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ABSTRACT This paper reports a new extended Kalman filter where the underlying nonlinear functions are
linearized using a Gaussian orthogonal basis of a weighted £, space. As we are interested in computing the
states’ mean and covariance with respect to Gaussian measure, it would be better to use a linearization, that is
optimal with respect to the same measure. The resulting first-order polynomial coefficients are approximately
calculated by evaluating the integrals using (i) third-order Taylor series expansion (ii) cubature rule of
integration. Compared to direct integration-based filters, the proposed filter is far less susceptible to the
accumulation of round-off errors leading to loss of positive definiteness. The proposed algorithms are applied
to four nonlinear state estimation problems. We show that our proposed filter consistently outperforms the
traditional extended Kalman filter and achieves a competitive accuracy to an integration-based square root
filter, at a significantly reduced computing cost.

INDEX TERMS State estimation, filtering, Kalman filter, functional approximation, Taylor series, numerical
analysis, orthogonal polynomial, nonlinear filter, target tracking, computational efficiency.

I. INTRODUCTION

A. BAYESIAN FILTERING

We consider the following state space model of a dynamic
system in discrete time:

pdf p(Xi+1|V1:k) using the Chapman-Kolmogorov equation:

Pt | Vi) = f PXest XOPVid e, ()

In the update step, the posterior density function of the state

X1 = ¢(X) + 0k, (1) P(Xi+11V1:k+1) is computed using Bayes’ theorem:
and P X 111k 41 X Pk 11 X OP( X 11 V1) (4)
For a linear Gaussian system, closed-form solution of the
Vi+1 = ¥ (Xi+1) + vit1, 2

Egs. (3) — (4) is available and it is known as the Kalman
filter (KF) [1], [2]. The KF is the optimal conditional mean
estimator and provides the minimum mean squared error
(MMSE). For a nonlinear system, no such closed optimal
solution is available in general and many heuristic approaches
exist to obtain an approximate solution; in particular, the first
two moments (the mean and the covariance matrix) of the
states.

where X} € R™ is the state of the dynamic system at a time
instant k, Vy € R’ is the measurement, ¢ : R — R
and y : R™ — R are known nonlinear functions. The
process noise, 1y, and the measurement noise, vy are white,
Gaussian and uncorrelated to each other with zero mean and
covariance Q and Ry 1, respectively.

In Bayesian filtering, the hidden state vector X} needs
to be estimated by using measurement up to time k + 1.

The pdf p(Xx+1|V1:k+1) is constructed recursively in two B. BRIEF LITERATURE SURVEY

steps: (i) prediction step (ii) update step. In the prediction
step, from the knowledge of p(Xk|)Vi.k), we construct the
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The extended Kalman filter (EKF) [2], [3] uses local lin-
earization using Taylor series expansion and then uses the
KF recursions for the resulting system. The EKF has some
attractive properties such as local stability, ease of imple-
mentation, and modest computational resources compared
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to some of the alternative filtering heuristics. By local sta-
bility, we mean that the covariance matrix of the EKF can
be shown to remain bounded under appropriate assump-
tions (mild nonlinearity, bounded noise covariance, and ini-
tial estimated errors etc.) [4, pp. 46-53], [5]. The EKF
became very popular in the 1960s and is still being applied
to many real-life problems. However, it suffers from the
disadvantage of track divergence when the system is highly
nonlinear.

To improve the accuracy of estimation without a significant
increase in computational cost, a set of filters collectively
known as deterministic sample point filters are proposed. The
unscented Kalman filter (UKF) [6], [7], the Gauss-Hermite
filter (GHF) [8], the cubature Kalman filter (CKF) [9] and
its variance [10]-[12] are examples of such filters. In these
filters, like the EKF, the prior and the posterior pdfs are
assumed to be Gaussian, and the mean and the covariance
are calculated using specifically chosen sample points and
weights. While linearity and Gaussianity are assumed in the
computation of conditional moments, no explicit lineariza-
tion is needed (unlike the EKF). Reference [13] provides
an extensive review of filtering using deterministic sample
points. The computational cost of such filters is somewhat
higher than the EKF, but it is still substantially lower than
Monte Carlo based filters.

