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Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-
solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid
bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore
the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact
angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off,
a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal
test case to study molecular scale thermal fluctuations, which are shown to be well described by
Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the
mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The
resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation
allowing them to be integrated within a continuum-scale solver.

1 Introduction
The default modelling tools for engineering fluid dynamics as-
sume that the continuum hypothesis is valid. For the droplet
on a surface, these continuum-scale models require some bound-
ary conditions to be assumed between solid-liquid, liquid-vapour
and vapour-solid interfaces. The meeting of these three interfaces
at the moving contact line represents the greatest uncertainty in
choice of boundary condition. Worse still, the common assump-
tion of no-slip results in a non-integrable stress singularity at the
contact line1. This paradox can be avoided in a number of ways,
including the assumption of a precursor film, some form of slip,
a diffuse interface or evaporation and condensation2. The com-
plexity of the contact line has resulted in a number of models for
the dynamics being applied at the continuum scale, such as hy-
drodynamic models including Tanner’s law3, Cox’s law4, kinetic
models such as molecular kinetic theory (MKT)5 and kinematic
models6.

In a recent review, Snoeijer and Andreotti 7 suggested that com-
bining hydrodynamic and thermally-activated regimes using the
full fluctuating hydrodynamics equation8 may be the solution to
contact line modelling. This would require computational fluid
dynamics (CFD) solvers to incorporate stochastic terms, an un-
common step in CFD practice. As most contact line models used
in industrial and academic software are equations linking the
macroscopic contact angle θ and the contact line sliding velocity
U , a relationship of this form would be of far more immediate use.
In the spirit of fluctuating hydrodynamics, a solution to combine
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both hydrodynamic and thermal effects is proposed here using a
Langevin-style equation. Previous attempts to develop Langevin
models for the contact line9 as a series of fluctuating blocks met
with limited success10 and one possible reason for this failure
may be that, as noted by Van Kampen 11 , defining internal noise
(i.e., from molecular fluctuations) is not possible with data from
a macrosystem. The noise term aims to model microscopic in-
formation and this can therefore only be parametrised from data
obtained using a full molecular model. It is this observation that
motivates the model presented here, with the Langevin equation
parametrised to be representative of a full molecular dynamics
(MD) simulation.

MD simulations have the potential to explicitly model the dif-
fuse and complex nature of the inner region at the molecular
scale. Solving Newton’s laws for the N-body system yields stick-
slip between the solid and liquid as well as a liquid-vapour in-
terfaces with only intermolecular interactions assumed. Although
it is possible to model the entire droplet spreading process us-
ing MD12, molecular simulations of this type, however, require
considerable system sizes5,12. More importantly, simulation of
molecular droplets are limited, by computational constraints, to
nano-meter length and pico-second time scales, neither of which
are realistic for most simulations. To avoid these limitations, it
is desirable to extract generalised contact line behaviour which
can then be incorporated in a continuum-scale model. As we are
interested only in the motion of the contact line itself, the droplet
is not the simplest case from which to extract the contact angle.
The shearing of a liquid bridge between two walls models only
the contact line in a reference frame moving with the wall veloc-
ity. This simulation geometry has the advantage that a steady-
state can be obtained, allowing detailed statistics to be collected.
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The sheared bridge is therefore an ideal test bed to explore the
complex dynamics associated with contact line motion.

There are a number of papers which have considered the
sheared liquid bridge geometry. In the first such study by Thomp-
son and Robbins 13 , an MD simulation of two-phase Couette flow
was used to explore the dependence of the contact angle on the
wall speed in a microscopic system. Two immiscible Lennard-
Jones fluids are sheared and the behaviour of the dynamic con-
tact line between them is shown to be consistent with Cox’s law4.
In later work by the same group,14 a number of other continuum
static properties were observed, consistent with the predictions of
Laplace’s and Young’s equations.

The dynamic behaviour of the contact angle was also shown
to be strongly dependent on different fluid-wall interactions. The
study of Thompson et al. 14 became a test case for one of the first
coupled simulations by Hadjiconstantinou 15 , with an MD model
of the contact line as part of a CFD simulation. Instead of ex-
plicitly linking continuum and molecular models, Qian et al. 16

used the setup of Thompson et al. 14 to derive a generalized
Navier boundary condition for use at the continuum scale. This
is shown to provide a good approximation for the slip at the
wall and was applied in a continuum-scale model. Together with
the Cahn-Hilliard interfacial free energy, this continuum model
shows very good agreement with the molecular data17. Ren and
E 18 employed the same setup as Thompson et al. 14 and focused
on the validity of the various approximations in the continuum
model. It was shown that the assumption of linear transport co-
efficients such as viscosity is good, only breaking down within 2
- 3` from the wall, where ` is the molecular length scale approx-
imately 3.4

◦
A. The work of Gentner et al. 19 employs Lennard-

Jones molecules in a central liquid region only. Strong elastic
bonds are applied at the surface with sixteen atom molecules
used to hold the liquid region together and prevent evaporation
with Tanner’s law and MKT also reproduced by the presented re-
sults. Experimental studies of liquid bridges also provide some
insight into the general behaviour where the study of Wang and
McCarthy 20 observed pinch off while Nelson et al. 21 studied the
angle sliding rate dependence in the presence of electrowetting.

Here we build on the promising results obtained from the MD
simulations of a liquid bridge, which have been used to demon-
strate validity of Laplace’s and Young’s equations, the relation-
ship of Cox, MKT and Tanner’s law. Our focus is on a detailed
model for the three-phase contact angle itself, using cluster-based
interface tracking. Liquid-vapour coexistence is modelled in-
stead of the two immiscible Lennard-Jones fluids used in previ-
ous work13,16. A careful study of fluctuations of the interface and
contact line provides insight into this essential microscopic infor-
mation. The dependence of the liquid bridge slant on wall-sliding
speed is obtained, along with probability density functions (PDF)
of fluctuations and autocorrelations in the (slant, advancing and
receding) contact angles. Combining the mean, PDF and autocor-
relations into a novel stochastic model retains the key elements of
molecular simulation but allows them to be directly incorporated
into a continuum-scale model.

