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A Dynamic Event-Triggered Approach to Recursive
Non-fragile Filtering for Complex Networks with

Sensor Saturations and Switching Topologies
Shaoying Wang, Zidong Wang, Hongli Dong and Yun Chen

Abstract—In this paper, the non-fragile filtering issue is ad-
dressed for complex networks (CNs) with switching topologies,
sensor saturations and dynamic event-triggered communication
protocol (DECP). Random variables obeying the Bernoulli distri-
bution are utilized in characterizing the phenomena of switching
topologies and stochastic gain variations. By introducing an
auxiliary offset variable in the event-triggered condition, the
DECP is adopted to reduce transmission frequency. The goal
of this paper is to develop a non-fragile filter framework for
considered CNs such that the upper bounds on the filtering error
covariances are ensured. By virtue of mathematical induction,
gain parameters are explicitly derived via minimizing such upper
bounds. Moreover, a new method of analyzing the boundedness
of given positive definite matrix is presented to overcome the
challenges resulting from the coupled interconnected nodes, and
sufficient conditions are established to guarantee the mean-square
boundedness of filtering errors. Finally, simulations are given to
prove the usefulness of our developed filtering algorithm.

Index Terms—Complex networks, non-fragile filter, dynamic
event-triggered communication protocol, switching topologies,
sensor saturations.

I. I NTRODUCTION

Complex networks (CNs), comprised of large quantities of
coupled nodes with a specific topology, have found applica-
tions in areas including social networks, biological networks,
transportation network, communication network, and electrical
power grids [14], [22], [27], [29], [36], [38], [40], [48], [50].
Among others, scale-free networks [43], random networks and
small-world networks [44] have been well recognized as three
representative categories of CNs. In general, it is quite difficult
to fully access all the states of CNs owing to the coupling
characteristic between nodes and the technological/physical
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restrictions, and an alternative approach is therefore to infer
network states according to partially available measurements.

Recently, the filtering issue of CNs has become a main-
stream topic in the area of complexity science, see [11], [15],
[30], [39], [46], [51]. In [15], the recursive filtering issue
has been addressed for coupled stochastic CNs subject to
the random disturbances and packet dropouts. In [50], the
estimation problem has been investigated for time-delayed
CNs with filter stability discussed.

In practice, phenomena of stochastic gain variations (SGVs)
are inevitable in the process of filter realization due mainly
to unexpected implementation errors such as rounding errors,
analog-digital conversion errors, and programming errors [21].
The impact from SGVs, if not well handled, could lead to
serious degradations on the overall filtering performance. As
such, the last years have spotted a great surge of research
interest on non-fragile filtering problems and some elegant
results have appeared, see e.g. [23], [26], [28], [31], [37].
To mention a few, the non-fragileH∞ filter [21] and the
distributed resilient recursive filter [26] have been designed
for time-varying nonlinear systems.

Another frequently encountered phenomenon in engineering
practice is the so-called sensor saturation that is primarily
caused by the inherent physical constraints [49]. Correspond-
ingly, a large amount of work has been acquired on sensor-
saturation-resistant filtering problems, see [7], [18], [47], [54].
For example, in [47], the filtering and intermittent fault de-
tection issues have been addressed for uncertain stochastic
systems subject to sensor saturations. Nevertheless, to our best
knowledge, non-fragile filtering issues for CNs with SGVs and
sensor saturations have not been comprehensively considered.

In reality, it is quite common that the connection topology of
CNs varies with time because of the changes of nodes in the
spatially distributed networks [6], [11] and, accordingly, the
filtering problem with switching topologies has attracted con-
siderable attention from many researchers. Generally speaking,
there have been mainly two approaches available in the litera-
ture to characterizing the switching behavior between coupling
nodes, namely, the Bernoulli random variable approach [20]
and the Markov chain approach [13]. In [6], a novelH∞

approach has been developed for nonlinear CNs subject to
stochastic inner coupling, randomly varying topologies and
measurement quantization, where topology changes of the CNs
have been depicted by a Markov chain. Furthermore, an event-
triggered approach has been proposed in [13] for nonlinear
CNs with missing measurements and randomly switching
topologies. Unfortunately, for non-fragile filtering issues of

Copyright © 2021 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by 
sending a request to pubs-permissions@ieee.org. See: https://www.ieee.org/publications/rights/rights-policies.html

This article has been accepted for publication in a future issue of this conference proceedings, but has not been fully edited. Content may change 
prior to final publication. Citation information: DOI 10.1109/TCYB.2021.3049461, IEEE Transactions on Cybernetics



FINAL 2

CNs under switching topologies, the corresponding research
has received little attention, which constitutes one motivation
of our current investigation.

A practical issue for networked systems is how to improve
the utilization efficiency of the inherently limited bandwidth
for communication in a resource-scarce environment [1], [2],
[25], [32], [34], [41], [42], [45], [52]. Among various trans-
mission schemes that have been put forward to save network
bandwidth, the so-called event-triggered strategy has received
much research attention with the hope of averting unnecessar-
ily frequent network transmissions while guaranteeing certain
estimation performance. The basic concept of the so-called
event-triggered transmission is that the data communication is
executed only when the deviation between the current and the
latest transmitted data meets a predefined condition [4], [5],
[9], [13], [24], [33].

Very recently, the dynamic event-triggered communication
protocol (DECP) has been put forward via introducing auxil-
iary variables [9], [10], [16], [53], and many important results
have been given regarding filtering problems for various CNs
under DECP, see e.g. [18], [19]. For instance, in [33], an event-
triggered filter has been designed for stochastic nonlinear
systems by simultaneously taking into account linearization
errors, packet losses, and time delays. In [9], a distributed
set-membership filter has been devised in case of unknown-
but-bounded process and measurement noises. Nevertheless,
it is worth mentioning that little effort has been put so far
into dynamic event-triggered filtering issues for CNs, let alone
the case where the SGVs, sensor saturations and switching
topologies are also involved.

Based on aforementioned considerations, in this paper, we
aim at investigating non-fragile filtering problems for time-
varying CNs under DECP subject to sensor saturations and
switching topologies. Some Bernoulli distributed random vari-
ables are used to describe phenomena of switching topologies
and SGVs. The DECP is employed to schedule the data
transmissions in a dynamical way. The main challenges we
face lie in the following three aspects: 1) how to better model
the phenomenon of DECP? 2) how to handle the impacts
from sensor saturations, DECP and switching topologies on
the design of recursive filter? and 3) how to analyze the mean-
square boundedness of the filtering error? To overcome the
listed challenges, we are dedicated to the development of a
dynamic event-triggered non-fragile recursive filter such that
upper bounds on the resulting filtering error covariances are
obtained and then gain matrices are designed via minimizing
such upper bounds.

The primary contributions we deliver in this paper are given
as follows: 1) a dynamic event-triggered non-fragile filter,
which is suitable for online implementation, is first proposed
in the concurrence of sensor saturations, switching topologies
and SGVs; 2) sufficient conditions are provided to ensure
mean-square boundedness of resulting filtering errors; and
3) a new technique, which analyzes the boundedness of a
given positive definite matrix, is presented to tackle difficulties
caused by the coupling of interconnected nodes.

