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An accurate estimation of the noise power from noisy data leads to better estimation of signal-to-noise 
ratio (SNR) and is useful in detection, estimation, and prediction. The major contributions of this paper 
are to estimate the polynomial degree and the noise power from data coming from an underlying 
polynomial with additive Gaussian noise, using an AR model. The two proposed methods have been 
inspired by the recent results that all finite degree polynomials have equivalent representation in finite 
order autoregressive (AR) models, with known AR coefficients and different constant terms. Preliminary 
experiments in a variety of scenarios provide estimations of the constant term and the standard deviation 
of these estimations, which are then used as a guide to developing theoretically the probability density 
functions. In the first stage, the degree of a polynomial is selected by minimizing the variance of the 
estimations of the constant term in the equivalent AR model. In the second stage, the noise variance is 
estimated using the estimated degree of a polynomial, a combination of the variance of the estimations 
of the constant term, and another known parameter. Further computer experiments have been carried 
out for evaluating the proposed methods for degree and noise power estimations. Four well-known and 
well-regarded maximum likelihood-based approaches have been used for comparisons.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Estimation of noise power from noisy data is useful in de-
tection, estimation, and prediction [1]. This paper addresses the 
class of data coming from an underlying polynomial with additive, 
zero-mean, independent and identically distributed Gaussian noise. 
Noise variance can be estimated from the differences between the 
available noisy data and reconstructed noise-free data when poly-
nomial coefficients are available. Polynomial coefficients can be 
estimated from data by fitting polynomial regression models with 
the Least-Squares method. In 1805 Legendre published the Least-
Squares method [2] and Gauss published it in 1809 [3] and later 
in 1823 [4]. In 1815 Gergonne wrote a paper on “The application 
of the method of least squares to the interpolation of sequences” 
[5] and its English translation by St. John and Stigler [6]. In the 
last 120 years, polynomial regressions contributed much to the de-
velopment of regression analysis [7–9], which have many diverse 
applications, including an interesting one in polymerase chain re-
action bias correction in quantitative DNA methylation studies [10].
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The estimation of the degree of the polynomial can be achieved 
using many model order selection techniques [11,12]. In this paper 
comparisons of the proposed methods are carried out with four 
chosen model order selection techniques that have been developed 
around the maximum likelihood method, namely Akaike Informa-
tion Criterion (AIC), corrected Akaike Information Criterion (AICc), 
Generalized Information Criterion (GIC), and Bayesian Information 
Criterion (BIC) [13].

The proposed methods to estimate the polynomial degree and 
the noise power from data coming from an underlying polynomial 
with additive Gaussian noise are fundamentally different to what 
have been practised in the past. The proposed methods have been 
inspired by the very recent results that all polynomials of degree 
q give rise to the same set of q known time-series coefficients of 
autoregressive models and an additional constant term μ. This pa-
per extends the novel and interesting approaches initiated in [26]
and [29]. The study in [26] is very different from this paper, in 
that it neither explored noisy data nor considered polynomial de-
gree estimation. The study in [29], amongst other things, proposed 
one polynomial degree estimator. But it is very different from this 
paper, as it did not develop theoretically the probability density 
functions of estimations of the constant term μ, did not propose 
the degree estimator in this paper, and did not consider any noise 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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variance estimator. This is primarily a novel technique paper with 
a solid theoretical foundation and much success with simulated 
data, using no polynomial coefficients.

Section 2 offers some brief theoretical background, including 
introduction to four chosen model order selection criteria based 
on the maximum likelihood. Section 3 offers some experimental 
results in a variety of scenarios and provides estimations of the 
constant term and the standard deviation of these estimations. 
These help to evince patterns that were a guide to developing the 
probability density functions of the estimations in section 4. Based 
on these, section 5 proposes a new polynomial degree estimator, 
while section 6 offers a novel way to estimate the noise variance. 
Section 7 contains discussions and Section 8 records conclusions.

2. Theoretical background

To make the paper self-contained we introduce briefly some 
relevant existing knowledge. Section 2.1 offers brief outlines of the 
maximum likelihood method and the four chosen information cri-
teria which are used in this paper to compare the results from the 
proposed estimators.

A polynomial of degree q in continuous time can be written as 
y (t) = ∑q

i=0 c (i) ti . For uniformly sampled discrete time, the con-
tinuous time, t , is represented as t = nT , where n is an integer and 
T is the sampling period. In this scenario, the above equation can 
be rewritten as y (nT ) = ∑q

i=0 c (i) (nT )i . For the sake of simplic-
ity in notations and without the loss of any generalisations, this 
can be written as

y (n) =
q∑

i=0

c (i)ni (1)

where the new value of c (i) is the old value of c (i) multiplied 
by T i . Thus, a set of real-valued noisy data from polynomials in 
uniformly sampled discrete time, can be represented by

x (n) =
q∑

i=0

c (i)ni + e (n) , (2)

where e (n) represents noise.

2.1. Maximum log-likelihood

Maximum likelihood-based techniques use the degree of the 
polynomial and values of its coefficients to estimate noise variance. 
The log-likelihood function for N independent and identically dis-
tributed samples from a Gaussian distribution is given by

lnL (σ , y (.)) = −
(

N

2

)
ln (π) −

(
N

2

)
ln

(
σ 2

)

−
(

1

2σ 2

) N∑
i=1

(x (i) − y (i))2 (3)

For a polynomial of degree 1, i.e., q = 1, y (i) = c (0) + c (1) i. 
Thus, ∂lnL/∂c (0) = 

∑N
i=1(x (i) − c (1) i − c (0))/σ 2, ∂lnL/∂c (1) = ∑N

i=1(x (i) − c (1) i − c (0))i/σ 2, and ∂lnL/∂(σ 2) = − (N/2) 1/σ 2 +
(1/2) 1/(σ 4) 

∑N
i=1 (x (i) − y (i))2. Maximising this log-likelihood 

function one obtains the following three equations:

N∑
i=1

(x (i) − c (1) i − c (0)) = 0 (4)

N∑
(x (i) − c (1) i − c (0)) i = 0 (5)
i=1

2

N∑
i=1

(x (i) − y (i))2 = Nσ 2 (6)

Using equations (4) and (5), one obtains the ordinary least squares 
estimates of c (0) and c (1). If one sets up two matrices, X T

= [x (1) x (2) . . . x (N)] and AT = [1 2 . . . N; 1 1 . . . 1], then 
[c (1) c (0)]T = 

(
AT A

)−1
AT X . It should be remarked that one can-

not calculate σ 2 from equation (6) in the absence of the knowl-
edge of the noise-free data, y (i). Instead one can estimate σ 2

using the data values and fitted values, i.e., ŷ (n) = c (1)n + c (0),

σ̂ 2 =
(∑N

i=1

(
x (i) − ŷ (i)

)2
)

N
(7)

Hence, for each chosen value of the degree of a polynomial (q), 
one can estimate the corresponding coefficients of the polynomial, 
[c (0) c (1) . . . c (q)], and estimate the corresponding value of σ 2. 
Thus, for a given dataset, M different choices for the value of q will 
produce M different estimates of σ 2. The challenge is to decide the 
appropriate value of q. To make this decision four commonly used 
and well-regarded model order selection techniques, i.e., AIC, AICc, 
GIC, and BIC, are chosen and briefly described below.

2.1.1. Akaike Information Criterion (AIC)
Given a set of models, AIC [12–18] aims to select the best 

model from this set. Thus, the selected model is not guaranteed 
to be the best model as it represents a relative choice within the 
set of given models. AIC tries to balance between the risk of over-
fitting and the risk of underfitting, so it is a compromise between 
the best fitted model and the simplicity of the model.