The rest of the manuscript is arranged as follows: in the
methodology section, the MD simulation details and surface-

tracking techniques are provided. Next, simulations are presented
in the results and discussion section starting, in the first subsec-
tion, with the key properties of the viscosity and surface tension.
The sheared liquid bridge is modelled for a range of wall speeds,
and the results compared to existing contact line models in the
second subsection. The pinch off of the liquid bridge, and the
limits of validity of the MD model compared to experimental ob-
servations, are also included in this subsection. The fluctuations
in contact angle and autocorrelations are presented in the third
subsectionover a range of temperatures. A model for the contact
angle is proposed based on Langevin dynamics in the fourth and
final subsection of the results and discussion section. Finally, the
conclusions of the work are highlighted in the last section.

2 Methodology

Molecular Dynamics (MD) simulation models the movement of
discrete molecules interacting and evolving as a function of space
and time. The dynamics of the molecules are governed by New-
ton’s laws, with the intermolecular interaction forces, fff i j =−∇∇∇φi j

obtained from the gradient of the Lennard-Jones potential,

φi j = 4ε

[(
`

ri j

)12
−
(

`

ri j

)6
]

(1)

All dimensions in this work are reduced with respect to a char-
acteristic length ` which corresponds to a molecular dimension,
a characteristic energy ε which maps to the well depth of the
potential and by fitting the Boltzmann constant, kB, to unity.
In the Lennard-Jones potential we thus set ` = 1.0 and the in-
teraction between all molecules ε = 1.0 except wall and liquid
where εwall = 0.6 to adjust the degree of wetting. The poten-
tial is a function of the separation distance between molecules i
and j, ri j = ri− r j. A full parametric study of wall interactions,
demonstrating the transition from hydrophobic to hydrophilic, is
included in the Appendix. The wall interaction of εwall = 0.6 is
chosen to give an equilibrium angle of approximately 70◦. The
time-step used is ∆t = 0.005. The chosen system size is consistent
with literature studies13–16,18, although a parametric study of dif-
ferent system sizes was also performed. It was found that the an-
gle variation as a function of wall sliding speed appears to behave
in a qualitatively similar manner for larger system sizes. Molecu-
lar simulation of system sizes beyond hundreds of nano-meters is
computationally prohibitive; however, the existence of similar be-
haviour in experimental studies21 suggest the behaviours of the
liquid bridge contact line motion, even in the nano-scale system
modelled, is a useful approach to understand the evolution of
contact line dynamics in larger macroscopic systems.

The initial system is set up with a domain shape of Lx =

79.37,Ly = 31.75,Lz = 19.05 with a face-centred-cubic (FCC) lat-
tice at a density of ρ = 1.0. The liquid and vapour regions are
created by randomly removing molecules from the lattice until
the desired densities (ρl = 0.5, ρg = 0.005) are achieved. Liquid
is initialised for 50% of the domain (excluding tethered regions)
and this is allowed to equilibrate with the stationary wall prior to
the main run so as to form a liquid bridge. The eventual liquid
density is ρl ≈ 0.82 while the vapour density is ρg ≈ 0.005, values
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Fig. 1 Viscosity a) and surface tension b) vs temperature for the Lennard-Jones model of liquid Argon along the triple point, obtained using simulations
discussed in the text. The MD results from the volume average stress 22,23 (◦) and the method of planes stress (�) 24 are compared to digitised
experimental results ( ) from Refs. 25 and 26 in a) and b), respectively. NIST data for equivalent MD 27 (×) is also shown in b). In c), we show the
variation in the capillary number from Eq. (6) with U = 0.045 and temperature in the same range as a) and b).

consistent with the expected liquid-gas coexistence at the chosen
temperature. Note that the liquid bridge is at higher density and
so smaller than the initialised 50% of the domain. The molecu-
lar walls with thickness of 4.0 on top and bottom are modelled
by tethering molecules to their equilibrium FCC lattice sites with
density ρs = 1.0 and spring coefficients28, k2 = 0.0,k4 = 5× 103

and k6 = 5× 106. A Nosé-Hoover thermostat, setpoint T0 = 0.7
and constant Qψ = 0.1Nthermo ∆t, is applied to the Nthermo tethered
molecules only. Tethered molecules which are adjacent to the liq-
uid, within 1.0`, are left unthermostatted to allow a temperature
profile to develop in the domain and prevent the thermostat from
impacting the dynamics of the fluid29. The heat bath mass Qψ is
chosen to be a function of time-step and number of thermostatted
molecules to ensure the strength of thermostatting is independent
of system and time-step size. Only the temperature of the wall is
controlled, although as the applied shear is low and there is a
recirculation current within the liquid bridge, the temperature in
the liquid and solid walls have a difference which is typically less
than 0.04 in reduced units, even at the highest wall speeds.

The equations of motion for the wall atoms are given by,

vvvi =
pppi
mi

+Uwnx, (2a)

ṗppi = FFF i +FFF iteth −ψ pppi, (2b)

FFF iteth = rrri0

(
4k4r2

i0 +6k6r4
i0

)
, (2c)

ṙrri0 = Uwnx, (2d)

ψ̇ =
1

Qψ

[Nthermo

∑
n=1

pppn · pppn
mn

−3T0

]
, (2e)

where ri0 = ri− r0 and r0 is the tethered molecules equilibrium
location which also slides with the prescribed wall speed Uw in the
x direction as denoted by unit vector nx. The force on a molecule i
is the sum of all interactions, FFF i = ∑

N
j 6=i fff i j and the tethering force

FFF iteth . The molecular velocity in the laboratory reference frame is
vvvi while the momentum in a moving reference frame, the peculiar
momentum, is denoted by pppi. The thermostat variable ψ acts

like an integral control on the temperature of the thermostatted
wall molecules. All simulations are performed using an in-house
MD code which has been fully verified30 and used in previous
publications31,32.

To track the contact line, the location of an intrinsic surface
must be defined in the molecular system; the exact location of
this purely conceptual surface is arbitrary, and has no effect on
the dynamics of the molecular simulation. However, definition of
a surface is essential to determine the contact angle observed in
the molecular system. A cluster analysis is therefore employed in
order to determine molecules which are within the liquid phase.
A linklist of molecules is built using the criterion that they are in a
cluster when within a length rs ≈ 1.5 of each other. This approach
is computationally simple while being sufficiently robust to detect
separate clusters33. In order to define the fluid vapour interface,
the location of the edge of the liquid cluster must be determined.
For a given coordinate direction, a two dimensional grid is defined
on the surface of the cluster. By looping through the linked list
of molecules in the cluster, the outermost molecule in a given cell
is identified and stored. This molecule per cell defines the outer
edge of the surface and all molecules within a distance rs of this
outer molecule are then identified as surface molecules.

