenshot of the features of IP packet header and ICMP packet header

information in ICMP flood attack

Figure	5.4	presents	 the	screenshot	of	 the	 features	of	an	 IP	packet	header	and	an	UDP	

packet	header	in	the	UDP	flood	attack.	An	attacker	exploited	the	UDP	protocol	by	sending	

UDP	 packets	 to	 the	 server	 (see	 section	 2.5.2	 for	 detailed	 explanation).	 Therefore,	 the	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 102

output	of	the	tcpdump	in	Figure	5.4	presents	the	information	of	the	IP	and	UDP	packet	

header	 information.

	

Figure 5.4 Screenshot of the features of IP packet header and UDP packet header

information in UDP flood attack

Figure	5.5	presents	the	screenshot	of	the	features	of	an	IP	packet	header,	a	TCP	packet	

header,	and	an	ICMP	packet	header	information	in	Slowloris	attack.	An	attacker	initiated	

the	attack	by	sending	the	legitimate	packet	to	the	server	to	open	a	connection	through	a	

TCP	 connection	 (see	 section	 2.5.3	 for	 detailed	 explanation).	 Therefore,	 a	 tcpdump	

displays	a	TCP	and	IP	packet	header	information	in	the	first	section	of	Figure	5.5.	A	result	

of	the	successful	Slowloris	attack	was	unavailability	of	the	server	that	generated	the	ICMP	

packet	header	“host	is	unreachable”	that	can	be	seen	in	the	second	part	of	Figure	5.5.	

	

	

Figure 5.5 Screenshot of the features of IP packet header, ICMP packet header and TCP

packet header in Slowloris attack

Figure	5.6	presents	the	screenshot	of	the	features	of	an	IP	packet	header	and	an	ICMP	

packet	header	 in	 the	POD	attack.	 	An	attacker	exploited	the	 ICMP	protocol	by	sending	

ICMP	packets	with	the	“ICMP	echo	request”	message	to	the	server	(see	section	2.5.1	for	a	

detailed	explanation).	Therefore,	 the	output	of	 the	tcpdump	in	Figure	5.6	presents	the	

information	of	the	IP	and	ICMP	packet	header	information.	

	

Figure 5.6 Screenshot of the features of IP packet header and ICMP packet header in

POD attack

Figure	5.7	presents	the	screenshot	of	the	features	of	an	IP	packet	header	and	a	UDP	packet	

header	in	the	DNS	flood	attack.	An	attacker	exploited	the	UDP	protocol	by	sending	UDP	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 103

packets	 to	 the	 server	 (see	 section	 2.5.2	 for	 detailed	 explanation).	 	 The	 output	 of	 the	

tcpdump	 in	 Figure	 5.4	 presents	 the	 information	 of	 the	 IP	 and	 UDP	 packet	 header	

information.	

Figure 5.7 Screenshot of the features of IP packet header and TCP packet header in DNS

attack

As	Figures	5.1-5.7	illustrate,	each	type	of	network	traffic	offered	different	protocol	header	

information	and	so	had	differing	structures,	therefore	it	was	necessary	to	parse	all	of	the	

datasets	to	ensure	that	they	were	in	a	suitable/consistent	format	in	order	to	undertake	

the	classification	task.	The	next	section	will	explain	all	of	the	pre-processing	steps	that	

were	applied	to	the	original	dataset.		

5.3 Data pre-processing

As	mentioned	in	section	5.1,	each	type	of	malicious	traffic	data	and	legitimate	traffic	data	

had	a	different	structure.	As	such,	it	was	necessary	to	define	a	set	of	pre-processing	tasks	

to	 transform	 the	original	 data	 to	 the	 standard	 format	 for	 the	 classification	 task.	 	 This	

section	will	introduce	the	different	phases	of	the	data	pre-processing	that	were	applied	

to	the	original	dataset	to	ensure	that	it	was	consistent	and	in	a	suitable	format	for	the	

classification	task.	

Before	moving	into	the	detail,	Figure	5.8	presents	a	high-level	view	of	the	different	pre-

processing	tasks,	showing	three	main	phases.	

Phase	1	consisted	of	parsing	the	data	 to	extract	 the	required	 features	and	designing	a	

Python	script	to	convert	the	format	of	the	text	dataset	to	a	CSV	file	(see	section	5.3.1).	

Phase	2	consisted	of	finding	the	commonalities	in	the	features	of	all	of	the	datasets	(see	

section	5.3.2).	The	final	phase,	Phase	3,	consisted	of	processing	the	data	using	specific	

Python	scripts	designed	for	each	dataset	(normal	traffic	and	each	attack	type)	to	calculate	

specific	measures	 for	each	IP	address	 in	relation	to	each	protocol	 for	each	attack	type	

then	 to	 concatenate	 the	 files	 into	 a	 single	 dataset	 before,	 finally,	 applying	 a	 script	 to	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 104

generate	datasets	based	on	a	range	of	different	time	slices	(different	time	intervals)	for	

subsequent	analysis	and	comparison	(see	section	5.3.3).	

Figure 5.8 Data pre-processing phases

5.3.1 Phase 1: parsing the original text data

As	 explained	 in	 section	 5.2,	 each	malicious	 and	 legitimate	 traffic	 type	 had	 a	 different	

structure	 of	 features.	 It	 was	 therefore	 essential	 to	 first	 convert	 the	 structure	 of	 each	

dataset	 into	 a	 standard	 format	 required	 to	 undertake	 the	 classification	 task	 –	 this	

constituted	 Phase	 1	 of	 the	 pre-processing.	 This	 sub-section	 will	 explain	 the	 pre-

processing	 tasks	 that	 were	 applied	 to	 each	 dataset	 (one	 comprising	 normal	 network	

traffic	and	six	comprising	data	for	each	of	the	attack	types)	to	make	it	suitable	for	the	

subsequent	classification	task.		

Figure	5.9	presents	an	extract	from	the	original	datasets	illustrating	each	type	of	traffic	

(normal	 and	 the	different	 forms	of	 attack	 traffic).	 	 All	 of	 the	 generated	datasets	were	

captured	 in	 the	 form	 of	 text	 files.	 The	 data	 records	 were	 variable	 when	 the	 attack	

behaviour	changed	in	terms	of	the	type	of	protocol	that	the	attack	used.	This	caused	each	

Phase	2.	Find	
commonalities

•Step1: Extract the IP header information from each
distinct data type and removing empty columns
• Step 2: Add a class type (normal or the name of the
attack type) to each data type and concatenating all
of the data types into a single file

• Step3: Remove the time fraction

Phase	1.
Parse	the	
original	text	

data	

Step 1: Manipulate the required features
Step 2: Design a Python script for each attack type to convert the text to CSV file
(using Panda and csv package)

Phase	3.	
Process	the	

data

• Step 1: Design a Python script to calculate Count and Avg_Count measure of
each IP address for each protocol for each attack type by using Pivot Python
table based on the different time slice
• Step 2: Design a Python script to calculate Bytes_In, Avg_Bytes_In, Bytes_Out
and Avg_Bytes_Out measure of each IP address for each protocol for each
attack type by using Pivot Python table based on the different time slice

• Step 3: Design a Python script to concatenate all the processed files

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 105

record	 of	 the	 data	 to	 have	 either	 two,	 three	 or	 four	 lines	 of	 related	 information	 (as	

illustrated	in	Figures	5.2-5.7).	However,	this	structure	of	the	data	was	not	suitable	for	use	

with	the	classification	model.	Therefore,	it	was	important	to	transform	each	dataset	into	

a	suitable	form	for	use	by	the	classification	model,	such	as	into	the	CSV	format.	A	range	of	

tools	was	available	for	this	data	pre-processing	task,	including	(R,	2019).		However,	it	was	

decided	 to	 use	 Python	 because	 of	 the	 researcher’s	 existing	 experience	 with	 this	

programming	language.		

	

Figure 5.9 An extract of the original dataset

A	 Python	 script	 (see	 Figure	 5.10)	 was	 designed	 to	 parse	 each	 type	 of	 text	 file	 data.	

Whenever	the	script	‘observed’	more	than	one	line	of	information	for	each	instance	in	the	

dataset,	it	merged	it	into	a	single	line	of	the	record.	When	the	parsing	of	a	dataset/text	

file	 was	 complete,	 the	 re-formatted	 data	was	 saved	 as	 a	 CSV	 format	 file.	 Figure	 5.11	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 106

presents	 an	 extract	 of	 the	 result	 of	 applying	 Python	 code	 to	 the	 original	 datasets	 to	

illustrate	the	transformation	of	the	original	data	into	a	CSV	format	dataset.		

Figure 5.10 the screenshot of the Python code to parse the original text data to CSV file

Figure 5.11 An extract of the result of applying Python code to the original datasets,

resulting in a CSV formatted dataset

Section	 5.3.2	 will	 report	 Phase	 2	 of	 the	 pre-processing	 task,	 which	 was	 to	 find	 the	

common	features	across	all	of	the	datasets.		

5.3.2 Phase 2: finding commonalities

As	described	in	section	2.5,	each	malicious	and	legitimate	traffic	type	had	different	types	

of	feature.	It	was	therefore	essential	to	identify	the	commonalities	in	the	features	across	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 107

all	 of	 the	 datasets	 in	 order	 to	 build	 the	 detection	model.	 This	 section	will	 report	 the	

process	of	finding	the	common	features	in	the	datasets.		

In	 the	 Phase	 2	 of	 the	 data	 pre-processing,	 it	 was	 observed	 that	 there	 was	 a	 lack	 of	

consistent	 structure	 in	 the	 different	 attack	 type	 data.	 The	 data	 records	were	 variable	

when	the	attack	behaviour	changed	in	terms	of	the	type	of	protocol	that	the	attack	used.	

For	example,	as	Figure	5.2	shows,	each	record	in	the	SYN	Flood	attack	includes	IP	packet	

header	features,	and	TCP	packet	header	features,	while	ICMP	flood	attacks,	as	shown	in	

Figure	5.3,	 obviously	exploit	 the	 ICMP	protocol	 so	generate	 traffic	 that	 contains	 ICMP	

packet	 header	 features	 and	 IP	 packet	 header	 features.	 (Figures	 5.4-5.7	 and	 their	

accompanying	explanations	describe	the	different	features	of	the	IP,	UDP,	ICMP	and	TCP	

packet	headers	in	the	UDP	flood,	Slowloris,	PoD	and	DNS	flood	attacks,	respectively).	

After	careful	analysis	of	 the	data,	a	common	structure	across	all	of	 the	data	types	was	

identified	as	being	contained	in	the	IP	packet	header	features.	Therefore,	a	Python	(2019)	

script	was	designed	and	then	applied	to	each	of	the	normal	and	attack	type	datasets	to	

extract	 only	 the	 IP	 packet	 header	 features.	 Figure	 5.12	 presents	 each	 step	 that	 was	

undertaken	 in	 Phase	 2	 of	 the	 data	 pre-processing.	 In	 step	 1	 in	 Figure	 5.12,	 a	 Python	

(2019)	script	was	designed	to	apply	to	the	data	to	extract	the	IP	header	information	from	

each	distinct	data	 type	as	well	as	 to	remove	any	empty	columns	across	 the	dataset	 to	

which	the	script	was	applied.		The	script	also	changed	the	layout	of	the	data	by	creating,	

and	 populating,	 a	 CSV	 spreadsheet	 comprising	 columns	 holding	 the	 values	 for	 each	

feature	of	the	IP	header	information	(see	step	2	in	Figure	5.12).	 	Next,	another	Python	

(2019)	script	was	created	to	add	a	class	type	(normal	or	the	name	of	the	attack	type)	to	

each	data	type	and	then	concatenate	all	of	the	data	types	into	a	single	file	(see	step	2	in	

Figure	5.12).	Finally,	it	was	observed	that	the	time	fraction	in	the	‘Time_stamp’	column	

(the	first	instance	of	which	is	highlighted	in	yellow	in	the	‘output	data’	of	step	1	in	Figure	

5.12,	for	ease	of	identification)	was	not	necessary	since	only	the	time	itself	was	required.	

Therefore,	a	further	Python	script	was	created	to	remove	the	time	fraction	(see	step	3	

‘output	data’	in	Figure	5.12),	resulting	in	the	output	shown	in	step	3	in	Figure	5.12.		

The	 next	 subsection	 will	 explain	 the	 details	 of	 the	 final	 phase,	 Phase	 3,	 of	 data	 pre-

processing.			

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 108

	

Figure 5.12 The scripts and outputs representing Phase 2 of the data pre-processing

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 109

5.3.3 Phase 3: processing the data

As	explained	in	section	5.2,	in	order	to	calculate	specific	measures	per	IP	address	for	each	

protocol	on	the	basis	of	each	attack	type	in	the	different	time	frames	required,	and	then	

concatenate	 the	 files	 into	a	single	dataset,	 it	was	necessary	to	design	a	suitable	script.		

Running	 the	 script	 would	 then	 generate	 the	 dataset	 for	 a	 specified	 time	 frame.	 This	

subsection	will	 present	 the	process	of	 assessing	 specific	measures	 extracted	 from	 the	

attributes	of	the	IP	packet	header	dataset.		

This	 research	 used	 the	 approach	 that	was	 applied	 to	 the	 CIDD	 dataset	 to	 calculate	 a	

specific	measure	for	each	instance	in	the	data	files.	All	of	these	measures,	or	features,	are	

presented	in	Table	5.1.		

Features Description

Count Number of occurrences for an incoming IP address for each of the

protocols (TCP, UDP, ICMP)

Avg_Count Average number of occurrences for an incoming IP address for each of

the protocols (TCP, UDP, ICMP)

Bytes_In Number of bytes received per incoming IP for each of the protocols

(TCP, UDP, ICMP)

Avg_Bytes_In Average number of bytes received per incoming IP address for each of

the protocols (TCP, UDP, ICMP)

Bytes_Out Number of bytes sent per incoming IP for each of the protocols (TCP,

UDP, ICMP)

Avg_Bytes_Out Average number of bytes sent per incoming IP address for each of the

protocols (TCP, UDP, ICMP)

Table 5.1 Time-based traffic flow features of CIDD dataset

Table	5.1	 shows	a	description	of	 the	 time-based	 traffic	 flow	 features	of	 CIDD	dataset,	

which	include:	Count;	Avg_Count;	Bytes_In;	Avg_Bytes_In;	Bytes_Out;	and	Avg_Bytes_Out.	

Each	 of	 these	 features	 was	 calculated	 from	 the	 relevant	 IP	 packet	 header	 fields	 in	 a	

specified	time	interval	(this	research	created	datasets	for	 intervals	of	1,	3,	5,	7	and	10	

seconds	–	see	section	5.3.3	for	the	justification	of	these	choices).	The	designed	script	in	

the	CIDD	research	work	calculated	all	of	the	above	features	in	Table	5.1	per	incoming	IP	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 110

address	for	each	type	of	protocol.	The	Count	and	Avg_Count	measures	refer	respectively	

to	the	number	of	occurrences	for	an	incoming	IP	address	for	each	of	the	protocol	types	

and	 the	 average	number	 of	 occurrences	 for	 an	 incoming	 IP	 addresses	 for	 each	 of	 the	

protocol	 types	 in	 the	 specified	 time	 interval.	 Bytes_In	 and	 Avg_Bytes_In	 correspond	

respectively	to	the	total	number	of	bytes	and	the	average	number	of	bytes	received	per	

incoming	 IP	 address	 for	 each	 of	 the	 protocol	 types	 in	 the	 specified	 time	 interval.	

Bytes_Out	and	Avg_Bytes_Out	correspond	respectively	to	total	the	number	of	bytes	and	

the	average	number	of	bytes	sent	per	incoming	IP	address	for	each	of	the	protocol	types	

in	the	specified	time	interval.		

As	mentioned	earlier,	this	research	used	a	Python	(2019)	script	using	the	Python	pivot	

table	function	to	calculate	all	of	the	specific	measures	for	each	dataset.	It	then	applied	the	

Python	(2019)	script	to	the	datasets	to	concatenate	all	of	the	files	into	one	single	dataset.		

Figure	5.13	presents	each	of	the	three	steps	that	were	undertaken	in	Phase	3	of	the	data	

pre-processing.		

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 111

Figure 5.13 The scripts and outputs representing Phase 3 of the data pre-processing

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 112

As	 this	 research	 aimed	 to	 analyse	 the	 behaviour	 of	 the	 detection	 model	 applied	 to	

different	 ‘time	slices’,	 it	was	essential	 to	design	a	script	 to	generate	datasets	based	on	

specific,	defined	time	intervals.	Therefore,	in	step	1	of	Phase	3	(see	Figure	5.13),	a	Python	

(2019)	 script	 using	 the	 Python	 pivot	 table	 function	 was	 designed	 to	 calculate	 the	

statistical	measures	of	Count	and	Avg_count	(see	Table	5.1)	 for	each	protocol	 for	each	

data	type	(normal	and	attack	type)	based	on	a	specified	‘time	slice’.	Next,	another	piece	

of	Python	(2019)	code	using	the	Python	pivot	table	function	was	created	to	calculate	the	

Bytes_In,	Avg_Bytes_In,	Bytes_Out	and	Avg_Bytes_Out	 features	(see	Table	5.1)	 for	each	

protocol	for	each	data	type	(see	step	2	in	Figure	5.14)	for	the	same	‘time	slice’.	Finally,	a	

third	piece	of	Python	(2019)	code,	which	was	similar	to	that	used	in	step	2,	was	applied	

to	the	all	of	the	features	to	concatenate	each	of	the	generated	files	into	a	single	dataset.	

The	output	from	step	2	was	a	processed	dataset	(an	extract	of	which	is	presented	under	

step	3	in	Figure	5.13)	that	comprises	values	for	each	of	the	features	in	Table	5.1	calculated	

for	the	specified	‘time’	slice’.			

The	 following	 time	 intervals/slices	 were	 chosen:	 1	 second;	 3	 seconds;	 5	 seconds;	 7	

seconds	and	10	seconds.		The	3	seconds	interval	mirrored	that	used	in	the	work	by	Kumar	

at	al.	(2016).		The	1	second	interval	was	chosen	as	the	lower	bound	to	explore	whether	a	

shorter	period	 than	 that	 represented	 in	Kumar	 et	 al.	 (2016)	 gave	 the	 same,	 better	 or	

worse	results.	 	Longer	periods,	up	to	10	seconds,	were	used	to	explore	whether	there	

were	changes	as	the	time	interval	increased	and	to	give	a	range	of	datasets	through	which	

any	changes	in	detection	accuracy	could	be	explored.			

The	 next	 section	will	 present	 the	 results	 of	 the	 classification/detection	model	 on	 the	

processed	datasets	for	each	of	the	chosen	time	intervals.	

5.4 The Classification/Detection Models

A	similar	approach	to	that	reported	in	sections	3.4.2-3.4.5	was	applied	to	the	processed	

datasets	to	develop	the	classification/detection	model.	However,	in	addition	to	using	the	

Naïve	 Bayes	 classifier	 on	 the	 processed	 data,	 it	 was	 decided	 to	 assess	 the	 accuracy	

performance	 of	 other	 classification	 algorithms	on	 the	processed	dataset	 to	 determine	

whether	it	would	be	useful,	in	terms	of	improved	accuracy	and	allowing	comparison	with	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 113

Naïve	Bayes,	to	adopt	an	additional	classifier.	As	a	result,	the	Random	Forest	algorithm	

was	adopted	as	it	was	found	to	give	higher	prediction	accuracy	when	compared	to	other	

classifiers	that	were	appraised.	Consequently,	it	was	seen	as	being	a	suitable	choice	as	a	

second	classifier.	The	Random	Forest	algorithm	will	be	 introduced	 in	 the	next	section	

before	 moving	 on	 to	 report	 the	 analysis,	 using	 confusion	 matrices,	 of	 the	 predicted	

outcomes	of	the	two	classification	models	for	each	of	the	chosen	time	intervals.			