In another development, the posterior and prior pdf of
states are approximated with appropriately chosen points
in the state space (known as particles) and the associated
probability weights [14]. Such a method of estimation is
known as particle filter (PF) [14]. The computational cost
of a particle filter is very high and it shows the curse of
dimensionality problem. To estimate the states of a very large
dimensional system, the ensemble Kalman filter (EnKF) was
proposed in [15]. In the EnKF, we generate a set of ensem-
bles using Monte Carlo sampling, and propagate it through
the state and measurement equations, and subsequently
update it with Kalman filtering scheme. In another approach,
Dunik et. al. proposed stochastic integration filter (SIF)
[16], [17] based on the stochastic integration rules (SIRs).
It combines the Monte Carlo and sigma point method into
a single filtering algorithm. The computation complexity of
the SIF is substantially lower than the sequential Monte Carlo
filters.

Staying within the explicit linearization framework
(mainly due to small execution time), a few heuristic fixes
exist for addressing track divergence and poor performance
issues of the EKF under significant nonlinearities, including
iterative improvement of the local linear estimate; see [13]
and references therein for more details. However, Taylor
series expansion still remains the key to approximate a non-
linear function in these methods.

C. CONTRIBUTION

In this paper, we suggest to use a different linearization
technique which is a first-order polynomial approxima-
tion with a Gaussian measure as a weighting function.
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Essentially, this uses the first two polynomials from an
orthogonal basis of a weighted £, space. Most functions that
appear in nonlinear filtering problems belong to this space.
The coefficients of the first order polynomial are approxi-
mately calculated by evaluating the integrals using (i) Taylor
series approximation of the function (ii) numerical evaluation
of the Gaussian integral using a weighted sum of an appro-
priate set of deterministic sample points. The first approach
assumes that the process and the measurement functions are
thrice differentiable, and a third-order Taylor series approxi-
mation is used to calculate the coefficients. We call this Taylor
series orthogonal polynomial-based extended Kalman filter
as TO-EKEF. For the second approach, we use spherical radial
cubature rule [9] for evaluating integrals and hence com-
puting the coefficients of linearized function. This second
approach is referred to as CO-EKF. Once we have a linear
approximation, the remaining computation during a single
recursion step is identical to the KF. Note that one can also use
other quadrature integration methods such as Gauss-Hermite
quadrature [8] for integration.

We apply the CO-EKF and the TO-EKF to four nonlin-
ear state estimation problems. The performances of these
filtering techniques are compared to the EKF and the CKF
(or square root CKF when we need to address the Cholesky
decomposition error [18], [19]) in terms of root mean square
error (RMSE), the track loss percentage, the average normal-
ized (state) estimation error squared (NEES), the bias norm,
and the relative run time.

D. CLAIM

i. It is to be noted that the Taylor series approximation
is a purely local approximation and is not optimal
in any norm; its accuracy tends to degrade rapidly
away from the nominal point. The proposed filters are
expected to perform better than the Taylor series based
EKF since the chosen basis is optimal with respect
to Gaussian measure [20], [21], in a certain, formal
sense and we are using linearization principally to inte-
grate with respect to Gaussian measure (to compute
the first two moments). The simulation results support
our claim and we see that the proposed TO-EKF and
CO-EKEF provide better estimation accuracy than the
EKEF. Further, the CO-EKF shows a similar estimation
performance compared to the SRCKF at a far lower
computational cost.

ii. Compared to other deterministic sample point-based
filters such as the CKF and the GHF, the proposed
TO-EKF or CO-EKF offer significant computational
stability. Any potential loss of positive definiteness or
symmetry due to numerical errors can be addressed
far more easily in the EKF framework, e.g. using the
Joseph form. In the CKF, the roundoff errors are usually
dealt with using a square root implementation, which
is computationally far more expensive [9], [18]. Later
in section VII, we justify the above claim in terms of
floating-point operations.
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Il. LINEAR APPROXIMATION USING ORTHOGONAL
POLYNOMIALS