Following the cluster analysis procedure, the bridge surface is
then approximated by different functional fits, a one-dimensional
linear fit and a cubic polynomial function using the Levenberg-
Marquardt algorithm from MINPACK. The choice of rs ≈ 1.5 is a
result of a parametric study, balancing good cluster recognition,
robust surface definition and efficiency. As there is only one sin-
gle cluster of interest, the liquid bridge, the choice of rs ≈ 1.5 was
not found to have a noticeable impact on measured angles. This
is because angles are defined using a fit to all molecules on the
interface and individual molecules entering and leaving do not ef-
fect this strongly. During the initialisation of the simulation when
there are a number of separate clusters which coalesce, the choice
of cluster cutoff, however, does impact angle measurements. For
this reason, a period of equilibration is allowed until the system
is a single large cluster, and coalescence events are negligible.

The surface tension, γ, is calculated using the relation of Kirk-
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wood and Buff 34 ,

γ =
∫

∞

−∞

[
Πxx−

1
2
(
Πyy +Πzz

)]
dx, (3)

where Πxx denotes the surface-normal pressure with Πyy and Πzz

the two tangential pressures, and the integral over x crossing both
surfaces. Obtaining the pressure is not a trivial exercise, not least
because there is no unique form of pressure in a molecular sim-
ulation35. In this work, two forms of pressure are used in the
validation of surface tension and viscosity in Fig. 1 of the next
section. The volume average (VA) pressure36,37 is simply the in-
tegral of the Irving and Kirkwood 38 form over a volume, in this
case a cube,

∫
V

ΠΠΠdV =−
〈 N

∑
i=1

pppi pppi
mi

ϑi +
1
2

N

∑
i, j

fi jrrri j

∫ 1

0
ϑsds

〉
, (4)

where ϑi and ϑs are a combination of Heaviside functionals which
are non-zero when molecule i or a point on the interaction inte-
gral over s between molecules i and j are inside the cubic vol-
ume, respectively31. The angular brackets denote a time aver-
age. In order to obtain the correct local pressure tensor in non-
equilibrium MD systems, careful localisation is essential24,39. In
practice, the pressure must be calculated for a grid of cells (or
bins) in order to perform the pressure integral of Eq. (3). There
are two contributions to the pressure of Eq. (4). The first con-
tribution uses integer division to assign, pppi pppi/mi, to a cell based
on the location of molecule i. The second contributions is from
intermolecular interactions, fi jrrri j. A linear interaction is assumed
between two molecules, which is then divided into 20 segments
so the stress contribution can be assigned in a piecewise manner
to the average volumes which the interaction passes through.

The other route to obtaining the pressure is the method of
planes (MOP)24, originally derived using the Fourier transformed
versions of the Irving and Kirkwood 38 equations. The MOP pres-
sure given in Eq. (5) is simply the force divided by the area and
provides three components on a plane. To get nine components
of pressure, a molecular form of Gauss theorem31 is used to give
a localised form of the method of planes pressure on each surface
of the volume:∮

S
ΠΠΠ ·dS =−

〈 N

∑
i=1

pppi pppi
mi
·dSi +

1
2

N

∑
i, j

fi jn ·dSi j

〉
, (5)

where dSi denotes a function which selects the ith molecule, cross-
ing the surface and dSi j selects interactions between molecules i
and j which cross the surface of a volume of interest. In prac-
tice, the plane-line intercept for every surface of every cell in the
system must be calculated to determine the pressure of Eq. (5).
Every time-step, the movement of molecule i is evaluated and any
crossings of a surface contribute pppi pppi/mi to pressure on the cell’s
surface. Similarly, all intermolecular interactions below rc are
tested and contribute fi j to the pressure if they cross this surface.

3 Results and Discussion
The key dimensionless parameter which describes the flow of the
liquid bridge is the capillary number Ca = µU/γ, the ratio of vis-

Fig. 2 Comparison of the droplet splitting observed upon shearing in
the MD channel, (a), to experimental results, (b), taken from Figure 4 of
Wang and McCarthy 20 . Reprinted (adapted) with permission from Wang
and McCarthy 20 . Copyright (2013) American Chemical Society.)

cous to capillary forces where U is a characteristic velocity, which
in this work is the wall sliding speed U = Uw, and µ denotes the
viscosity. This section starts by exploring the surface tension and
viscosity as a function of temperature, compared to liquid Argon
experiments, before moving on to the three-phase contact angle
as a function of wall speeds. As shown in the next section, a
simple Lennard-Jones model reproduces the temperature depen-
dence of viscosity and surface tension seen in experiments.

3.1 Surface Tension and Viscosity
In molecular dynamics, the small system sizes result in shear heat-
ing and the change in temperature will affect both viscosity and
surface tension. To determine the impact of heating on Ca, para-
metric studies of viscosity and surface tension are first performed
for a range of liquid temperatures. The viscosity of the molecu-
lar system is verified using a single-phase fluid sheared between
two molecular walls with system size Lx = Lz = 15.9 and wall nor-
mal Ly = 31.75. The thermostatted walls were set to a density
of ρs = 1.0, target temperature of T0 = 0.7 with two wall-sliding
speeds, Uw = 0.5, Uw = 1.0 tested for the range of liquid densi-
ties ρl = 0.5-0.85. The viscosity is calculated by dividing the stress
measured in the channel by the strain rate40. Good agreement is
observed with the experimental results for liquid Argon as shown
in Fig. 1a.