AIC uses the log-likelihood to provide a measure of the good-
ness of fit. Suppose that there is a statistical model of the data, 
that q is the number of estimated parameters, and that L is the 
maximum value of the likelihood function for the model. AIC is 
defined as

AIC (q) = 2q − 2 ln (L) (8)

The selected model will correspond to the one for which AIC is 
the minimum. The first term in equation (8) attempts to keep the 
polynomial degree small while the second term attempts to obtain 
the maximum value of the likelihood.

2.1.2. Corrected Akaike Information Criterion (AICc)
As the number of data tends to ∞, AIC has certain desirable 

properties. However, whenever the number of data (N) is small, 
there is a significant chance that AIC will choose models with too 
many parameters, i.e., AIC will overfit. In fact, equation (4) does 
not have any dependence on the number of data values. To ad-
dress this, AICc was introduced by Sugiura [19]. Since then, many 
researchers [12,16,17,20] have extended the applicability of AICc, 
which can be defined as

AICc (q) = 2qN

N − q − 1
− 2 ln (L) (9)

AICc clearly depends, amongst other factors, on the number of data 
(N). The procedure for selecting the best model from a given set of 
models, i.e., the degree of a polynomial (q) and the corresponding 
polynomial coefficients, [c (0) c (1) . . . c (q)], requires the minimisa-
tion of AICc.

2.1.3. Generalised Information Criterion (GIC)
In AIC, the factor of 2q has been designed to address the issue 

of overfitting. Intuitively, the probability of overfitting will be re-
duced as the number of data increases. In finite sample situations, 
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Table 1
Estimates of μ using data from x (n) = n + 1 + N(0, σ ) for six choices of a polynomial degree.

Standard 
deviation 
of noise, σ

< μ > value 
if degree = 1

< μ > value 
if degree = 2

< μ > value 
if degree = 3

< μ > value 
if degree = 4

< μ > value 
if degree = 5

< μ > value 
if degree = 6

1 1.00 0.00 0.00 -0.01 0.00 -0.03
2 1.00 0.00 0.00 0.00 0.01 0.02
3 1.00 0.00 0.01 -0.01 0.04 0.00
4 1.00 0.00 0.01 0.02 0.02 0.05
5 1.01 0.00 0.00 -0.02 -0.01 -0.12

Table 2
Estimates of σμ(q) using data from x (n) = n + 1 + N(0, σ ) for six choices of a polynomial degree.

Standard 
deviation 
of noise, σ

< σμ(q) > if 
degree = 1

< σμ(q) > if 
degree = 2

< σμ(q) > if 
degree = 3

< σμ(q) > if 
degree = 4

< σμ(q) > if 
degree = 5

< σμ(q) > if 
degree = 6

1 1.41 2.45 4.46 8.34 15.8 30.3
2 2.84 4.91 8.95 16.7 31.7 60.5
3 4.26 7.37 13.4 25.1 47.5 90.9
4 5.70 9.87 18.0 33.6 63.7 121.7
5 7.08 12.2 22.3 41.7 79.1 151.3
extensive simulation studies have demonstrated that the following 
generalised information criterion (GIC) [21]

G IC (q) = αq − 2 ln (L) (10)

can outperform AIC if α > 2. Values of α in the range of 2 to 6 
appear to offer the best performance. The optimal value for α de-
pends on many factors but there is no clear hint on how to choose 
its value in a specific scenario. Note that α = 2 corresponds to AIC. 
In the following investigations the value for α has been set to 4. 
Note that GIC does not explicitly depend on the number of data 
values, unlike AICc.

2.1.4. Bayesian Information Criterion (BIC)
The form of BIC [22–25,12,16] is very similar to AIC, in that 

they both have two terms – a negative log-likelihood one and a 
penalty term for the number of parameters, although their origins 
are different. The log-likelihood term is identical in both cases. The 
penalty term is 2q in AIC, while it is ln (N) (q) in BIC. Note that AIC 
does not depend on the number of data (N), but BIC does include 
a dependence on N . In that sense, BIC captures something of AIC 
and AICc, and it can be written as

B IC (q) = [ln (N)]q − 2 ln (L) (11)

3. Experiments for < μ > and < σμ(q) >

All noise-free data from uniformly sampled polynomials of fi-
nite degree q can be perfectly represented by an autoregressive 
time-series model of order q and a constant [26], such that

y (n) =
q∑

i=1

a (i) y (n − i) + μ (12)

where

a (i) = (−1)i+1
(

q

i

)
(13)

for i = 1, 2, . . . , q, and

μ = c (q) (q!) (14)

Here is a hint to why equation (12) and (14) are true. Given a 
polynomial of degree q, all differentials of order higher than (q + 1) 
are zero. The differential of order (q + 1) is a constant and is equal 
3

to c (q) (q!), which is represented in equation (14). In uniformly 
discrete domain (time or space or anything else), this polynomial 
can be represented by a q-th order difference equation with this 
constant term, which is essentially the equation (12). Equation (12)
can be rewritten as

−
q∑

i=1

a (i) y (n − i) + y (n) = μ (15)

3.1. Experiments with noisy data

As noise-free y (n) values are not available, this equation can be 
recast with known noisy data values x (n) as follows

−
q∑

i=1

a (i) x (n − i) + x (n) = μ(n,q) (16)

where μ (n,q) may depend on both n and q. Equation (16) can be 
written in matrix form as XA = M, where X is a ( f − q)x(q + 1)

matrix and X = [(x (1) . . . x ( f − q))T ; (x (2) . . . x ( f − q + 1))T ; 
. . . (x (q + 1) . . . x ( f ))T ], A is a (q + 1)x1 matrix and A = [(−a(1) . . .
− a(q)1)T ], M is a ( f − q)x1 matrix and M = [μ(q + 1, q) . . .
μ( f , q)]T ], as well as f is the number of data values being used 
for estimation.

All the entries in matrix X are known as they represent the 
noisy data values. Also, all the entries in matrix A are known from 
equation (13). Therefore, M can be obtained from XA, containing 
( f − q) values. For a chosen value of q, these ( f − q) values of 
μ (n,q) are estimates of the same constant term, μ (q), for a poly-
nomial of degree q. From these ( f −q) values, one can estimate the 
mean value, μ (q), and the root-mean square value, σμ(q) , where

μ(q) =
∑q

n=1 μ(n,q)

( f − q)
(17)

and

σμ(q) =

√√√√√
⎡
⎣

(∑ f
n=q+1 (μ(n,q) − μ(q))2

)
( f − q)

⎤
⎦ (18)

Thus, for every value of q, there are two parameters - the mean 
value, μ (q), and the root-mean square value, σμ(q) .
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Table 3
Estimates of μ using data from x (n) = n2 + n + 1 + N(0, σ ) for six choices of a polynomial degree.

Standard 
deviation 
of noise, σ

< μ > value 
if degree = 1

< μ > value 
if degree = 2

< μ > value 
if degree = 3

< μ > value 
if degree = 4

< μ > value 
if degree = 5

< μ > value 
if degree = 6

1 -40.0 2.00 0.00 -0.01 0.00 -0.02
2 -40.0 2.00 0.00 0.00 0.00 0.03
3 -40.0 2.00 0.00 0.02 0.03 0.01
4 -40.0 2.00 0.00 -0.02 0.01 -0.06
5 -40.0 2.00 0.01 0.01 0.04 -0.02

Table 4
Estimates of σμ(q) using data from x (n) = n2 + n + 1 + N(0, σ ) for six choices of a polynomial degree.