5.4.1 The Random Forest classifier

The	Random	Forest	approach	will	now	be	briefly	explained	to	show	the	operation	of	the	

algorithm	in	classifying	the	processed	dataset.	The	Random	Forest	classifier	is	a	popular	

supervised	machine	learning	algorithm.	This	algorithm	uses	the	Bootstrap	aggregation	

ensemble	method	 to	 solve	 the	 classification	 problem.	 This	method	 creates	 the	 entire	

‘forest’	with	uncorrelated	decision	tree	models	and	then	aggregates	several	decision	tree	

prediction	models	to	enhance	the	robustness	of	a	single	prediction	model.	The	random	

forest	 creates	 a	 forest	by	 randomly	 splitting	 the	 features	 (in	 the	 case	of	 this	 research	

Count,	Avg_Count,	Bytes_In,	Avg_Bytes_In,	Bytes_Out,	and	Avg_Bytes_Out)	of	the	training	

data	 (in	 this	 case	 the	 processed	 dataset	 described	 in	 section	 5.3)	 into	 random	

subsamples.	The	algorithm	then	predicts	the	class	label	(in	our	case	UDP	flood,	Slowloris,	

PoD,	DNS	flood,	TCP	SYN,	ICMP	or	Normal)	based	on	the	majority	‘vote’	(or	outcome)	over	

all	of	the	decision	trees.		

As	was	the	case	in	chapter	3	and	also	for	the	application	of	Naïve	Bayes	in	this	part	of	the	

study,	 the	 classification	was	 undertaken	 using	Weka	 (Frank	 et	 al.	 2016)	 (see	 section	

3.4.4).	The	section	will	present	the	analysis	results	of	the	two	classifiers	(Naïve	Bayes	and	

Random	Forest)	for	each	of	the	chosen	time	intervals.		

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 114

5.5 Analysis of the Results of Applying the Naïve Bayes
and Random Forest Classification Models to the
Processed Dataset

This	section	will	report	the	results	of	applying	the	two	classification	models	(Naïve	Bayes	

and	Random	Forest)	trained	on	the	processed	data	and	the	evaluation	of	the	models	by	

stratified	ten-fold	cross-validation	(see	section	3.4.5).		

Weka	breaks	down	 the	 results	 into	a	numeric	prediction	and	a	 confusion	matrix.	The	

numeric	 prediction	 includes:	 the	 Kappa	 statistic	 metric	 that	 compares	 the	 observed	

accuracy	with	the	expected	accuracy	of	the	data:	the	mean	absolute	error	which	measures	

the	average	square	of	the	errors;	the	root	mean	square,	which	calculates	the	square	root	

between	the	predicated	value	and	actual	value;	the	relative	absolute	error	and	the	root-

relative	absolute	error,	which	are,	respectively,	the	mean	absolute	error	and	root	mean	

absolute	error	divided	by	 the	corresponding	error	of	 the	classifier	on	 the	dataset	 that	

estimated	the	prior	probability	of	the	actual	instances.		

The	‘detailed	accuracy	by	class’	part	of	the	cross-validation	presents	several	measures:	

TP	Rate,	the	rate	of	true	positives	(TP),	defined	as	instances	correctly	classified	as	a	given	

class;	FP	Rate	the	rate	of	false	positives	(FP),	defined	as	instances	falsely	classified	as	a	

given	class;	Precision,	which	is	the	proportion	of	instances	that	are	truly	of	a	class	(i.e.,	

TP)	divided	by	the	total	instances	classified	as	that	class	(i.e.,	TP+FP);	Recall,	which	is	the	

proportion	of	instances	classified	as	a	given	class	divided	by	the	real	total	in	that	class;	F-

Measure,	which	is	combined	measure	for	Precision	and	Recall	(calculated	as	2	x	Precision	

x	Recall	/	(Precision	+	Recall);	MCC,	which	is	a	balanced	measure	of	the	quality	of	binary	

(two-class)	classifications	taking	into	account	true	and	false	positives	(TP	and	FP)	and	

negatives	 (TN	 and	 FN);	 ROC	 (Receiver	 Operating	 Characteristics)	 area	measurement,	

which	 provides	 a	measure	 of	 how	 the	 classifiers	 are	 performing	 in	 general;	 and	 PRC	

(Precision	 Recall)	 area,	 which	 is	 used	 to	 evaluate	 binary	 classifiers	 in	 imbalanced	

datasets.	

Though	these	are	important	measures,	the	analysis	presented	in	this	chapter	is	based	on	

the	confusion	matrices	themselves.	As	such,	sections	5.5.1-5.5.5	will	explain	and	compare	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 115

the	predicted	outcomes	of	 the	 classification	models	 versus	 the	 actual	 outcomes	using	

confusion	matrices	(see	section	3.4.5)	for	each	of	the	chosen	time	intervals	of	1,	3,	5,	7	

and	 10	 seconds,	 respectively.	 The	 generated	 matrices	 in	 Figure	 5.14-5.24	 show	 the	

number	of	correctly	and	incorrectly	predicted	instances	of	each	class	(attack	types	and	

normal	 traffic),	 providing	 insights	 into	 the	 errors	 being	 made	 by	 two	 different	

classification	models	for	each	chosen	time	interval	dataset.	If	these	numbers	are	high	for	

all	 rows/attack	 types,	 it	demonstrates	a	good	classification	outcome.	 (The	number	 for	

instances	 in	a	 row	varies	 in	some	cases	between	 the	Naïve	Bayes	and	Random	Forest	

classifiers	in	a	specific	time	interval	–	i.e.,	the	sums	of	comparable	rows	may	be	different	

between	the	classifiers	–	as	a	result	of	resampling	of	the	data	to	create	more	balanced	

datasets).			

5.5.1 Predicted versus actual outcomes for the 1 second time
interval

Figures	5.14	and	5.15	present	the	classification	results	arising	from	applying	the	Naïve	

Bayes	and	Random	Forest	models,	respectively,	to	the	processed	dataset	for	the	1	second	

time	interval.		

In	general,	the	overall	accuracy	of	the	Naïve	Bayes	classifier	is	52.2473	%	over	the	total	

number	 of	 1844	 instances	 of	 attack	 and	 normal	 traffic.	 The	 general	 accuracy	 of	 the	

Random	 Forest	 classifier	 is	 81.9957%	 over	 the	 total	 number	 of	 1844	 instances,	

suggesting	that	the	Random	Forest	classifier	has	a	much	higher	overall	accuracy	than	the	

Naïve	Bayes	classifier.	The	specific	performance	of	the	two	models	for	each	attack	type,	

and	for	normal	traffic,	for	the	1	second	time	interval	dataset	will	now	be	discussed.		

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 116

Figure 5.14 The classification result of the Naïve Bayes model for the 1 second time

interval dataset

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 117

Figure 5.15 The classification result of the Random Forest model for the 1 second time

interval dataset

The	instances	on	the	main	diagonal	(top	left	to	bottom	right)	in	Figure	5.14	and	Figure	

5.15	 indicate	 the	 correct	 prediction	 (i.e.,	 where	 each	 attack	 type	 from	 the	 dataset	 is	

correctly	predicted	by	the	model).	If	these	numbers	are	high	for	all	rows/attack	types,	it	

demonstrates	a	good	classification	outcome.		

As	can	be	seen	in	Figure	5.14,	for	the	1	second	time	interval,	out	of	149	PoD	instances,	

there	are	52	cases	being	classified	correctly	by	the	Naïve	Bayes	classifier.		97	cases	are	

classified	 incorrectly	 as	 Slowloris	 (10)	 and	 SYN	 Flood	 (77)	 and	 Normal	 traffic	 (10)	

respectively.	Similarly,	there	are	134	cases	are	being	classified	correctly	by	the	Random	

Forest	 classifier.	15	PoD	cases	are	 classified	 incorrectly	 as	SYN	Flood	 (3)	 and	Normal	

traffic	(12).		

Moving	on	to	the	SYN	Flood	attack	types,	out	of	the	364	instances,	212	cases	are	classified	

correctly	 by	 the	 Naïve	 Bayes	 classifier.	 	 152	 cases	 are	 incorrectly	 classified	 as	 being	

Slowloris	(5),	PoD	(117),	ICMP	flood	(3),	and	Normal	(30)	by	the	Naïve	Bayes	classifier.	

In	contrast,	288	cases	are	classified	correctly	by	the	Random	Forest	classifier.	There	are	

76	SYN	Flood	 cases	 classified	 incorrectly	 as	 Slowloris	 (6),	PoD	 (54),	 and	Normal	 (19)	

traffic.	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 118

Of	the	530	ICMP	Flood	instances,	415	cases	are	classified	correctly	by	the	Naïve	Bayes	

classifier.	115	cases	are	classified	incorrectly	as	SYN	Flood	(2),	DNS	Flood	(83),	Normal	

(10),	and	UDP	Flood	(20)	by	the	Naïve	Bayes	classifier.	Similarly,	there	are	only	486	cases	

are	 being	 classified	 correctly	 by	 the	 Random	 forest.	 44	 ICMP	 Flood	 cases	 classified	

incorrectly	as	Slowloris	(2),	DNS	Flood	(39)	and	Normal	traffic	(3).	

Moving	 on	 to	 the	 DNS	 Flood	 instances,	 out	 of	 173	 instances,	 120	 cases	 are	 classified	

correctly	by	the	Naïve	Bayes	classifier.	53	cases	are	classified	incorrectly	as	a	Slowloris	

(6),	 ICMP	flood	(41),	and	Normal	 traffic	 (6)	respectively	by	 the	Naïve	Bayes	classifier.	

Similarly,	 there	are	153	cases	classified	correctly	by	 the	Random	Forest	 classifier	and	

only	20	cases	classified	incorrectly	(as	SYN	Flood	(2),	ICMP	Flood	(17)	and	Normal	cases	

(1)).	

Out	of	393	Normal	 instances,	 there	are	only	88	cases	classified	correctly	by	 the	Naïve	

Bayes	classifier.	305	cases	are	classified	incorrectly	as	Slowloris	(37),	PoD	(68),	SYN	flood	

(158),	ICMP	Flood	(16),	DNS	Flood	(21)	and	UDP	Flood	(5)	by	the	Naïve	Bayes	classifier.	

In	contrast,	337	cases	are	classified	correctly	by	the	Random	Forest	classifier,	with	56	

cases	are	being	 incorrectly	 classified	as	Slowloris	 (12),	PoD	 (6),	 SYN	 flood	 (25),	 ICMP	

Flood	(9),	and	DNS	Flood	(4).		

Out	of	 the	37	cases	of	UDP	 flood,	20	cases	are	 classified	correctly	by	 the	Naïve	Bayes	

classifier,	 with	 17	 cases	 classified	 incorrectly,	 as	 SYN	 Flood	 (10),	 Slowloris	 (2),	 and	

Normal	 traffic	 (5).	 Similarly,	 30	 cases	 are	 classified	 correctly	 by	 the	 Random	 Forest	

classifier,	with	only	7	cases	classified	incorrectly	(all	as	Normal	traffic).			

Out	 of	 195	 Slowloris	 instances,	 38	 cases	 are	 classified	 correctly	 by	 the	 Naïve	 Bayes	

classifier.	157	cases	are	classified	incorrectly	as	PoD	(59	instances),	SYN	Flood	(70),	ICMP	

Flood	(22),	and	DNS	Flood	(6)	by	the	Naïve	Bayes	classifier.	In	contrast,	in	Figure	5.16,	

there	are	84	classified	correctly.	Only	111	cases	are	classified	incorrectly	as	a	PoD	(36),	

SYN	Flood	(27),	and	ICMP	Flood	(3)	by	the	Random	Forest	classifier	(45	instances	were	

classified	as	being	normal	traffic).	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 119

5.5.2 Predicted versus actual outcomes for the 3 second time
interval

Figures	5.16	and	5.17	present	the	classification	results	arising	from	applying	the	Naïve	

Bayes	and	Random	Forest	models,	respectively,	to	the	processed	dataset	for	the	3	second	

time	interval.		

In	general,	the	overall	accuracy	of	the	Naïve	Bayes	classifier	is	59.8519%	over	the	total	

number	of	675	instances	of	attack	and	normal	traffic.	The	general	accuracy	of	the	Random	

Forest	classifier	is	71.1111%	over	the	total	number	of	675	instances,	suggesting	that	the	

Random	Forest	classifier	has	a	higher	overall	accuracy	than	the	Naïve	Bayes	classifier.	

The	specific	performance	of	the	two	models	for	each	attack	type,	and	for	normal	traffic,	

for	the	3	second	time	interval	dataset	will	now	be	discussed.		

	

Figure 5.16 The classification result of the Naïve Bayes model for the 3 second time

interval dataset

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 120

Figure 5.17 The classification result of the Random Forest model for the 3 second time

interval dataset

As	 can	 be	 seen	 in	 Figure	 5.16,	 for	 the	 3	 second	 time	 interval,	 out	 of	 104	 Slowloris	

instances,	 54	 cases	 are	 classified	 correctly	 by	 the	Naïve	Bayes	 classifier.	 50	 cases	 are	

classified	incorrectly	as	Normal	(10),	ICMP	Flood	(14),	and	DNS	Flood	(26)	by	the	Naïve	

Bayes	classifier.	In	contrast,	in	Figure	5.17,	100	Slowloris	cases	are	classified	correctly,	

with	only	4	cases	classified	incorrectly	by	the	Random	Forest	classifier,	all	as	and	DNS	

Flood.	

Out	of	107	Normal	instances,	there	are	40	cases	classified	correctly	by	the	Naïve	Bayes	

classifier.	 67	 cases	 are	 classified	 incorrectly	 as	 an	 SYN	 flood	 (55)	 and	 PoD	 (12)	

respectively	by	the	Naïve	Bayes	classifier.	In	contrast,	65	cases	are	classified	correctly	by	

the	Random	Forest	classifier,	with	42	cases	incorrectly	classified	as	SYN	Flood	(28),	PoD	

(12)	and	DNS	Flood	(2).	

Moving	 onto	 the	 ICMP	 Flood	 instances,	 out	 of	 224	 cases,	 206	 instances	 are	 classified	

correctly	 by	 the	 Naïve	 Bayes	 classifier.	 There	 are	 18	 cases	 classified	 incorrectly	 as	

Slowloris	(14),	SYN	Flood	(2)	and	PoD	(2)	by	the	Naïve	Bayes	classifier.	For	the	Random	

Forest	classifier,	all	224	cases	are	classified	correctly.	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 121

Out	of	128	SYN	Flood	attack	types,	86	cases	are	classified	correctly	by	the	Naïve	Bayes	

classifier.	42	cases	are	incorrectly	classified	as	being	Normal	(22),	and	PoD	(20)	by	the	

Naïve	Bayes	classifier.	In	contrast,	88	cases	are	classified	correctly	by	the	Random	Forest	

classifier,	while	40	SYN	Flood	cases	are	classified	 incorrectly	as	Normal	 (17)	and	PoD	

(23).		

Out	of	50	PoD	instances,	there	are	11	cases	being	classified	correctly	by	the	Naïve	Bayes	

classifier,	while	39	cases	are	classified	incorrectly	as	Normal	(13)	and	SYN	Flood	(26).	In	

contrast,	 there	 are	 31	 PoD	 cases	 being	 classified	 correctly	 by	 the	 Random	 Forest	

classifier,	with	19	PoD	cases	being	classified	incorrectly	as	Normal	(9),	and	SYN	Flood	

(10).		

Moving	 on	 to	 the	 DNS	 Flood	 instances,	 out	 of	 47	 cases,	 36	 instances	 are	 classified	

correctly	by	the	Naïve	Bayes	classifier.	11	cases	are	classified	incorrectly	as	Normal	(8),	

and	ICMP	Flood	(3).	Similarly,	38	out	of	47	DNS	Flood	cases	are	classified	correctly	by	the	

Random	Forest	 classifier,	while	 9	 cases	 are	 classified	 incorrectly	 as	 Slowloris	 (8)	 and	

Normal	(1).	

Lastly,	out	of	15	cases	of	UDP	flood	attacks,	8	cases	are	classified	correctly	by	the	Naïve	

Bayes	classifier,	with	7	cases	being	classified	incorrectly,	as	Normal	(4)	and	SYN	Flood	

(3).	In	contrast,	there	are	15	UDP	cases	being	classified	correctly	by	the	Random	Forest	

classifier,	with	no	cases	being	classified	incorrectly.	

5.5.3 Predicted versus actual outcomes for the 5 second time
interval

Figures	5.18	and	5.19	present	the	classification	results	arising	from	applying	the	Naïve	

Bayes	and	Random	Forest	models,	respectively,	to	the	processed	dataset	for	the	5	second	

time	interval.		

In	general,	the	overall	accuracy	of	the	Naïve	Bayes	classifier	is	75.1678%	over	the	total	

number	 of	 2831	 instances	 of	 attack	 and	 normal	 traffic.	 The	 general	 accuracy	 of	 the	

Random	Forest	classifier	is	89.7916%	over	the	total	number	of	instances,	suggesting	that	

the	Random	Forest	classifier	has	a	higher	overall	accuracy	than	the	Naïve	Bayes	classifier.	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 122

The	specific	performance	of	the	two	models	for	each	attack	type,	and	for	normal	traffic,	

for	the	5	second	time	interval	dataset	will	now	be	discussed.		

Figure 5.18 The classification result of the Naïve Bayes model for the 5 second time

interval dataset

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 123

Figure 5.19 The classification result of the Random Forest model for the 5 second time

interval dataset

As	can	be	seen	in	Figure	5.18,	for	the	5	second	time	interval,	out	of	43	Normal	instances,	

10	 cases	 are	 classified	 correctly	 by	 the	 Naïve	 Bayes	 classifier.	 33	 cases	 are	 classified	

incorrectly,	 as	 Slowloris	 (12)	 and	 SYN	 flood	 (21),	 respectively,	 by	 the	 Naïve	 Bayes	

classifier.	In	contrast,	25	cases	are	classified	correctly	by	the	Random	Forest	classifier.	18	

cases	are	being	incorrectly	classified	as	Slowloris	(5)	and	SYN	Flood	(13).	

Out	 of	 92	 Slowloris	 instances,	 26	 cases	 are	 classified	 correctly	 by	 the	 Naïve	 Bayes	

classifier,	while	66	cases	are	classified	incorrectly	as	Normal	traffic	(5),	SYN	Flood	(51)	,	

ICMP	(1),	UDP	Flood	(6),	and	DNS	Flood	(3).	In	contrast,	as	Figure	5.19	shows,	86	cases	

are	being	classified	correctly	by	the	Random	Forest	classifier,	with	only	6	cases	classified	

incorrectly,	as	Normal	traffic	(4),	SYN	Flood	(1)	and	ICMP	Flood	(1).	

Out	of	69	SYN	Flood	attack	 types,	47	cases	are	classified	correctly	by	 the	Naïve	Bayes	

classifier.	221	cases	are	 incorrectly	classified	as	being	Slowloris	 (18),	Normal	 (2),	and	

UDP	 Flood	 (2)	 by	 the	Naïve	 Bayes	 classifier.	 	 54	 cases	 are	 classified	 correctly	 by	 the	

Random	Forest	classifier,	with	15	SYN	Flood	cases	being	classified	incorrectly,	as	Normal	

(11)	and	Slowloris	(4).			