Next, the surface tension is calculated for a liquid-vapour co-
existence with results shown in Fig. 1b. A separate simulation
is performed, as in previous work by Thompson and Robbins 13 ,
initialised with a separate liquid at the centre in x and vapour
phase either side simulated with periodic boundaries in all di-
rections. The domain is of size Lx = 41.0 and Ly = Lz = 13.68.
This models an infinite film of liquid surrounded on either side
by vapour and, after an equilibration period, the integral over the
interface between the liquid and vapour phases, Eq. (3), is used
to obtain the surface tension γ. The two different measures of
stress, Eqs. (4) and (5) are employed and their predictions show
close agreement. The findings of Nijmeijer et al. 41 indicate too
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Fig. 3 Molecular dynamics simulation of a liquid bridge sheared between
moving walls. The red line corresponding to a linear fit, the blue and
green line represent cubic fits of the advancing and receding contact an-
gles, respectively.

small a cutoff can have a pronounced impact on the surface ten-
sion. A range of intermolecular potential cutoff distances rc were
explored and it was found that rc = 4 or greater provides closer
agreement to experimental data observed in Fig. 1b. MD simu-
lation data from NIST27 with the same system setup and cutoff
of rc = 4 are also shown in Fig. 1b and similarly under-predict
the experimental data. Improved agreement with experimental
data requires a more complex interaction potential and inclusion
of three-body interactions42. The use of Lennard-Jones with an
intermolecular potential cutoff distances rc = 4 is chosen here as
a trade-off between computational efficiency and satisfactory re-
production of experimental surface tension.

By fitting curves to both the viscosity and surface tension
data, a temperature dependence of the capillary number, Ca,
can be obtained. For viscosity, an inverse power law of the
form µ(T ) = aµ T−3 with aµ = 1.12 gives an approximate fit. A
more complete viscosity-temperature fit requires an expression
which is considerably more complex43. For surface tension, a
good fit is obtained from the Guggenheim scaling approximation
γ(T ) = aγ (1−T/Tc)

1+bγ , fitted here to the molecular data instead
of the experimental results so aγ = 2.9, bγ = 2/9 and Tc = 1.3.
As a result, the capillary number can be seen to be a function of
temperature as follows,

Ca =
µ(T )U
γ(T )

=
aµU

aγ T 3 (1−T/Tc)
1+bγ

(6)

This equation is plotted in Fig. 1c and used throughout the re-
mainder of this work to estimate capillary number dependence
on system temperature.

3.2 Mean Contact Angle

This section combines two-phase and wall-driven shear flow, to
model the liquid bridge using a simple Lennard-Jones fluid. A
number of simulations are run with wall speed varied in in-
crements of 0.0025. At wall velocities above a critical capillary
number, the liquid bridge is no longer stable and splits into two
droplets. Figure 2 demonstrates that the mechanism seen in the
molecular system bears a striking qualitative resemblance to the
pinch off observed experimentally20. This observation is consis-
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Fig. 4 Variations of the mean angle 〈θ〉 with capillary number, Ca, where
the liquid bridge slant, 〈θs〉, advancing, 〈θa〉, and receding 〈θr〉 angles are
shown in red, blue and green respectively. The lines of fit based on Cox’s
law and MKT as well as a simple linear fit.

tent with that of Thompson et al. 14 who also noted that beyond
a certain value of wall speed, the liquid bridge breaks up into two
parts. The wall sliding speed at liquid bridge pinch off was found
in experimental studies to be a function of viscosity ratio and de-
gree of confinement between the walls44. The work of Thompson
et al. 14 uses high pressure immiscible liquid phases, resulting in
a much wider range of stability than the Lennard-Jones liquid-
vapour coexistence used in this work.

The interface is tracked using the cluster analysis described in
the methodology section. The initial dynamics are characterised
by strong transients where several smaller clusters break off and
rejoin the main liquid bridge. As the cluster analysis relies on
locating extreme molecules, the measured angles are unreliable
during this period, and whenever coalescence between smaller
clusters occurs. After a time of about 3000 reduced units, the
system reaches a non-equilibrium steady state and the mean con-
figuration of the liquid bridge remains constant. At this point,
detailed statistics can be collected on the measured contact an-
gles.

A function for the surface is defined using regression, both lin-
ear for the overall slant of the bridge (coloured red in Fig. 3) and
cubic to estimate the contact angles, both advancing and reced-
ing (coloured blue and green in Fig. 3). A cubic fit is employed
which, while relatively simple, was judged by eye to sufficiently
describe the overall trend in the liquid vapour interface and the
near wall contact line as shown in Fig. 3.

The tangent to this cubic function at the wall provides an esti-
mate of the contact angles in the near-wall region. There are two
linear ‘slant’, {θ w

s ,θ e
s }, two advancing, {θ w

a ,θ e
a}, and two reced-

ing angles, {θ w
r ,θ e

r }, for the left (west) and right (east) surface,
respectively, shown in Fig. 3 as a function of Ca. The notation θ is
used to define any of the measured slant, advancing or receding
angles.

The slant 〈θs〉 (shown in red in Fig. 4) changes linearly with
wall-sliding speed. The advancing angle 〈θa〉 (shown in blue in
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Fig. 5 Panel a)-c) show the average liquid bridge shape and slant for Ca = 0.0,0.0603,0.116, respectively with surfaces used to define slant, 〈θs〉,
advancing, 〈θa〉, and receding 〈θr〉 angles are shown in red, blue and green respectively.

Fig. 4) actually appears to decrease with greater wall speed. This
can be attributed to the advancing contact line moving out to sta-
bilise the liquid bridge with increased slant of the bridge in Figs.
5a-5c. The receding angle 〈θa〉 (shown in green in Fig 4) increases
with wall speed less quickly than the slant angle and in a non-
linear manner. For a system with zero wall sliding speed, the ad-
vancing and receding angles can be shown to satisfy Young’s rela-
tion with γLS−γV S = 0.188 and γLV cos

( 1
2 [θa +(180−θr)]

)
= 0.208;

full details of the calculation process are included in the Ap-
pendix. With sliding walls, the slant angle will not satisfy Young’s
relation, but is nevertheless useful to characterise the average be-
haviour of the liquid bridge as a function of wall-sliding speed.