Standard 
deviation 
of noise, σ

< σμ(q) > if 
degree = 1

< σμ(q) > if 
degree = 2

< σμ(q) > if 
degree = 3

< σμ(q) > if 
degree = 4

< σμ(q) > if 
degree = 5

< σμ(q) > if 
degree = 6

1 34.4 2.44 4.44 8.30 15.7 30.1
2 34.5 4.90 8.93 16.7 31.6 60.5
3 34.6 7.35 13.4 25.0 47.3 90.4
4 34.8 9.85 18.0 33.6 63.6 121.5
5 35.1 12.3 22.4 41.8 79.2 151.3
In this novel conceptual framework some experiments are car-
ried out with generated data from polynomials of different degrees 
and additive zero-mean Gaussian noise to help evince patterns 
from particular cases through a pedagogical development.

First a polynomial of degree 1 has been considered for data 
generation: y (n) = n + 1. For this experiment, 1,000 sets of 101 
data values have been generated for each value of the standard 
deviation (σ ) of noise using the zero-mean Gaussian distribution, 
N(0, σ ). Thus, the generated noisy data can be described by

x (n,σ ) = n + 1 +N (0,σ ) ,

for n = −50 : 1 : 50 and σ = 1 : 1 : 5
(19)

This notation indicates that all integer values of n from -50 to 50 
and of σ from 1 to 5 are used. In general, the correct degree of 
the polynomial will be unknown. So, for each set of f data values, 
different degrees of polynomial values are chosen, i.e., degree of 1, 
2, 3, 4, 5, and 6. In each set of 101 data values, the first 60 data 
values, i.e., f = 60, have been used for estimating μ (q) and σμ(q) . 
Thus, in this experiment there are 1000 pairs of these values. Three 
parameters are estimated from these 1000 pairs – the expected 
value of μ, denoted as < μ >, the expected value of the standard 
deviation, σμ(q) , denoted as < σμ(q) >, and the standard deviation 
of σμ(q) , denoted by σ(σμ(q)). These are estimated in the following 
ways:

< μ >=
∑1000

i=1 (μ(q))i

1000
(20)

< σμ(q) >=
∑1000

i=1 (σμ(q))i

1000
(21)

σ
(
σμ(q)

) =

√√√√√
⎡
⎣

(∑1000
i=1

(
(σμ(q))i− < σμ(q) >

)2
)

1000

⎤
⎦ (22)

Table 1 and Table 2 record < μ > and < σμ(q) >, respectively, for 
the linear polynomial. Similar experiments have been carried out 
with quadratic, cubic and quartic polynomials. The corresponding 
results are presented in Tables 3 to 8.

3.2. Summary

Computer experiments have recorded < μ >, < σμ(q) >, and 
σ

(
σμ(q)

)
for different degrees of polynomials and noise powers. 
4

Experimental results from section 3.1 can be summarized and gen-
eralized as follows:

a) The < μ > values within each column appear to be the same, 
i.e., they appear to be independent of the noise standard devi-
ations.

b) When the chosen degree is the same as the correct one, the 
< μ > values appear to be q!, where q is the correct degree of 
the polynomial.

c) When the chosen degree is larger than the correct one, the 
< μ > values appear to be 0.

d) When the chosen degree is smaller than the correct one, the 
< μ > values appear to be different from q! and 0.

e) Whenever the chosen degree is the same as or larger than 
the correct degree, the < σμ(q) > values within each column 
appear to increase linearly, i.e., they are linearly dependent on 
the noise standard deviations.

f) Whenever the chosen degree is smaller than the correct one, 
the < σμ(q) > values within each column appear to be the 
same, i.e., they appear to be independent of the noise standard 
deviations.

g) For each value of σ , as the chosen degree is increased from 
the correct one, the < σμ(q) > values increase non-linearly.

4. Analysis of < μ > and < σμ(q) >

In this section analysis are presented to explain all the afore-
mentioned observations in three different scenarios – 1) when the 
chosen degree is the same as the correct degree, 2) when the 
chosen degree is larger than the correct degree, and 3) when the 
chosen degree is smaller than the correct degree. In the final sub-
section the analysis is summarized and verified.

4.1. Chosen degree is the same as the correct degree

In [26], it has been proven that, for the correct degree, μ =
c (q) (q!), for noise-free data. Taking the expectation of equation 
(16), one can write

< μ > = < μ(q) >=� −
q∑

i=1

a (i) x (n − i) + x (n) �

= −
q∑

a (i) y (n − i) + y (n) = c (q) (q!) (23)

i=1
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Table 5
Estimates of μ using data from x (n) = n3 + n2 + n + 1 + N(0, σ ) for six choices of a polynomial degree.

Standard 
deviation 
of noise, σ

< μ > value 
if degree = 1

< μ > value 
if degree = 2

< μ > value 
if degree = 3

< μ > value 
if degree = 4

< μ > value 
if degree = 5

< μ > value 
if degree = 6

1 2091 -121 6.00 0.00 0.00 -0.01
2 2091 -121 5.99 0.00 -0.01 0.03
3 2091 -121 6.01 -0.02 0.03 -0.04
4 2091 -121 6.01 0.02 0.02 0.03
5 2091 -121 6.01 0.00 0.05 -0.03

Table 6
Estimates of σμ(q) using data from x (n) = n3 + n2 + n + 1 + N(0, σ ) for six choices of a polynomial degree.

Standard 
deviation 
of noise, σ

< σμ(q) > if 
degree = 1

< σμ(q) > if 
degree = 2

< σμ(q) > if 
degree = 3

< σμ(q) > if 
degree = 4

< σμ(q) > if 
degree = 5

< σμ(q) > if 
degree = 6

1 2221 101 4.45 8.32 15.8 30.2
2 2221 101 8.95 16.7 31.7 60.5
3 2221 102 13.3 24.9 47.1 90.1
4 2221 102 17.7 33.1 63.7 120.0
5 2221 102 22.4 41.8 79.3 151.7

Table 7
Estimates of μ using data from x (n) = n4 + n3 + n2 + n + 1 + N(0, σ ) for six choices of a polynomial degree.

Standard 
deviation 
of noise, σ

< μ > value 
if degree = 1

< μ > value 
if degree = 2

< μ > value 
if degree = 3

< μ > value 
if degree = 4

< μ > value 
if degree = 5

< μ > value 
if degree = 6

1 -103730 8287 -486 24.0 -0.01 0.00
2 -103730 8287 -486 24.0 0.02 0.02
3 -103730 8287 -486 24.0 -0.01 0.01
4 -103730 8287 -486 24.0 0.01 0.01
5 -103730 8287 -486 24.0 0.04 -0.13

Table 8
Estimates of σμ(q) using data from x (n) = n4 +n3 +n2 +n + 1 + N(0, σ ) for six choices of a polynomial degree.

Standard 
deviation 
of noise, σ

< σμ(q) > if 
degree = 1

< σμ(q) > if 
degree = 2

< σμ(q) > if 
degree = 3

< σμ(q) > if 
degree = 4

< σμ(q) > if 
degree = 5

< σμ(q) > if 
degree = 6

1 137037 8750 398 8.31 15.7 30.1
2 137037 8750 398 16.6 31.5 60.4
3 137037 8750 398 24.9 47.3 90.4
4 137037 8750 399 33.5 63.4 121.4
5 137037 8750 399 41.7 79.0 151.1
Moreover, the fact that c (q) = 1 in these experiments explains the 
above observation (b) in section 3.2, i.e., < μ > = q!. Thus, the 
column 2 of Table 1, the column 3 of Table 3, the column 4 of 
Table 5, and the column 5 of Table 7 are explained.