Notation. ‖·‖ is the Euclidean norm or the spectral norm of
vector or matrix “·”. P > 0 denotes thatP is a positive-definite

matrix. col{·} means to aggregate all the column vectors into
a column vector.AT means the transpose of matrixA. tr(A)
denotes the trace of matrixA. sym{∗} represents∗ + ∗T . N
is the natural number set.E{x} represents the expectation of
the random variablex. All matrices used in this paper are
supposed to have appropriate dimensions.

II. PROBLEM STATEMENT

Consider a CN with switching topologies and sensor satu-
rations:
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function andρi(i = 1, 2, · · · ,m) represents the saturation
level.
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where0 ≤ σi < 1, 0 < hi < 1 andθi ≥ 1/hi are predefined
scalars, andχ(i)

0 ≥ 0 is the initial value.
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(i)
k is sent to the remote filter only when
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Accordingly, the available measurement at the filter, denoted
by z̃

(i)
k , is described as

z̃
(i)
k = z

(i)
kt
, k ∈ {kt, kt + 1, . . . , kt+1 − 1}. (6)

Remark 1:Note that an auxiliary offset variableχ(i)
k , which

evolves according to (4), has been exploited in the event
triggering condition to dynamically adjust the inter-event time.
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As stated in [9],χ(i)
k is a non-negative scalar when the

parameters satisfyχ(i)
0 ≥ 0, 0 < hi < 1 and θihi ≥ 1.

With this property, it is easy to see that the triggering times
under DECP will be reduced when compared to those from the
static event-triggered protocol, thereby further alleviating the
network burden. It should also be pointed out that the DECP
would reduce to the static protocol by settingθi → ∞.

Based on the available measurementz̃
(i)
k , the filter for node

i (i = 1, 2, . . . , L) is constructed as follows:






x̂
(i)
k+1|k =A

(i)
k x̂

(i)
k + c

L∑

j=1

ζ̄
(ij)
k Γx̂

(j)
k ,

x̂
(i)
k+1 =x̂

(i)
k+1|k + G̃

(i)
k+1

(

z̃
(i)
k+1 − C

(i)
k+1x̂

(i)
k+1|k

)
(7)

where x̂
(i)
k+1|k ∈ R

n and x̂
(i)
k+1 ∈ R

n denote the predic-

tion and estimate ofx(i)
k+1, respectively. Note that̃G(i)

k+1 ,

G
(i)
k+1 + ξ

(i)
k+1G

(i)
s,k+1, whereG(i)

k+1 denotes the filter gain to-

be-designed,ξ(i)k+1G
(i)
s,k+1 represents the stochastic uncertainty

associated with the filter gain,G(i)
s,k+1 is a determined matrix,

and ξ
(i)
k+1 ∈ R is the multiplicative noise with mean0 and

varianceβ(i)
k+1.

Remark 2: It is observed from the proposed filter structure
(7) that all the information about coupled configuration of the
network, switching topologies, DECP and SGVs has been fully
exploited. The stochastic parameter uncertaintiesξ

(i)
k+1G

(i)
s,k+1

are utilized to characterize the resilience of the filter gain vari-
ations, which are inevitable in the process of filter realization
owing to unexpected implementation errors. Note that the non-
fragile filter proposed in this paper is quite different from that
in [18], [26], where the distinctive difference lies in that 1)
the main contribution of [18] is the design of a non-fragile
H∞ filter for nonlinear CNs with gain perturbation satisfying
∆Ki = MiFi,kNi andFT

i,kFi,k ≤ I, 2) a distributed filter is
proposed in [26] for a class of discrete time-varying systems
with stochastic nonlinearities and sensor degradation with zero
mean and bounded second-moment uncertainties△ij(k), and
3) the objective here is to propose a dynamic event-triggered
non-fragilerecursive minimum-variance filtering algorithmfor
linear CNs with sensor saturations, switching topologies and
SGVs.
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In this paper, we aim at designing filter (7) for CNs (1) such
that, in case of sensor saturations, switching topologies, DECP
and SGVs, upper bounds onΞ(i)
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III. M AIN RESULTS

A. Design of Dynamic Event-Triggered Non-fragile Filter
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Remark 3: In Lemma 1, the expression of the state covari-

ance is obtained as shown in (8). Unfortunately, it is literally
difficult to calculate the exact value via (8) owing to the
existence of the unknown termsΦ12,k + ΦT

12,k. To deal with
such an issue, an upper bound on the state covariance is given
in (9) by using (11).

For nodei, let us first focus our attention on the exact
values of the one-step prediction and filtering error covariances
Ξ
(i)
k+1|k andΞ(i)

k+1.

Lemma 2:The recursion ofΞ(i)
k+1|k is

Ξ
(i)
k+1|k =A

(i)
k Ξ

(i)
k (A

(i)
k )T + c2

L∑

j=1

S
(ij)
k ΓO

(j)
k ΓT +N

(i)
11,k

+N
(i)
12,k + (N

(i)
12,k)

T +B
(i)
k Q

(i)
k (B

(i)
k )T (15)

where

N
(i)
11,k , E[(c

L∑

j=1

ζ̄
(ij)
k Γε

(j)
k )(c

L∑

j=1

ζ̄
(ij)
k Γε

(j)
k )T ],

N
(i)
12,k , E[A

(i)
k ε

(i)
k (c

L∑

j=1

ζ̄
(ij)
k Γε

(j)
k )T ],

N
(i)
22,k , E[(c

L∑

j=1

ζ̃
(ij)
k Γx

(j)
k )(c

L∑

j=1

ζ̃
(ij)
k Γx

(j)
k )T ],

ζ̃
(ij)
k , ζ

(ij)
k − ζ̄

(ij)
k .

Proof: Based on (1) and (7), we have

ε
(i)
k+1|k =A

(i)
k ε

(i)
k + c

L∑

j=1

ζ̄
(ij)
k Γε

(j)
k

+ c

L∑

j=1

ζ̃
(ij)
k Γx

(j)
k +B

(i)
k w

(i)
k (16)

The definition ofΞ(i)
k+1|k tells

Ξ
(i)
k+1|k =A

(i)
k Ξ

(i)
k (A

(i)
k )T +N

(i)
11,k +N

(i)
22,k

+N
(i)
12,k + (N

(i)
12,k)

T +B
(i)
k Q

(i)
k (B

(i)
k )T . (17)

In addition, we obtain

N
(i)
22,k =c2E[(

L∑

j=1

ζ̃
(ij)
k Γx

(j)
k )(

L∑

j=1

ζ̃
(ij)
k Γx

(j)
k )T ]

=c2
L∑

j=1

S
(ij)
k ΓO

(j)
k ΓT (18)

where the fact thatE[ζ̃(ij)k ζ̃
(im)
k ] = 0 (j 6= m) has been

utilized. Substituting (18) into (17) yields (15).
Lemma 3:The recursion ofΞ(i)

k+1 is

Ξ
(i)
k+1 =Ω

(i)
k+1Ξ

(i)
k+1|k(Ω

(i)
k+1)

T

+ β
(i)
k+1G

(i)
s,k+1C

(i)
k+1Ξ

(i)
k+1|k(C

(i)
k+1)

T (G
(i)
s,k+1)

T

+ E[G̃
(i)
k+1µ

(i)
k+1(µ

(i)
k+1)

T (G̃
(i)
k+1)

T ]

+ E[G̃
(i)
k+1ϕ(C

(i)
k+1x

(i)
k+1)ϕ

T (C
(i)
k+1x

(i)
k+1)(G̃

(i)
k+1)

T ]