Our objective is to approximately evaluate an arbitrary non-
linear function ¢(X), ¢ : R™ — R"™ where X € R™ is a
Gaussian random variable (r.v.) with mean X and covariance
P e R™*"™ We first transform X’ into another r.v. x with
standard normal distribution:

X =X + Sx, (5)

where S is a square root matrix of P ie. P = SST.
Now, we would like to approximate the nonlinear function
¢(2€ + Sx), using an appropriate basis. We will start with
the definition for scalar functions n, = 1 and then extend it
suitably to vector-valued functions of vector-valued variables.
For n, = 1, consider an inner product space of functions
which are square integrable with respect to standard normal
weighting function:

o0
SN:{fi/ N(X;O,l)f(x)zdx<oo},
—00
where N(x;0,1) = t exp(—%xz). It is known that Her-

mite polynomials A;(x), i =0,1,2,---
basis for this space, where

form an orthonormal

l/\f(x)

hi(x) = (=)'N"'(x) , ho(x) =1,

and NV(x) = N(x; 0, 1). The first three polynomials are given

by ho(x) = 1, hi(x) = x and ha(x) = x>—1. Itis easy to verify

that the polynomials satisfy orthogonality condition [22] i.e.
il fori=j,

/OO hiCO)h()N (x; 0, Ddx = { ' ) (6)

0 otherwise.

Any nonlinear function f(x) € Sxr, can be approximated as

N
f) =" ahix), )

where N € N is the order of approximation. The coefficients
a; are expressed as

aj = /OO FEORON (x; 0, Ddx. (®)

For recursive relation between h;(x) and other important
properties readers are referred to [23, p. 775]. The concept
described above is extended for approximating a nonlinear
function in multidimensional real space i.e. for n, > 1. Let
f=mpr-- f,,p]T be a vector in R be a vector valued

function of vector valued variable x = [xj x3 - -~ x,,Y]T and
T .

letn = [n1 ny -+ ny,| be a vector of polynomial orders

in N, Multivariate Hermite polynomials of order n’ = nj +

na+- - -+ny,,,is usually defined by a product of scalar Hermite

polynomials:

H,(x) = hn] (xj) )

J_fl
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where n! = TI}* n!. These polynomials also form an
orthonormal basis for the inner product space of square inte-
grable functions which map R™ to R:

/ NG 0, DHyp (0 Ha(x)dx = :1 forn=m. " 1)

0 otherwise,

where NV(x; 0,1) =

consider n, = 2, zeroth order Hermlte polynomial will be
Hyo = 1, first order Hermite polynomials will be Hig = x
and Hyp; = x», and second order Hermite polynomials will
be Hii = x1xo, Hy = \/LE()CI2 — 1), and Hpp = \/Li
(x% — 1). Higher order multivariate Hermite polynomials have
more involved expressions. Assuming that each j-th element
of f which we write as f;, belongs to the space

,,X exp(—5= x L), As an example, if we

Sy = {f:fOO N(x; 0, D)f (x)* dx <oo},

can be expressed f;(x) in terms of this orthonormal basis as

f) =Y dHix), a1
ieNx
where
%Z/iﬁmmmNmQDw, (12)

and the last integral is over n, dimensions for any choice of
vector subscript i. It is worth mentioning here that, to eval-
uate the above integral for an arbitrary nonlinear function,
we can follow one of two approaches: (i) use a Taylor series
approximation of fj(x), which leads to the integration of a
polynomial in terms of standard Gaussian measure; (ii) use
numerical integration using an appropriate set of determinis-
tic points. In this paper, we describe both these methods in
sections IV and V, respectively. As we are only interested in
a linear approximation, we shall confine ourselves with up to
first-order Hermite polynomial i.e. n’ = 0 and n’ = 1. With
this truncation and for n, = 2, the j-th element of the function
is approximated as

fo~ > dHiw

i={00,01,10}
= apy,Hoo(x) + apy Hoi (x) + djyHio(x).  (13)