There are a number of models for the dynamics of the contact
angle at the continuum scale, including Tanner’s law3, Cox’s law4

and Molecular kinetic theory (MKT)5. Tanner’s law is given by,

U = A(〈θ〉−θe)
n , (7)

where A and n are arbitrary constants and θe is the angle when the
contact line is not moving. Note that angular brackets, 〈θ〉, are
required as the equation governs the behaviour of the average
molecular scale contact angle motion. Cox 4 , assumes an inner
length scale with a different behaviour to the outer region and
uses matched asymptotics to derive,

Ca =
g(〈θ〉,λ )−g(θe,λ )

ln(L/`)−Q0 f (〈θ〉,λ )+Qi f (θe,λ )
, (8)

where Qi and Q0 are arbitrary coefficients, g(θ ,λ ) =∫
θ

0 1/ f (θ ′,λ )dθ ′ with function f (θ ,λ ) a combinations of sines and
cosines as given in Cox 4 and λ = νvapour/νliquid is the kinematic
viscosity ratio between the fluids. Molecular kinetic theory, is
based on activated processes inspired by molecular motions but
is observed to still be valid at much larger scales2,5:

U = 2κ` j sinh

(
γ`2

j

2kBT

)
[cosθe− cos〈θ〉]exp

[−E
kBT

]
, (9)

E is the energetic coefficient, κ is the frequency of attempted po-
tential jumps and ` j is the length scale between potential wells
due to the movement of fluid over a surface.

The variation of the average bridge slant, 〈θs〉, with Ca is seen
to fit very well with the linear part of the MKT and Cox’s law
theory in Fig. 5. The coefficients used for the fit are consistent
with the molecules system, with molecular length scale `= 1, con-
tinuum length scale of the MD channel height, L = 23, arbitrary
coefficients Qi = 1 and Q0 = 1 and the viscosity ratio, λ = 0.022
obtained from NIST data45 for Argon in liquid and vapour phases
at the appropriate temperature. The MKT fit in Fig. 5 uses κ = 1,
and ` j = 1, in molecular units, with energetic coefficient, E = 2.0,
temperature, T = 0.7, based on the thermostat setpoint and most
commonly observed temperature in the MD system, with surface
tension obtained from the parametrisation of Fig. 1. Finally, Tan-
ner’s law is plotted with exponent n = 1 and k = 0.0042.

In the literature, the non-linear behaviour of Cox’s law13,14 and
the cubic dependence of Tanner’s law19 have been observed in a
similar molecular geometry. The agreement of molecular scale
simulation to macroscopic laws for droplet motions is somewhat
surprising. However, average behaviour in molecular simulation
often agree very closely with continuum based model, even at
very small scales46. The slip length for the LJ potential with
the wall-fluid interaction εwall was found to be of order one MD
unit in Thompson and Troian 47 so the âĂIJmolecularâĂİ region
of Cox’s law may be confined to very near the wall. Only linear
agreement between capillary number and angle is observed in this
study and this is only valid for slow wall sliding speeds. The non-
linear contact-angle dependence on capillary number, reported in
previous work, is seen above Ca = 0.11 in the shaded region of
Fig. 5 but the liquid bridge is no longer unconditionally stable
at wall-sliding speeds above this. The results presented in Fig
4 of bridge slant with Ca suggest that this system is stable only
when contact angle is linearly proportional to sliding wall veloc-
ity. A similar problem of obtaining a stable liquid-fluid interface
is discussed in Ren and E 18 . These authors attempt to match to
MKT, by using high density walls and low wall interactions in or-
der to stabilise the liquid-vapour interface for high wall-sliding
speeds. The coefficients required to obtain a good fit, however,
are non-physical for the MKT equations, leading Ren and E 18 to
suggest that the molecular process may be diffusion-dominated,
as opposed to the activation-driven mechanism assumed by MKT.
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(c) for Ca = 0.106. The red line represents the liquid bridge slant, while
the blue and green lines represent the advancing and receding angle,
respectively.

The instability of the liquid bridge discussed above and shown
in Fig 2 highlights the limitation of the system as a prototypical
flow through which one can explore the contact line dynamics.
However, the non-equilibrium steady state reached by the liquid
bridge at low capillary numbers implies that the long time molec-
ular detail of the contact line dynamics can be studied in detail,
paying attention to fluctuations and diffusion processes which are
only possible to probe using MD. The next section will therefore
measure fluctuations, before proposing a model to build these
features into continuum-scale simulation techniques.

3.3 Fluctuations in Contact Angle
The temporal evolution of θs, θr and θa is displayed in Fig. 6 with
probability density functions (PDF) of the angles shown on the
right. The PDFs of fluctuation as a function of time are well fitted
by a Gaussian distribution,

f (θ) =
1

σ
√

2π
exp

[
− [θ −〈θ〉]2

2σ2

]
, (10)

where σ is the standard deviation. The black lines in Fig. 6 show
Eq. (10) fitted to the raw MD-based PDFs using the Levenberg-
Marquardt algorithm48. There is a much lower standard devi-
ation in contact angle derived from the linear surface fits than
the cubic fits used for the advancing and receding contact angles.
The use of a linear fit defines a single angle for two surfaces and
suppresses individual fluctuations on each surface. The cubic fit
is free to model local changes on each surface so is subject to
much larger standard deviations. At higher velocities, the PDFs
of θa and θr shows a slight skewed behaviour, potentially due to
extreme values in the contact angles at higher speeds.

The standard deviations of contact angle fluctuations, σs, σa

and σr are observed to be independent of wall velocity over all
cases studied. The wall is an FCC crystal lattice with peaks and
troughs, which could be expected to impact the time evolution
of θ in Fig. 6; however, Fourier decomposition of the time se-

ries for all measured contact angles shows no clear solid-liquid
interaction characteristic of a given wall-sliding speed. The fluc-
tuations in contact angle are therefore assumed to be dominated
by thermal motions in the fluid instead of the wall-fluid interac-
tions. This is reasonable as the surface in the molecular system
is a perfect lattice and, as a result, does not include the micro-
scopic roughness which would be expected to promote pinning
and stick-slip behaviour.

The thermal fluctuations in contact angle, θs, θa and θr are
studied for a range of temperatures 0.6 ≤ T ≤ 1.3 with a fixed
wall-sliding speed of U = 0.025. The standard deviation of angles
is presented in Fig. 7 and fitted to an exponential relationship
of the form σ = a3eb3T + c3. Only results from the range 0.7-1.0
are taken as the study shows freezing below 0.7 and evaporation
of the liquid above 1.0. The strong dependence on temperature
shown in Fig. 7 supports the conclusion that thermal motions in
the fluid are the main contributor to fluctuations observed at the
contact line.