+G
(i)
k+1[R

(i)
k+1 + C

(i)
k+1O

(i)
k+1(C

(i)
k+1)

T ](G
(i)
k+1)

T

+ β
(i)
k+1G

(i)
s,k+1[R

(i)
k+1 + C

(i)
k+1O

(i)
k+1(C

(i)
k+1)

T ](G
(i)
s,k+1)

T

+ sym{H
(i)
1,k+1 +H

(i)
2,k+1 +H

(i)
3,k+1 +H

(i)
4,k+1

+H
(i)
5,k+1 +H

(i)
6,k+1 +H

(i)
7,k+1} (19)

where

Ω
(i)
k+1 , I −G

(i)
k+1C

(i)
k+1, Ω̃

(i)
k+1 , I − G̃

(i)
k+1C

(i)
k+1,

H
(i)
1,k+1 , E[Ω̃

(i)
k+1ε

(i)
k+1|k(µ

(i)
k+1)

T (G̃
(i)
k+1)

T ],

H
(i)
2,k+1 , E[−Ω̃

(i)
k+1ε

(i)
k+1|kϕ

T (C
(i)
k+1x

(i)
k+1)(G̃

(i)
k+1)

T ],

H
(i)
3,k+1 , E[Ω̃

(i)
k+1ε

(i)
k+1|k(x

(i)
k+1)

T (C
(i)
k+1)

T (G̃
(i)
k+1)

T ],

H
(i)
4,k+1 , E[−G̃

(i)
k+1µ

(i)
k+1ϕ

T (C
(i)
k+1x

(i)
k+1)(G̃

(i)
k+1)

T ],

H
(i)
5,k+1 , E[−G̃

(i)
k+1µ

(i)
k+1(v

(i)
k+1)

T (G̃
(i)
k+1)

T ],

H
(i)
6,k+1 , E[G̃

(i)
k+1µ

(i)
k+1(x

(i)
k+1)

T (C
(i)
k+1)

T (G̃
(i)
k+1)

T ],

H
(i)
7,k+1 , E[−G̃

(i)
k+1ϕ(C

(i)
k+1x

(i)
k+1)(C

(i)
k+1x

(i)
k+1)

T (G̃
(i)
k+1)

T ].

Proof: Based on the definition ofε(i)k+1, we have

ε
(i)
k+1 =ε

(i)
k+1|k − G̃

(i)
k+1(z̃

(i)
k+1 − C

(i)
k+1x̂

(i)
k+1|k). (20)

Adding two zero termsz(i)k+1 − z
(i)
k+1 and C

(i)
k+1x

(i)
k+1 −

C
(i)
k+1x

(i)
k+1 to the right-hand side of (20) yields

ε
(i)
k+1 =Ω̃

(i)
k+1ε

(i)
k+1|k + G̃

(i)
k+1µ

(i)
k+1

− G̃
(i)
k+1ϕ(C

(i)
k+1x

(i)
k+1)− G̃

(i)
k+1v

(i)
k+1

+ G̃
(i)
k+1C

(i)
k+1x

(i)
k+1. (21)

We know

E[Ω̃
(i)
k+1ε

(i)
k+1|k(ε

(i)
k+1|k)

T (Ω̃
(i)
k+1)

T ]
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=Ω
(i)
k+1Ξ

(i)
k+1|k(Ω

(i)
k+1)

T

+ β
(i)
k+1G

(i)
s,k+1C

(i)
k+1Ξ

(i)
k+1|k(C

(i)
k+1)

T (G
(i)
s,k+1)

T , (22)

E[G̃
(i)
k+1v

(i)
k+1(v

(i)
k+1)

T (G̃
(i)
k+1)

T ]

=G
(i)
k+1R

(i)
k+1(G

(i)
k+1)

T + β
(i)
k+1G

(i)
s,k+1R

(i)
k+1(G

(i)
s,k+1)

T , (23)

E[G̃
(i)
k+1(C

(i)
k+1x

(i)
k+1)(C

(i)
k+1x

(i)
k+1)

T (G̃
(i)
k+1)

T ]

=G
(i)
k+1C

(i)
k+1O

(i)
k+1(C

(i)
k+1)

T (G
(i)
k+1)

T

+ β
(i)
k+1G

(i)
s,k+1C

(i)
k+1O

(i)
k+1(C

(i)
k+1)

T (G
(i)
s,k+1)

T . (24)

Noting that ε(i)
k+1|k and x

(i)
k+1 are both uncorrelated with

v
(i)
k+1, we have

E[−Ω̃
(i)
k+1ε

(i)
k+1|k(v

(i)
k+1)

T (G̃
(i)
k+1)

T ] = 0,

E[G̃
(i)
k+1ϕ

T (C
(i)
k+1x

(i)
k+1)(v

(i)
k+1)

T (G̃
(i)
k+1)

T ] = 0,

E[−G̃
(i)
k+1v

(i)
k+1(C

(i)
k+1x

(i)
k+1)

T (G̃
(i)
k+1)

T ] = 0. (25)

Based on the definition ofΞ(i)
k+1 and (21)-(25),Ξ(i)

k+1 can
be calculated via (19).

So far, we have made much effort to obtain the expressions
of error covariance (as shown in Lemmas 2-3) with sensor
saturations, switching topologies, DECP and SGVS. Unfor-
tunately, it is hard to compute their accurate values due to
the existence of the unknown termsN (i)

12,k andH
(i)
j,k+1, (j =

1, 2, · · · , 7). In search of an alternative scheme, the upper-
bounding technique seems a feasible solution, that is, we like
to find an upper bound on the error covariance by virtue of
the recursive difference equation approach.

Theorem 1:Let πi, αi and βi (i = 2, · · · , 5) be positive
scalars. Under the initial condition̄Ξ(i)

0 = Ξ
(i)
0 > 0, assume

that there exist solutions̄Ξ(i)
k+1|k and Ξ̄(i)

k+1 to

Ξ̄
(i)
k+1|k =(1 + π2)A

(i)
k Ξ̄

(i)
k (A

(i)
k )T

+ (1 + π−1
2 )c2Mi

L∑

j=1

ζ̄
(ij)
k ΓΞ̄

(j)
k ΓT

+ c2
L∑

j=1

S
(ij)
k ΓŌ

(j)
k ΓT +B

(i)
k Q

(i)
k (B

(i)
k )T (26)

and

Ξ̄
(i)
k+1 =(1 + π3 + π4 + π5)[Ω

(i)
k+1Ξ̄

(i)
k+1|k(Ω

(i)
k+1)

T

+ β
(i)
k+1G

(i)
s,k+1C

(i)
k+1Ξ̄

(i)
k+1|k(C

(i)
k+1)

T (G
(i)
s,k+1)

T ]

+G
(i)
k+1Ū

(i)
k+1(G

(i)
k+1)

T + β
(i)
k+1G

(i)
s,k+1Ū

(i)
k+1(G

(i)
s,k+1)

T

(27)

where

X̄
(i)
0 =(χ

(i)
0 )2, ρ̄ ,

m∑

j=1

ρ2j ,

X̄
(i)
k+1 =[(1 + αi)(1 + ιi)h

2
i +

(1 + θi)

θ2i

× (1 + α−1
i )]X̄

(i)
k + [(1 + αi)(1 + ι−1

i )

+ (1 + α−1
i )(1 + θ−1

i )]σ2
i ,

φ
(i)
k+1 ,(1 + θi)

X̄
(i)
k+1

θ2i
+ (1 + θ−1

i )σ2
i ,

U
(i)
k+1 ,(1 + π−1

3 + π6 + π7 + π8)φ
(i)
k+1I

+ (1 + π−1
4 + π−1

6 + π9)ρ̄I + (1 + π−1
7 )R

(i)
k+1

+ (1 + π−1
5 + π−1

8 + π−1
9 )C

(i)
k+1O

(i)
k+1(C

(i)
k+1)

T ,

and Ū (i)
k+1 is the matrix obtained by replacingO(i)

k+1 by Ō
(i)
k+1

in U
(i)
k+1. Then, the inequalitiesΞ(i)

k+1|k ≤ Ξ̄
(i)
k+1|k andΞ(i)

k+1 ≤

Ξ̄
(i)
k+1 always hold.