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 124

Moving	 to	 the	 ICMP	 Flood	 instances,	 out	 of	 122	 cases,	 110	 instances	 are	 classified	

correctly	by	 the	Naïve	Bayes	classifier.	There	are	12	cases	classified	 incorrectly,	all	as	

Slowloris.		For	the	Random	Forest	classifier,	all	122	cases	are	being	classified	correctly.			

Out	 of	 9	 cases	 of	 UDP	 Flood,	 all	 are	 classified	 correctly	 by	 the	Naïve	Bayes	 classifier.	

Similarly,	all	9	cases	are	classified	correctly	by	the	Random	Forest	classifier.			

Moving	 on	 to	 the	 DNS	 Flood	 instances,	 out	 of	 18	 instances,	 17	 cases	 are	 classified	

correctly	by	the	Naïve	Bayes	classifier,	with	1	case	being	classified	incorrectly,	as	Normal	

traffic.	For	the	Random	Forest	classifier,	all	18	cases	are	classified	correctly.			

Finally,	 out	 of	 28	 PoD	 instances,	 26	 cases	 are	 classified	 correctly	 by	 the	Naïve	 Bayes	

classifier,	 with	 2	 cases	 being	 classified	 incorrectly,	 both	 as	 Normal	 traffic.	 	 For	 the	

Random	Forest	classifier,	all	28	cases	are	classified	correctly.			

5.5.4 Predicted versus actual outcomes for the 7 second time
interval

Figures	5.20	and	5.21	present	the	classification	results	arising	from	applying	the	Naïve	

Bayes	and	Random	Forest	models,	respectively,	to	the	processed	dataset	for	the	7	second	

time	interval.		

In	general,	the	overall	accuracy	of	the	Naïve	Bayes	classifier	is	69.8361%	over	the	total	

number	of	 instances	of	attack	and	normal	traffic.	The	general	accuracy	of	the	Random	

Forest	classifier	is	98.0328%	over	the	total	number	of	305	instances,	suggesting	that	the	

Random	Forest	classifier	has	a	higher	overall	accuracy	than	the	Naïve	Bayes	classifier.	

The	specific	performance	of	the	two	models	for	each	attack	type,	and	for	normal	traffic,	

for	the	7	second	time	interval	dataset	will	now	be	discussed.		

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 125

Figure 5.20 The classification result of the Naïve Bayes model for the 7 second time

interval dataset

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 126

Figure 5.21 The classification result of the Random Forest model for the 7 second time

interval dataset

As	can	be	seen	in	Figure	5.20,	for	the	7	second	time	interval,	out	of	58	SYN	Flood	attack	

types,	47	cases	are	classified	correctly	by	the	Naïve	Bayes	classifier,	with	7	cases	being	

incorrectly	classified,	as	Slowloris	(7)	and	Normal	traffic	(4).	 	In	contrast,	57	cases	are	

classified	 correctly	by	 the	Random	Forest	 classifier,	with	1	SYN	Flood	 cases	 classified	

incorrectly,	as	Slowloris	(1).		

Moving	 onto	 the	 ICMP	 Flood	 instances,	 out	 of	 51	 cases,	 50	 instances	 are	 classified	

correctly	 by	 the	 Naïve	 Bayes	 classifier.	 There	 is	 only	 1	 case	 classified	 incorrectly,	 as	

Normal	 traffic.	 Similarly,	 there	 are	 50	 cases	 being	 classified	 correctly	 by	 the	Random	

Forest	classifier,	with	only	1	case	classified	incorrectly,	as	DNS	Flood.	

Out	of	 62	Normal	 instances,	 only	26	 cases	 are	 classified	 correctly	by	 the	Naïve	Bayes	

classifier.	36	cases	are	classified	incorrectly,	as	SYN	flood	(1),	PoD	(18),	and	DNS	Flood	

(2)	and	Slowloris	(15).	In	contrast,	there	are	60	cases	classified	correctly	by	the	Random	

Forest	classifier,	with	2cases	incorrectly	classified,	as	Slowloris	(1)	and	SYN	Flood	(1).			

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 127

Out	 of	 33	 PoD	 instances,	 there	 are	 8	 cases	 classified	 correctly	 by	 the	 Naïve	 Bayes	

classifier.	25	cases	are	classified	incorrectly,	as	SYN	Flood	(3),	Normal	(12)	and	Slowloris	

(10).	 In	 contrast,	 all	 33	 cases	 are	 being	 classified	 correctly	 by	 the	 Random	 Forest	

classifier.		

Moving	 on	 to	 the	 DNS	 Flood	 instances,	 out	 of	 20	 instances,	 19	 cases	 are	 classified	

correctly	by	 the	Naïve	Bayes	classifier.	Only	1	case	 is	classified	 incorrectly,	as	Normal	

traffic.	Similarly,	there	are	19	cases	classified	correctly	by	the	Random	Forest	classifier,	

with	1case	classified	incorrectly,	as	SYN	Flood.	

Of	the	3	cases	of	UDP	flood,	all	of	the	cases	are	classified	correctly	by	the	Naïve	Bayes	

classifier.	 Similarly,	 no	 UDP	 cases	 are	 classified	 incorrectly	 by	 the	 Random	 Forest	

classifier.			

Finally,	out	of	78	Slowloris	instances,	60	cases	are	classified	correctly	by	the	Naïve	Bayes	

classifier.	18	cases	are	classified	incorrectly,	as	SYN	Flood	(7)	and	PoD	(11).	In	contrast,	

as	can	be	seen	in	Figure	5.21,	there	are	77	cases	being	classified	correctly	by	the	Random	

Forest	classifier,	with	only	1	case	classified	incorrectly,	as	SYN	Flood.	

5.5.5 Predicted versus actual outcomes for the 10 second time
interval

Figures	5.22	and	5.23	present	the	classification	results	arising	from	applying	the	Naïve	

Bayes	 and	 Random	 Forest	 models,	 respectively,	 to	 the	 processed	 dataset	 for	 the	 10	

second	time	interval.			

In	general,	the	overall	accuracy	of	the	Naïve	Bayes	classifier	is	75.9091	%over	the	total	

number	of	 instances	of	attack	and	normal	traffic.	The	general	accuracy	of	the	Random	

Forest	classifier	is	96.8182	%	over	the	total	number	of	226instances,	suggesting	that	the	

Random	Forest	classifier	has	a	higher	overall	accuracy	than	the	Naïve	Bayes	classifier.	

The	specific	performance	of	the	two	models	for	each	attack	type,	and	for	normal	traffic,	

for	the	10	second	time	interval	dataset	will	now	be	discussed.		

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 128

	

Figure 5.22 The classification result of the Naïve Bayes model for the 10 second time

interval dataset

	

Figure 5.23 The classification result of the Random Forest model for the 10 second time

interval dataset

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 129

As	can	be	seen	in	Figure	5.22,	for	the	10	second	time	interval	out	of	30	Normal	instances,	

there	are	only	19	cases	 classified	correctly	by	 the	Naïve	Bayes	classifier.	11	cases	are	

classified	incorrectly,	as	SYN	flood	(7),	and	Slowloris	(4).	In	contrast,	33	of	36	cases	are	

classified	correctly	by	the	Random	Forest	classifier,	with	only	3	cases	being	incorrectly	

classified,	as	SYN	Flood	(1)	and	Slowloris	(1).	

Moving	onto	the	ICMP	Flood	instances,	all	the	56	cases	and	44	cases	are	being	classified	

correctly	by	the	Naïve	Bayes	and	the	Random	Forest	classifier	respectively.		

Out	of	the	3	cases	of	Pod,	all	are	classified	correctly	by	the	Naïve	Bayes	classifier.	Similarly,	

the	2	Pod	cases	for	the	Random	Forest	classifier	are	both	classified	correctly.	

Out	of	50	SYN	Flood	attack	 types,	13	cases	are	classified	correctly	by	 the	Naïve	Bayes	

classifier.	37cases	are	incorrectly	classified	as	being	Normal	(6),	Slowloris	(30)	and	DNS	

Flood	 (1).	 In	 contrast,	 50of	 51	 cases	 are	 classified	 correctly	 by	 the	 Random	 Forest	

classifier.	There	is	only	one	case	that	is	classified	incorrectly	as	Slowloris.	

Out	of	the	8	cases	of	UDP	flood,	all	are	classified	correctly	by	the	Naïve	Bayes	classifier.	

Similarly,	the	8	UDP	cases	for	the	Random	Forest	classifier	are	both	classified	correctly.	

Out	 of	 63Slowloris	 instances,	 59cases	 are	 classified	 correctly	 by	 the	 Naïve	 Bayes	

classifier.	4	cases	are	classified	incorrectly	as	SYN	Flood.	In	contrast,	as	shown	in	Figure	

5.23,	68of71	cases	are	being	classified	correctly	by	the	Random	Forest	classifier.	

Finally,	moving	on	to	the	DNS	Flood	instances,	9	out	of	10	cases	are	classified	correctly	

by	the	Naïve	Bayes	classifier.	There	is	only	1	case	that	classified	incorrectly	as	SYN	flood.		

perhaps	surprisingly	all	17	DNS	Flood	cases	are	classified	correctly	by	the	Random	Forest	

classifier.	

5.6 Approach to the Analysis of the Results of the
Misclassification Errors

This	section	will	present	the	process	of	the	analysis	undertaken	to	analyse	the	results	of	

the	identified	misclassification	errors.	Because	of	the	high	number	of	features	contained	

in	the	processed	dataset,	the	analysis	approach	that	was	used	in	chapter	3	(see	section	

3.5.2	was	not	a	suitable	option	for	use	in	this	phase	of	the	work.		Figures	5.24	and	5.25	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 130

present	an	example	of	one	of	the	misclassified	cases	(Pod-Slowloris)	to	 illustrate	why,	

and	 to	 justify	 the	 alternative	 analysis	 approach	 that	 was	 used.	 Having	 done	 this,	 the	

section	will	then	explain	the	steps	that	comprise	the	alternative	analysis	approach.	

Figure	5.24	shows	the	Pod	attack	feature	distribution	for	the	1	second	time	interval	and	

Figure	5.25	presents	the	frequency	of	the	Pod	attacks	that	were	misclassified	as	Slowloris	

attacks.		As	can	be	seen	in	these	two	figures,	the	high	number	of	factors	involved	in	the	

processed	dataset	makes	the	visual	inspection	of	the	graphs	extremely	difficult	(unlike	in	

the	analysis	in	section	3.5.2	where	only	three	features	were	being	considered).		As	such,	

visual	inspection	of	the	graphs	of	the	misclassification	cases	and	their	comparison	to	the	

graphs	of	the	correctly	classified	attack	cases	is	not	a	suitable	way	to	develop	meaningful	

interpretations	of	 the	misclassification	errors	 for	 the	 two	classifiers	 (Naïve	Bayes	and	

Random	Forest).	Therefore,	an	alternative	analysis	approach,	set	out	in	Figure	5.26,	was	

designed.	Each	step	of	this	approach	will	be	now	explained.	

Figure 5.24 Distribution of correctly identified Pod attack instances in terms of the

frequency of the discretized feature values for the 1 second time interval

The	right	hand	side	of	Figures	5.24	and	5.25	shows	a	colour	for	each	of	the	features	and	

their	discretized	values,	starting	at	the	top	with	blue	representing	‘Count_tcp:	Low’,	then	

brown	representing	‘Count_tcp:	Medium’	and	grey	representing	‘Count_tcp:	High’,	and	so	

on,	moving	through	three	values	for	each	feature	on	the	x-axis.			

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 131

Figure 5.25 Distribution of Pod attacks instances misclassified as Slowloris attacks in

terms of the frequency of the discretized feature values for the 1 second time interval

Figure 5.26 Analysis Approach for Misclassification Errors of the classification models

	

Step1:
Replace the

discretized values for
each feature with the
relevant integer value

(1,2,3)

Step 2:
Convert the 19

individual digits into a
19-digit integer

Step 3:
Calculate the

counts/frequencies
of each 19-digit
integer in the

misclassified cases

Step 4:
Calculate the count
counts/frequencies

of each 19-digit
integer in the

correctly classified
cases

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 132

In	step	1,	the	discretized	values	in	the	low,	medium	and	high	ranges	were	replaced	with	

1,	 2	 and	3	 (respectively)	 for	 each	value	of	 the	 features	 in	 the	processed	dataset.	 This	

resulted	in	having	19	digits	(between	1	and	3)	running	across	the	cells	for	each	single	

record	of	actual	and	misclassified	data.	Figure	5.27	presents	the	 initial	structure	of	an	

extract	of	the	processed	dataset	with	discretized	values,	and	then	Figure	5.28	shows	the	

same	extract	of	the	dataset	after	with	all	the	discretized	values	replaced	by	the	relevant	

integers	(1,	2	or	3).	

Figure 5.27 Structure of an extract of the processed dataset showing the discretised

values

Figure 5.28 Structure of the same extract of the processed dataset after having replaced

the discretized values with the relevant integer (1, 2 or 3)

In	step	2,	the	19	individual	digits	representing	each	of	the	misclassified	and	actual	cases	

were	converted	into	19-digits	integers	(concatenating	the	individual	cells	in	each	row	of	

the	 dataset).	 Figure	 5.29	 present	 the	 extract	 of	 the	 resulting	 19-digit	 integers	 in	 the	

processed	dataset.	 	These	 integers	represent	unique	 feature	patterns	 that	can	 then	be	

analysed.			

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 133

	

Figure 5.29 An extract of the processed dataset showing the generated 19-digit integers

In	the	steps	3	and	4,	a	pivot	table	was	used	to	calculate	the	counts/frequencies	of	each	

19-digit	integer	for	the	misclassified	cases	and	actual	cases,	respectively.	The	aim	was	to	

obtain	 the	 frequency	with	which	each	 feature	pattern	occurred	over	 the	 five	different	

time	 intervals	 for	 correct	 and	misclassified	 cases,	 serving	 as	 the	basis	 for	 subsequent	

analysis.	Figure	5.30	presents	an	extract	of	the	frequency	table	showing	the	misclassified	

cases	to	illustrate	the	output	of	step	3.		A	corresponding	extract	of	the	correctly	classified	

cases	could	be	shown	as	the	output	of	step	4.			

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 134

	

Figure 5.30 An extract of the frequency table for misclassified cases

The	 next	 section	 will	 present	 an	 analysis	 of	 the	 misclassification	 errors	 in	 the	 five	

different	time	intervals	using	these	frequencies	of	the	feature	patterns	in	the	misclassified	

and	correctly	classified	cases.		

5.7 Analysis of the Results of Misclassification Errors

This	 section	 will	 present	 an	 analysis	 of	 the	 misclassification	 errors	 identified	 in	 the	

confusion	matrix	results	of	the	Naïve	Bayes	and	Random	Forest	models	for	the	different	

time	 intervals.	 The	 analysis	will	 examine	misclassified	 cases,	making	 use	 of	 the	work	

reported	in	section	5.6	to	then	compare	the	pattern	of	 factors	on	which	classifications	

seem	to	have	been	made.	(see	section	5.8)	The	aim	is	to	identify	a	number	of	accuracy	

issues	 related	 to	 the	developed	models	 in	 the	different	 time	 slices	which	will	 in	 turn,	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 135

frame	the	focus	of	the	next	chapter	where	the	relationships	between	the	features	will	be	

more	deeply	explored.		

Table	5.2	summaries	all	the	misclassified	instances	of	the	Naïve	Bayes	and	Random	Forest	

classifiers	in	the	1,	3,	5,	7	and	10-second	time	intervals.	The	misclassified	cases	in	each	

time	interval	will	be	analyzed	in	sections	5.7.2-5.7.6,	respectively.		Before	this,	however,	

section	5.7.1	will	explain	the	thresholds	applied	when	considering	misclassification	cases	

in	each	time	interval.			

Time
slice

Type of the classifier The actual
Instances

 The predicted instances

1 second

Naïve Bayes PoD SYN Flood, Normal, Slowloris

SYN Flood Pod, ICMP Flood, Normal, Slowloris

ICMP Flood SYN Flood, DNS Flood, Normal, UDP Flood

DNS Flood ICMP Flood, Normal, Slowloris

Normal Pod, SYN Flood, ICMP Flood, DNS Flood, UDP Flood, Slowloris

Slowloris Pod, SYN Flood, ICMP Flood, Normal

1 second

Random Forest Pod SYN Flood, Normal

SYN Flood Pod, Normal, Slowloris

ICMP Flood DNS Flood, Normal, Slowloris

DNS Flood SYN Flood, ICMP Flood, Normal

Normal Pod, SYN Flood, ICMP Flood, DNS Flood, Slowloris

UDP Flood Normal

Slowloris PoD, SYN Flood, ICMP Flood, Normal

3 seconds Naïve Bayes Slowloris Normal, ICMP Flood, Pod

Normal SYN Flood, Pod

ICMP Flood Slowloris, SYN Flood, Pod

SYN Flood Normal, PoD

Pod SYN Flood, Normal

DNS Flood Normal, ICMP Flood

UDP Flood Normal, SYN Flood

3 seconds Random Forest Slowloris DNS Flood

Normal SYN Flood, Pod

SYN Flood Normal, Pod

Pod Normal, SYN Flood

DNS Flood Normal

5 seconds Naïve Bayes Normal Slowloris, SYN Flood

Slowloris Normal, SYN Flood, ICMP Flood, UDP Flood, DNS Flood

SYN Flood Normal, Slowloris, UDP Flood

ICMP Flood Slowloris

DNS Flood Normal

PoD Normal

5 seconds Random Forest Normal Slowloris, SYN Flood

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 136

Slowloris Normal, SYN Flood, ICMP Flood

SYN Flood Normal, Slowloris

7 seconds Naïve Bayes SYN Flood Normal, Slowloris

ICMP Flood Normal

Normal SYN Flood, Pod, DNS Flood, Slowloris

Pod SYN Flood, Normal, Slowloris

DNS Flood Normal

Slowloris SYN Flood, Normal

7 seconds Random Forest SYN Flood Slowloris

ICMP Flood DNS Flood

Normal SYN Flood, Slowloris

DNS Flood SYN Flood

Slowloris SYN Flood

10

Seconds

Naïve Bayes Normal SYN Flood, Slowloris

SYN Flood Normal, Slowloris, DNS Flood

Slowloris SYN Flood

DNS SYN Flood

10 Sec Random Forest Normal SYN Flood, Slowloris

SYN Flood Slowloris

Slowloris SYN Flood

Table 5.2 Summary of the results of the misclassification errors in each time interval

5.7.1 Setting thresholds for the analysis of the misclassification
errors in each time interval

Before	presenting	the	misclassification	errors	associated	with	the	two	models/classifiers,	

it	was	decided	 to	 set	 thresholds	 to	determine	which	misclassification	cases	 should	be	

considered.		The	aim	was	to	focus	on	the	cases	(feature	patterns)	for	each	model,	in	each	

time	interval,	where	higher	levels	of	misclassification	had	been	identified	as	these	cases	

had	the	greatest	impact	on	the	accuracy	of	the	models.				

Table	5.3	summarizes	the	selected	thresholds	for	the	Naïve	Bayes	and	Random	Forest	

classifiers	 in	the	five	chosen	time	intervals/slices.	The	thresholds	were	determined	by	

simple	observation	of	the	values	in	the	confusion	matrices,	with	a	threshold	value	chosen	

in	 each	 case	 that	 captured	most	 of	 the	misclassification	 cases.	 	 In	 the	 1	 second	 time	

intervals,	the	threshold	was	set	at	20	for	the	Naïve	Bayes	and	Random	Forest	classifiers;	

in	the	3	second	time	interval,	the	threshold	was	set	at	10	for	both	classifiers;	and	in	the	5	

second	time	interval	the	threshold	was	set	at	5	for	both	classifiers.		In	the	7,	and	10	second	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 137

intervals,	 however,	 the	 threshold	 for	 the	 both	 the	 Naïve	 Bayes	 and	 Random	 Forest	

classifiers	was	set	at	1	(i.e.,	all	misclassification	cases	were	examined)	as	such	since	the	

models’	 accuracies	 in	 these	 time	 intervals	 were	 very	 high,	 leaving	 few	 cases	 to	 be	

considered.			