The function f(x) which is a vector-valued function can be
written as

f(x) ~ ag +aHy(x), (14)

where Hy(x) = [Hi9...0 Ho1...0 - - - Hoo.. 1] (nex1)° is a column
vector of first order Hermite polynomlals ag and aj are
matrices with dimension (n, x 1) and (n, x n,), respectively.
We choose the Hermite polynomial because the weighting
function of the Hermite polynomial is same as the probability
density function of the Gaussian random variables. More
details on multivariate Hermite polynomials can be found
in [22], [24] and references therein.
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Adding a time subscript and changing notation to be con-
sistent with standard notation used for state-space models,
we can write a first-order approximation of ¢(X’) and y (X)
in the original problem as

(X)) = d( Xk + Skpexx) ~ Aexi + By, (15)
and

V(X)) = ¥ ( Xes 1k + Sk 1) ~ Cexigr + Dy (16)

The matrices Ay, Cy and the vectors By, Dy can be evaluated
using Eq. (12). Note that this ‘linearization’ of nonlinear
functions is fundamentally different from the gradient-based
linearization used in the EKF.

In the literature, there are a few papers which either use
the Gauss-Hermite series or include ‘polynomial filtering’
in the title. Reference [25] proposed a filtering algorithm
(named the Fourier Hermite Kalman filter (FHKF)), based
on the finite truncation of the Fourier-Hermite series. In the
FHKE, the expected value of a nonlinear function has to be
expressed in closed form, which is always not possible for any
arbitrary nonlinear function [26, p. 80]. An algorithm based
on the second-order polynomial chaos approximation is pro-
posed in [27] and it is named polynomial chaos Kalman filter
(PCKEF). It uses a set of support points and Hermite polyno-
mial and is much closer, as an algorithm, to the Gauss Hermite
filter (GHF) than our filter. The algorithm presented in [28]
uses Carleman approximation and its run time is very high.
[29] developed a filtering method for a single-dimensional
system that intrinsically presents polynomial functions by
exploiting the Taylor series to derive second-order statistics.
None of the approaches look at optimal linear approximation
in weighted £, space, in the sense of the work presented
here. Reader should also be aware that the Gauss-Hermite
filter and Hermite polynomial approximation used here are
entirely different approaches even though the word ‘Hermite’
is common in both.

Ill. EKF WITH ORTHOGONAL POLYNOMIALS

The integral mentioned in Eq. (12) has no closed-form in
general and we need to solve it numerically. For the time
being, let us assume that the integral is evaluated by some
means in each case for a first order polynomial approximation
of ¢(Xy) and y(Xy), and we have calculated the coefficients
A € R=*" B e R™, Cp € R»*"™ and Dy € R™. From
Egs. (15) — (16), the process and the measurement equation
mentioned in Egs. (1) — (2) become

Xer1 &~ Apxg + Bi + 1, (I7)
Yi+1 & CiXp41 + Di + Vit (18)
It is worth emphasizing again that x; follows the standard
normal distribution. With the above linearization, expressions

of the prior and the posterior estimate and error covariance
can be calculated as follows:
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PREDICTION STEP
The prior estimate of the state can be given as

)ek—&-llk = E[Xq11Vk]
o0
= / (Axxk + By + )N (x5 0,
—00
= B;. (19)

The prior error covariance can be computed as

o
Priie = f (Akxk + By — Xi1)(Arxy + By
—00

— X0 N 0, Dy + Ok,

or,

o
Pryix = / (Arxex{ ADN (x5 0, Dexie + Ok
o
= AKA} + Q. (20)
UPDATE STEP
In this step, after receiving a measurement V11, the posterior

density function of the state X1 is computed by Bayes’ rule
as [2]