Proof: With initial conditions, we haveΞ(i)
0 ≤ Ξ̄

(i)
0 . As-

suming thatΞ(i)
k ≤ Ξ̄

(i)
k , we need to prove thatΞ(i)

k+1 ≤ Ξ̄
(i)
k+1.

Similar to (12), we have

N
(i)
11,k =c2

L∑

j=1

L∑

m=1

ζ̄
(ij)
k ζ̄

(im)
k ΓE[ε

(j)
k (ε

(m)
k )T ]ΓT

≤c2Mi

L∑

j=1

ζ̄
(ij)
k ΓΞ

(j)
k ΓT . (28)

Next, let us handle the termN (i)
12,k + (N

(i)
12,k)

T in (15). By
utilizing (11), one has

N
(i)
12,k + (N

(i)
12,k)

T ≤ π2A
(i)
k Ξ

(i)
k (A

(i)
k )T + π−1

2 N
(i)
11,k (29)

Substituting (29) into (15) leads to

Ξ
(i)
k+1|k ≤(1 + π2)A

(i)
k Ξ

(i)
k (A

(i)
k )T

+ (1 + π−1
2 )c2Mi

L∑

j=1

ζ̄
(ij)
k ΓΞ

(j)
k ΓT

+ c2
L∑

j=1

S
(ij)
k ΓO

(j)
k ΓT +B

(i)
k Q

(i)
k (B

(i)
k )T . (30)

Then, from Lemma 1 and the assumption thatΞ
(i)
k ≤ Ξ̄

(i)
k , it

is easy to show thatΞ(i)
k+1|k ≤ Ξ̄

(i)
k+1|k.

In view of (3)-(4) and (11), we obtain

(µ
(i)
k+1)

Tµ
(i)
k+1 ≤ (1 + θi)

(χ
(i)
k+1)

2

θ2i
+ (1 + θ−1

i )σ2
i (31)

and

E[(χ
(i)
k+1)

2]

=E[(hiχ
(i)
k + σi − ‖µ

(i)
k ‖)2]

≤E[(1 + αi)(hiχ
(i)
k + σi)

2 + (1 + α−1
i )‖µ

(i)
k ‖2]

≤(1 + αi)[(1 + ιi)h
2
iE(χ

(i)
k )2 + (1 + ι−1

i )σ2
i ]

+ (1 + α−1
i )E‖µ

(i)
k ‖2]. (32)

Based on Lemma 4 in [19], we observe that
E[(χ

(i)
k+1)

2] ≤ X̄
(i)
k+1. Hence, it is not difficult to verify

thatE[µ(i)
k+1(µ

(i)
k+1)

T ] ≤ φ
(i)
k+1I. Furthermore, we have

E[G̃
(i)
k+1µ

(i)
k+1(µ

(i)
k+1)

T (G̃
(i)
k+1)

T ]

=G
(i)
k+1E[µ

(i)
k+1(µ

(i)
k+1)

T ](G
(i)
k+1)

T

+ β
(i)
k+1G

(i)
s,k+1E[µ

(i)
k+1(µ

(i)
k+1)

T ](G
(i)
s,k+1)

T
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≤G
(i)
k+1φ

(i)
k+1(G

(i)
k+1)

T + β
(i)
k+1G

(i)
s,k+1φ

(i)
k+1(G

(i)
s,k+1)

T , (33)

and

E[G̃
(i)
k+1ϕ(C

(i)
k+1x

(i)
k+1)ϕ

T (C
(i)
k+1x

(i)
k+1)(G̃

(i)
k+1)

T ]

≤ρ̄G
(i)
k+1(G

(i)
k+1)

T + β
(i)
k+1ρ̄G

(i)
s,k+1(G

(i)
s,k+1)

T . (34)

Similar to (29), the last term of the right-hand side of (19)
is computed as

H
(i)
1,k+1 + (H

(i)
1,k+1)

T

≤π3E[Ω̃
(i)
k+1ε

(i)
k+1|k(ε

(i)
k+1|k)

T (Ω̃
(i)
k+1)

T ]

+ π−1
3 E[G̃

(i)
k+1µ

(i)
k+1(µ

(i)
k+1)

T (G̃
(i)
k+1)

T ], (35)

H
(i)
2,k+1 + (H

(i)
2,k+1)

T

≤π4E[Ω̃
(i)
k+1ε

(i)
k+1|k(ε

(i)
k+1|k)

T (Ω̃
(i)
k+1)

T ]

+ π−1
4 E[G̃

(i)
k+1ϕ(C

(i)
k+1x

(i)
k+1)ϕ

T (C
(i)
k+1x

(i)
k+1)(G̃

(i)
k+1)

T ],
(36)

H
(i)
3,k+1 + (H

(i)
3,k+1)

T

≤π5E[Ω̃
(i)
k+1ε

(i)
k+1|k(ε

(i)
k+1|k)

T (Ω̃
(i)
k+1)

T ]

+ π−1
5 E[G̃

(i)
k+1C

(i)
k+1x

(i)
k+1(C

(i)
k+1x

(i)
k+1)

T (G̃
(i)
k+1)

T ], (37)

H
(i)
4,k+1 + (H

(i)
4,k+1)

T

≤π6E[G̃
(i)
k+1µ

(i)
k+1(µ

(i)
k+1)

T (G̃
(i)
k+1)

T ]

+ π−1
6 E[G̃

(i)
k+1ϕ(C

(i)
k+1x

(i)
k+1)ϕ

T (C
(i)
k+1x

(i)
k+1)(G̃

(i)
k+1)

T ],
(38)

H
(i)
5,k+1 + (H

(i)
5,k+1)

T

≤π7E[G̃
(i)
k+1µ

(i)
k+1(µ

(i)
k+1)

T (G̃
(i)
k+1)

T ]

+ π−1
7 E[G̃

(i)
k+1v

(i)
k+1(v

(i)
k+1)

T (G̃
(i)
k+1)

T ], (39)

H
(i)
6,k+1 + (H

(i)
6,k+1)

T

≤π8E[G̃
(i)
k+1µ

(i)
k+1(µ

(i)
k+1)

T (G̃
(i)
k+1)

T ]

+ π−1
8 E[G̃

(i)
k+1(C

(i)
k+1x

(i)
k+1)(C

(i)
k+1x

(i)
k+1)

T (G̃
(i)
k+1)

T ], (40)

H
(i)
7,k+1 + (H

(i)
7,k+1)

T

≤π9E[G̃
(i)
k+1ϕ(C

(i)
k+1x

(i)
k+1)ϕ

T (C
(i)
k+1x

(i)
k+1)(G̃

(i)
k+1)

T ]

+ π−1
9 E[G̃

(i)
k+1(C

(i)
k+1x

(i)
k+1)(C

(i)
k+1x

(i)
k+1)

T (G̃
(i)
k+1)

T ]. (41)

Next, substituting (33)-(41) into (19) yields

Ξ
(i)
k+1 ≤(1 + π3 + π4 + π5)[Ω

(i)
k+1Ξ

(i)
k+1|k(Ω

(i)
k+1)

T

+ β
(i)
k+1G

(i)
s,k+1C

(i)
k+1Ξ

(i)
k+1|k(C

(i)
k+1)

T (G
(i)
s,k+1)

T ]

+G
(i)
k+1U

(i)
k+1(G

(i)
k+1)

T + β
(i)
k+1G

(i)
s,k+1U

(i)
k+1(G

(i)
s,k+1)

T .