Time interval The chosen for threshold for
Naïve Bayes

 The chosen threshold for
Random Forest

1 second 20 20

3 seconds 10 10

5 seconds 5 5

7 seconds 1 1

10 seconds 1 1

Table 5.3 The chosen thresholds for the misclassification analysis

Sections	 5.7.2-5.7.6	will,	 in	 turn,	 present	 the	 feature	 patterns	 of	 the	misclassification	

cases	above	the	selected	threshold	for	each	of	 the	 time	 intervals,	 then	section	5.8	will	

analyse	these	feature	patterns.			

5.7.2 Misclassification cases for the 1 second time interval

To	begin	to	understand	the	misclassifications	made	by	the	model,	the	misclassification	

cases	 were	 explored	 by	 analyzing	 the	 underlying	 data	 of	 the	 cases	 identified	 by	 the	

models	that	met	the	relevant	threshold	(see	Table	5.3).		These	‘above	threshold’	instances	

of	normal	traffic	and	each	attack	type	in	the	processed	dataset	that	were	misclassified	by	

the	model	were	isolated	and	examined.	 	The	aim	was	to	identify	the	particular	feature	

patterns	in	the	set	of	misclassification	instances	and	then,	after	each	time	interval	had	

been	considered,	 to	examine	changes	 in	 the	relative	 frequency	of	 the	 feature	patterns	

over	the	different	time	intervals	in	an	attempt	to	understand	the	underlying	reasons	for	

the	changes	in	the	accuracy	of	the	classifiers	as	the	length	of	the	time	interval	increased.		

To	understand	 the	misclassification	errors	of	 the	Naïve	Bayes	and	 the	Random	Forest	

models	in	the	1	second	time	interval,	the	distribution	of	the	frequencies	of	the	different	

feature	patterns	in	the	misclassification	cases	was	examined.	The	results	are	presented	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 138

in	 Figures	 5.31	 and	 5.32.	 To	 concentrate	 on	 the	 most	 common	 feature	 patterns	

represented	in	the	misclassification	set,	only	feature	patterns	that	were	found	more	than	

20	times	were	considered.			

Figure 5.31 The distribution of misclassification feature patterns in the 1 second time

interval for the Naïve Bayes classifier

0

10

20

30

40

50

60

31
13
11
31
33
13
31
33
33

21
12
11
31
33
13
31
33
33

12
11
31
31
33
13
31
32
32

12
11
31
22
12
23
21
12
11

12
11
31
21
12
13
22
13
21

12
11
31
21
12
13
21
12
11

12
11
31
12
33
22
21
12
11

12
11
31
12
23
22
12
21
23

12
11
31
12
23
22
11
21
12

12
11
31
11
23
12
21
12
11

12
11
31
11
23
12
11
21
13

12
11
31
11
23
12
11
21
12

11
31
13
12
23
22
12
21
23

11
31
13
12
23
22
11
21
12

11
21
12
22
12
23
22
13
21

11
21
12
22
12
23
21
12
11

11
21
12
21
12
13
22
13
21

11
21
12
21
12
13
21
12
11

11
21
12
12
23
22
12
21
23

11
21
12
12
23
22
12
21
22

11
21
12
12
23
22
11
21
12

11
21
12
11
23
12
12
21
22

11
21
12
11
23
12
11
21
13

11
21
12
11
23
12
11
21
12

Naive Bayes Classifier In 1 second Time Interval

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 139

Figure 5.32 The distribution of misclassification feature patterns in the 1 second time

interval for the Random Forest classifier

As	can	be	seen	in	Figures	5.31	and	5.32,	there	are	9	feature	patterns	above	the	frequency	

threshold	of	20	that	are	misclassified	(up	to	a	50	times)	by	the	Naïve	Bayes	classifier.	In	

contrast,	there	are	only	2	features	patterns	that	are	misclassified	by	the	Random	Forest	

classifier	(up	to	60	times)	in	the	1	second	time	interval.	

The	next	subsection	will	present	the	results	of	the	misclassifications	in	the	3	second	time	

interval.		

5.7.3 Misclassification cases for the 3 second time interval

The	 distribution	 of	 the	 frequencies	 of	 the	 different	 feature	 patterns	 for	 the	

misclassification	cases	for	the	Naïve	Bayes	and	Random	Forest	classifiers	in	the	3	second	

time	interval	are	presented	in	Figures	5.33	and	5.34,	respectively.	

0

10

20

30

40

50

60

70

31
13
11
31
32
12
31
33
33

31
12
11
31
33
13
31
33
33

31
12
11
31
33
13
21
22
32

31
12
11
11
23
12
21
12
11

21
12
11
31
33
13
31
33
33

12
11
31
31
33
13
31
32
32

12
11
31
22
12
23
21
12
11

12
11
31
21
12
13
21
12
11

12
11
31
12
23
22
11
21
12

12
11
31
11
23
12
11
21
13

11
21
12
22
12
23
22
13
21

11
21
12
21
12
13
21
12
11

Random Forest classifier In 1 second Time Interval

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 140

Figure 5.33 The distribution of misclassification feature patterns in the 3 second time

interval for the Naïve Bayes classifier

Figure 5.34 The distribution of misclassification feature patterns in the 3 second time

interval for the Random Forest classifier

Since	the	number	of	records	in	the	3	second	time	interval	is	obviously	lower	than	for	the	

1	second	time	interval	dataset,	a	 lower	threshold	was	set	 for	the	feature	patterns	that	

0

5

10

15

20

25

31
13
11
21
22
11
21
12
22

22
12
11
23
22
12
31
33
33

22
12
11
12
21
11
12
21
11

21
12
21
33
32
12
31
33
33

21
12
11
23
21
22
22
22
22

12
31
23
12
21
22
12
21
22

12
21
22
23
22
12
31
33
33

12
21
22
22
21
22
12
12
21

12
21
22
21
32
13
31
33
33

12
21
22
21
12
21
21
12
12

12
21
22
21
11
21
21
11
12

12
21
22
12
21
22
21
22
22

11
31
33
33
33
13
31
33
33

11
21
32
21
11
11
21
11
21

11
11
31
23
22
12
31
33
33

11
11
31
12
21
22
21
22
22

11
11
31
12
21
22
12
21
22

11
11
31
12
21
11
12
22
32

11
11
31
12
21
11
12
21
11

11
11
31
12
11
22
12
21
22

11
11
31
11
11
11
21
22
13

Naive Bayes In 3 second Time Interval

0
5
10
15
20
25
30
35

31131133321231…

31131123221231…

22122121111121…

12311333331331…

12311333331311…

12311331332311…

12311323221231…

12212232331312…

12212223221231…

12212221122121…

12212221112121…

12212221111121…

11312333331311…

11311333331311…

11311331332331…

11311331331331…

11311323221231…

11113132331321…

11113112212212…

11113112212122…

11113112211112…

11113112112212…

11113112111121…

Random Forest Classifier in 3 second Time
Interval

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 141

were	considered	in	the	3	second	time	interval.	A	 lower	threshold	of	10	was	chosen	to	

provide	a	higher	number	of	feature	patterns	for	consideration.		

As	Figures	5.33	and	5.34	show,	there	are	2	feature	patterns	at	or	above	the	threshold	of	

10	that	were	misclassified	(up	to	a	maximum	of	10	times)	by	the	Naïve	Bayes	classifier	in	

the	 3	 second	 time	 interval,	 and	13	 feature	 patterns	 at	 or	 above	 the	 threshold	 for	 the	

Random	Forest	classifier.		

The	next	subsection	will	present	the	results	of	the	misclassification	in	the	5	second	time	

interval.		

5.7.4 Misclassification cases for the 5 second time interval

The	 distribution	 of	 the	 frequencies	 of	 the	 different	 feature	 patterns	 for	 the	

misclassification	cases	for	the	Naïve	Bayes	and	Random	Forest	classifiers	in	the	5	second	

time	interval	are	presented	in	Figures	5.35	and	5.36,	respectively.	

Figure 5.35 The distribution of misclassification feature patterns in the 5 second time

interval for the Naïve Bayes classifier

0
1
2
3
4
5
6
7
8
9

12
31
22
31
22
22
22
2…

12
31
22
32
32
23
13
3…

13
21
22
31
22
22
22
2…

13
21
22
32
21
21
13
2…

13
21
22
32
21
21
23
2…

13
21
22
32
22
21
32
2…

13
21
22
32
22
23
12
2…

13
21
22
32
32
13
22
2…

13
21
22
32
32
22
13
2…

13
21
33
22
21
21
23
2…

13
21
33
22
22
21
32
2…

13
21
33
22
22
23
12
2…

13
21
33
22
23
12
22
3…

13
21
33
22
32
13
12
2…

13
21
33
22
32
33
22
3…

13
31
22
32
31
13
22
2…

13
31
22
32
32
23
33
2…

13
31
33
32
22
23
13
2…

23
22
22
13
22
23
12
2…

Naive Bayes Classifier In 5 Second Time Interval

Total

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 142

	

Figure 5.36 The distribution of misclassification feature patterns in the 5 second time

interval for the Random Forest classifier

Considering	 the	 frequency	 number	 of	 misclassification	 cases	 in	 the	 5	 second	 time	

interval,	a	threshold	of	5	was	used.		

As	Figures	5.35	shows,	there	are	6	feature	patterns	at	or	above	the	threshold	of	5	that	

were	misclassified	(up	to	a	maximum	of	8	times)	by	the	Naïve	Bayes	classifier	in	the	5	

second	time	interval.	In	contrast,	Figure	5.36	shows	there	are	28	features	patterns	above	

the	 threshold	 of	 5	 that	 were	 misclassified	 (up	 to	 14	 times)	 by	 the	 Random	 Forest	

classifier.	

5.7.5 Misclassification cases for the 7 second time interval

The	 distribution	 of	 the	 frequencies	 of	 the	 different	 feature	 patterns	 for	 the	

misclassification	cases	for	the	Naïve	Bayes	and	Random	Forest	classifiers	in	the	7	second	

time	interval	are	presented	in	Figures	5.37	and	5.38,	respectively.	

0
2
4
6
8
10
12
14
16

31
13
11
33
33
33
33
31
31

31
13
11
31
33
13
11
13
13

31
12
11
22
22
22
22
32
22

13
31
33
12
22
22
22
22
11

13
31
23
23
11
32
22
11
22

13
21
33
33
33
33
33
31
31

13
21
32
23
22
31
33
31
32

13
21
32
22
22
32
22
32
11

13
21
32
22
22
31
22
22
33

13
21
32
22
22
13
22
22
11

13
21
32
22
12
12
32
22
11

13
21
23
23
23
32
23
21
32

13
21
23
23
21
32
23
33
32

13
21
23
22
22
13
22
22
33

13
21
23
12
22
22
23
21
32

12
31
23
31
33
23
33
31
31

12
31
23
31
33
13
11
23
13

12
31
23
12
22
22
22
22
11

11
31
13
32
33
13
32
31
11

11
21
13
23
23
22
23
23
22

Random Forest Classifier In 5 Second Time Interval

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 143

Figure 5.37 The distribution of misclassification feature patterns in the 7second time

interval for the Naïve Bayes classifier

Figure 5.38 The distribution of misclassification feature patterns in the 7 second time

interval for the Random Forest classifier

0
1
2
3
4
5
6
7
8
9
10

11
31
13
12
21
22
12
31
23

12
21
22
11
32
13
21
21
11

12
21
22
12
21
32
11
21
22

12
21
22
21
12
11
22
13
11

12
21
22
21
12
11
22
33
12

12
21
22
21
12
11
22
33
22

12
21
22
21
12
12
22
33
22

12
21
22
22
12
11
31
32
12

12
21
22
22
12
21
22
13
11

12
21
22
22
12
21
22
23
22

12
21
22
22
12
21
22
33
12

12
21
22
22
12
21
22
33
22

12
21
22
22
21
32
23
22
22

12
21
22
31
12
12
13
21
21

12
21
22
31
32
13
23
33
33

12
31
13
22
12
21
22
13
11

12
31
23
21
12
11
22
13
22

13
11
31
11
11
11
21
22
22

13
11
31
12
11
21
11
12
11

13
11
31
12
21
32
11
21
22

13
11
31
12
21
32
12
11
21

13
11
31
12
21
32
12
21
21

13
11
31
12
21
32
21
22
22

13
11
31
12
21
32
22
22
22

13
11
31
12
21
32
22
32
22

13
11
31
22
21
32
23
32
22

13
11
31
23
22
12
32
32
22

13
11
31
33
33
33
33
33
33

13
31
33
12
21
32
22
32
22

13
31
33
23
11
22
21
12
11

23
12
21
22
22
21
23
23
32

23
32
31
13
11
11
33
33
33

31
13
11
31
12
12
13
21
21

Naive Bayes classifier In 7 Second Time Interval

Total

0

0.2

0.4

0.6

0.8

1

1.2

11
31
13
12
21
22
12
31
23

12
21
22
11
32
13
21
21
11

12
21
22
23
22
32
33
33
32

12
21
22
31
32
13
23
33
33

13
11
31
12
21
32
12
11
21

23
32
31
13
11
11
33
33
33

Random Forest Classifier In 7 Second Time Interval

Total

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 144

For	 the	 7	 second	 time	 interval,	 all	 misclassification	 cases	 were	 considered	 (i.e.,	 a	

threshold	of	1	was	used).		

As	Figure	5.37	shows,	there	are	33	feature	patterns	at	or	above	the	threshold	of	1	that	

were	misclassified	(up	to	a	maximum	of	9	times)	by	the	Naïve	Bayes	classifier	in	the	7	

second	time	interval.	In	contrast,	Figure	5.38	shows	there	are	only	6	features	patterns	at	

the	 threshold	 of	 1	 that	were	misclassified	 (up	 to	 1	 time	 only)	 by	 the	 Random	Forest	

classifier.	

5.7.5 Misclassification cases for the 10 second time interval

The	 distribution	 of	 the	 frequencies	 of	 the	 different	 feature	 patterns	 for	 the	

misclassification	cases	for	the	Naïve	Bayes	and	Random	Forest	classifiers	in	the	10	second	

time	interval	are	presented	in	Figures	5.39	and	5.40,	respectively.	

Figure 5.39 The distribution of misclassification feature patterns in the 10second time

interval for the Naïve Bayes classifier

0

1

2

3

4

5

6

7

8

9

12
21
22
11
21
12
11
11
23

12
21
22
12
11
21
12
11
32

12
21
22
12
11
21
21
22
23

12
21
22
21
12
11
21
12
11

12
21
22
21
12
11
21
22
11

12
21
22
21
22
12
12
11
32

12
21
22
21
22
12
21
22
23

12
21
22
22
12
21
11
11
21

12
21
22
22
12
21
22
12
32

12
21
22
32
31
23
12
11
13

12
21
22
32
33
21
13
11
12

12
31
23
13
31
33
33
11
11

12
31
23
32
31
23
12
31
13

13
21
32
11
21
12
12
11
32

13
31
33
11
11
11
22
22
33

13
31
33
11
21
12
22
12
32

13
31
33
22
22
22
11
11
22

21
12
11
13
11
11
13
11
11

23
12
31
11
11
11
11
11
11

23
22
11
31
31
11
23
22
13

31
13
11
11
31
13
11
31
11

Naive Bayes Classifier in 10 Second Time Interval

Total

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 145

Figure 5.40 The distribution of misclassification feature patterns in the 10 second time

interval for the Random Forest classifier

As	for	the	7	second	interval,	a	threshold	of	1	was	used	for	the	10	second	interval.		

As	Figure	5.39	shows,	there	are	12	feature	patterns	at	or	above	the	threshold	of	1	that	

were	misclassified	(up	to	a	maximum	of	8	times)	by	the	Naïve	Bayes	classifier	in	the	10	

second	time	interval.	In	contrast,	Figure	5.40	shows	that	there	are	only	7	feature	patterns	

at	the	threshold	of	1	that	were	misclassified	(up	to	1	time	only)	by	the	Random	Forest	

classifier.	

5.8 Reflection and Discussion

This	section	will	present	high-level	analysis	of	 the	 feature	patterns	 that	 represent	 the	

misclassification	 cases	 associated	 with	 the	 two	 classifiers	 (Naïve	 Bayes	 and	 Random	

Forest)	in	the	1,	3,	5,	7	and	10	second	time	intervals.		The	aim	is	to	understand	the	changes	

in	accuracy	across	the	time	intervals	and	to	examine	whether	any	insights	can	be	drawn	

by	 analyzing	 the	 feature	 patterns	 that	 represent	 the	 misclassification	 cases	 in	 the	

different	time	intervals.		

0

0.2

0.4

0.6

0.8

1

1.2

12
21
22
12
11
21
12
11
32

12
21
22
21
22
12
12
11
32

12
21
22
21
22
12
21
22
23

12
21
22
22
12
21
12
11
32

12
21
22
22
22
22
22
12
32

12
21
22
32
31
23
12
11
13

13
31
33
11
21
12
22
12
32

Random Forest Classifier In 10 second Time Interval

Total

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 146

Tables	 5.4	 and	 5.5	 present,	 for	 the	 Naïve	 Bayes	 and	 Random	 Forest	 classifiers	

respectively,	 in	 the	 1,	 3,	 5,	 7	 and	 10	 second	 time	 intervals,	 the	 distribution	 of	 the	

frequencies	 of	 the	 different	 feature	 patterns	 for	 the	misclassification	 cases	 above	 the	

selected	thresholds	(see	Table	5.3).	

Table 5.4 The frequencies of the different feature patterns for the misclassification of the

Naïve Bayes classifier

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 147

Table 5.5 The frequencies of the different feature patterns for the misclassification of the

Random Forest classifier

As	can	be	seen	in	Tables	5.4	and	5.5,	there	is	unique	set	of	feature	patterns	for	each	the	

misclassification	 cases	 above	 threshold.	 Surprisingly,	 none	 of	 the	 misclassification	

feature	patterns	are	repeated	by	the	classifiers	in	the	different	time	intervals.			

Table	5.6	presents	a	summary	showing	the	total	number	of	misclassification	cases	and	

the	accuracy	of	the	models	over	the	different	time	intervals	(1,	3,	5,	7,	and	10	seconds).				

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 148

Time
Interval

Total Number of
Misclassification
In Naïve Bayes

Total Number of
Misclassification
In Random
Forest

Naïve Bayes
accuracy

Random
Forest
Accuracy

Total
Number of
the cases

1 second 899 332 51.2473 % 81.9957 % 1844

3 seconds 234 114 59.8519% 71.1111% 675

5 seconds 136 39 64.3045 % 89.7638 % 381

7 seconds 92 6 69.8361 % 98.0328 % 305

10 seconds 78 8 75.9091 % 96.8182% 226

Table 5.6 Analysis of the accuracy of the models in different time intervals

The	 first	 row	 in	 Table	 5.6	 shows,	 in	 the	 1	 second	 time	 interval,	 that	 there	 are	 899	

misclassification	cases	for	the	Naïve	Bayes	classifier	from	the	total	number	of	1844	cases,	

giving	an	overall	accuracy	of	51.2473%,	while	the	number	of	misclassification	cases	is	

much	lower	for	the	Random	Forest	classifier	(at	332	cases),	giving	an	overall	accuracy	of	

81.9957%.	