The autocorrelations of θs,θa and θr for all temperatures and
wall-sliding speeds were also analysed with selected results for
θs presented in Fig. 8. Surprisingly, there was no clear trend in
autocorrelation time as a function of temperature and only a very
weak increase in autocorrelation time as a function of wall slid-
ing speed. Higher velocities result in a more persistent measured
angle while the slant angle θs has a much longer decorrelation
time than the advancing and receding angles θa and θr. Auto-
correlations are known to require substantial statistics, assuming
a decorrelation time of 600 based on Fig. 8, error estimates for
autocorrelation in Allen and Tildesley 49 suggest errors as high as
10% for the O(105) samples used in this work. It is likely that any
trend in θ autocorrelation against wall speed and temperature,
as well as possible departure from exponential behaviour, would
require significantly longer runs to identify (e.g., runs of O(107)

result in errors of 1%). However, the overall trend of exponential
decorrelation at short times is apparent in all cases and the fitted
exponential lines in Fig. 8 appear to describe the data well.

Characterising the distribution of molecular-level fluctuations
as Gaussian allows them to be incorporated into a continuum-
scale simulation. The introduction of noise into a continuum
solver, in the field of fluctuating hydrodynamics, attempts to
model the impact of the underlying molecular system. In most
cases, the level of noise is negligible in system sizes greater than
a few nanometers. However, as the evolution of droplets is heav-
ily dependant on the molecular scale detail near the wall, incor-
poration of these fluctuations is essential in a continuum solver.
Indeed, this idea is the basis for molecular scale models, such
as the MKT, used to approximate contact line dynamics in terms
of forward or backward jumps. In the next section, a Langevin
approach is discussed to combine the Gaussian fluctuations, the
exponential decorrelation in contact angle as well as the mean
behaviour parametrised in the previous section.

3.4 A Langevin Model

We want to define a model for the behaviour of the molecular con-
tact angle observed in the previous two sections. In the proposed
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receding angle, respectively

contact line model, the liquid-vapour interface is assumed to be
similar to a Brownian particle: a flexible line, like a strip of metal
bent by the drag from the sliding wall and its fluctuations. This
conceptual strip is much larger than the atoms which make it up;
in the same way Brownian particles are larger than the surround-
ing molecules. The contact line is deformed by the sliding wall
and subject to dissipation and apparent random motions due to
thermal collisions with molecules in the wall and fluid. The equa-
tion for an angular stochastic harmonic oscillator is postulated to
model the liquid bridge contact angle subject to torque applied by
the sliding walls,

Iθ̈(t)+Γθ̇(t)+ kθ(t)−ξ (t) = T . (11)

Here, I is the moment of inertia, Γ is a damping coefficient, k
is the spring constant and T the applied torque. The stochastic
term ξ (t) models the impact of molecular motions on the con-
tact angle. This term satisfies the properties set out in Van Kam-
pen 11 in that it is stochastic, has zero mean, instantly decorre-
lates, 〈ξ (t)ξ (t ′)〉 = Cδ (t− t ′), and has a Gaussian distribution. If
the inertia of these surface molecules is assumed to be sufficiently
small compared to thermal motions, then Iθ̈ is assumed negligi-
ble. Taking the time average of Eq. (11), with 〈θ̇〉 ≈ 0 and noting
〈ξ 〉 = 0 by construction, gives k〈θ〉 = T . The resulting equation,
is a Langevin equation for contact angle,

θ̇ + k̃ [θ −〈θ〉]− 1
Γ

ξ (t) = 0, (12)

where k̃≡k/Γ. As the model for the contact angle is the Langevin
equation with a perfectly Gaussian distribution, it is equivalent to
the Fokker-Planck equation11 and the probability density function
(PDF) for steady state angle θ is,

f (θ) =

√
Γk
Cπ

exp

[
−Γk (θ −〈θ〉)2

C

]
(13)
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Fig. 8 Autocorrelation of slant angle, θs, for Ca =

0.0,0.0067,0.0603,0.0994 with ×, 4, ◦, � and exponential fit Eq.
(14) lines −,−−,··,−·, respectively. Insert shows same data with a
logarithmic scale on the horizontal axis.

An expression for the autocorrelation of θ between times t1 and
t2 is then obtained by standard procedures (See e.g., Van Kam-
pen 11):

〈θ(t1)θ(t2)〉= 〈θ〉2 +
C

2kΓ
exp
(
k̃ [t2− t1]

)
. (14)

With t1 = t2 = t, Eq. (14) is a form of potential energy,

Epot =
1
2

k〈θ 2〉= 1
2

[
C
2Γ

]
≈ kBT

2
. (15)

Only angle fluctuations around 〈θ〉 are assumed to be related
to temperature and the 〈θ〉2 term is not included. The fluctua-
tions are related to temperature using the equipartition theorem,
giving a form of the fluctuation-dissipation theorem for the con-
tact angle, relating dissipation magnitude Γ to the magnitude of
stochastic fluctuations C and temperature T with an equation of
the form C = 2ΓkBT . The model coefficients, 〈θ〉, Γ, k and C can
be parametrised using the MD results as follows:

1. The mean of the contact angle 〈θ〉 can be expressed using
Tanner’s law, Cox’s law, MKT or another relationship. For
liquid bridge slant, θs, a linear function of velocity could be
assumed so 〈θs〉 = a1Ca+ b1 with constants a1 and b1 ob-
tained from Fig 5 and Ca as a function of temperature from
Eq. (6).

2. As the distribution of θ for a given speed is Gaussian, the
standard deviations is relatively invariant to sliding speed
but dependant on temperature (see Fig. 7). Therefore, by
equating the form of σ =C/2Γk to the exponential fit to MD
standard deviation as a function of temperature σ = a3eb3T +

c3.