(42)

Using mathematical induction, we haveΞ(i)
k+1 ≤ Ξ̄

(i)
k+1.

Theorem 2:Consider the discrete CNs with sensor satura-
tions described by (1) and the proposed non-fragile filter given
by (7). The upper bound on̄Ξ(i)

k+1 is minimized with parameter

G
(i)
k+1 =(1 + π3 + π4 + π5)Ξ̄

(i)
k+1|k(C

(i)
k+1)

T [(1 + π3

+ π4 + π5)C
(i)
k+1Ξ̄

(i)
k+1|k(C

(i)
k+1)

T + Ū
(i)
k+1]

−1. (43)

Proof: Taking partial derivative oftr(Ξ̄(i)
k+1) with respect

to the parametersG(i)
k+1 and letting the partial derivative be

zero, we obtain

∂tr(Ξ̄
(i)
k+1)

∂G
(i)
k+1

=− 2(1 + π3 + π4 + π5)Ξ̄
(i)
k+1|k(C

(i)
k+1)

T

+ 2(1 + π3 + π4 + π5)G
(i)
k+1C

(i)
k+1Ξ̄

(i)
k+1|k(C

(i)
k+1)

T

+ 2G
(i)
k+1Ū

(i)
k+1

=0. (44)

After some algebraic manipulations, we have

G
(i)
k+1[(1 + π3 + π4 + π5)C

(i)
k+1Ξ̄

(i)
k+1|k(C

(i)
k+1)

T + Ū
(i)
k+1]

=(1 + π3 + π4 + π5)Ξ̄
(i)
k+1|k(C

(i)
k+1)

T , (45)

which yields (43).
Remark 4:So far, we have handled the dynamic event-

triggered non-fragile filtering issue for CNs with sensor sat-
urations and switching topologies. It should be pointed out
that the factors of sensor saturations, switching topologies,
DECP and SGVs have brought some essential difficulties in
the design of the filtering scheme. Sufficient conditions that
guarantee the existence of the filter have been established via
Theorems 1-2, where the effects from the above-mentioned
factors on filter performance have been considered. More
specifically,ρ̄ is related to the saturation levels,Mi accounts
for the switching topologies,β(i)

k+1 stands for the covariance

of the multiplicative noise andφ(i)
k+1 is there for the DECP.

It is also worthwhile to notice that the proposed dynamic
event-triggered non-fragile filtering algorithm is of a recursive
characteristic facilitating online implementations.

B. Analysis of Boundedness of Filtering Errors

To facilitate further developments, the following definition
and assumption are first introduced.

Definition 1: [17] ςk is exponentially mean-square bound-
ed if there exist positive numbersτ , u and 0 < α < 1 such
that

E{‖ςk‖
2} ≤ τE{‖ς0‖

2}αk + u. (46)

Assumption 1:There exist positive real scalarsā, b̄, b, c, c̄,
k̄s, t̄, r̄, v̄x, q̄, q, d̄, ζ̄, s̄, β̄ and φ̄, such that the following
conditions hold

‖A
(i)
k ‖ ≤ ā, bI ≤ B

(i)
k (B

(i)
k )T ≤ b̄I,

c ≤ ‖C
(i)
k+1‖ ≤ c̄, ‖G

(i)
s,k+1‖ ≤ k̄s,

‖Mi‖ ≤ t̄, ‖Γ‖ ≤ r̄, ‖tr(Ō
(i)
k )‖ ≤ v̄x,

qI ≤ Q
(i)
k ≤ q̄I, ‖R

(i)
k ‖ ≤ d̄, ‖ζ̄

(ij)
k ‖ ≤ ζ̄,

‖S
(ij)
k ‖ ≤ s̄, ‖β

(i)
k+1‖ ≤ β̄, ‖φ

(i)
k+1‖ ≤ φ̄.

For convenience of later analysis, we denote

Π
(i)
k , diagL{Ω

(i)
k },

Πk , diag{Ω
(1)
k ,Ω

(2)
k , · · · ,Ω

(L)
k },
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Ãk , diag{A
(1)
k , A

(2)
k , · · · , A

(L)
k },

B̃k , diag{B
(1)
k , B

(2)
k , · · · , B

(L)
k },

C̃k , diag{C
(1)
k , C

(2)
k , · · · , C

(L)
k },

Q̃k , diag{Q
(1)
k , Q

(2)
k , · · · , Q

(L)
k },

G̃s,k , diag{G
(1)
s,k, G

(2)
s,k, · · · , G

(L)
s,k },

M̃i , diagL{Mi}, Γ̃ , diagL{Γ},

G̃
(i)
s,k , diagL{G

(i)
s,k}, C̃

(i)
k , diagL{C

(i)
k }

I , [I, I, · · · , I], O , [0, 0, · · · , 0],

Ei , colL{O, · · · ,O, I,O, · · · ,O},

∆
(i)
k , diag{ζ̄

(i1)
k , ζ̄

(i2)
k , · · · , ζ̄

(iL)
k },

ēi , [0, 0, · · · , 0,
︸ ︷︷ ︸

i−1

I, 0, · · · , 0
︸ ︷︷ ︸

L−i

], E , diagL{bI}.

Theorem 3:Consider the discrete CNs with sensor satura-
tions described by (1) and the proposed non-fragile filter given
by (7). Under Assumption 1, if the following two inequalities

δ1 ,(m̄2 + k̄2s c̄
2)(ā2 + L2t̄ζ̄ r̄2) < 1 (47)

and

ν ,(1 + η4 + η5)(1 + f̄ + β̄)

+ (1 + η−1
4 + η6)c

2L(1 + β̄) < 1 (48)

hold, thenε(i)k is exponentially mean-square bounded.
Proof: From (16) and (21) , we have

ε
(i)
k+1 =Ω̃

(i)
k+1A

(i)
k ε

(i)
k + Ω̃

(i)
k+1c

L∑

j=1

ζ̄
(ij)
k Γε

(j)
k

+ γ
(i)
k+1 + g

(i)
k+1 (49)

where

γ
(i)
k+1 ,Ω̃

(i)
k+1c

L∑

j=1

ζ̃
(ij)
k Γx

(j)
k + Ω̃

(i)
k+1B

(i)
k w

(i)
k − G̃

(i)
k+1v

(i)
k+1,

g
(i)
k+1 ,G̃

(i)
k+1µ

(i)
k+1 − G̃

(i)
k+1ϕ(C

(i)
k+1x

(i)
k+1)

+ G̃
(i)
k+1C

(i)
k+1x

(i)
k+1. (50)