3>k+1|k = E[Vi+11Vk]
o0
= / (Crxkt1 + D + v DN (15 0, D1,
—0oQ
or,

j)k+1\k = Dy. 2D

The measurement error covariance can be computed as

o
Pkyﬁm = / (Crxpt1 + Die — Vi 116)
—0o0

X (Crxg41 + Dy — 3>k+1\k)T (22)
N (X415 0, Ddxg1 + Rit1

o0

= / (Crxi1Xp41 CON G150, Delxiy1 + Ris
—00

= CGCT + Riqr. (23)

The cross-covariance between state and measurement can be
expressed as

P,f?ﬂk = /oo Sk 11kXk+1(CrXg+1 + Dy — 37k+1|k)T
Nrsr: 0. D
= /Z Sk 11k X141 CF N (o1 0, D1
= Sk+1kCY - (24)

The reader may note that S can be calculated from P using
Cholesky decomposition. The posterior mean and covariance
can be calculated using the following equations:

-)€k+1|k+l = -)ek+l|k + K11V — j}k+1|k)» (25)
Pistk+1 = Pry1jk — Kk+1Pky3)1|kKkT+1, (26)
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where K1 is the Kalman gain which is calculated as

Kiwr = PR P07 @7)

As we mentioned earlier, there is no exact solution of the inte-
gral mentioned in Eq. (12), we adopt two different approaches
to evaluate this integral (and hence to compute the coeffi-
cients Ax, Bx, Cx and Dy ), which are described in the next two
sections. The first approach assumes that the ¢()?k k +SkkXk)
and )/(/‘Qk.l,.]‘k + Sk+1kXk+1) are sufficiently smooth and a
third-order Taylor series approximation of these functions
is used to carry out the necessary integration. In another
approach, a few deterministic sample points and their associ-
ated weights are generated. A weighted sum of these deter-
ministic sample points provides the value of the integral.
In this approach, the differentiability of the function is not
required.

IV. CALCULATION OF Ay, By, C;, AND D;, USING THE
TAYLOR SERIES APPROXIMATION
For simplicity of exposition, we will first use the notation
¢ (xx) and y (x+1) in place of ¢ (X +Skjkxx) and y (X 1+
Sk+11kXk+1), respectively, and derive results in terms of par-
tial derivatives of ¢, 7. Then we will evaluate these partial
derivatives in terms of derivatives of ¢, y and hence derive
the necessary expressions for A, Bi, Cx and Dy.
Proposition 1: If ¢(xy) is thrice differentiable at 0,
the expressions for Ay and By, in the third order Taylor series
approximation for Eq. (15) can be written as

n 7 n n 7
5 0¢ () e P0w) r
M=Z——- IE D) I
i=1 axi’k i=1 j=1 axi;k axj’k x=0
82<15(Xk)
Bi = $(0) + Z — . (28)
ox;
i=1 L x;=0

where e; is a Cartesian basis vector with all the elements
equal to zero except the i-th term, which is unity.
Proof: The detailed proof is provided in Appendix A.
Recall that ¢(xk) ¢(Xy), where Xy = Xk‘k + Skjkxy and
Skik is Cholesky factor of the covariance matrix Py x. Next,
we transform the above partial derivatives of ¢~>(xk) into the
desired partial derivatives of ¢(Xy), where as follows.
Proposition 2: The value of the coefficients Ay and By can
be expressed as
1 Ny Ny
Ak = [Va ¢ (X" |y g, S+ 5 D> MG, )
i=1 j=1
Xy _ g, 6 - 29
and

B = <i>(/'\?k|k)

Ly PV, VE (X 30
+5 D eitracel Pk Vg Vi #(Xll yy _ 3., 1. (30)
i=1

where we define the operator, Vy, = (Z;’;] ei%)nxxl,
M = skTIkvXk V)T(kSk\kdiag(SlekVXk).
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Proof: The detailed proof is provided in Appendix B. B