Given that μ (n,q) = x (n) − ∑q
i=1 a (i) x (n − i), variations in 

μ (n,q) values will come from a combination of incorrect structure, 
i.e., incorrect choice of the polynomial degree, and variations in 
x (n). In the current scenario of having chosen the correct degree, 
variations will come from variations in x (n) only. Therefore, the 
variance is given by

< σμ(q) >2=
(

(1)2 +
q∑

i=1

a (i)2

)
σ 2 (24)

Combining equations (13) and (16), one obtains < σμ(q) >2 values 
of 2, 6, 20, 70, 252, and 924 for polynomial degree (q) values of 
1, 2, 3, 4, 5, and 6 respectively. Thus, the column 2 of Table 2, the 
column 3 of Table 4, the column 4 of Table 6, and the column 5 of 
Table 8 are all explained.
5

4.2. Chosen degree is larger than the correct degree

First, consider the case of a linear polynomial, i.e. the true 
degree is 1, such that y (n) = c (0) + c (1)n. When the chosen 
degree is 2, μ (n,2) = x (n) − 2x (n − 1) + x(n − 2). Therefore, <
μ (n,2) >=< x (n) > − 2 < x (n − 1) > + < x (n − 2) > = y (n) −
2y (n − 1) + y (n − 2) = [c (0) + c (1)n] − 2 [c (0) + c (1) (n − 1)] +
[c (0) + c (1) (n − 2)] = 0. There is another way to appreciate this 
result. Essentially, [x (n)−2x (n − 1)+ x (n − 2)] represents d2x/dt2. 
Given three consecutive data values, one can write dx/dt = (x (n)−
x (n − 1))/T and dx/dt = (x (n − 1) − x (n − 2))/T . These lead to 
d2x/dt2 = [x (n) − 2x (n − 1) + x (n − 2)]/T 2. The second differ-
ential of every linear polynomial is zero.

In fact, for each value of q, the corresponding set of a (i) coef-
ficients, [1, a (1) , . . . , a (q)], can represent the q-th differential of 
the polynomial. This is precisely why μ = c (q) (q!), which is the 
q-th differential of a polynomial of true degree q. Thus, for a linear 
polynomial, < μ (n,q) > = 0, whenever q > 1. More generally, of 
course, < μ (n,q) > = 0, when q is larger than the correct degree. 
Therefore, the columns 3, 4, 5, 6, and 7 of Table 1, the columns 
4, 5, 6, and 7 of Table 3, the columns 5, 6, and 7 of Table 5, and 
the columns 6 and 7 of Table 7 are all explained. Whenever the 
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chosen degree is the same as or larger than the correct degree, 
< μ (n,q) > is equal to the q-th differential of a polynomial.

Given that μ (n,q) = x (n) − ∑q
i=1 a (i) x (n − i), for the choice 

of a degree larger than the correct degree of the polynomial, varia-
tions will come from statistical variations in x (n). Therefore, the 
variance is given by < σμ(q) >2 = (

(1)2 + ∑q
i=1 a (i)2 )

σ 2 as in 
equation (24). Combining equations (13) and (24), one obtains 
< σμ(q) >2 values of 2, 6, 20, 70, 252, and 924 for polynomial de-
gree (q) values of 1, 2, 3, 4, 5, and 6 respectively. Thus, the columns 
3, 4, 5, 6, and 7 of Table 2, the columns 4, 5, 6, and 7 of Table 4, 
the columns 5, 6, and 7 of Table 6, and the columns 6 and 7 of Ta-
ble 8 are explained. Whenever the chosen degree is the same as 
or larger than the correct degree, < σμ(q) >2 comes from equation 
(24).

4.3. Chosen degree is smaller than the correct degree

Choosing a degree q is equivalent to assuming the underlying 
noise-free time-series model to be of order q and

μ(n,q) = x (n) −
q∑

i=1

a (i) x (n − i)

= y (n) −
q∑

i=1

a (i) y (n − i) + e (n) −
q∑

i=1

a (i) e (n − i)

(25)

where e (n) are noise, while the true polynomial, assuming the 
correct degree is D, can be written as y (n) = ∑D

j=0 c ( j) n j . Here 
q < D , and

q∑
i=1

a (i) y (n − i) =
q∑

i=1

(−1)i+1
(

q

i

)
y (n − i)

=
q∑

i=1

(−1)i+1
(

q

i

) D∑
j=0

c ( j) (n − i) j (26)

Below each of the j values is considered separately.
For j = 0, the right-hand side of equation (26) can be written as 

RHS ( j = 0) = c(0) 
∑q

i=1 (−1)i+1 (q
i

) = c(0), adapting the identity 
0.151.4 on page 3 in [27]. For j = 1, the right-hand side of equa-
tion (26) can be written as RHS ( j = 1) = nc(1) 

∑q
i=1 (−1)i+1 (q

i

) −
c(1) 

∑q
i=1 (−1)i+1 (q

i

)
i = c(0). It can be shown that the first term 

is nc(1), adapting the identity 0.151.4 on page 3 in [27], and that 
the second term is 0, adapting the identity 0.154.6 on page 4 in 
[27]. Hence, RHS ( j = 1) = nc(1). Using the same two identities, 
it can be shown, for up to and including j = (q − 1), that RHS ( j) 
= n jc( j).

For j = q, the right-hand side of equation (26) can be written 
as

R H S( j = q) =
q∑

i=1

(−1)i+1
(

q

i

)
c (q) (n − i)q

= c (q)nq
q∑

i=1

(−1)i+1
(

q

i

)

+ c (q)nq−1
(

q

1

) q∑
i=1

(−1)i+1
(

q

i

)
(−i) + . . .

+ c (q)nq−q
(

q

q

) q∑
i=1

(−1)i+1
(

q

i

)
(−i)q

The first term is nqc(q), adapting the identity 0.151.4 on page 3 in 
[27], and all other terms up to and including the penultimate one 
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containing (−i)q−1 are 0, adapting the identity 0.154.6 on page 4 
in [27]. The last term is

c (q)

q∑
i=1

(−1)i+1
(

q

i

)
(−i)q = c (q) (−1)

q∑
i=1

(−1)i
(

q

i

)
(−i)q

= c (q) (−1) (−1)q (−1)q (q!)
= − (q!) c (q)

adapting the identity 0.154.4 on page 4 in [27]. Hence, RHS (q) 
= nqc (q) − (q!) c(q).

Now the case of j = (q + 1) is considered. In this scenario, the 
right-hand side of equation (26) can be written as

R H S ( j = q + 1)

=
q∑

i=1

(−1)i+1
(

q

i

)
c (q + 1) (n − i)q+1

= c (q + 1)nq+1
q∑

i=1

(−1)i+1
(

q

i

)

+ c (q + 1)nq
(

q + 1

1

) q∑
i=1

(−1)i+1
(

q

i

)
(−i) + . . .