Recalling the definition ofΩ(i)
k+1 and (43), it can be deduced

that

‖G
(i)
k+1‖ ≤

c̄

c2
, k̄,

‖Ω
(i)
k+1‖ ≤1 +

c̄2

c2
, m̄. (51)

Next, it follows from the definitions ofγ(i)
k+1 and g

(i)
k+1 in

(50) that

E[(γ
(i)
k+1)

Tγ
(i)
k+1]

=c2
L∑

j=1

S
(ij)
k E[(x

(j)
k )TΓTΛ

(i)
k+1Γx

(j)
k ]

+ E[(w
(i)
k )T (B

(i)
k )TΛ

(i)
k+1B

(i)
k w

(i)
k ]

+ E[(v
(i)
k+1)

T (G̃
(i)
k+1)

T G̃
(i)
k+1v

(i)
k+1]

≤c2
L∑

j=1

S
(ij)
k trE{[x

(j)
k (x

(j)
k )T ]ΓTΛ

(i)
k+1Γ}

+ trE{w
(i)
k (w

(i)
k )T (B

(i)
k )TΛ

(i)
k+1B

(i)
k }

+ trE{v
(i)
k+1(v

(i)
k+1)

T (G̃
(i)
k+1)

T G̃
(i)
k+1}

≤(m̄2 + β̄c̄2k̄2s)(c
2Ls̄v̄xr̄

2 + nq̄b̄2)

+md̄(k̄2 + β̄k̄2s) , γ̄ (52)

and

E[(g
(i)
k+1)

T g
(i)
k+1]

=E[(µ
(i)
k+1)

T (G̃
(i)
k+1)

T G̃
(i)
k+1µ

(i)
k+1]

+ E[ϕT (C
(i)
k+1x

(i)
k+1)(G̃

(i)
k+1)

T G̃
(i)
k+1ϕ(C

(i)
k+1x

(i)
k+1)]

+ E[(x
(i)
k+1)

T (C
(i)
k+1)

T (G̃
(i)
k+1)

T G̃
(i)
k+1C

(i)
k+1x

(i)
k+1]

+ sym{E[−(µ
(i)
k+1)

T (G̃
(i)
k+1)

T G̃
(i)
k+1ϕ(C

(i)
k+1x

(i)
k+1)]

+ E[(µ
(i)
k+1)

T (G̃
(i)
k+1)

T G̃
(i)
k+1C

(i)
k+1x

(i)
k+1]

+ E[−ϕT (C
(i)
k+1x

(i)
k+1)(G̃

(i)
k+1)

T G̃
(i)
k+1C

(i)
k+1x

(i)
k+1]}

≤(1 + η1 + η2)tr{E[µ
(i)
k+1(µ

(i)
k+1)

T (G̃
(i)
k+1)

T G̃
(i)
k+1]

+ (1 + η−1
1 + η3)tr{E[ϕ(C

(i)
k+1x

(i)
k+1)

× ϕT (C
(i)
k+1x

(i)
k+1)(G̃

(i)
k+1)

T G̃
(i)
k+1] + (1 + η−1

2 + η−1
3 )

× tr{E[x
(i)
k+1(x

(i)
k+1)

T (C
(i)
k+1)

T (G̃
(i)
k+1)

T G̃
(i)
k+1C

(i)
k+1]}

≤(k̄2 + β̄k̄2s)[(1 + η1 + η2)mφ̄+ (1 + η−1
1 + η3)ρ̄m

+ (1 + η−1
2 + η−1

3 )v̄xc̄
2] , ḡ (53)

where

Λ
(i)
k+1 , (Ω

(i)
k+1)

TΩ
(i)
k+1 + β

(i)
k+1(C

(i)
k+1)

T (G
(i)
s,k+1)

TG
(i)
s,k+1C

(i)
k+1,

F
(i)
k+1 , (G

(i)
k+1)

TG
(i)
k+1 + β

(i)
k+1(G

(i)
s,k+1)

TG
(i)
s,k+1.

In the sequel, an iterative matrix equation is constructed as
follows:

Θ
(i)
k+1 = Ω

(i)
k+1A

(i)
k Θ

(i)
k (A

(i)
k )T (Ω

(i)
k+1)

T +Φ
(i)
k+1 (54)

whereΘ(i)
0 , B

(i)
0 Q

(i)
0 (B

(i)
0 )T + bI (b > 0) and

Φ
(i)
k+1

,G
(i)
s,k+1C

(i)
k+1A

(i)
k Θ

(i)
k (A

(i)
k )T (C

(i)
k+1)

T (G
(i)
s,k+1)

T

+
L∑

j=1

Miζ̄
(ij)
k G

(i)
s,k+1C

(i)
k+1ΓΘ

(j)
k ΓT (C

(i)
k+1)

T (G
(i)
s,k+1)

T

+

L∑

j=1

Miζ̄
(ij)
k Ω

(i)
k+1ΓΘ

(j)
k ΓT (Ω

(i)
k+1)

T

+B
(i)
k Q

(i)
k (B

(i)
k )T + bI. (55)

Now, we are in a position to prove the boundedness of
Θ

(i)
k+1. Let

Θ̃k , diag{Θ
(1)
k ,Θ

(2)
k , · · · ,Θ

(L)
k }, (56)

then Θ̃k+1 satisfies

Θ̃k+1 =Πk+1ÃkΘ̃kÃ
T
kΠ

T
k+1

+ G̃s,k+1C̃k+1ÃkΘ̃kÃ
T
k C̃

T
k+1G̃

T
s,k+1
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+

L∑

i=1

EiM̃i∆
(i)
k Π

(i)
k+1Γ̃Θ̃kΓ̃

T (Π
(i)
k+1)

TET
i

+

L∑

i=1

EiM̃i∆
(i)
k G̃

(i)
s,k+1C̃

(i)
k+1Γ̃Θ̃kΓ̃

T

× (C̃
(i)
k+1)

T (G̃
(i)
s,k+1)

TET
i + B̃kQ̃kB̃

T
k + E . (57)

Taking the norm for the both sides of (57) leads to

‖Θ̃k+1‖

≤
[
‖Πk+1‖

2‖Ãk‖
2 + ‖G̃s,k+1‖

2‖C̃k+1‖
2‖Ãk‖

2

+

L∑

i=1

‖Ei‖
2‖M̃i‖‖∆

(i)
k ‖(‖Π

(i)
k+1‖

2‖Γ̃‖2 + ‖G̃
(i)
s,k+1‖

2

× ‖C̃
(i)
k+1‖

2‖Γ̃‖2)
]
‖Θ̃k‖+ ‖B̃k‖

2‖Q̃k‖+ b

≤δ1‖Θ̃k‖+ δ2 (58)

where

δ1 , (m̄2 + k̄2s c̄
2)(ā2 + L2t̄ζ̄ r̄2),

δ2 , b̄q̄ + b.