3. By fitting the normalised autocorrelation of θ , with mean
〈θ〉 removed, to an exponential of the form exp(−a2 [t2− t1]),
the value for coefficients k̃ = k/Γ = a2 can be obtained using
Eq. (14). As the autocorrelations of Fig. 8 is normalised
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Coefficient θs θa θr

a1 686.0 - -
b1 90.0 - -
a2 0.01 to 0.0035 0.08 to 0.05 0.06 to 0.03
a3 9.7×10−5 5.68×10−3 0.014
b3 10.8 7.84 7.04
c3 2.57 8.25 7.58

Table 1 Table of coefficients for three contact angles used in this work

to unity, they are independent of temperature so the single
coefficient, a2, can be used for the fit.

Therefore, the model coefficients are,

〈θs〉= a1Ca+b1; k =
kBT

a3eb3T + c3
; Γ =

k
a2

; C = 2ΓkBT (16)

With these coefficients, the model is tuned to yield the correct
mean, time dependant behaviour, distribution and dynamics of
the contact angle over a range of wall sliding speeds and temper-
atures based on the molecular system. The numerical solution of
the Langevin equation, Eq. (12), can be written in the form11,

θ
t+1 = θ

t − k∆t
Γ

[
θ

t −〈θ〉
]
+ξ

√
C∆t
Γ

(17)

By substituting the coefficients from Eq. (16) for the case of slant
angle, θ = θs, from Table 1 into the Langevin equation,

θ
t+1
s = θ

t
s −a2∆t

[
θ

t
s −a1Ca−b1

]
+ξ

√
2a2
(
a3eb3T + c3

)
∆t (18)

which can be compared to MD data, as shown in Fig. 9. The capil-
lary number, Ca, is obtained using average temperatures and wall
velocity through Eq. (6). The autocorrelaton coefficients, a2, in
table 1 are given for fits over the range of minimum to maximum
speeds U = 0.0 to U = 0.425, with the value, a2 = 0.009 used for
θs and a2 = 0.045 for θa in Fig. 9. Note that the groupings k/γ and
C/γ2 in Eq. (17) could have been directly linked to measured re-
lationships from Fig 7 and 8 so that individual values of k, γ and
C need not be defined. However, as these variables have a physi-
cal interpretation in the Langevin equation, Eq. (12), it is useful
to obtain them as intermediate variables to gain insight into the
dynamics of the molecular system.

The proposed model appears to give good reproduction of the
molecular detail with negligible computational effort. Two wall
velocities, U = 0.0025 and U = 0.0200, with walls thermostat-
ted temperature T0 = 0.7 and T0 = 0.9 respectively are compared
to MD results in Fig. 9. The actual system temperatures are
slightly different, 0.7075 and 0.912127, but this is modelled by
the Langevin equation with a higher temperature resulting in
wider distributions in both MD and Langevin results. The re-
ceding angle model at T0 = 0.7 is also presented with a mean
value of 〈θa〉 = 125 chosen to allow display on the same figure.
The shape of the PDFs, autocorrelation and time history of the
Langevin model appears to reproduce the MD data well in Fig. 9.

The same time-step and number of iterations were used in the
Langevin model, which appears to be statistically under resolved,

−8 −6 −4 −2 0 2 4
log(t)

0.000

0.005

0.010

0.015

d
x
c

d
t

0 1 2 x
0

1

z

Fig. 10 The contact line velocity as a function of time for a spreading
droplet modelled in CFD solver with added MD fluctuations (◦) and Tan-
ner’s law (−), insert shows droplet interface location at times t = 0.0 (−),
t = 55.0 (−−) and t = 2500.0 (·−).

resulting in differences of up to ±15% in model standard devia-
tion. The Langevin model also observes noisy distribution as well
as variations in autocorrelation in the same manner as the MD
model. These are a direct consequence of the stochastic model
employed, recreating the fluctuating nature of molecular dynam-
ics at the contact line. A natural question is how far beyond
molecular scales would this be expected to be valid? Blake’s5

MKT is based on an Eyring style model of a surface as a sinusoid2

and despite molecular inspiration is valid to macroscopic scales.
For the perfect molecular lattice used in this work the autocor-
relations in angle, Fig. 8, show that thermal motion apparently
dominates the impact of surface detail. The interaction of the
fluid and moving solid lattice would be expected to manifest in
the autocorrelation if surface interaction was significant. Blake 5

observes that system size effects and over simplified surface in
molecular models result in non-power law spreading as well as
unrealistic (i.e. not experimental) behaviour from MD models.
These limitations are with the molecular dynamics used to param-
eterise the Langevin equation and not the proposed model itself,
which is simply a damped torsional spring and additive noise. As
this work stems from a molecular scale model, incorporating the
molecular thermal motions and other behaviours, it has the po-
tential to provide new insights into contact line modelling. The
microscopic origins may also mean this model is valid where other
treatments break down.

In any software which uses contact line models, additional
stochastic terms can simply be added to model the impact of tem-
perature and molecular-scale effects. A range of other extensions
are also possible to address the limitations inherent in the molec-
ular system employed to parametrise this model. For example,
the linear relationship between 〈θ〉 and wall speed in Eq. (12)
could be replaced with Cox’s Law, MKT or simply Tanner’s law.
This can be incorporated into a continuum model in a number of
ways. As an example, the Langevin contact line model is imple-
mented in the thin-film finite element CFD solver of Karapetsas
et al. 50 , with details of the CFD model given in Appendix A.2. A
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tunable timescale separation is assumed between the molecular
and continuum models, chosen here to be Tratio = 106 steps per
continuum timestep. The initial contact angle is used as the start-
ing point in Eq. (17), with T = 0.8 and taking θs values from
table 1 (a2 = 0.01, a3 = 9.7× 105, b3 = 10.8, c3 = 2.57) and al-
lowed to evolved for time t = Tratio ∆tCFD time units. The average
of the contact angle from the Langevin evolution over the pre-
vious Tratio = 106 timesteps is then used in Tanner’s law Eq. (7)
at each continuum timestep, with resulting contact line velocity
shown in Fig 10. From Fig 10, at short times the contact line
motion is dominated by the large difference between 〈θ〉 and θe.
At intermediate times, the thermal motions effect the contact line
dynamics and it moves more rapidly on average. At longer times,
the mean evolution of the contact line is dictated by Tanner’s law
and follows the the same trends as if there were no fluctuating
components. Finally, once the contact angle reaches θe, the ther-
mal motions will cause it to oscillate about it’s equilibrium posi-
tion. The choice of Tratio can change the importance of molecu-
lar motions on contact line dynamics and incorporate important
thermal effects51 For coupling to fluctuating hydrodynamics, the
mean values and the variance could be exchanged between the
molecular and continuum domains, in a similar way to the work
of Fabritiis et al. 52 , but with the kinematic closure model for the
contact line motion instead of general boundaries.