+ c (q + 1)nq+1−q
(

q + 1

q

) q∑
i=1

(−1)i+1
(

q

i

)
(−i)q

+ c (q + 1)n0
(

q + 1

q + 1

) q∑
i=1

(−1)i+1
(

q

i

)
(−i)q+1

The first term is nq+1c(q + 1), adapting the identity 0.151.4 on 
page 3 in [27], and all other terms up to and including the one 
containing (−i)q−1 are 0, adapting the identity 0.154.6 on page 4 
in [27]. The penultimate term is c (q + 1)n (q + 1) (−1) (−1)q (−1)q

(q!) = − ((q + 1)!)nc(q + 1). The last term is c (q + 1)
∑q

i=1 (−1)i+1(q
i

)
(−i)q+1. Hence, R H S(q +1) = nq+1c (q + 1)−((q + 1)!)nc (q + 1)

+ c (q + 1)
∑q

i=1 (−1)i+1 (q
i

)
(−i)q+1

Putting all the components of the RHS of equation (26) to-
gether, one can write, R H S = ∑q+1

i=1 R H S (i) = ∑q+1
j=1 c ( j)n j −

(q!) c (q) − ((q + 1)!)nc (q + 1) + c (q + 1)
∑q

i=1 (−1)i+1 (q
i

)
(−i)q+1. 

Hence, equation (25) can be written as

μ(n,q) = y (n) −
q∑

i=1

a (i) y (n − i) + e (n) −
q∑

i=1

a (i) e (n − i)

= y (n) −
q+1∑
j=0

c ( j)n j + (q!) c (q) + ((q + 1)!)nc (q + 1)

− c (q + 1)

q∑
i=1

(−1)i+1
(

q

i

)
(−i)q+1 + e (n)

−
q∑

i=1

a (i) e (n − i)

μ(n,q) = ((q + 1)!)nc (q + 1) + (q!) c (q)

− c (q + 1)

q∑
i=1

(−1)i+1
(

q

i

)
(−i)q+1 + e (n)

−
q∑

a (i) e (n − i) (27)

i=1
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According to equation (27), for D = 2 (an actual quadratic polyno-
mial) and q = 1 (choosing a linear polynomial), μ (n,1) = 2nc (2)+
c (1) − c (2) + e (n) − e(n − 1). Thus, < μ (n,1) > = < 2n > c (2) +
c (1)− c (2). Furthermore, < σμ(1) >2 = variance of 2nc (2)+ 2σ 2.

In a similar manner, according to equation (27), for D = 3
(an actual cubic polynomial) and q = 2 (choosing a quadratic 
polynomial), one finds that μ (n,2) = 6nc (3) + 2c (2) − 6c (3) +
e (n) − 2e (n − 1) + e (n − 2). Thereby, < μ (n,2) > = < 6n >
c (3) + 2c (2) − 6c (3), and, of course, < σμ(2) >2 = variance of 
6nc (3) + 6σ 2.

Similarly, according to equation (27), for D = 4 (an actual quar-
tic polynomial) and q = 2 (choosing a cubic polynomial), one 
finds μ (n,3) = 24nc (4) + 6c (3) − 36c (4) + e (n) − 3e (n − 1) +
3e (n − 2) − e(n − 3). Therefore, < μ (n,3) > = < 24n > c (4) +
6c (3) − 36c (4). Also, < σμ(3) >2 = variance of 24c (3) + 20σ 2.

From the experimental setup outlined above for D = 2,

< μ(n,1) >=
⎛
⎝ 9∑

n=−49

2n

⎞
⎠ /59 = −40 (28)

This explains the column 2 of Table 3. Similar calculations can ex-
plain the columns 2 and 3 of Table 5, as well as the columns 2, 3, 
and 4, of Table 7. Basically, whenever the chosen degree is smaller 
than the correct degree, the < μ > comes from noise-free poly-
nomial data values and independent of zero-mean noise standard 
deviations. This is different from the other two scenarios, in which 
< μ (n,q) > is equal to the q-th differential of a polynomial. This 
then completes the understanding of Tables 1, 3, 5, and 7.

Unlike in the other scenarios (i.e., choosing the correct degree 
or larger than the correct degree), here μ (n,1) contains two types 
of terms – one is statistical, i.e., noise, and is the same as before 
but the other is noise-free data dependent, i.e., 2n. As these two 
types of terms are independent of each other, one can write vari-
ance of μ (n,1) = variance of (2n) + 2σ 2.

< σμ(q) >2 =
(∑9

n=−49 (2n)2
)

59
− (−40)2 + 2σ 2

= 2760 − (−40)2 + 2σ 2 = 1160 + 2σ 2 (29)

This agrees well with the results in column 2 of Table 4. Similar 
calculations can explain the columns 2 and 3 of Table 6, as well 
as the columns 2, 3, and 4, of Table 8. Basically, whenever the 
chosen degree is smaller than the correct degree, the < σμ(q) >2

values come from a combination of noise-free polynomial data val-
ues and zero-mean noise standard deviations. This is different from 
the other two scenarios, in which < σμ(q) >2 values come only 
from noise standard deviations as given by equation (24). This then 
completes the understanding of Tables 2, 4, 6, and 8.

4.4. Standard deviation of standard deviation

In section 3 it was stated that values of the standard devia-
tions of σμ(q) , denoted by σ(σμ(q)), were obtained in the above 
experiments. First some theoretical backgrounds are offered here 
before discussing the results in section 4.5. Consider n samples 
{r (1) , r (2) , . . . , r (n)} from a population that follows a Gaussian 
distribution. The sample standard deviation can be written as

s =
√√√√[(∑n

i=1 (r(i)− < r(i) >)2)
n

]

The distribution of s is given by [28]
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p (n, s) =
2
(

n
2σ 2

) n−1
2

�
(n−1

2

) exp

(
− ns2

2σ 2

)
sn−2 (30)

where �(.) is the Gamma function and σ 2 = ns2/(n − 1). Hence, 
the variance of s can be derived as

var (s) = 1

n

[
n − 1 − 2�2

(n
2

)
�2

(n−1
2

)
]

σ 2 (31)

Therefore, the standard deviation of s can be written as

S D (s) = σ

√√√√1

n

[
n − 1 − 2�2

(n
2

)
�2

(n−1
2

)
]

(32)

which shows that, for a fixed value of n, S D (s) increases linearly 
with σ .

4.5. Summary and verification

From the explorations in subsections 4.1, 4.2, and 4.3, one can 
summarise the following for μ (n,q):

1) if q is the correct degree of the polynomial, μ (n,q) =
c (q) (q!) + α(q) N(0, σ ), where α2(q) = 2, 6, 20, 70, 252, 
and 924 for q = 1, 2, 3, 4, 5, and 6 respectively; these values 
of α2(q) can be derived from equation (13). Therefore, it is 
clear that μ (n,q) = N(c (q) (q!), α(q)σ ), which is a Gaussian 
distribution.

2) if q is larger than the correct degree of the polynomial, 
μ (n,q) = α(q) N(0, σ ), where α2(q) = 2, 6, 20, 70, 252, 
and 924 for q = 1, 2, 3, 4, 5, and 6 respectively. Therefore, 
μ (n,q) = N(0, α(q)σ ), which is another Gaussian distribu-
tion.

3) if q is smaller than the correct degree of the polynomial, 
μ (n,q) = f (n) + β(q) N(0, σ ). Therefore, μ (n,q) = N( f (n), 
β(q)σ ), which is yet another Gaussian distribution.

Thus, μ (n,q) for every chosen degree (correct or not) follows 
a Gaussian distribution. Therefore, all the above narratives in sub-
section 4.4 are applicable to σ(σμ(q)).