It follows from (56) that

Θ
(i)
k+1 = ēiΘ̃k+1ē

T
i (59)

and, subsequently,

‖Θ
(i)
k+1‖ ≤ ‖Θ̃k+1‖ ≤ δ1‖Θ̃k‖+ δ2. (60)

If δ1 < 1, the following inequality can be obtained

‖Θ
(i)
k+1‖ ≤ ‖Θ̃0‖+

δ2
1− δ1

. (61)

On the other hand, (54)-(55) tells

Θ
(i)
k+1 ≥ bI. (62)

In light of (61) and (62), there exist scalarsΘ and Θ̄ such
that

ΘI ≤ Θ
(i)
k+1 ≤ Θ̄I (63)

holds for allk ≥ 0.
Now, we are in a position to focus on the proof of the

boundedness of the filtering errors. Let us define

Vk(ek) =

L∑

i=1

(ε
(i)
k )T (Θ

(i)
k )−1ε

(i)
k (64)

where

ek , col{ε
(1)
k , · · · , ε

(L)
k }. (65)

According to (63), it is clear that

Θ̄−1‖ek‖
2 ≤ E[Vk(ek)] ≤ Θ−1‖ek‖

2. (66)

For positive scalarsη4 andη5, according to (11) and (49),
we obtain the following inequality:

E[Vk+1(ek+1)|ek]− (1 + η4 + η5)Vk(ek)

≤(1 + η4 + η5)

L∑

i=1

E{(ε
(i)
k )T [(A

(i)
k )T (Ω

(i)
k+1)

T (Θ
(i)
k+1)

−1

× Ω
(i)
k+1A

(i)
k − (Θ

(i)
k )−1](ε

(i)
k )T

+ β
(i)
k+1(ε

(i)
k )T (A

(i)
k )T (C

(i)
k+1)

T (G
(i)
s,k+1)

T

× (Θ
(i)
k+1)

−1G
(i)
s,k+1C

(i)
k+1A

(i)
k ε

(i)
k }+ (1 + η−1

4 + η6)

×
L∑

i=1

L∑

j=1

c2Miζ̄
(ij)
k E[(ε

(j)
k )TΓTM

(i)
k+1Γε

(j)
k ]

+ (1 + η7)
L∑

i=1

E[(γ
(i)
k+1)

T (Θ
(i)
k+1)

−1γ
(i)
k+1]

+ (1 + η−1
5 + η−1

6 + η−1
7 )

L∑

i=1

E[(g
(i)
k+1)

T (Θ
(i)
k+1)

−1g
(i)
k+1]

(67)

where

M
(i)
k+1 =(Ω

(i)
k+1)

T (Θ
(i)
k+1)

−1Ω
(i)
k+1 + β

(i)
k+1(C

(i)
k+1)

T

× (G
(i)
s,k+1)

T (Θ
(i)
k+1)

−1G
(i)
s,k+1C

(i)
k+1. (68)

Utilizing the matrix inversion lemma, we have

(A
(i)
k )T (Ω

(i)
k+1)

T (Θ
(i)
k+1)

−1Ω
(i)
k+1A

(i)
k − (Θ

(i)
k )−1

=(A
(i)
k )T (Ω

(i)
k+1)

T [Ω
(i)
k+1A

(i)
k Θ

(i)
k (A

(i)
k )T (Ω

(i)
k+1)

T

+Φ
(i)
k+1]

−1Ω
(i)
k+1A

(i)
k − (Θ

(i)
k )−1

=− [Θ
(i)
k +Θ

(i)
k (A

(i)
k )T (Ω

(i)
k+1)

T (Φ
(i)
k+1)

−1Ω
(i)
k+1A

(i)
k Θ

(i)
k ]−1

=− [I + (A
(i)
k )T (Ω

(i)
k+1)

T (Φ
(i)
k+1)

−1Ω
(i)
k+1A

(i)
k Θ

(i)
k ]−1(Θ

(i)
k )−1

≤− (1 +
ā2m̄2Θ̄

qb
)−1(Θ

(i)
k )−1 , f̄(Θ

(i)
k )−1. (69)

On the other hand, it follows from the expression ofΘ
(i)
k+1

in (54) that

Θ
(i)
k+1 > G

(i)
s,k+1C

(i)
k+1A

(i)
k Θ

(i)
k (A

(i)
k )T (C

(i)
k+1)

T (G
(i)
s,k+1)

T ,

Θ
(i)
k+1 ≥ Miζ̄

(ij)
k Ω

(i)
k+1ΓΘ

(j)
k ΓT (Ω

(i)
k+1)

T ,

Θ
(i)
k+1 ≥ Miζ̄

(ij)
k G

(i)
s,k+1C

(i)
k+1ΓΘ

(j)
k ΓT (C

(i)
k+1)

T (G
(i)
s,k+1)

T .

(70)

Then, the second and third terms on the right-hand side of
(67) are rewritten as

β
(i)
k+1(ε

(i)
k )T (A

(i)
k )T (C

(i)
k+1)

T (G
(i)
s,k+1)

T (Θ
(i)
k+1)

−1

×G
(i)
s,k+1C

(i)
k+1A

(i)
k ε

(i)
k

≤β̄(ε
(i)
k )T (Θ

(i)
k )−1ε

(i)
k (71)

and
L∑

i=1

L∑

j=1

c2Miζ̄
(ij)
k E[(ε

(j)
k )TΓTM

(i)
k+1Γε

(j)
k ]

≤c2
L∑

i=1

L∑

j=1

E[(1 + β
(i)
k+1)(ε

(j)
k )T (Θ

(j)
k )−1ε

(j)
k ]

≤c2L(1 + β̄)
L∑

j=1

E[(ε
(j)
k )T (Θ

(j)
k )−1ε

(j)
k ]. (72)

Substituting (69)-(72) into (67) yields

E[Vk+1(ek+1)|ek]− (1 + η4 + η5)Vk(ek)

This article has been accepted for publication in a future issue of this conference proceedings, but has not been fully edited. Content may change 
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≤(1 + η4 + η5)(f̄ + β̄)

L∑

i=1

E{(ε
(i)
k )T (Θ

(i)
k )−1(ε

(i)
k )T }

+ (1 + η−1
4 + η6)c

2(1 + β̄)L

×
L∑

i=1

E{(ε
(i)
k )T (Θ

(i)
k )−1(ε

(i)
k )T }

+ (1 + η7)Lγ̄Θ
−1 + (1 + η−1

5 + η−1
6 + η−1

7 )LḡΘ−1

=̺Vk(ek) + λ (73)

where

̺ , (1 + η4 + η5)(f̄ + β̄) + (1 + η−1
4 + η6)c

2(1 + β̄)L,

λ , (1 + η7)Lγ̄Θ
−1 + (1 + η−1

5 + η−1
6 + η−1

7 )LḡΘ−1.
(74)

Then, it follows from (71) that

E[Vk+1(ek+1)|ek] ≤ νVk(ek) + λ (75)

with ν being defined in (48). In addition, we can immediately
obtain

E[‖ek+1‖
2] ≤

Θ̄

Θ
E[‖e0‖

2]νk+1 + λΘ̄

k∑

i=1

νi

≤
Θ̄

Θ
E[‖e0‖

2]νk+1 +
λΘ̄

1− ν
(76)

which indicates thatε(i)k is exponentially bounded in the sense
of mean-square ifν < 1.

Remark 5:A sufficient condition has been provided in
Theorem 3 to guarantee the mean-square boundedness ofek. It
is worthwhile to note thatΦ(i)

k+1 is not only dependent onΘ(i)
k

but also onΘ(j)
k (j = 1, 2, · · · , L), and this brings additional

difficulties to discover the relationship between‖Θ(i)
k+1‖ and

‖Θ
(i)
k ‖. To deal with such a challenge, the term̃Θk+1 has

been introduced in (54) and the recurrence relation ofΘ̃k+1

has been determined as in (57). Then, it is not difficult to
verify the boundedness ofΘ(i)

k+1.