Remark 1: The coefficients of the measurement equation

Cr € R and Dy € R are also calculated similarly to Ak
and By, and can be expressed as

ny Ny

P Sk+1k + 5 ZZ

Xe-r1=Xe+11k io1 =1

.. T
M(l,J)V(Xk+1)IXkH:)nglkei ; €1y
ny
D = y(XGp) + 5 Ze, tralce[PkJrl|1<[V)(k+]VXH1
i=1
V(XD g, —a ) (32)

Cv = [V, v(Xs)" 1"

Once Ag, By, Cr, Dy are evaluated at each iteration, an EKF
like algorithm described in section III can be used to estimate
the states. The steps to implement the Taylor series based
EKF (TO-EKF) are outlined in Algorithm 1.

Algorithm 1: TO-EKF Algorithm

Step 1: Initialization
o Initialize the filter with &fp and Poo.
Step 2: Time update

o Compute Cholesky decomposition: Py = Sk|kSkT| .
o Calculate A; and By u§ing Egs. (29) — (30).
o Compute prior mean X}k = Bx.
« Calculate prior covariance Pk = AkAkT + Ok.
Step 3:
o Compute Sy 41| such that Py = Sk+]\kSkT+1‘k~
o Evaluate Cy and Dy, using Egs. (31) —A(32).
o Estimated value of the measurement Vit 1jx = Dx.
. CJa}l)c}ulate covariance of the measurement:
T

Pitip = CkCp + Ry
o Calculate the cross-covariance between state and

measurement: Pl??f\k = Ska1k CkT.

Measurement update

 Calculate the Kalman gain: Ky =
. Determlne the posterlor estimate:

Xk+1\k+1 Xk+1\k + K 1 Vv 1 — Vier1ji)-
« Estimate the posterlor error covariance:

— VY T
Pk+1|k+1 = Pk—Hlk - Kk+lPk+”kKk+1-

XY Yy -1
PP

V. CALCULATION OF Ay, By, C;, AND Dy USING DIRECT
NUMERICAL INTEGRATION

In this approach, the integral stated in Eq. (12) is evalu-
ated with a few carefully chosen deterministic points and
their corresponding weights [8], [9]. More clearly, for any
real-valued function f(x) which is integrable with respect to
Gaussian measure, the integral (/) expressed below can be
approximately evaluated as;

I= / fEwx)dx ~ Zwﬂa (33)

i=1
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where m is the total number of sample points, w(x) =
N(x;0,1) Wexp(—%xTx) and (&;, w;) are sam-
ple point-associated weight pairs. There are various meth-
ods available to generate these sample points and weights
and evaluate such an integral in terms of an error con-
trolled approximation. Spherical radial cubature rule [9],
[10], Gauss-Hermite [8] and Monte Carlo integration [14]
are some examples. The computation cost in Gauss Hermite
and Monte Carlo based integration rule is high and increases
exponentially with the increase in state dimension. To reduce
the computation burden and yet to achieve comparable esti-
mation accuracy here, we use third degree spherical radial
cubature rule [9], [10] to evaluate the integral.

A. CUBATURE METHOD OF SAMPLE POINT GENERATION
In this method, the integral mentioned in Eq. (33) is decom-
posed into a surface and a line integral. Specifically, a third-
degree spherical radial cubature rule is used to solve the
surface integral, and the line integral is evaluated by the
first-order Gauss-Laguerre quadrature rule. For a detailed
derivation, the readers are referred to [9], [10]. Here we men-
tion how to generate sample points and weights. The sample
points generated through this method are called cubature
points. The sample points are given as

& =/ 2 ],

where [1;](j = 1,2, ---, 2n,) are located at the intersection
of the unit sphere and its axes, and the quadrature points
Ay(G' = 1,2,---,n') are the roots of Chebyshev-Laguerre
equation
d" ,

A2 exp(—=1) = 0,
7 (1)

where a = (n,/2 — 1). The weights can be given as
. 1 WD +n+1)
2 D /2) Ay [LEG)1R

L) = (=1)" A~ exp()

wi s (34)
wherei=1,2,---,2n,n',andj = 1,2, -- -, n’. Throughout
the paper and during the simulation we assume n’ = 1 and
generate sample points.