Relevant results from the aforementioned computer experi-
ments in section 3 are presented in three Figures. Fig. 1 contains 
four sets of values corresponding to data from a linear polynomial 
with the chosen degree of 1 (star signs in cyan), from a quadratic 
polynomial with the chosen degree of 2 (square signs in blue), 
from a cubic polynomial with the chosen degree of 3 (open cir-
cle signs in green), and from a quartic polynomial with the chosen 
degree of 4 (diamond signs in magenta). The horizontal axis repre-
sents the values of noise standard deviations and the vertical axis 
represents the normalised σ(σμ(q)) values. The dashed black line, 
with a slope of 1 and intercept of 0, has been added for reference 
only. Experimental results are in good agreement with the theoret-
ical expectation that the normalised σ(σμ(q)) values vary linearly 
with the noise standard deviation (σ ) with a slope of 1 and in-
tercept of 0, in the cases of chosen orders being the same as the 
correct orders.

Fig. 2 contains fourteen sets of values corresponding to data 
from a linear polynomial with the chosen degree of 2 (star signs 
in blue), from a linear polynomial with the chosen degree of 3 (star 
signs in green), from a linear polynomial with the chosen degree of 
4 (star signs in magenta), from a linear polynomial with the cho-
sen degree of 5 (star signs in black), from a linear polynomial with 
the chosen degree of 6 (star signs in red), from a quadratic poly-
nomial with the chosen degree of 3 (square signs in green), from 
a quadratic polynomial with the chosen degree of 4 (square signs 
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Fig. 1. Normalised σ(σμ(q)) for correct chosen degree versus noise. The horizontal axis represents the values of noise standard deviations and the vertical axis represents the 
normalised σ(σμ(q)) values. It contains four sets of values corresponding to data from four different polynomials. The dashed black line, with a slope of 1 and intercept of 0, 
has been added for reference only. (For the interpretation of the colours in the seven figures, the reader is referred to the web version of this article.)

Fig. 2. Normalised σ(σμ(q)) for larger chosen degree versus noise. The horizontal axis represents the values of noise standard deviations and the vertical axis represents the 
normalised σ(σμ(q)) values. It contains fourteen sets of values corresponding to data from different polynomials and different chosen degrees. The dashed black line, with a 
slope of 1 and intercept of 0, has been added for reference only.
in magenta), from a quadratic polynomial with the chosen degree 
of 5 (square signs in black), from a quadratic polynomial with the 
chosen degree of 6 (square signs in red), from a cubic polynomial 
with the chosen degree of 4 (open circle signs in magenta), from a 
cubic polynomial with the chosen degree of 5 (open circle signs in 
black), from a cubic polynomial with the chosen degree of 6 (open 
circle signs in red), from a quartic polynomial with the chosen de-
gree of 5 (diamond signs in black), and from a quartic polynomial 
with the chosen degree of 6 (diamond signs in red). The horizontal 
axis represents the values of noise standard deviations and the ver-
tical axis represents the normalised σ(σμ(q)) values. The dashed 
black line, with a slope of 1 and intercept of 0, has been added 
for reference only. Experimental results are in good agreement the 
theoretical expectation that the normalised σ(σμ(q)) values vary 
linearly with the noise standard deviation (σ ) with a slope of 1 
and intercept of 0, in the cases of chosen orders being larger than 
the correct orders.

Fig. 3 contains six sets of values corresponding to data from a 
quadratic polynomial with the chosen degree of 1 (square signs in 
cyan), from a cubic polynomial with the chosen degree of 1 (open 
circle signs in cyan), from a cubic polynomial with the chosen de-
8

gree of 2 (open circle signs in blue), from a quartic polynomial 
with the chosen degree of 1 (diamond signs in cyan), from a quar-
tic polynomial with the chosen degree of 2 (diamond signs in 
blue), and from a quartic polynomial with the chosen degree of 3 
(diamond signs in green). The horizontal axis represents the values 
of noise standard deviations and the vertical axis represents the 
normalised σ(σμ(q)) values. The dashed black line, with a slope 
of 1 and intercept of 0, has been added for reference only. Again, 
experimental results are in good agreement with the theoretical 
expectation that the normalised σ(σμ(q)) values vary linearly with 
the noise standard deviation (σ ) with a slope of 1 and intercept 
of 0, in the cases of chosen orders being smaller than the correct 
orders.

It is clear that the experimental results are in good agreement 
with the theoretical expectation that the normalised σ(σμ(q)) val-
ues vary linearly with the noise standard deviation (σ ) with a 
slope of 1 and intercept of 0, in the cases of chosen orders be-
ing the same as the correct orders (Fig. 1) as well as in the cases 
of chosen orders being larger than the correct orders (Fig. 2) and 
for chosen orders being smaller than the correct orders (Fig. 3).
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Fig. 3. Normalised σ(σμ(q)) for smaller chosen degree versus noise. The horizontal axis represents the values of noise standard deviations and the vertical axis represents the 
normalised σ(σμ(q)) values. It contains six sets of values corresponding to data from different polynomials and different chosen degrees. The dashed black line, with a slope 
of 1 and intercept of 0, has been added for reference only.
5. Polynomial degree estimators

Here, two polynomial degree estimators are introduced – the 
recently published PTS1 [29] and the proposed PTS2. These two 
are compared with the chosen four of the existing estimators.

5.1. PTS1

The equation (16) can be rearranged and approximated as fol-
lows

x̂ (n) =
q∑

i=1

a (i) x (n − i) + x (n)+ < μ(q) >

As everything on the right hand of the above equation is known, 
these ( f − q) values of x̂(n) are calculated and can be regarded as 
time-series “fitted” values. In these experiments, f is equal to 60. 
The relevant root-mean square time-series estimation error, f e(q), 
is defined as

f e (q) =

√√√√√
⎡
⎣

(∑ f
i=q

(
x̂ (i) − x (i)

)2
)

( f − q)

⎤
⎦ (33)

where ( f − q) is the number of data values being estimated and 
x̂(i) are the estimated values. It should be noted that f e(q) gener-
ally decreases as q increases.

Recall that each of AIC, AICc, GIC, and BIC attempts to balance 
between overfitting and underfitting scenarios. In one scenario er-
rors reduce, while errors increase in the other scenario with in-
creasing values of q. A similar scenario arises here, in that f e(q)

generally decreases as q increases, while σ 2
μ(q) increases with q. In 

[29], the following parameter is defined

P T S1 (q) = σ 2
μ(q) + ( f e (q))2 (34)

The estimated value of q is the one for which PTS1(q) is the mini-
mum.

5.2. PTS2

From the observations in Tables 2, 4, 6, and 8 as well as the 
analysis in sections 4.1, 4.2, and 4.3, the following can be con-
cluded:
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1) When the chosen degree (q) is the same as the correct degree 
(D), < σμ(q) >2 = α2(q) σ 2, where α2(q) = 2, 6, 20, 70, 252, 
and 924 for q = 1, 2, 3, 4, 5, and 6.

2) When the chosen degree (q) is larger than the correct degree 
(D), < σμ(q) >2 = α2(q) σ 2.

3) When the chosen degree (q) is smaller than the correct de-
gree (D), < σμ(q) >2 = (variance of some known function of 
n) + α2(q) σ 2.

When the chosen degree (q) is larger than the correct degree 
(D), < σμ(q) >2= α2(q > D) σ 2 > α2(D) σ 2, which is the variance 
for the correct degree. Also, when the chosen degree (q) is smaller 
than the correct degree (D), for sufficient number of data values, 
< σμ(q) >2 = (variance of some known function of n) + α2(q <
D) σ 2 > α2(D)σ 2. Hence, the following parameter is defined

P T S2 (q) = σ 2
μ(q) (35)

The estimated value of q is the one for which PTS2(q) is the mini-
mum; PTS2(q) is the proposed degree estimator.