IV. I LLUSTRATIVE EXAMPLES

Example 1: Consider a CN consisting of3 coupled nodes
with known matrices:

A
(1)
k =

[
0.95 1.24
−0.5 0.92sin(5k)

]

, A
(2)
k =

[
−0.65 −0.3

0.2 + 0.5sin(3k) −0.3

]

,

A
(3)
k =

[
0.38 −0.7
0.5 0.1

]

, B
(1)
k =

[
0.1
−0.6

]

, B
(2)
k =

[
−0.1
−0.9

]

,

B
(3)
k =

[
0.1
−0.6

]

, C
(1)
k =

[
0.5
1

]T

, C
(2)
k =

[
2.4
4.5

]T

, C
(3)
k =

[
1
1

]T

,

Γ=

[
0.1 0
0 0.1

]

, G
(1)
s,k=

[
0.2
0.1

]

, G
(2)
s,k=

[
0.05
0.2

]

, G
(3)
s,k=

[
0.3
0.2

]

.

In this simulation, we setc = 8 × 10−3, e1 = e2 =
e6 = e7 = e8 = e9 = 0.2, e3 = e4 = e5 = 0.5. The
initial conditions arex(0)

1 = x̂
(1)
1|0 = [0.5, 1]T , x(0)

2 = x̂
(2)
1|0 =

[−1, 0.25]T , x(0)
3 = x̂

(3)
1|0 = [−0.5,−0.75]T , Σ(1)

0|0 = 0.01I2,

Σ
(2)
0|0 = 0.02I2 and Σ

(3)
0|0 = 0.01I2. Meanwhile, we set

Q
(i)
k = 0.01, R

(i)
k = 0.01, ζ̄

(ii)
k = 0.95, (i = 1, 2, 3),

ζ̄
(12)
k = 0.85, ζ̄

(13)
k = 0.65, ζ̄

(21)
k = 0.75, ζ̄

(23)
k = 0.55,

ζ̄
(31)
k = 0.85, ζ̄

(32)
k = 0.75, β

(i)
k = 1 (i = 1, 2, 3). The

dynamic event-triggered parameters are chosen ashi = 0.1,
σi = 0.01 andθi = 0.1 (i = 1, 2, 3). In addition, the saturation
level parameters areαi = 1, ιi = 1 (i = 1, 2, 3), ρ1 = 0.5,
ρ2 = 0.8 andρ3 = 0.9.

Figs. 1-2 display trajectories of actual states and their
estimates. It is clear that the true trajectories are well tracked
by the designed filter. Based on Theorems 1-2, the upper
bounds are obtained, and the curves of Log(the actual error
covariance) and their bounds are given in Figs. 3-4, from
which we spot that curves of Log(MSE) stay below that of
upper bounds. In addition, Figs. 5-6 plot the curves of the
actual filtering error covariances with hope to better display
the changing trend of their filtering errors, which shows that
the filtering errors are small and tend to be stable.
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Example 2: The presented dynamic event-triggered non-
fragile filtering approach is applied to a network of inter-
connected flexible link robot systems [8], [35], where the
system state is composed of the angular position of the motor
shaft θ(i)m,k, the velocity of the motor shaftϑ(i)

m,k, the angular

position of the link θ
(i)
l,k and the velocity of the linkϑ(i)

l,k

(i = 1, 2, · · · , 5) . Discretizating the original system under
the sampling periodT = 1, the following system parameters
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are obtained:

Ai(k) =







−0.0727 0.0002 0.2095 −0.0240
−0.4842 −0.0751 1.2996 0.2095
−0.0362 −0.0098 0.2351 0.0562
1.5873 0.0852 −3.4969 0.2351






,

Ci(k) =

[
1 0 0 0
0 1 0 0

]

, (77)

Other matrices are given as:

B
(1)
k =

[
0.1 −0.6 0.2 0.3

]
, B

(2)
k =

[
−0.1 −0.9 0.4 0.1

]
,

B
(3)
k =

[
0.1 −0.6 0.3 0.5

]
, B

(4)
k =

[
0.3 0.1 0 0.05

]
,

B
(5)
k =

[
0.9 −0.1 0.7 0.6

]
, G

(i)
s,k=

[
0.9 0.5 0.3 0.5
0.1 0.1 0.2 0.3

]T

.

The initial values arex(0)
1 = x̂

(1)
1|0 = [0.5, 1, 0, 0]T ,

x
(0)
2 = x̂

(2)
1|0 = [−1, 0.25, 0, 0]T , x

(0)
3 = x̂

(3)
1|0 =

[−0.5,−0.75, 0, 0]T , x
(0)
4 = x̂

(4)
1|0 = [0.1, 0, 0.5, 0]T , x

(0)
5 =

x̂
(5)
1|0 = [−0.5, 0.25, 0, 1]T , andΣ(i)

0|0 = 0.1I4, (i = 1, · · · , 5).

In addition, we setc = 8 × 10−3, ei = 0.2, Q(i)
k = 0.01,

R
(i)
k = 0.01, ζ̄(ii)k = 0.95, ζ̄(12)k = 0.85, ζ̄(13)k = 0.65, ζ̄(14)k =

0.5, ζ̄(15)k = 0.85, ζ̄(21)k = 0.75, ζ̄(23)k = 0.55,ζ̄(24)k = 0.55,
ζ̄
(23)
k = 0.65, ζ̄

(31)
k = 0.85, ζ̄

(32)
k = 0.75, ζ̄

(34)
k = 0.75,
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ζ̄
(35)
k = 0.95, ζ̄

(41)
k = 0.75, ζ̄

(42)
k = 0.95, ζ̄

(43)
k = 0.55,

ζ̄
(45)
k = 0.55, ζ̄

(51)
k = 0.85, ζ̄

(52)
k = 0.75, ζ̄

(53)
k = 0.95,

ζ̄
(54)
k = 0.65. The dynamic event-triggered parameters are

chosen ashi = 0.1, σ1 = 0.2, σ2 = 0.05,σ3 = 0.1,σ4 = 0.15
andσ5 = 0.01. andθi = 10. The saturation level parameters
areαi = 0.1, ιi = 0.1 , ρ1 = 0.5, ρ2 = 0.8,ρ3 = 0.9, ρ4 = 0.6
andρ5 = 0.4.

Figs. 7-10 demonstrate trajectories of actual states and their
estimates, which show the true trajectories are well tracked
by the proposed filter. Moreover, Fig. 11 plots the dynamic
event-triggered time. It is observed that the transmitted data
become less as the threshold increases.

V. CONCLUSIONS

In this paper, we have solved the non-fragile filtering prob-
lem for CNs with sensor saturations and switching topologies.
The DECP has been adopted to adaptively tune triggering
thresholds, thereby saving communication costs. Upper bounds
on error covariances have been derived and minimized by
properly choosing gain parameters. Sufficient conditions have
been obtained to guarantee mean-square boundedness of error
dynamics. Finally, simulations have been given to prove the
usefulness of our developed filtering algorithm. One of our
future research topics would be the extension of the presented
filtering method to systems with more complicated network-
induced phenomena [3], [12].

This article has been accepted for publication in a future issue of this conference proceedings, but has not been fully edited. Content may change 
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Fig. 7. The curves ofx(i)
1,k and x̂(i)

1,k on nodei (i = 1, · · · , 5).
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