The	 second	 row	 in	 Table	 5.6	 shows	 that	 in	 the	 3	 second	 time	 interval	 there	 are	 234	

misclassification	cases	for	the	Naïve	Bayes	classifier	from	the	total	number	of	675	cases,	

giving	an	overall	accuracy	of	59.8519.		In	contrast,	there	are	114	misclassification	cases	

for	the	Random	Forest	classifier,	giving	an	overall	accuracy	of	71.111%.	

Moving	 to	 the	 third	 row	 of	 Table	 5.6,	 for	 the	 5	 second	 time	 interval	 there	 are	 136	

misclassification	cases	for	the	Naïve	Bayes	classifier	from	the	total	number	of	381	cases,	

giving	an	overall	accuracy	of	64.3045%,	while	the	number	of	misclassification	cases	for	

the	Random	Forest	classifier	is	much	lower	(at	39	cases),	leading	to	an	overall	accuracy	

of	89.7638%.		

In	the	7	second	time	interval,	Table	5.6	shows	there	are	92	misclassification	cases	for	the	

Naive	Bayes	classifier	from	the	total	number	of	305	cases,	giving	an	overall	accuracy	of	

69.8361%.	 	In	contrast,	there	are	only	6	misclassification	cases	for	the	Random	Forest	

classifier,	leading	to	an	overall	accuracy	of	98.0328%.		

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 149

Finally,	in	the	10	second	time	interval,	the	last	row	in	Table	5.6	shows	that	there	are	78	

misclassification	 cases	 for	 the	 Naïve	 Bayes	 classifier,	 giving	 an	 overall	 accuracy	 of	

75.9091	%,	while	there	are	only	8	misclassification	cases	for	the	Random	Forest	classifier,	

leading	to	an	overall	accuracy	of	96.8182%.			

The	analysis	results	of	the	Naïve	Bayes	and	Random	Forest	classifiers	suggest	that	the	

total	 number	 of	 misclassification	 cases	 of	 the	 Naïve	 Bayes	 and	 the	 Random	 Forest	

classifiers	decreases	over	time,	though	this	is	to	be	expected	given	the	relative	reduction	

in	the	number	of	cases	overall	as	the	time	intervals	become	bigger.	More	interestingly,	

the	accuracy	of	the	Random	Forest	is	higher	than	the	Naïve	Bayes	Classifier	across	all	of	

the	time	periods.		For	the	7	second	and	10	second	time	intervals,	the	accuracy	of	the	two	

classifiers	is	higher	than	the	respective	values	for	the	1,	3	and	5	second	intervals.		The	7	

seconds	interval	provides	the	highest	accuracy	levels	for	each	of	the	classifiers	from	the	

time	periods	considered.			

Most	interestingly,	perhaps,	there	do	not	seem	to	be	consistent	sets	of	features	patterns	

in	the	misclassification	cases	that	reduce	over	the	time	periods	(as	some	feature	patterns	

‘disappear’),	so	little	can	be	drawn	from	the	analysis	in	terms	of	explaining	the	improved	

performance	of	the	classifiers	as	the	time	intervals	increase.	This	suggests	that	applying	

another	analysis	method	might	be	useful	in	order	to	try	to	discover	relationships	between	

the	 features	 that	 might	 be	 leading	 to	 accuracy	 improvements	 as	 the	 time	 intervals	

increase.		This	will	form	the	focus	of	the	next	chapter.		

5.9 Summary

This	chapter	has	reported	the	building	of	 the	classification	models	(using	Naïve	Bayes	

and	Random	Forest	classifiers)	and	the	analysis	of	their	performance	in	five	chosen	time	

intervals.		This	was	explored	by	observing	the	accuracy	and	the	misclassification	feature	

patterns	of	the	two	models.	The	results	of	the	analysis	show	that,	while	the	performance	

of	the	classifiers	improved	over	time	with	the	models	performing	best	at	the	7	seconds	

time	interval,	consistent	sets	of	feature	patterns	that	reduced	in	frequency	across	the	time	

intervals	were	not	 found.	This	 suggests	 that	 there	 is	a	need	 to	apply	another	analysis	

method	to	seek	to	discover	the	relationships	between	the	features	in	the	models	within	

Chapter	5:	Developing	Intrusion	Detection	Models	 Roja	Ahmadi	

 150

and	across	the	time	intervals	that	might	help	to	explain	the	improvements	in	the	accuracy	

of	the	models.	This	will	form	the	focus	of	the	next	chapter.	

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 151

Chapter 6 : Cross-correlation Analysis

6.1 Introduction

As	 argued	 in	 chapter	 5,	 the	 analysis	 of	 the	 results	 obtained	 from	 the	 developed	

classification	models	 showed	 that	 the	 performance	 of	 the	 classifiers	 in	 terms	 of	 their	

accuracy	and	misclassification	patterns	improved	over	time.		However,	consistent	sets	of	

feature	patterns	which	reduced	in	frequency	across	the	time	intervals,	and	which	might	

therefore	have	explained	the	improvements	in	accuracy,	were	not	found.	To	be	able	to	

discover	the	relationships	between	the	features	in	the	models	within	and	across	the	time	

intervals,	there	was	therefore	a	need	to	apply	another	analysis	method	to	seek	to	improve	

the	accuracy	of	the	models.		To	this	end,	Chapter	6	reports	the	use	of	cross-correlation	

analysis	that	was	applied	to	the	dataset	in	an	attempt	to	discover	relationships	between	

pairs	of	features	over	time.		

The	 remainder	of	 this	 chapter	 is	 structured	as	 follows.	 	 Section	6.1	will	 introduce	 the	

Cross-correlation	function	(CCF)	which	was	used	to	undertake	the	analysis.		Section	6.2	

will	then	present	all	of	the	techniques	that	were	essential	to	undertake	before	applying	

the	CCF	to	the	initial/one	second	time	interval	dataset	developed	in	Chapters	4	and	5.		

Section	6.4	will	then	report	the	results	of	applying	the	CCF	function	to	the	dataset.		Section	

6.5	will	present	the	subsequent	analysis	of	the	results	generated	by	the	cross-correction	

analysis.	

6.2 Cross-correlation Analysis

To	understand	the	relationship	between	features	across	time	in	the	dataset,	which	might	

help	to	understand	the	increases	in	accuracy	in	the	different	time	intervals	considered	in	

Chapter	5,	it	was	essential	to	apply	a	time	series	data	analysis	technique	to	the	dataset.		

This	 section	 will	 introduce	 cross-correlation	 analysis	 as	 the	 chosen	method,	 and	 the	

Cross-Correlation	Function	(CCF)	as	the	instantiation	of	the	method	that	was	applied.		

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 152

Cross-correlation	 is	 a	 time-series	 data	 analysis	 approach	 which	 aims	 to	 find	 the	

correlation	between	two	time	series	(in	our	case,	the	time	series	associated	with	pairs	of	

features	from	the	dataset	developed	in	Chapter	4	and	used	in	Chapter	5).		The	data	from	

the	time	series	under	consideration	can	be	compared	using	cross	correlation	analysis	to	

determine	if	there	is	a	correlation	between	the	two	features.		Shifts	in	time	(or	lags)	can	

be	applied	to	assess	whether	the	 features	correlate	at	different	 time	shifts	(i.e.,	where	

feature	1	correlates	with	feature	2	at	a	lag	of	one	second;	that	is,	feature	1’s	value	at	a	

point	in	time	may	correlate	with	feature	2’s	value	one	second	later).			

For	 two	 time	 series,	 x(i)	 and	 y(i),	 where	 i	 is	 the	 time	 value	 (0,	 1,	 2,…n-1),	 the	 cross	

correlation	r	at	lag	k	is	given	by:	

! =# [%(') − *% ∗ (,(' − -) − *,)]
∑ 0(%(') − *%)!" ∗ ∑ 0((,(' − -) − *,))!""

	

Where	mx	and	my	are	the	respective	means	of	the	two	time	series,	x	and	y.			

When	calculated	for	all	lags	(k	=	0,	1,	2,…	n-1),	this	results	in	a	cross	correlation	series:	

!(1) =# [%(') − *% ∗ (,(' − -) − *,)]
∑ 0(%(') − *%)!" ∗ ∑ 0((,(' − -) − *,))!""

	

The	 denominator	 in	 this	 formula	 acts	 to	 normalize	 the	 correlation	 coefficients	 (i.e.,	

making	all	value	of	r(d)	between	-1	and	1	(-1<=r(d)<=1).	

The	cross-correlation	function	identifies	the	level	of	correlation	between	the	two	series	

x(i)	and	y(i)	and	the	following	formula	can	be	used	to	identify	the	level	of	correlation	that	

is	significant:	

2
03 − |-|

Where	 n	 is	 the	 number	 of	 records	 and	 k	 is	 the	 lag	 that	 refers	 to	 the	 number	 of	 time	

intervals	that	divide	the	two-time	series.		If	the	absolute	value	of	the	level	of	correlation	

(r(d))	is	greater	than	above	formula,	there	is	a	significant	correlation	between	the	two	

time	series.	

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 153

While	there	are	other	techniques	for	the	analysis	of	time-series	data,	including	support	

vector	machine,	Fuzzy	Logic,	and	so	on,	as	the	cross-correlation	approach	has	been	used	

for	detecting	DDoS	attacks	in	a	number	of	pieces	of	research	(Huang	and	Yi,	2019),	it	was	

decided	to	apply	this	analysis	technique	to	the	time-series	data.			

Table	6.1	presents	a	summary	of	existing	work	in	this	area	that	has	made	use	of	cross-

correlation	analysis.		That	CCF	has	been	used	in	the	analysis	of	time	series	data	for	DDoS	

attaches	suggests	that	it	is	a	useful	and,	at	least	somewhat,	established	analysis	technique	

that	has	been	used	in	a	number	of	ways/contexts	by	researchers	in	the	area.			

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 154

Before	applying	the	CCF	to	 the	dataset,	 it	was	necessary	to	 transform	the	dataset	as	a	

result	of	applying	stationarity	tests	(see	section	6.3)	to	the	data.		Section	6.3	will	report	

all	of	the	stages	undertaken	to	complete	the	transformation	task	on	the	dataset.	

6.3 Transformation Tasks on the Time Series Dataset

In	 order	 to	 transform	 the	dataset’s	 structure	 to	make	 it	 suitable	 for	 cross-correlation	

analysis,	a	series	of	actions	were	applied	to	the	time	series	data.	 	To	do	this,	a	suitable	

programming	language	had	to	be	selected.		

Various	 programming	 languages	 are	 commonly	 used	 in	 time	 series	 data	 analysis,	

including	Python	(2019),	R	(2019),	MATLAB	(2019)	and	Weka	(Frank	et	al.	2016).		This	

No Title of Paper A Brief Description of the Paper’s Use of

the CCF Approach

Reference

1 CCID: Cross-Correlation

Identity Distinction Method

for Detecting Shrew DDoS

CCF was used to calculate the cross-

correlation between the attack flow and

the normal flow in three different

situations

Huang and Yi (2019)

2 Combining Cross-Correlation

and Fuzzy Classification to

Detect Distributed Denial-of-

Service Attacks

CCF was used to discover changes in the

correlation of outgoing and incoming

traffic caused by DDoS attack

Wei et al. (2006)

3 Cross-correlation Based

Synchronization Mechanism

of LDDoS Attacks

CCF was used to estimate and compute

the delay between two DDoS attack

series

(Zhijun et al., 2014)

4 Self-similarity Based DDoS

Attack Detection Using Hurst

Parameter

CCF was used to exploit self-similarity

features of the DDoS attack to

distinguish the attack traffic from

legitimate traffic

(Deka and

Bhattacharyya, 2016)

Table 6.1 Summary of use of cross-correlation approach in detecting DDoS attacks

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 155

study	used	R	 to	 implement	all	 stages	of	 the	 transformation	 task	and	 to	undertake	 the	

cross-correlation	analysis,	using	R’s	CCF	function.		Most	of	the	available	tools	offer	very	

similar	functionality;	R	is,	though,	free	and	widely	used,	making	it	an	appropriate	choice	

for	 this	work.	 	R	offers	a	broad	variety	of	 statistical	 capabilities,	 including	 time	series	

analysis,	classification,	clustering	and	graphical	techniques	(R,	2019).		Moreover,	it	has	

been	broadly	used	for	time	series	analysis	and	it	easy	to	use	(Huang	and	Yi,	2019).		For	

all	 of	 these	 reasons,	 it	 was	 seen	 as	 being	 an	 appropriate	 choice	 as	 the	 analysis	

environment	for	use	in	this	part	of	the	study.			

Figure	 6.1	 presents	 a	 high-level	 view	 of	 the	 different	 steps	 that	 formed	 the	 data	

transformation	process.			

	

Figure 6.1 Transformation process applied to the time series dataset for each feature

First,	a	test	was	applied	to	assess	the	stationarity	of	the	data.		A	stationarity	process	is	

used	in	time	series	analysis	to	make	the	statistical	properties	of	the	data,	such	as	mean	

and	variance,	constant	over	time	–	this	is	essential	when	undertaking	cross-correlation	

analysis.	 	 It	was	 important	 to	 test	 the	 stationarity	 of	 the	 time	 series	 dataset	 because	

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 156

sometimes	time	series	data	may	contain	a	trend	–	an	upwards	or	downwards	shift	in	the	

dataset	that	results	in	a	varying	mean	and	in	a	seasonality,	meaning	regular	change	that	

occurs	in	a	set	period	(such	as	a	calendar	year)	that	consequently	results	in	changes	in	

variance	(i.e.,	non-stationarity).		These	effects	are	the	most	common	reasons	for	a	process	

being	non-stationary.		

According	to	the	literature	on	time	series	data	analysis,	non-stationary	time	series	have	

to	be	transformed	to	stationary	time	series	prior	to	the	modelling	process	(in	our	case,	

cross-correction	analysis)	(see,	 for	example,	Grogan	(2018)).	There	are	three	different	

methods	to	check	the	stationarity	of	a	time	series,	which	vary	 in	sophistication	(Kang,	

2017);	 from	 simplest	 to	 most	 sophisticated,	 they	 are:	 plotting	 the	 data	 and	 visually	

inspecting	the	plot	(step	1);	splitting	the	data	into	intervals	and	comparing	the	interval-

based	summary	statistics		for	obvious	or	significant	differences	(step	2);	and	applying	a	

specific	statistical	test	(step	3).			

In	step	1,	it	was	essential	to	first	understand	the	total	level	of	the	variability	of	the	time	

series.	 	 Therefore,	 100	 instances	 of	 the	 time	 series	 data	 were	 selected	 for	 plotting	

purposes	 to	 see	 whether	 there	 was	 any	 noticeable	 trend	 in	 the	 generated	 graphs	

(indicating	non-stationarity).		Figure	6.2	presents	an	R	script	that	was	designed	to	plot	all	

of	the	features	of	the	time	series;	this	resulted	in	the	generation	of	19	graphs	(one	for	

each	feature).		As	the	number	of	the	generated	graphs	was	high,	and	all	had	a	similar	(lack	

of)	 trend,	 only	 one	 example	 is	 provided	 here,	 for	 illustrative	 purposes.	 	 Figure	 6.3	

presents	an	extract	of	the	result	of	applying	the	R	code	to	the	original	dataset	to	generate	

the	graph	for	the	‘UDP_avg_bytes_OUT’	from	the	full	time	series	dataset.			

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 157

	

Figure 6.2 R script for plotting the data

Figure 6.3 Screenshot of an example of stationarity for the ‘UDP_avg_bytes_OUT’

feature

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 158

As	Figure	6.3	shows,	there	is	no	obvious	trend	in	the	time	series	data	for	the	example	

feature	(UDP_avg_bytes_OUT’)	indicating	that	the	time	series	for	this	feature	is	stationary.		

If,	however,	the	plotted	time	series	data	for	any	feature	had	been	found	to	have	a	trend	it	

would	have	needed	to	be	removed	(i.e.,	there	would	have	needed	to	be	a	transformation	

applied	to	the	data)	before	applying	the	CCF	function.		This	process	was	undertaken	for	

each	feature	and	the	time	series	data	for	each	feature	was	found	to	be	stationary.			

In	 step	2,	 summary	statistics	were	produced	 to	assess	whether	 there	were	 significant	

differences	in	them	across	time	intervals	in	the	time	series	data,	as	a	secondary	check	of	

stationarity.	 	This	also	showed	differences	that	indicated	that	the	data	were	stationary	

for	each	feature.		(These	data	are	not	reproduced	here	for	reasons	of	space).			

In	 step	 3,	 a	 statistical	 test	was	 used	 to	 check	 that	 the	 expectation	 of	 the	 stationarity	

function	 was	 met.	 	 As	 can	 be	 seen	 from	 Figure	 6.1,	 the	 test	 would	 have	 been	 used	

repeatedly	after	a	differencing	technique	had	been	applied	until	a	terminating	condition	

was	met	(indicating	that	the	time	series	for	each	feature	had	been	transformed	and	met	

the	stationarity	test).			

There	are	different	stationarity	tests	that	may	be	applied	to	time	series	data,	such	as	the	

Kwiatkowski–Phillips–Schmidt–Shin	 (KPPS)	 and	 Augmented	 Dicky-Fuller	 (ADF)	 tests	

(Shumway	 and	 Stoffer,	 2016).	 It	was	 decided	 to	 apply	 the	ADF	 statistical	 test	 as	 it	 is	

widely	used	and	may	avoid	the	contradictory	results	that	have	been	identified	in	relation	

to	KPSS	(see	Maddala	and	Kim,	1998).	

There	are	two	types	of	hypothesis	in	the	ADF	test:	a	null	hypothesis	that	assumes	that	the	

time	series	possess	a	unit	root	(i.e.,	it	is	a	time-dependent/stochastic	process);	and	the	

alternative	hypothesis	that	there	is	no	unit	root	present	in	the	time	series	data	(i.e.,	that	

the	process	producing	 the	data	 is	 stationary).	 	 If	 the	alternative	hypothesis	 fails	 to	be	

rejected,	 the	 time	 series	 is	 stationary	 and	 free	 of	 time-dependent	 structure.	 	 If	 it	 is	

rejected	(i.e.,	the	null	hypothesis	is	true)	it	means	that	the	time	series	is	non-stationary,	

and	it	does	have	a	time-dependent	structure.		A	p-value	equal	to	or	less	then	0.05	signifies	

the	acceptance	of	the	alternative	hypothesis.		The	lower	(and	more	negative)	the	p-value	

is,	the	stronger	the	rejection	of	the	null	hypothesis.		Figure	6.4	presents	the	R	script	that	

was	designed	to	apply	the	ADF	test	to	the	time	series	data.	

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 159

	

Figure 6.4 R script for ADF test

In	step	4,	a	differencing	technique	was	(or	would	have	been)	applied	to	the	time	series	to	

transform	any	non-stationary	data	to	stationary	time	series	data.		Differencing	is	one	of	

the	most	popular	methods	for	transforming	the	stationarity	of	time	series	data.	 	These	

techniques	remove	trends	and	variance	from	time	series	by	calculating	consecutive	terms	

that	result	in	stabilizing	the	mean.		Figure	6.5	presents	an	example	of	the	R	code	that	was	

applied	to	 the	time	series	 to	calculate	 the	differenced	values	at	 the	specified	 lag	(time	

interval)	–	in	this	case	one	second.	