For each degree of polynomial from 1 to 4 (see section 3) and 
each of the five values of noise standard deviations from 1 to 5, 
1000 sets of noisy data were generated. In each set of 101 data 
values, the first 60 data values have been used for estimating the 
degree of the polynomial. Fig. 4, Fig. 5, Fig. 6, and Fig. 7 display 
the accuracy (%) of degree estimation using AIC (green lower trian-
gles), AICc (black upper triangles), GIC (magenta + signs), BIC (blue 
circles), PTS1 (red stars), and PTS2 (black diamonds) versus noise 
standard deviations for the linear polynomial, quadratic polyno-
mial, cubic polynomial, and quartic polynomial respectively. Each 
of AIC, AICc, GIC, and BIC calculates log-likelihoods, which require 
the value of σ . When estimated values of σ were used the results 
were poorer. So, the exact values of σ were used for the above 
results, even though these are not available in reality. In each of 
these Figures AICc is always better than AIC, while GIC and BIC 
give very similar results, and they are always much better than AIC 
and AICc. PTS1 and the proposed PTS2 are always the best by far.

6. Noise variance estimator

All the preparatory work has been completed above to propose 
an estimator for noise standard deviation and to evaluate the same. 
In subsections 4.1 and 4.2 it has been shown that, when the chosen 
order is either the correct order or larger than the correct order, 
the variance is given by
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Fig. 4. Accuracy of degree selection for linear polynomial versus noise. The lines display the accuracy (%) of degree estimation using AIC (green lower triangles), AICc (black 
upper triangles), GIC (magenta + signs), BIC (blue circles), PTS1 (red stars), and PTS2 (black diamonds) versus noise standard deviations for the linear polynomial.

Fig. 5. Accuracy of degree selection for quadratic polynomial versus noise. The lines depict the accuracy (%) of degree estimation using AIC (green lower triangles), AICc (black 
upper triangles), GIC (magenta + signs), BIC (blue circles), PTS1 (red stars), and PTS2 (black diamonds) versus noise standard deviations for the quadratic polynomial.

Fig. 6. Accuracy of degree selection for cubic polynomial versus noise. The lines show the accuracy (%) of degree estimation using AIC (green lower triangles), AICc (black 
upper triangles), GIC (magenta + signs), BIC (blue circles), PTS1 (red stars), and PTS2 (black diamonds) versus noise standard deviations for the cubic polynomial.
10
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Fig. 7. Accuracy of degree selection for quartic polynomial versus noise. The lines display the accuracy (%) of degree estimation using AIC (green lower triangles), AICc (black 
upper triangles), GIC (magenta + signs), BIC (blue circles), PTS1 (red stars), and PTS2 (black diamonds) versus noise standard deviations for the quartic polynomial.
< σμ(q) >2=
(

(1)2 +
q∑

i=1

a (i)2

)
σ 2 = α2(q)σ 2 (36)

with known values of α2(q). Therefore, the noise variance can be 
written as

σ (q)2 = < σμ(q) >2

α2(q)
(37)

Of course, this is for a single value of q. There are infinitely many 
possible q values are available starting from the correct degree to 
any value larger than this. Defining D as the correct degree and 
M is the largest chosen degree, an alternative and more general 
estimator can be written as

σ̂ 2 =
⎛
⎝ M∏

q=D

(
< σμ(q) >2

α2(q)

)⎞
⎠

1
M−D+1

(38)

Choosing a larger number of values of q allows one to combine 
many more estimations of σ 2 than choosing just a single value for 
q.

Some computer experiments have been carried out for each of 
the four polynomials (linear, quadratic, cubic, and quartic) and five 
different values of noise standard deviations σ of 1, 2, 3, 4, and 
5. The experimental setup is the same as in sections 3. For each 
degree of a polynomial, 1,000 sets of 101 data values have been 
generated for each value of the standard deviation (σ ) of noise 
using the zero-mean Gaussian distribution, N (0, σ ). As before, in 
each set of 101 data values, the first 60 data values, i.e., f = 60, 
have been used for estimating the noise standard deviation, σ , 
using each of the five methods – AIC, AICc, GIC, BIC, and the pro-
posed one. The true value of the noise standard deviation has been 
used for AIC, AICc, GIC, and BIC to obtain a more accurate estimate 
of the polynomial degree. For the proposed method, the value of 
M was set at 6 for illustration, though this can be made as large as 
one would like. The average standard deviation is calculated from 
the 1000 estimates of σ . These estimates are recorded in Table 9.

For each combination of the polynomial degree and the noise 
standard deviation, both the mean and the RMS values from AIC, 
AICc, GIC, and BIC, are extremely similar to each other; they ap-
pear to underestimate the true values. Expected values from the 
proposed method are pretty much the true values, even though 
RMS values from the proposed method are larger than those from 
AIC, AICc, GIC, and BIC.
11
7. Discussion

In the following three items are discussed.
Zero-mean Gaussian noise: all experimental results in previ-

ous sections have come from additive, zero-mean, independent and 
identically distributed Gaussian noise. The statistical significance 
of polynomial degree estimations from the six estimators for each 
combination of a polynomial degree (4 in total) and a noise stan-
dard deviation (5 in total) have been investigated. For each of these 
20 combinations and each of the six estimators, there are 1000 
estimated values of the polynomial degree. The MATLAB “poissfit” 
function has been used to obtain the maximum likelihood estimate 
of the degree and its 95% confidence interval (i.e., the significance 
level of 0.05). The maximum likelihood estimates of the degree in 
all 20 combinations for each of the chosen four of the existing es-
timators AIC, AICc, GIC, and BIC are different from the true value 
of the degree. For AIC and AICc, 95% confidence intervals do not 
contain the true degree 100% of these cases. For GIC and BIC, con-
fidence intervals do not contain the true degree 25% of these cases. 
In contrast, PTS1 and PTS2 have selected the correct polynomial 
degree in all of these 20 combinations; these results are consis-
tent with the true degree for 100% of these cases of zero-mean 
Gaussian noise.

Zero-mean non-Gaussian noise: As an example of non-Gaussian 
noise, the effects for adding Uniform noise have been investigated, 
using the identical procedure to the above. At the 95% confidence 
interval (i.e., the significance level of 0.05), the maximum likeli-
hood estimate of the degree in all 20 combinations for each of 
the chosen four of the existing estimators is different from the 
true value of the degree. For AIC and AICc, confidence intervals do 
not contain the true polynomial degree 100% of these cases. For 
GIC and BIC, confidence intervals do not contain the true degree 
25% of these cases. Yet, PTS1 and PTS2 have selected the correct 
polynomial degree in all of these 20 combinations and these re-
sults are consistent with the true degree in 100% of these cases of 
zero-mean Uniform noise.

For each estimator, 20 (4 degrees * 5 noise standard deviations) 
values of the percentage accuracy with Gaussian noise and the 
corresponding percentage accuracy with Uniform noise are very 
similar. For each estimator, both the average of these difference 
percentage accuracies and the standard deviation of these differ-
ence percentage accuracies are 0.65% ± 2.10% for AIC, -0.24% ±
1.78% for AICc, -0.37% ± 0.97% for GIC, -0.37% ± 0.97% for BIC, 
0.0% ± 0.0% for PTS1 and 0.0% ± 0.0% for PTS2. Also, the PTS1 and 
PTS2 are the only two to select the correct degree of a polynomial 
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Table 9
Estimates of the noise standard deviation (σ̂ ) using AIC, AICc, GIC, BIC, and the proposed method.