Modelling of realistic textured surface in large MD systems
would be a sensible extension to tune a more detailed Langevin
equation. For example, Eq. (12) with applied force in the form
of something like T = AT sin(BT t) with coefficients AT and BT

tuned to reproduce surface roughness. It is also possible that
more complex physics, such as surfactants or surface coatings,
could be course grained in the same manner. The presented
model therefore appears to be a very promising for the inclusion
of molecule details in larger scale macroscale models.

4 Conclusion
The shearing of a molecular liquid bridge includes many complex
phenomena, for example temperature-dependent surface tension
and viscosity, evaporation, density variation in the fluid, capillary
waves on the interface, complex fluid-solid interaction and lo-
cally non-linear transport coefficients. The majority of continuum
models require a reduced relationship between contact angle and
contact line velocity. It is here that the greatest uncertainty lies,
and consequently the most benefit to study with molecular scale
models.

A systematic MD study of a sheared liquid bridge is presented,
including the impact of temperature on viscosity and surface ten-
sion. The sheared liquid bridge is only stable in this linear regime
with a range of angles spanning approximately 30◦; beyond this,
pinch off is consistent with experimental observations. The liquid
bridge is therefore limited as a method of obtaining mean wall
velocity as a function of contact angle, but this non-equilibrium
steady state allows unique insight into molecular scale fluctua-
tions at the contact line.

The fluctuations of the contact angle are shown to be well de-
scribed by a Gaussian distribution in most cases, with some skew
at higher speeds. The impact of temperature and sliding speed

on these fluctuations is explored. A Langevin model is introduced
which includes the impact of molecular features as part of a hy-
drodynamic system. This is parametrised to include MD values for
the mean, standard deviations (fluctuations) and time-dependant
behaviour (autocorrelations) of contact angle. The fluctuations
at the molecular scale are related to temperature, heat capacity,
surface capillary fluctuations as well as dissipation. The impact
of these quantities can be incorporated in a continuum solver by
including fluctuations from MD. As most continuum models in-
clude some form of contact line velocity as a function of angle,
this model has a wide range of potential applications.
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A Appendix
A.1 Wall fluid interaction and Equilbirum angle

The strength of the wall-fluid interaction, εwall , can be seen to
have a large impact on the measured angles at equilibrium and
beyond. This behaviour is parametrised in Figure 11 by measur-
ing the equilibrium contact angle for a range of εwall values. The
angle defined by the linear fit is 90 degrees for all values of wall
interaction, while the advancing and receding angle vary between
40 and 140 degrees. Note that at extreme values, the cubic fit is
poor and the angle is under predicted for the hydrophobic case
(should go over 150 and become super-hydrophobic) as well as
overpredicted for the hydrophillic case. Also, freezing of the liq-
uid bridge is observed in the strongly hydrophilic case.
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Fig. 11 The change in the three contact angles as a function of wall fluid
interaction strength (wetting potential).

The wall fluid potential chosen is εwall = 0.6, giving a mildly
hydrophilic wall interaction with advancing contact angle around
70 degrees. Other choices of εwall would be equally valid, al-
though the resulting dynamics as a function of sliding appear to
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follow similar trends.

It can be shown that Young’s relationship is valid for the chosen
wall interaction of Ewall = 0.6. The surface tensions and angle of
the liquid bridge at equilibrium should satisfy,

γLS− γV S = γLV cos
(

1
2
[θa +(180−θr)]

)
(19)

in an time average sense. This is demonstrated for the liquid
bridge by obtaining the surface tension, using the Kirkwood and
Buff 34 definition of Eq. (3), applied in the liquid and gas portions
of the domain separately. The liquid-vapour surface tension is
γLV = 0.754, while liquid-solid and solid-vapour are γLS = 0.634
and γSV = 0.446 respectively. The stress is calculated at a sufficient
distance away from the liquid-vapour interface so only interaction
between wall and fluid or wall and gas are considered.

The distribution of the Kirkwood buff integrand is shown in Fig
12. The two sides of Young’s relation, Eq. (19), are seen to agree
within 10%, which is comparable to the discrepancy of up to 20%
observed in Thompson et al. 14 . This is attributed by Thompson
et al. 14 to residual stresses in the solid and the microscale inva-
lidity of Young’s relation53.

A.2 Continuum Model Overview

This section provides a brief overview of the two dimensional CFD
solver employed to demonstrate the Langevin contact line model
in practice. It is based on the solver of Karapetsas et al. 50 for the
case with no surfactants and the reader is referred to this work
for full details. The thin-film form of the non-dimensionalised
continuity and momentum equations are assumed,

∂u
∂x

+
∂w
∂ z

= 0;
∂P
∂x

=
∂ 2u
∂ z2 ;

∂P
∂ z

= 0, (20)

where z is the wall normal direction with velocity w and u is the
streamwise velocity in x. These equations are solved for a droplet
with boundary conditions given by,

u = β
∂u
∂ z

at z = 0, (21)

∂h
∂ t

+u
∂h
∂x

= w; P =−ε
2
γ

∂ 2h
∂x2 at z = h, (22)

and initial condition,

h(x, t = 0) = 1− x2 ; xc(t = 0) = 1. (23)

The contact line velocity evolves according to Tanner’s law,
Eq. (7) combined with the molecular Langevin equation. The
equations are solved using the finite element method, Newton-
Raphson iteration with adaptive timestep ∆tCFD varying from 10−7

to 10−2. The slip coefficient is β = 10−5, the ratio of height to
width is ε = 0.42, surface tension is γ = 1.0, equilibrium angle
θe = 28.65 degrees and Tanner’s Law coefficients are A = 0.001
and n = 1 for both the case which uses the Langevin equation
and without. Three hundred elements were used for both liquid
and vapour regions and scaled coordinates η are employed using
the location of the contact line for both the liquid, η = x/xc, and
vapour, η = 2− x/xc.
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