	

Figure 6.5 R script for applying the differencing function

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 160

Once	the	differenced	values	had	been	calculated,	the	ADF	test	was	again	applied	to	the	

time	series	to	see	of	the	data	was	now	stationary.	Figure	6.6	presents	the	R	script	that	

was	designed	for	the	ADF	test	on	the	time	series	after	calculating	the	differenced	values.			

	

Figure 6.6 R script for testing the differenced value being stationary

Figure	6.7	shows	an	example	of	the	output	of	applying	the	R	code	of	the	ADF	test.		As	can	

be	seen,	in	this	example	the	p-value	is	less	than	the	0.05	threshold,	which	indicates	that	

the	time	series	for	this	feature	(‘ICMP_avg_bytes_out’)	is	stationary.		

Figure 6.7 Screenshot of the output of the ADF test for ‘ICMP_avg_bytes_out’

Finally,	in	step	5,	once	all	of	the	time	series	data	for	each	feature	had	(if	necessary)	been	

transformed	into	a	stationary	form,	the	CCF	function	was	applied	to	the	data	to	discover	

the	relationship	between	feature	pairs.		Figure	6.8	presents	an	example	of	the	R	code	that	

was	 designed	 to	 implement	 the	 CCF	 function	 to	 generate	 the	 required	 graphs	 for	 a	

selected	feature	pair	(‘UDP_avg_bytes_OUT’	and	‘TCP_avg_bytes_OUT’).		This	process	was	

repeated	for	each	feature	pair	to	provide	a	full	set	of	graphs	for	analysis.			

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 161

Figure 6.8 R script for CCF applied to ‘UDP_avg_bytes_OUT’ and

‘TCP_avg_bytes_OUT’ feature pair

6.4 Organising the Results of Cross-correlation Analysis

Applying	 the	 CCF	 function	 to	 the	 different	 feature	 pairs	 in	 the	 time-series,	 (step	 5,	

described	in	section	6.3)	resulted	in	152	graphs	being	generated.	To	analyse	the	results,	

it	was	necessary	to	sort	the	CCF	features-graphs	into	suitable	categories.	This	section	will	

report	the	process	of	sorting	the	CCF	graphs.	

Before	going	into	a	detailed	explanation	of	the	sorting	(or	categorizing)	of	the	CCF	graphs,	

an	example	of	a	CCF	graph	–	relating	to	two	the	features	‘Count_TCP’	and	‘Count_ICMP’	–	

is	presented	in	Figure	6.9	in	order	to	explain	how	the	CCF	graphs	should	be	interpreted.	

The	 level	 of	 correlation	 between	 the	 two	 features	 (Count_TCP	 and	 Count_ICMP)	 is	

calculated	using	the	correlation	formula	(see	section	6.2)	applied	to	the	values	of	the	two	

features	at	 lag	values	between	 -10	and	+10	seconds.	Negative	 lags	 represent	 the	 time	

series	for	the	first	feature	being	shifted	backward	in	time	(for	values	from	-1	to	-10	in	one	

second	intervals)	in	relation	to	the	second	feature’s	time	series	data;	whereas	positive	

lags	represent	the	time	series	for	the	first	feature	being	shifted	forward	in	time	(for	values	

from	+1	to	+10	in	one	second	intervals)	 in	relation	to	the	second	feature’s	time	series	

data.		The	time	series	values	at	each	time	lag	are	then	used	to	calculate	the	correlation	

between	 the	 time	 series	 for	 that	 lag.	 	 This	 results	 in	 correlation	 values	 between	 the	

feature	pairs	at	lags	from	-10	to	+10.		The	significance	level	for	the	correlations	(positive	

and	negative)	is	identified	by	a	dotted	line	on	the	resulting	graph	that	is	produced	by	the	

CCF	 function.	 	 As	 an	 example,	 Figure	 6.9	 shows	 that	 there	 are	 significant	 positive	

correlations	(i.e.,	values	that	go	above	the	top	dotted	line)	at	time	lags	-3	and	at	time	lag	

+9.	 (Significant	 negative	 correlations	 would	 be	 signified	 by	 values	 that	 go	 below	 the	

bottom	dotted	line).			

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 162

Figure 6.9 An example of CCF features-graph

Figure	6.10	presents	the	steps	through	which	the	CCF	feature	pair	graphs	were	organized	

to	allow	subsequent	analysis.		

Figure 6.10 The process of sorting the CCF feature-pair graphs	

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 163

In	step	1,	the	graphs	were	divided	into	two	categories.		Those	graphs	where	there	was	at	

least	one	significant	cross-correlation	were	assigned	to	the	category	of	‘significant	cross-

correlation	value’;	the	rest	of	the	graphs	were	allocated	to	the	category	of	‘no	significant	

cross-correlation	value’.		Only	the	graphs	in	the	‘significant	cross-correlation	value’	group	

were	considered	for	further	analysis.		

In	step	2,	the	graphs	in	the	‘significant	cross-correlation	value’	were	sorted	into	four	sub-

groups,	as	can	be	seen	 in	Figure	6.10.	 	The	 first	group	comprised	 those	graphs	where	

there	was	at	least	one	significant	correlation	at	a	positive	time	lag	only.		The	second	group	

comprised	those	graphs	that	had	at	least	one	significant	correlation	at	a	negative	time	lag	

only.		The	third	group	comprised	those	graphs	that	had	at	least	one	significant	correlation	

at	both	a	positive	time	lag	and	a	negative	time	lag.		The	fourth,	and	final,	group	comprised	

those	graphs	where	the	only	significant	correlation	was	at	lag	0.			

The	 next	 section	will	 present	 the	matrix	 created	 from	 the	 correlation	 values	 of	 these	

graphs	and	will	provide	an	analysis	of	the	results.		

6.5 Analysis of the Outcome of the CCF Graphs

This	section	will	present	an	analysis	of	 the	matrix	created	from	the	correlation	values	

identified	from	the	CCF	graphs	derived	from	the	approach	described	in	section	6.4.	

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 164

Figure 6.11 The matrix of correlation values extracted from the CCF graphs

Figure	6.11	presents	the	correlation	data,	extracted	from	the	CCF	graphs,	between	feature	

pairs	at	different	time	lags	(in	the	range	-10	to	+10	seconds).		The	values	in	the	cells	in	

the	matrix	 represent,	 in	 the	 cases	where	 integer	 values	 are	 recorded,	 the	 positive	 or	

negative	 lag	at	which	there	 is	 the	highest	significant	(positive	or	negative)	correlation	

value	 recorded	 between	 the	 relevant	 feature	 pair.	 	 The	 other	 values	 in	 the	 matrix	

represent	instances	of	the	four	different	cases	set	out	in	the	key	shown	as	part	of	Figure	

6.11.	 	Where	 values	 of	 ‘NN’	 are	 shown,	 it	 means	 that	 there	 is	 no	 negative	 lag	 in	 the	

considered	range	for	which	there	is	a	significant	correlation	between	the	relevant	feature	

pair.	Similarly,	where	values	of	‘NP’	are	shown,	it	means	that	there	is	no	positive	lag	in	

the	considered	range	 for	which	 there	 is	a	significant	correlation	between	 the	 relevant	

feature	pair.	Values	of	‘NS’	signify	cases	where	there	is	no	significant	correlation	between	

the	relevant	feature	pair	at	any	negative	or	positive	lag	in	the	considered	range	(-10	to	

+10	seconds).	Values	of	‘0’	mean	that	there	is	only	a	significant	correlation	between	the	

relevant	feature	pair	at	lag	0.		

	

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 165

Figure	 6.11	 also	 shows	 a	 frequency	 table	 (derived	 from	 the	 values	 in	 the	 cells	 in	 the	

matrix)	reflecting	the	modulus	values	of	the	different	time	lags	(i.e.,	the	frequency	of	20	

for	time	lag	modulus	1	representing	the	sum	of	all	-1	and	+1	values	in	the	matrix).		As	can	

be	seen	from	the	frequency	table,	the	highest	value	(37)	occurs	at	time	lag	(modulus)	8	–	

that	is,	when	taken	together	there	are	more	instances	of	the	most	significant	correlations	

between	feature	pairs	occurring	at	time	lag	-8	and	+8	than	at	any	other	(modulus)	time	

lag	modulus.			

Figure	6.12	then	gives	an	example	of	a	CCF	graph	relating	to	each	of	the	cases	presented	

in	the	Figure	6.11	key	(NN,	NP,	NS,0)	as	illustrations.	

	

Chapter	6:	Cross-Correlation	Analysis	Dataset	 Roja	Ahmadi	

 166

	
Figure 6.12 An example of CCF graphs relating to each key (NN, NP, NS,0)

Chapter 6: Cross-correlation Analysis Roja Ahmadi

 167

As	 can	be	 seen	 in	 Figure	 6.12,	 the	 example	 graph	 for	 the	 ‘NS’	 case	 shows	 there	 is	 no	

significant	correlation	between	the	feature	pair	(count_udp,	count_icmp)	at	any	time	lag.	

The	example	graph	for	the	‘NN’	case	shows	there	is	no	significant	correlation	between	the	

feature	 pair	 (bytes_OUT_icmp,	 Avg_count_TCP)	 at	 a	 negative	 time	 lag.	 Similarly,	 the	

example	graph	for	the	‘NP’	case	shows	that	there	is	no	significant	correlation	between	the	

feature	 pair	 (bytes_In_TCP,	 TCP_avg_bytes_OUT)	 at	 a	 positive	 time	 lag.	 	 Finally,	 the	

example	graph	for	the	‘0’	case	shows	that	the	only	significant	correlation	for	the	feature	

pair	(UDP_avg_bytes_OUT,	bytes_Out_ICMP)	occurs	at	time	lag	0.	

The	next	section	will	 interpret	the	data	presented	in	Figure	6.11,	exploring	whether	it	

may	give	insights	into,	and	potential	explanations	for,	the	performance/accuracy	of	the	

models	that	were	presented	in	chapter	5.	

6.6 Discussion and Reflection

This	section	will	consider	whether	the	analysis	arising	from	the	CCF	data	presented	in	

section	6.5	provides	a	potential	explanation	for	the	performance/accuracy	levels	of	the	

classification	models	(Naïve	Bayes	and	Random	Forest	classifies)	that	were	discussed	in	

Chapter	5.	

Table	6.2	presents	the	frequencies	for	which	(the	modulus	of)	each	time	lag	represents	

the	 highest	 significant	 (positive	 or	 negative)	 correlation	 value	 recorded	 between	 the	

relevant	feature	pair;	this	represents	the	data	from	the	table	on	the	right	hand	side	of	

Figure	 6.11	 except	 that	 the	 values	 are	 summed	 into	 the	 relevant	 time	 intervals	 from	

Chapter	5	(1,	3,	5,	7	and	10	seconds).		In	addition,	Table	6.2	presents	the	accuracy	levels	

at	these	time	intervals	for	the	two	models	(Naïve	Bayes	and	Random	Forest)	developed	

and	discussed	in	Chapter	5.			

In	the	1	second	time	interval,	the	associated	time	lag	(modulus)	is	1	and	there	is	a	‘highest	

significant	correlation’	frequency	of	20.	In	this	time	period,	the	accuracies	of	the	Naïve	

Bayes	 and	 Random	 Forest	 models	 are	 51.2473%	 and	 81.9957%,	 respectively.	 The	 3	

second	 time	 interval	 includes	 the	 aggregation	 of	 the	 ‘highest	 significant	 correlation’	

frequencies	for	time	lags	with	a	modulus	of	2	and	3	seconds,	leading	to	an	accumulated	

frequency	of	16.	The	accuracies	of	the	Naïve	Bayes	and	Random	Forest	models	for	the	3	

Chapter 6: Cross-correlation Analysis Roja Ahmadi

 168

second	time	interval	are	59.8519%	and	71.1111%,	respectively.	Similarly,	the	5	second	

time	interval	involves	the	aggregation	of	the	‘highest	significant	correlation’	frequencies	

for	time	lags	with	a	modulus	of	4	and	5	seconds,	leading	to	an	accumulated	frequency	of	

7.	The	accuracies	of	the	Naïve	Bayes	and	Random	Forest	models	for	the	5	second	time	

interval	 are	 64.3045%	 and	 89.7638%,	 respectively.	 The	 7	 second	 time	 interval	 is	 an	

aggregation	 of	 the	 ‘highest	 significant	 correlation’	 frequencies	 for	 time	 lags	 with	 a	

modulus	of	6	and	7	seconds,	leading	to	an	accumulated	frequency	of	15.		The	accuracies	

of	 the	 Naïve	 Bayes	 and	 Random	 Forest	 models	 for	 the	 7	 second	 time	 interval	 are	

69.8361%	and	98.0328%,	respectively.	Finally,	the	10	second	time	interval	involves	the	

aggregation	 of	 the	 ‘highest	 significant	 correlation’	 frequencies	 for	 times	 lags	 with	 a	

modulus	 of	 8,	 9	 and	 10	 seconds,	 leading	 to	 an	 accumulated	 frequency	 of	 53.	 The	

accuracies	of	the	Naïve	Bayes	and	Random	Forest	models	for	the	10	second	time	interval	

are	75.9091%	and	96.8182%,	respectively.	

Time in Seconds Time Interval in
seconds (from Chapter

5)

Accumulation
Frequency Count

Within the Time
Intervals

Naïve Bayes Accuracy
Percentage

Random Forest Accuracy
Percentage

1 1 16 51.2473 81.9957

2
3 16 59.851 71.1111

3

4
5 7 64.3045 89.7638

5

6
7 15 69.8361 98.0328

7

8

10 53 75.9091 96.8182 9

10

Table 6.2 The frequency data from Figure 6.11 the accuracy of two classifiers in the
different time intervals considered

The	analysis	of	 the	CCF	data	summarized	 in	Table	6.2	suggests	 that	 there	 is	a	general	

increase	in	the	frequency	of	the	feature	pairs	with	a	‘highest	significant	correlation’	value	

as	the	time	intervals	increase.	Moreover,	as	noted	in	Chapter	5	(and	reflected	in	Table	

6.2),	as	the	time	intervals	increase	in	duration	there	is	improvement	in	the	accuracy	of	

Chapter 6: Cross-correlation Analysis Roja Ahmadi

 169

the	Naïve	Bayes	model	(from	51.2473%	in	the	1	second	time	interval	to	75.9091%	in	the	

10	second	time	interval)	and	overall	improvement	in	the	accuracy	of	the	Random	Forest	

model	(from	81.9957%	in	the	1	second	time	interval	to	96.8182%	in	the	1	second	time	

interval),	though	there	are	exceptions	–the	decrease	between	the	1	and	3,	and	7	and	10,	

second	intervals.		There	does	not	seem	to	be	a	clear	explanation	from	the	CCF	analysis	as	

to	why	the	Random	Forest	model’s	accuracy	decreases	between	the	1	and	3,	and	7	and	

10,	second	intervals,	though	it	could	be	that	the	chosen	aggregation	is	being	carried	out	

at	intervals	that	mask	the	effects	in	which	we	are	interested.		Aggregation	of	the	data	into	

time	 intervals	 can	 have	 positive	 aspects,	 in	 that	 it	 allows	 the	 collection	 of	 a	 range	 of	

historical	information	into	each	datapoint,	but	also	some	negatives,	since	it	averages	over	

important	features	of	the	data.	If	the	intervals	that	are	chosen	are	wrong,	then	it	may	be	

that	 the	 aggregation	has	only	 the	negative	 effects.	 	 Further	 experimental	work	where	

different	time	intervals	are	explored,	and	where	larger	datasets	are	used,	may	be	useful	

in	exploring	these	issues	further,	but	this	is	beyond	the	scope	of	the	current	study.				

As	a	final	piece	of	analysis	in	this	study,	the	frequency	pairs	where	the	‘highest	significant	

correlation’	values	were	 found,	organized	 into	 the	 time	 intervals	under	consideration,	

were	examined	to	see	whether	any	patterns	existed	that	might	provide	further	insights	

(see	 Table	 6.3).	 	 Perhaps	 surprisingly,	 there	were	 no	 consistent	 sets	 of	 feature	 pairs	

present	across	the	different	time	lags.		Further,	where	a	feature	was	flagged	as	having	a	

significant	 correlation	with	 other	 features,	 the	 times	 at	which	 the	 ‘highest	 significant	

correlation’	values	were	identified	tended	to	be	relatively	consistent	(in	terms	of	the	time	

interval	into	which	they	fell).		That	is,	particular	features	seem	to	have	‘highest	significant	

correlation’	 values	 with	 other	 features	 across	 narrow	 time	 durations.	 	 For	 example,	

Count_tcp	has	‘highest	significant	correlation	values’	with	13	other	features,	and	with	one	

exception	 (with	Avg_count_TCP)	 all	 of	 its	 ‘highest	 significant	 correlation	values’	 occur	

between	7	and	9	second	(modulus)	lags.		This	narrowness	in	the	time	period	where	an	

individual	 feature	 has	 its	 ‘highest	 significant	 correlation’	 values	 with	 other	 features	

seems	to	be	a	pattern	across	the	analysis	of	the	CCF	data	(see	Figure	6.11).		Since	most	of	

the	‘highest	significant	correlation’	values	were	at	lags	in	the	range	0-1	seconds,	or	7-9	

seconds,	and	this	seems	to	fit	with	the	aggregation	levels	that	performed	best,	this	seems	

to	 validate	 the	 results	 from	 Chapter	 5	 to	 some	 degree.	 	 The	 narrowness	 issue	 could,	

Chapter 6: Cross-correlation Analysis Roja Ahmadi

 170

though,	be	further	explored	in	future	work,	perhaps	with	larger	datasets	and	using	larger	

ranges	of	lags.			

Table 6.3 The feature pairs with the most significant correlation values from the CCF
analysis in each time interval

Though	there	is	not	a	direct	relationship	between	the	frequencies	in	Table	6.3	and	the	

accuracy	for	each	time	interval	for	either	model,	the	CCF	analysis	provides,	with	the	noted	

anomalies,	a	starting	point	 from	which	 to	 further	examine	why	 the	accuracies	of	both	

models	increase	between	the	1	second	and	10	second	intervals,	though	more	exploration	

of	 these	 issues	 would	 be	 required,	 through	 future	 work,	 to	 look	 at	 any	 possible	

relationships	further.			

Chapter 6: Cross-correlation Analysis Roja Ahmadi

 171

6.7 Summary

This	chapter	has	reported	the	results	obtained	by	applying	cross-correlation	analysis	to	

the	dataset	with	lags	of	-10	to	+10	seconds.	These	results	were	explored	by,	where	there	

was	one,	identifying	the	‘highest	significant	correlation’	value	between	the	feature	pairs	

in	the	CCF	graphs	and	the	time	lag	at	which	it	occurred.	The	results	of	the	analysis	show	

that	while	there	is	a	general	increase	in	the	frequency	of	the	feature	pairs	with	a	‘highest	

significant	 correlation’	 value	 as	 the	 time	 intervals	 increase,	 there	 is	 not	 a	 direct	

relationship	between	the	frequencies	of	the	feature	pairs	and	the	accuracy	for	each	time	

interval	 for	either	model.	This	suggests	that	there	is	a	need	for	future	work	to	seek	to	

discover	whether	the	relationship	between	feature	pairs	play	a	clearer	part	in	explaining	

the	accuracy	of	the	models	reported	in	Chapter	5.	