True Noise 
Standard Deviation 
(σ )

Method Degree = 1 
Linear 
Polynomial

Degree = 2 
Quadratic 
Polynomial

Degree = 3 
Cubic 
Polynomial

Degree = 4 
Quartic 
Polynomial

1 AIC 0.96 ± 0.09 0.95 ± 0.09 0.95 ± 0.09 0.94 ± 0.09
AICc 0.97 ± 0.09 0.96 ± 0.09 0.96 ± 0.09 0.94 ± 0.09
GIC 0.97 ± 0.09 0.96 ± 0.09 0.96 ± 0.09 0.95 ± 0.09
BIC 0.97 ± 0.09 0.96 ± 0.09 0.96 ± 0.09 0.95 ± 0.09
Proposed 1.00 ± 0.14 0.99 ± 0.15 0.99 ± 0.15 0.99 ± 0.16

2 AIC 1.93 ± 0.18 1.91 ± 0.18 1.90 ± 0.18 1.88 ± 0.18
AICc 1.94 ± 0.18 1.92 ± 0.18 1.90 ± 0.18 1.89 ± 0.18
GIC 1.96 ± 0.18 1.93 ± 0.18 1.91 ± 0.18 1.90 ± 0.18
BIC 1.96 ± 0.18 1.93 ± 0.18 1.91 ± 0.18 1.90 ± 0.18
Proposed 2.00 ± 0.28 1.99 ± 0.30 2.00 ± 0.30 1.99 ± 0.32

3 AIC 2.91 ± 0.27 2.88 ± 0.27 2.84 ± 0.27 2.82 ± 0.28
AICc 2.92 ± 0.28 2.89 ± 0.27 2.85 ± 0.26 2.83 ± 0.28
GIC 2.94 ± 0.28 2.91 ± 0.27 2.87 ± 0.26 2.84 ± 0.28
BIC 2.94 ± 0.28 2.91 ± 0.27 2.87 ± 0.26 2.84 ± 0.28
Proposed 3.00 ± 0.42 2.99 ± 0.45 2.99 ± 0.47 2.98 ± 0.47

4 AIC 3.87 ± 0.37 3.84 ± 0.35 3.77 ± 0.35 3.78 ± 0.36
AICc 3.88 ± 0.37 3.85 ± 0.35 3.78 ± 0.35 3.79 ± 0.36
GIC 3.92 ± 0.37 3.88 ± 0.36 3.80 ± 0.35 3.80 ± 0.36
BIC 3.92 ± 0.37 3.88 ± 0.36 3.80 ± 0.35 3.80 ± 0.36
Proposed 4.02 ± 0.59 4.01 ± 0.59 3.95 ± 0.60 4.00 ± 0.63

5 AIC 4.83 ± 0.44 4.82 ± 0.44 4.76 ± 0.44 4.72 ± 0.46
AICc 4.85 ± 0.44 4.83 ± 0.45 4.77 ± 0.44 4.73 ± 0.46
GIC 4.89 ± 0.45 4.87 ± 0.45 4.80 ± 0.45 4.74 ± 0.46
BIC 4.80 ± 0.45 4.87 ± 0.45 4.80 ± 0.45 4.74 ± 0.46
Proposed 4.99 ± 0.67 5.00 ± 0.74 4.99 ± 0.77 4.97 ± 0.84
every time; their performances were always the best. BIC and GIC 
performances are very similar to each other, and these are better 
than AICc, which performed better than AIC.

In the cases of additive, zero-mean, independent and identically 
distributed, and symmetric non-Gaussian noise the results are ex-
pected to be similar, since the theoretical results in sections 4.1
and 4.2 do not assume more than the noise being additive, zero-
mean, and independent and identically distributed. Indeed, these 
results also hold for additive, zero-mean, independent and identi-
cally distributed, and non-symmetric non-Gaussian noise. However, 
in this more general case the numerical values could be very dif-
ferent.

Note on applications: This is primarily a novel technique pa-
per with a solid theoretical foundation and much success with 
simulated data. Nonetheless, there are many applications of this 
study, including satellite navigation, marine navigation, and dig-
ital mammography [30,31]. Yet another interesting new one can 
be in polymerase chain reaction (PCR) bias correction in quanti-
tative DNA methylation studies. PCR plays a fundamental role in 
genetics as it facilitates the quantification of small amounts of ge-
netic materials. In the last two or three decades of PCR’s existence, 
the ultimate goal of reliable estimation of a basic parameter has 
proved to be elusive [10,32–35]. This has led to the development 
of different methods to analyze amplification curves. In [33], au-
thors stated, “In published comparisons of these methods, available 
algorithms were typically applied in a restricted or outdated way” 
and went on to develop “a framework for robust and unbiased as-
sessment of curve analysis performance”. Subsequently, authors in 
[34] reexamined the study in [33] and cast doubt on it. In the 
calibration fitting they tried linear, quadratic, and cubic response 
functions [34]. One major challenge lies in choosing how to fit the 
data – hyperbolic, linear, quadratic, cubic, quartic. The study in [10]
using 10 genes demonstrates that conventional hyperbolic models 
can fit the data but not so well. Cubic models can fit the data from 
9 of the 10 genes better than hyperbolic models, except for one
12
gene (SFRP1). The framework of this paper can fit data from all 
10 genes well with no exceptions; the details of this study will be 
presented later.

8. Conclusion

The major contribution of this paper is the novel way to es-
timate the noise variance, with the relevant theoretical founda-
tions, from a set of polynomial data values from an underlying 
polynomial with additive zero-mean, independent and identically 
distributed Gaussian noise without using any polynomial coeffi-
cients. Very recent results have demonstrated that all polynomials 
of degree q can be represented by the same set of known time-
series coefficients of autoregressive models and a constant term 
μ [26]. Computer experiments have recorded < μ >, < σμ(q) >, 
and σ

(
σμ(q)

)
for different degrees of polynomials and noise pow-

ers. Models have been developed to explain all these results. These 
models provided inspiration to develop methods for the degree 
estimation and the noise power estimation. Existing techniques 
estimate the degree of the underlying polynomial and its corre-
sponding coefficients. With this knowledge they can calculate the 
fitted values of the data and comparing them with the noisy data 
values can estimate the noise in the data. Four well-known and 
well-regarded maximum likelihood-based techniques have been 
used to estimate the degree of the polynomial and the noise vari-
ance.

The following of the proven items in this paper are highlighted:

1) The < μ > values, for a given polynomial and a chosen value 
for the degree of this polynomial, are independent of the noise 
standard deviations.

2) If the chosen degree is the same as the correct one, < μ > val-
ues are c(q)q!, where q is the correct degree of the polynomial 
and c(q) is its leading degree coefficient.

3) Whenever the chosen degree is larger than the correct one, 
the < μ > values are 0.
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4) Whenever the chosen degree is smaller than the correct one, 
the < μ > values are very different from c(q)q! and 0.

Below are some important experimental observations about the 
degree and the noise power estimators:

1) The polynomial degree estimates obtained from the proposed 
PTS1 and PTS2 are significantly better than those from the ex-
isting methods – AIC, AICc, GIC, and BIC.

2) Estimated values of noise power from the proposed method 
are pretty much the true values and appear to be unbiased.

The proposed methods for the degree estimation and the noise 
power estimation from noisy polynomial data are uncommonly dif-
ferent in that they do not use polynomial coefficient values and yet 
they are remarkably successful.
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