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 172

Chapter 7 : Conclusions and Future Work

7.1 Introduction

This	chapter	will	draw	together	the	research	that	was	presented	in	this	thesis,	presenting	

answers	 to	 the	 research	 questions	 that	 were	 framed	 in	 Chapter	 1,	 highlighting	 the	

contributions	 of	 the	 work,	 reflecting	 on	 the	 limitations	 of	 the	 research,	 and	 making	

suggestions	 for	 areas	 of	 future	 work.	 The	 remainder	 of	 this	 chapter	 is	 structured	 as	

follows.	Section	7.2	will	present	a	brief	review	of	each	chapter	in	this	thesis.	Sections	7.3	

and	7.4	will	revisit	the	research	objectives	and	research	questions	(framed	in	Sections	1.4	

and	 1.5)	 and	 seek	 to	 provide	 answers	 to	 them.	 Section	 7.5	 will	 present	 the	 overall	

contributions	made	by	the	research	presented	 in	 the	 thesis.	Section	7.6	will	 reflect	on	

issues	 that	 may	 be	 seen	 as	 limitations	 of	 the	 research	 that	 was	 undertaken.	 Finally,	

Section	7.7	will	identify	areas	for	future	work.	

7.2 Review of Preceding Chapters of the Thesis

This	section	will	present	a	brief	summary	of	each	of	the	preceding	chapter	in	this	thesis.		

Chapter	1	presented	an	overview	of,	and	the	motivation	for,	the	research	reported	in	the	

thesis,	highlighting	the	importance	of	DDoS	attacks	and	their	impact	in	cloud	computing	

environments.	The	chapter	gave	a	brief	introduction	to	existing	research	in	the	area	of	an	

Intrusion	 Detection	 Systems	which	 seek	 to	 identify	 DDoS	 attacks	 in	 cloud	 computing	

environments,	 and	 highlighted	 broad	 issues	 associated	with	 this	 area	 of	work.	 These	

issues	were	used	to	frame	the	research	questions	on	which	the	research	reported	in	this	

thesis	has	focused.	Finally,	Chapter	1	provided	a	structural	guide	to	the	remainder	of	the	

thesis.		

Chapter	2	presented	the	cloud	computing	platform	in	more	detail	and	explained	its	core	

characteristics,	the	types	of	service	model	that	it	supported	and	the	range	of	deployment	

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 173

models	that	exist.	The	chapter	explained	several	issues	that	arise	as	a	result	of	migration	

to	 this	new	computing	platform,	emphasizing	DDoS	attacks	as	one	of	 the	most	critical	

threats	to	the	availability	of	cloud	computing	services.	Chapter	2	then	reviewed	different	

type	of	DDoS	attack	that	target	different	layers	of	the	network	model	before	reviewing,	at	

a	high	level,	the	techniques	and	methods	used	by	Intrusion	Detection	Systems	to	identify	

and	combat	 this	 type	of	attack	 in	cloud	computing.	The	chapter	ended	by	highlighting	

issues	associated	with	Intrusion	Detection	Systems,	and	their	accurate	detection	of	DDoS	

attacks	in	the	cloud	environment,	to	frame	the	research	gap	addressed	in	the	remainder	

of	the	thesis.	

Chapter	3	aimed	to	develop	an	accurate	detection	model	based	on	two	different	datasets	

–	the	NSL-KDD	non-cloud	dataset	and	the	CIDD	cloud	dataset	–	by	using	machine	learning	

classifiers.	It	presented	the	application	of	transfer	learning	to	remap	the	different	types	

of	DDoS	attack	between	the	non-cloud	dataset	and	the	cloud	dataset.	The	results	of	the	

analysis	 showed	 that	 the	 performance	 of	 the	 classification	model	was	 accurate	when	

applied	to	the	non-cloud	dataset,	but	that	their	value	was	limited	in	classifying	attacks	in	

the	cloud	dataset.	It	was	argued	that	the	limited	accuracy	of	the	model	arose	owing	to	the	

different	structure	of	the	two	datasets,	the	small	overlapping	feature	set	and	the	different	

attack	types	that	the	datasets	contained.	Chapter	3	concluded	by	suggesting	that	there	

was	a	need	to	generate	a	cloud	intrusion	detection	dataset	on	which	to	undertake	further	

analysis	to	progress	the	research	effort.	

Chapter	 4	 first	 reviewed	 the	 various	methods	 that	 could	 be	 used	 to	 create	 the	 cloud	

intrusion	dataset,	 before	 justifying	 the	 choice	of	using	 the	 emulation	approach	 in	 this	

research.	 The	 chapter	 then	 presented	 all	 of	 the	 details	 of	 the	 software	 and	 hardware	

environments	 that	 were	 required	 to	 form	 the	 experimental	 test-bed.	 Chapter	 4	 also	

presented	the	tools	that	were	used	to	generate	normal	traffic	and	the	different	types	of	

DDoS	 attack	 required	 to	 generate	 the	 desired	 dataset	 which	 would	 have	 the	 same	

structure,	a	broad	set	of	features	and	the	same	type	of	DDoS	attacks	as	contained	within	

the	CIDD	dataset.		

Using	 the	 generated	 dataset,	 Chapter	 5	 reported	 the	 development	 of	 two	 detection	

models,	using	Naïve	Bayes	and	Random	Forest	classifiers.	The	chapter	then	presented	an	

analysis	of	the	performance	of	the	models	in	five	chosen	time	intervals,	looking	at	their	

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 174

accuracy	 and	 the	 misclassification	 feature	 patterns	 associated	 with	 each	 model.	 The	

chapter	 showed	 that	 the	 accuracy	 of	 the	 two	models	 generally	 improved	 as	 the	 time	

intervals	grew	longer,	identifying	that	their	best	performance	was	at	the	7	second	time	

interval.		There	were,	though,	no	distinct	feature	patterns	in	the	misclassification	cases.	

Therefore,	Chapter	5	ended	by	suggested	that	applying	another	data	analysis	technique	

might	be	useful	to	seek	to	discover	the	relationships	between	features	over	time.	

In	aiming	to	understand	the	accuracy	of	the	models	over	time,	Chapter	6	applied	cross-

correlation	analysis	 to	 the	 time	series	dataset	 to	determine	 the	relationships	between	

feature	pairs	at	different	time	lags.	The	chapter	explained	the	processes	undertaken	to	

identify	the	‘highest	significant	correlation’	value	between	feature	pairs	in	the	generated	

CCF	graphs	and	presented	the	analysis	outcomes,	identifying	some	interesting	findings	

but	 without	 finding	 a	 direct	 relationship	 between	 frequency	 of	 feature	 pairs	 with	 a	

‘highest	significant	correlation’	value	as	the	time	intervals	increased	and	the	accuracy	for	

each	time	interval	for	either	model.			

7.3 Revisiting the Research Objectives

This	section	will	revisit	each	of	the	research	objectives	that	were	set	out	in	Section	1.4	

and	demonstrate	how	they	have	been	addressed	through	this	research.	

The	 first	 objective	 was	 to	 develop	 an	 intrusion	 detection	 model	 using	 two	 different	

datasets	through	the	application	of	machine	learning	and	transfer	learning.	

The	findings	of	the	initial	experiment	undertaken	as	part	of	this	research	demonstrate	

that	applying	transfer	learning	was	helpful	in	developing	detection	models	where	there	

are	two	different	types	of	dataset	–	non-cloud	and	cloud.	However,	while	the	developed	

model	was	highly	accurate	in	classifying	attacks	in	the	non-cloud	dataset,	its	accuracy	was	

significantly	lower	when	detecting	attacks	in	the	cloud	dataset.	The	associated	analysis	

of	 the	 first	 study	 argued	 that	 the	 lower	 accuracy	 arose	 as	 a	 result	 of	 the	 different	

structures	of	the	two	datasets;	he	small	overlapping	feature	set;	and	the	different	attack	

types	that	the	datasets	contained.	

The	second	objective	of	this	work	was	to	generate	a	cloud	intrusion	detection	dataset,	

that	included	a	broad	range	of	network	traffic	and	all	types	of	DDoS	attack.		The	findings	

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 175

from	the	second	stage	of	 this	research	suggest	that	the	creation	of	 the	cloud	intrusion	

dataset	addressed	each	of	the	identified	challenges	from	the	first	stage.	The	created	cloud	

dataset	captured	a	broad	range	of	network	packet	features	for	the	traffic	generated	by	a	

wide	range	of	DDoS	attack	types	and	for	normal	traffic.	

The	 third	objective	of	 this	 study	was	 to	develop	 intrusion	detection	models	using	 the	

generated	cloud	dataset	to	analyse	the	performance	of	the	models	and	the	relationships	

between	attack	features	within	five	different	time	frames.	

The	findings	of	the	third	stage	of	this	study	demonstrate	that	the	use	of	a	novel	approach	

to	 the	 analysis	 of	 the	 generated	 dataset	 using	 different	 time	 intervals	 as	 the	 unit	 of	

analysis	was	useful	in	comparing	the	accuracy	of	the	performance	of	the	detection	models	

and	the	relationship	between	features	over	the	five	chosen	time	intervals.	

The	fourth	objective	of	this	study	was	to	present	a	transparent	approach	to	the	creation	

of	the	cloud	dataset,	the	pre-processing	steps	required,	and	the	development	and	analysis	

of	the	detection	models.	

The	findings	of	the	final	stage	of	this	research	demonstrate	the	provision	of	a	clear	and	

transparent	process	for	generating	an	emulated	cloud-based	dataset	and	undertaking	a	

systematic	analysis	of	it.	This,	it	is	argued,	should	provide	a	strong	basis	for	comparative	

analysis	to	other	researchers	that	intend	to	undertake	similar	work.	

7.4 Revisiting the Research Questions

This	section	will	revisit	each	of	the	research	questions	that	were	set	out	in	Section	1.5	and	

seek	to	present	answers	to	them.		

Research	Question1:	Can	a	well-established	non-cloud	dataset	(which	includes	a	range	of	

features	 and	 attack	 types)	 be	 used,	 as	 part	 of	 the	 application	 of	machine	 learning	 and	

transfer	learning,	to	develop	an	intrusion	detection	model	that	accurately	identifies	DDoS	

attack	types	in	one	of	the	few	existing	cloud	datasets?	

At	a	high	level,	the	answer	to	this	question	seems	to	be	‘no’,	though	the	reason	for	the	

negative	result	was	important	in	determining	the	subsequent	direction	of	the	research.		

To	address	 the	 first	research	question,	 this	research	used	one	of	 the	most	established	

non-cloud	datasets	(KDD-NSl)	to	develop	a	detection	model	by	using	machine	learning	

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 176

classifiers.	 The	 accuracy	 of	 the	 outcome	 of	 the	 classification	 models	 was	 high	 when	

applied	to	the	non-cloud	dataset.		A	transfer	learning	approach	was	then	applied	to	assess	

the	accuracy	of	the	classification	model	when	applied	to	one	of	the	only	publicly-available	

cloud	datasets	(CIDD),	remapping	the	different	types	of	intrusion/DDoS	attack	between	

the	datasets.		The	accuracy	of	the	model	decreased	significantly	when	applied	to	the	CIDD	

dataset.	 	For	example,	 the	model	was	unable	to	classify	 the	same	type	of	attack	to	 the	

same	level	of	accuracy	when	present	in	the	two	datasets.		The	reduction	in	accuracy	was	

explained	as	being	associated	with	the	different	structures	of	the	datasets.	It	was	argued	

that	this	problem	arose	as	a	result	of	the	‘unpacking	issue’	in	the	CIDD	(cloud)	dataset,	

where	the	data	,	which	was	aggregated	into	specific	time	periods,	had	to	be	disaggregated	

to	create	a	structure	that	was	comparable	to	the	KDD-NSI	(non-cloud)	dataset	in	order	

for	the	model	to	be	applied	to	it.	The	issues	identified	in	this	phase	of	the	work	led	to	the	

framing	of	the	second	research	question.		

Research	Question	2:	To	address	differences	in	the	structure	of	existing	intrusion	detection	

datasets,	and	the	variations	in	the	feature	and	attack	types	that	they	contain,	can	a	new	

cloud	dataset	be	created	that	has	a	similar	structure	to,	broadens	the	feature	set	of,	and	

includes	the	same	attack	types	as,	the	well-established	non-cloud	dataset	used	in	the	phase	

of	the	research	that	addresses	research	question	1?		

The	answer	to	this	question	seems	to	be	‘yes’.		To	address	the	second	research	question,	

this	 research	 first	 reviewed	 the	 existing	 methods	 for	 generating	 intrusion	 detection	

datasets,	 using	 the	 analysis	 to	 define	 a	 suitable	 approach	 to	 generate	 a	 cloud	 dataset	

which	met	the	requirements	of	this	research	related	to	structure,	breadth	of	feature	set	

and	DDoS	 attack	 types.	 	 As	 a	 result,	 an	 emulation	 approach	was	 chosen	 to	 create	 the	

dataset.	Further,	the	test-bed	environment	was	scoped	and	equipped	with	the	required	

software	and	hardware	to	generate	normal	traffic	and	all	of	the	required	types	of	DDoS	

attack.	 A	 range	 of	 preprocessing	 activities	 were	 applied	 to	 the	 generated	 dataset	 to	

transform	the	structure	and	features	of	the	dataset	to	ensure	that	it	was	similar	to	the	

CIDD	dataset.	The	generated	dataset	met	the	requirements	set	under	research	question	

2,	 containing	 a	 broad	 range	 of	 features	 and	 a	 similar	 structure	 to	 the	 existing	 cloud	

dataset	(CIDD).		The	creation	of	the	dataset	was	central	to	the	subsequent	development	

of	the	detection	model,	which	framed	the	third	research	question.	

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 177

Research	Question	 3:	 If	 such	 a	 cloud	 dataset	 can	 be	 developed,	 can	 it	 be	 used	 to	 create	

accurate	DDoS	attack	detection	models	and	what	effect	 is	 there	on	accuracy	 if	 the	times	

periods	of	analysis	are	varied	(choosing	a	range	of	periods	from	1	second	‘time	slices’	up	to	

10	second	‘time	slices’)?		

The	 answer	 to	 this	 question	 is	 ‘yes’	 –	 accurate	 DDoS	 detection	models	 were	 created	

through	 this	 work.	 Specifically,	 to	 address	 the	 third	 research	 question,	 this	 research	

developed	two	detection	models	(using	Naïve	Bayes	and	Random	Forest	classifiers)	and	

assessed	 the	 accuracy	 of	 each	 model,	 looking	 more	 closely	 at	 accuracy	 through	 the	

analysis	of	the	identified	misclassification	patterns	of	feature	pairs	across	different	time	

intervals.	The	analysis	showed	that	the	accuracy	of	the	two	classification	models	(Naïve	

Bayes	and	Random	Forest)	generally	improved	as	the	time	interval	increased,	with	the	

two	models	having	the	highest	levels	of	accuracy	at	the	7	second	time	interval.		However,	

while	effects	on	accuracy	were	found,	no	pattern	was	found	in	the	analysis	of	the	feature	

pairs	for	the	misclassification	cases	across	the	different	time	periods,	meaning	than	no	

clear	explanation	was	found	for	the	accuracy	effects	through	this	phase	of	the	research.	

The	issues	identified	in	this	phase	of	the	work	led	to	the	framing	of	the	fourth	research	

question.		

Research	Question	4:	Does	an	analysis	of	the	relationship	between	pairs	of	features	in	the	

developed	cloud	dataset	help	to	explain	any	variations	in	accuracy	across	the	time	periods,	

found	in	answering	research	question	3?		

The	answer	to	this	question	seems	to	be	‘partly’	–	while	there	was	a	general	increase	in	

the	 frequency	of	 feature	pairs	with	a	 ‘highest	significant	correlation’	value	as	the	time	

intervals	 increased,	 there	was	no	direct	relationship	between	these	 frequencies	of	 the	

feature	pairs	and	the	accuracy	for	each	time	interval	for	either	model.	 	To	address	the	

fourth	 research	 question,	 the	 research	 applied	 cross-correlation	 analysis	 to	 the	 time	

series	dataset	to	discover	relationships	between	pairs	of	features	at	different	lags.		This	

was	 explored	by	 looking	 at	 the	 ‘highest	 significant	 correlation’	 value	between	 feature	

pairs	 in	the	generated	CCF	graphs.	 	The	analysis	 identified	that	the	 ‘highest	significant	

correlation’	values	between	feature	pairs	were	at	the	0-1	and	7-9	second	time	periods,	

which	fitted	the	aggregation	levels	that	performed	best,	and	therefore	seemed	to	validate	

to	some	degree	the	results	referred	to	in	answering	research	question	3.			

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 178

Research	Question	5:	Can	the	approach	to	the	creation	of	the	cloud	dataset,	the	processing	

of	the	dataset	prior	to	the	creation	of	the	detection	models,	the	model	development,	and	the	

analysis	 of	 the	 dataset	 be	 presented	 in	 a	 transparent	 and	 clear	 way	 such	 that	 other	

researchers	 would	 be	 likely	 to	 be	 able	 to	 meaningfully	 compare	 their	 results	 to	 those	

reported	in	this	thesis?		

The	answer	to	this	question	is	‘yes’.		Through	the	work	reported	in	Chapter	4	–	where	the	

environment	for	the	creation	of	the	cloud	dataset	is	clearly	explained,	Chapter	5	–	where	

the	process	is	set	out	through	which	the	two	intrusion	detection	models	are	developed,	

tested	and	initially	analyzed,	and	Chapter	6	–	where	the	process	of	additional	analysis	

using	CCF	is	described,	this	thesis	has	presented	what	is	argued	to	be	a	transparent	and	

clear	process	that	other	researchers	could	use	to	undertake	similar	research,	allowing	

meaningful	comparison	of	results.			

7.5 Contributions

The	research	reported	in	this	thesis	has	led	to	four	contributions	to	the	field.		

The	first	contribution	(reported	in	Ahmadi,	Macredie	and	Tucker	(2018))	lies	in	the	novel	

application	of	transfer	learning	to	build	a	detection	model	in	a	context	where	there	has	

been	 argued	 to	 be	 a	 shortage	 of	 publicly-available	 cloud-based	 intrusion	 detection	

datasets.	This	approach	was	helpful	in	developing	detection	models	using	two	different	

types	of	dataset	–	non-cloud	and	cloud.	While	the	developed	model	was	highly	accurate	

in	classifying	attacks	in	the	non-cloud	dataset,	its	accuracy	was	lower	in	detecting	attacks	

in	the	cloud	dataset.	The	value	of	the	approach,	though,	comes	mostly	from	the	associated	

analysis	which	argued	that	the	lower	accuracy	arose	as	a	result	of	the	different	structure	

of	the	two	datasets,	the	small	overlapping	feature	set,	and	the	different	attack	types	that	

the	datasets	 contained.	These	 identified	 challenges	motivated	 the	 rest	of	 the	 research	

reported	in	the	thesis.	

The	second	contribution	made	by	this	research	is	a	practical	contribution	to	the	creation	

of	a	new	cloud-based	dataset,	generated	from	an	emulated	cloud	computing	environment.	

The	 dataset	 generated	 as	 part	 of	 this	 research	 addressed	 the	 deficiencies	 of	 two	

currently-available	datasets	by	capturing	a	broad	range	of	network	packet	features	for	

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 179

the	traffic	generated	by	a	wide	range	of	DDoS	attack	types	and	for	normal	traffic.	 	The	

dataset	may	be	used	for	the	purpose	of	developing	detection	models,	and	for	comparative	

analysis	work	by	other	researchers	in	the	area.	

The	 third	 contribution	of	 this	 research	 centres	 on	 the	use	 of	 a	 novel	 approach	 to	 the	

analysis	of	the	generated	dataset	using	different	time	intervals	as	the	unit	of	analysis	and	

comparing	the	accuracy	of	the	model	when	applied	to	them.	This	approach	is,	to	the	best	

of	our	knowledge,	the	first	time	that	there	has	been	a	systematic	study	of	the	effect	on	the	

accuracy	 of	 a	 developed	 intrusion	 detection	 model	 of	 aggregating	 network	 data	 into	

different	time	intervals.		

The	 fourth	 contribution	 made	 by	 this	 research	 is	 in	 the	 provision	 of	 a	 clear	 and	

transparent	 process	 for	 generating	 an	 emulated	 cloud-based	dataset	 and	undertaking	

systematic	analysis	of	 it.	 	The	lack	of	transparency	in	the	approach	taken	in	published	

studies	was	noted	in	this	thesis	and	it	is	therefore	suggested	that	the	process	detailed	in	

this	 research	effort	might	be	useful	 to	 the	other	 researchers	 that	 intend	 to	undertake	

similar	 work.	 	 This	 would	 provide	 a	 strong	 basis	 for	 comparative	 analysis	 and,	

importantly,	 would	 save	 researchers	 time	 in	 terms	 of	 creating	 the	 experimental	

environment	and	defining	a	structured	approach	to	analysis.	

7.6 Research Limitations

Like	 any	 other	 research	 project,	 the	 research	 reported	 in	 this	 thesis	 has	 a	 set	 of	

limitations	which	will	be	acknowledged	and	discussed	in	this	section.	

The	first	limitation	relates	to	the	choice	of	the	approach	that	was	taken	to	generate	and	

collect	 the	 cloud	 intrusion	 detection	 dataset	 (see	 Chapter	 4).	 	 This	 research	 used	 an	

emulation	approach	to	create	the	desired	cloud	intrusion	detection	dataset	because	other	

more	ecologically	valid	methods,	such	as	using	a	real	company’s	data,	were	not	feasible	–	

such	data	are	commercially	sensitive	and	are	not	made	publicly	available	for	researchers	

to	use.		Generating	and	collecting	real	network	data	in	the	university’s	network	was	also	

not	seen	as	being	a	feasible	approach	as	one	of	the	requirements	of	the	experiment	was	

to	generate	attack	traffic,	and	this	would	obviously	have	caused	serious	issues	within	the	

university's	 environment.	 Therefore,	 to	 generate	 the	 dataset	 within	 the	 university's	

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 180

computing	 environment,	 the	 dataset	 was	 created	 in	 a	 restricted,	 emulated	 cloud	

environment,	 isolated	 from	 the	university	network	and	 including	a	 limited	number	of	

physical	machines.	Though	this	is	a	common	approach	in	research	of	this	type,	it	could	be	

argued	to	be	less	valid	that	using	real	attack	data.		It	also	led	to	a	very	time-consuming	

process	in	which	it	took	almost	six	months	to	set	up	the	experimental	platform	on	which	

to	generate	the	data.		This	caused	some	limitations	in	the	extent	of	the	dataset	that	was	

ultimately	 generated	 since	 only	 a	 limited	 amount	 of	 time	 could	 be	 committed	 to	

generating	the	dataset,	as	part	of	the	overall	research	undertaken,	and	many	issues	had	

to	be	overcome	in	order	for	a	suitable	dataset	to	be	generated.	

A	second	issue	that	may	be	seen	as	a	limitation	is	that	analysis	of	the	generated	dataset	

did	 not	 extend	 beyond	 the	 10	 second	 time	 interval.	 This	 decision	was	made	 for	 two	

reasons.		First,	it	was	felt	that	the	time	series	data	would	not	support	longer	frames	of	

analysis	 given	 its	 length	 (i.e.,	 when	 10	 second	 time	 slices	were	 taken,	 the	 number	 of	

records	 available	 for	 analysis	 was	 relatively	 small).	 	 Second,	 the	 number	 of	 limited	

physical	PCs	 in	 the	experimental	 environment	and	 the	 capabilities	of	 the	machines	 in	

terms	 of	 memory	 and	 CPU	 power	 were	 under	 significant	 pressure	 to	 handle	 the	

processing	 of	 the	 dataset	 as	 collected,	 giving	 concerns	 about	whether	 an	 even	 larger	

dataset	could	be	processed	with	the	available	resources.		

A	third	limitation	is	that	only	1,	3,	5,	7	and	10	second	time	intervals	were	used.		Though	

this	seemed	a	sensible	choice	when	setting	up	the	analysis	(reported	in	Chapters	5	and	

6),	it	may	have	been	useful	to	undertake	analysis	on	each	one	second	interval	(i.e.,	1,	2,	3,	

4,	5,	6,	7,	8,	9,	and	10	seconds)	to	provide	even	more	information	to	underpin	the	analysis	

of	the	changes	in	accuracy	of	the	models	over	time	and	the	relationships	between	feature	

pairs.			

The	final	issue	that	may	be	regarded	as	a	limitation	of	this	research	stems	from	the	lack	

of	comparison	of	the	developed	models	against	models	produced	in	other	research	work.		

As	has	already	been	noted,	 though,	 the	 lack	of	 transparency	 in	 the	approach	 taken	 to	

produce	and/or	analyse	models,	and	the	differences	in	the	datasets	that	are	used,	makes	

it	extremely	difficult,	 if	not	impossible,	to	make	meaningful	comparisons,	so	it	was	felt	

that	this	would	not	be	a	fruitful	avenue	to	follow.		

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 181

7.7 Future Work

The	limitations	identified	in	section	7.6	may	be	used	to	frame	directions	for	future	work.	

As	noted	earlier	in	this	chapter,	this	research	used	an	emulation	approach	to	generate	the	

cloud	intrusion	detection	dataset	to	(at	least	to	some	extent)	address	the	noted	lack	of	

publicly-available	cloud	intrusion	detection	datasets.	One	avenue	for	future	work	in	this	

area	is	to	extend	the	emulated	experimental	environment	to	a	more	significant	setting,	

including	more	powerful	physical	machines	that	host	cloud	operating	systems,	and	that	

are	equipped	with	all	of	 the	necessary	 tools	 to	generate	datasets	 in	daily	 then	weekly	

periods	of	time.	Though	beyond	the	scope	of	this	research,	this	would	create	a	massive	

amount	of	data	 that,	 through	 its	 analysis,	 should	be	even	more	beneficial	 for	building	

accurate	intrusion	detection	models.	

As	 already	 explained,	 this	 research	 analyzed	 the	 cloud	 dataset	 up	 to	 10-second	 time	

intervals	and	explored	the	accuracy	of	the	detection	model	in	five	chosen	time	periods	(1,	

3,	5,	7,	 and	10	 seconds).	Another	possible	area	of	 future	work	 is	 to	analyse	 the	 cloud	

dataset	above	10-second	time	intervals.	This	would	allow	comparison	of	the	analysis	of	

larger	time	 intervals	against	 the	analysis	reported	 in	this	research,	which	may	help	to	

create	more	 accurate	 detection	models	 and/or	 to	 understand	 the	 point	 at	 which	 the	

model	‘collapses’	and	becomes	less	accurate.		This	could	help	inform	the	design	of	IDS,	

providing	useful	information	on	the	most	suitable	time	period	or	periods	for	analysis,	and	

to	 explore	 whether	 this	 varies	 by	 attack	 type.	 	 Larger	 datasets,	 in	 line	 with	 those	

suggested	in	the	first	area	for	future	research,	would,	of	course,	be	required.			

Staying	 on	 the	 issue	 of	 time	 intervals,	 the	 existing	 dataset	 (and	 any	 lager	 datasets	

generated	 in	 the	 future)	 could	 use	 smaller	 time	 intervals	 (such	 as	 one	 second	

granularity),	as	suggested	in	section	7.5,	to	see	if	any	additional	insights	could	be	gained	

into	the	variations	in	model	accuracy	and	changes	in	the	relationships	between	feature	

pairs.			

Another	aspect	of	analysis	could	be	used	to	frame	a	further	area	of	future	research.		This	

research	applied	cross-correlation	analysis	on	the	generated	cloud	dataset	to	understand	

the	relationship	between	feature	pairs	at	different	time	lags.	The	analysis	identified	that	

the	‘highest	significant	correlation’	values	between	feature	pairs	occurred	at	the	0-1	and	

Chapter	7: Conclusion	and	Future	Work	 Roja	Ahmadi	

 182

7-9	 second	 lags,	 but	 that	 there	 did	 not	 seem	 to	 be	 a	 direct	 relationship	 between	 the	

frequencies	of	the	‘highest	significant	correlation’	for	feature	pairs	at	different	lags	and	

the	accuracy	of	the	detection	model	for	the	different	time	intervals.	In	future	research,	

the	correlation	between	feature	pairs	could	be	explored	at	lags	greater	than	10	seconds	

to	see	if	this	might	provide	further	insights.	

A	final	analysis-related	area	of	future	work	would	be	to	use	different	time	series	analysis	

techniques,	 such	 as	 hidden	 Markov	 models,	 to	 explore	 the	 misclassification	 patterns	

identified	in	the	detection	model.		

References	 Roja	Ahmadi	

 183

References
Ahmadi, R., Macredie, R. D. and Tucker, A. (2018) Intrusion Detection Using Transfer
Learning in Machine Learning Classifiers Between Non-cloud and Cloud Datasets. Madrid,

Spain: Intelligent Data Engineering and Automated Learning – IDEAL 2018. Available at:

https://www.springerprofessional.de/en/intrusion-detection-using-transfer-learning-in-

machine-learning-/16260378.

Ahmed, M., Naser Mahmood, A. and Hu, J. (2016) ‘A survey of network anomaly detection

techniques’, Journal of Network and Computer Applications. Elsevier, 60, pp. 19–31. doi:

10.1016/j.jnca.2015.11.016.

Aljawarneh, S., Aldwairi, M. and Yassein, M. B. (2018) ‘Anomaly-based intrusion detection

system through feature selection analysis and building hybrid efficient model’, Journal of
Computational Science. Elsevier B.V., 25, pp. 152–160. doi: 10.1016/j.jocs.2017.03.006.

Beal, V. (2017) DNS - Domain Name SystemNo Title. Available at:

https://www.webopedia.com/TERM/D/DNS.html (Accessed: 20 October 2017).

Bhushan, K. and Gupta, B. B. (2018) ‘Detecting DDoS Attack using Software Defined

Network (SDN) in Cloud Computing Environment’, in 2018 5th International Conference on
Signal Processing and Integrated Networks, SPIN 2018. IEEE, pp. 872–877. doi:

10.1109/SPIN.2018.8474062.

Bhuyan, M. H., Bhattacharyya, D. K. and Kalita, J. K. (2015) ‘Towards generating real-life

datasets for network intrusion detection’, International Journal of Network Security, 17(6), pp.

683–701.

Carlin, A., Hammoudeh, M. and Aldabbas, O. (2015) ‘Intrusion Detection and Countermeasure

of Virtual Cloud Systems - State of the Art and Current Challenges’, 6(6), pp. 1–15.

Comer, D. E. (2006) Internetworking With TCP/IP. Pearson Prentice Hall.

Constantin, L. (2012) DDoS attacks against U.S. banks peaked at 60 Gbps. Available at:

https://www.computerworld.com/article/2493861/ddos-attacks-against-u-s--banks-peaked-at-

60-gbps.html (Accessed: 5 November 2019).

Creech, G. and Hu, J. (2013) ‘Generation of a new IDS test dataset: Time to retire the KDD

collection’, in IEEE Wireless Communications and Networking Conference, WCNC, pp. 4487–

4492. doi: 10.1109/WCNC.2013.6555301.

Dai, W. et al. (2007) ‘Boosting for transfer learning’, in Proceedings of the 24th international
conference on Machine learning - ICML ’07, pp. 193–200. doi: 10.1145/1273496.1273521.

Datasets, A., Borisaniya, B. and Patel, D. (2015) ‘Evaluation of Modified Vector Space

Representation Using ADFA-LD and’, (2015), pp. 250–264.

References

 184

David, J. and Thomas, C. (2015) ‘DDoS Attack Detection using Fast Entropy Approach on

Flow- Based Network Traffic’, in Procedia - Procedia Computer Science. Elsevier Masson

SAS, pp. 30–36. doi: 10.1016/j.procs.2015.04.007.

Deka, R. K. and Bhattacharyya, D. K. (2016) ‘Self-similarity based DDoS attack detection

using Hurst parameter’, 9(17), pp. 4468–4481. doi: 10.1002/sec.

Elshoush, H. T. and Osman, I. M. (2011) ‘Alert correlation in collaborative intelligent intrusion

detection systems - A survey’, Applied Soft Computing Journal, 11(7), pp. 4349–4365. doi:

10.1016/j.asoc.2010.12.004.

Frank, E., Hall, M. A. and Witten, I. H. (2016) The WEKA Workbench, Morgan Kaufmann,
Fourth Edition. doi: 10.1016/B978-0-12-804291-5.00024-6.

Huang, C. and Yi, P. (2019) ‘CCID : Cross-Correlation Identity Distinction Method for

Detecting Shrew DDoS’, 2019.

Kawamoto, D. (2009) DDoS attack affects half of GoGrid’s customers. Available at:

https://www.cnet.com/news/ddos-attack-affects-half-of-gogrids-customers/ (Accessed: 5

November 2019).

Kayacik, H., Zincir-Heywood, a N. and Heywood, M. I. (2005) ‘Selecting Features for

Intrusion Detection : A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets’,

in Proceedings of the Third Annual Conference on Privacy Security and Trust PST2005.

Canada, pp. 3–8. doi: 10.1.1.66.7574.

Keegan, N. et al. (2016) ‘A survey of cloud-based network intrusion detection analysis’,

Human-centric Computing and Information Sciences. Springer Berlin Heidelberg, 6(1), p. 19.

doi: 10.1186/s13673-016-0076-z.

Kumar, R., Lal, S. P. and Sharma, A. (2016) ‘Detecting Denial of Service Attacks in the Cloud’,

in Proceedings - 2016 IEEE 14th International Conference on Dependable, Autonomic and
Secure Computing, DASC 2016, 2016 IEEE 14th International Conference on Pervasive
Intelligence and Computing, PICom 2016, 2016 IEEE 2nd International Conference on Big
Data. Auckland, New Zealand: IEEE, pp. 309–316. doi: 10.1109/DASC-PICom-DataCom-

CyberSciTec.2016.70.

Leban, B., Bendre, M. and Tabriz, P. (2017) Web Application Exploits and Defenses. Available

at: https://google-gruyere.appspot.com/ (Accessed: 5 December 2019).

Lindgren, H. (2013) Performance Management for Cloud Services: Implementation and
Evaluation of Schedulers for OpenStack. Available at: http://www.diva-

portal.org/smash/record.jsf?pid=diva2:636233.

Long (2012) Mafiaboy’s Moment. Available at: https://www.wired.com/2012/02/feb-7-2000-

mafiaboys-moment/.

Mesellem, M. (2014) bWAPP. Available at: http://users.telenet.be/mmeit/bwapp/index.htm.

Metasploit (2019) No Title. Available at: https://www.tutorialspoint.com/metasploit/index.htm

References

 185

(Accessed: 5 December 2019).

MIT Technology Review (2019) The first DDoS attack was 20 years ago. This is what we’ve
learned since. Available at: https://www.technologyreview.com/s/613331/the-first-ddos-

attack-was-20-years-ago-this-is-what-weve-learned-since/.

Modi, C. et al. (2013) ‘A survey of intrusion detection techniques in Cloud’, Journal of
Network and Computer Applications. Elsevier, 36(1), pp. 42–57. doi:

10.1016/j.jnca.2012.05.003.

Moustafa, N. S. J. (2015a) ‘UNSW-NB15: A Comprehensive Data set for Network Intrusion

Detection systems (UNSW-NB15 Network Data Set)’, in. Available at:

https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-

NB15-Datasets/.

Moustafa, N. S. J. (2015b) ‘UNSW-NB15: A Comprehensive Data set for Network Intrusion

Detection systems (UNSW-NB15 Network Data Set)’, in.

Munson, L. (2015) Greatfire.org faces daily $30,000 bill from DDoS attack. Available at:

https://nakedsecurity.sophos.com/2015/03/20/greatfire-org-faces-daily-30000-bill-from-ddos-

attack/.

Nadiammai, G. V. and Hemalatha, M. (2014) ‘Effective approach toward Intrusion Detection

System using data mining techniques’, Egyptian Informatics Journal. doi:

10.1016/j.eij.2013.10.003.

NETSCOUT (2018) cloud in the crosshairs. Available at: https://www.netscout.com/report/

(accessed 11 November 2019).

Om, H. (2012) ‘A Hybrid System for Reducing the False Alarm Rate of Anomaly Intrusion

Detection System’.

Pang, R. et al. (2005) ‘A First Look at Modern Enterprise Traffic’, pp. 15–28.

Pham, T. S., Nguyen, Q. U. and Nguyen, X. H. (2014) ‘Generating artificial attack data for

intrusion detection using machine learning’, Proceedings of the Fifth Symposium on
Information and Communication Technology - SoICT ’14, pp. 286–291. doi:

10.1145/2676585.2676618.

R (2019) R.

Rao, C. M. and Naidu, M. M. (2017) ‘A Model for Generating Synthetic Network Flows and

Accuracy Index for Evaluation of Anomaly Network Intrusion Detection Systems’, Indian
Journal of Science and Technology, 10(14), pp. 1–16. doi: 10.17485/ijst/2017/v10i14/106786.

Rouse, M. (2014) DEFINITION TCP (Transmission Control Protocol).

Sharafaldin, I., Lashkari, A. H. and Ghorbani, A. A. (2018) ‘Toward Generating a New

Intrusion Detection Dataset and Intrusion Traffic Characterization’, (Cic), pp. 108–116. doi:

10.5220/0006639801080116.

References

 186

Shiravi, A. et al. (2011) ‘Toward developing a systematic approach to generate benchmark

datasets for intrusion detection’, Computers & Security. Elsevier Ltd, 31(3), pp. 357–374. doi:

10.1016/j.cose.2011.12.012.

Shumway, R. H. and Stoffer, D. S. (2016) Time Series Analysis and Its Applications. Springer.

Available at: https://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf.

Song, J., Takakura, H. and Okabe, Y. (2012) ‘Description of Kyoto University Benchmark

Data’, pp. 10–12.

Tavallaee, M., Stakhanova, N. and Ghorbani, A. A. (2010) ‘Toward Credible Evaluation of

Anomaly-Based Intrusion-Detection Methods’, in. IEEE, pp. 516–524. Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5464348.

Tavallaee Mahbod, Bagheri Ebrahim, Lu Wei, G. A. (2009) ‘IEEE Xplore Document - A

detailed analysis of the KDD CUP 99 data set’, IEEE symposium. Available at:

http://ieeexplore.ieee.org/document/5356528/.

Vasilomanolakis, E. et al. (2016) ‘Towards the creation of synthetic, yet realistic, intrusion

detection datasets’, in Proceedings of the NOMS 2016 - 2016 IEEE/IFIP Network Operations
and Management Symposium. Istanbul, Turkey: IEEE, pp. 1209–1214. doi:

10.1109/NOMS.2016.7502989.

Vixie, C. P., Sneeringer, G. and Schleifer, M. (2012) 21 Oct 2002 Root Server Denial of Service
Attack. Available at: https://web.archive.org/web/20110302164416/http://www.isc.org/f-root-

denial-of-service-21-oct-2002 (Accessed: 5 November 2019).

Wei, W. et al. (2006) ‘Combining Cross-Correlation and Fuzzy Classification to Detect

Distributed Denial-of-Service Attacks BT - Computational Science – ICCS 2006’, in

Alexandrov, V. N. et al. (eds). Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 57–64.

Zhijun, W. U. et al. (2014) ‘Cross-correlation Based Synchronization Mechanism of LDDoS

Attacks’, 9(3), pp. 604–611. doi: 10.4304/jnw.9.3.604-611.