Note that a higher degree cubature quadrature rule [11] can
also be used, which might lead to somewhat higher accuracy
at the expense of a higher computational burden.

B. EVALUATION OF Ay, By, C; AND Dy,
Whatever be the way we generate the sample points and
weights, from Eq. (56), the coefficient Ay can be expressed
as

o0
Ay =/ (X + Sk )X N (s 0, D, (35)
—0oQ0

With the help of the point-weight method as described in the
previous subsection, the above expression can be written as

Ak =) ¢ X + Sk oi, (36)

i=1

59680

where w; is calculated using Eq. (34). Let x; sk = 2\?k|k +
Skik&i, then the above equation becomes

m

Ak =) dirwE wi. (37)
i=1

In a similar fashion, By, Cy and Dy can be written as

m

Bi =) (i), (38)
i=1
m

Ce = Yy Xkt & wi, (39)
i=1
m

Dr =) y(Xiks1k)oi, (40)

i=1

where x; ry1k = z‘ekﬂ\k + Sk+1k&i. The detailed algorithm
to implement the CO-EKF is presented in the Algorithm 2.

Remark 2: The proposed CO-EKEF is different from the
CKF[9], [10]. In the proposed CO-EKF the coefficients of the
first order polynomial are approximately evaluated through
a set of cubature points and then the EKF is used for the
system linearized using an orthogonal linear approximation.
In contrast, in deterministic sample point filters, the mean and
covariance are directly evaluated using deterministic sample
points.

VI. AVOIDING THE NECESSITY OF THE SQUARE ROOT
IMPLEMENTATION

In deterministic sample point filters, Cholesky decomposi-
tion is required to be performed at each step during which
round-off error occurs due to limited arithmetic precision of
the software [18], [19]. The numerical error accumulated over
time leads the covariance matrix to lose positive definiteness,
and Cholesky decomposition cannot be performed. The prob-
lem is well known and to circumvent it, square root imple-
mentation is required [9], [18]. Square root filtering increases
the computational burden considerably. But the proposed
method is free from this problem and the covariance matrices
preserve the property of symmetry and positive definiteness
during a software simulation.

From the expression of the prior error covariance in
Eq. (20), it can be seen that the covariance matrix, Py
preserves the property of symmetry and positive definite-
ness, and Cholesky decomposition can be calculated at each
iteration of the measurement update step. The expression of
posterior error covariance is

Pryijk+1 = Prgik — Kk+1Pl%)-2]1|kKkT+l
= Piije — KenSE 0K P07, (D)
which further can be expressed as [2, p. 206]
Pripg+1 = — Kk+1Ck+IS;_,}1|k)Pk+l\k
x (I = K1 Ce1 Sy 0"

+Kk+1Rk+1KkT+1~ 42)
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Algorithm 2: CO-EKF Algorithm
Step 1: Initialization
« Generate the sample points §; (i = 1,2, --- , 2n,) and
their corresponding weights w; using cubature rule.
o Initialize the filter with 220‘0 and Py)o.
Step 2:
« Compute the Cholesky decomposition of
Py = Sk|kSIZ]k'
o Evaluate the cubature points ; xjx = Sk + 221(“(.
« Propagated the cubature points ka k= (X kk)-
o Calculate A; and By, as follows:

Time update

2ny 2ny

— * T . _ * .
Ap = Z Xik+166i @i Bk = Z Xi k+1|k @i-

i=1 i=1

« Estimate the prior mean /'?kJr 1k = Bk.
« Calculate the prior error covariance:
Pis1k = ArAl + Ok.
Step 3:
« Factorize the prior error covariance:
T
Pry1k = Sk+1|kSk+1|k~ .
« Evaluate the cubature points:
Xik+1lk = Sk+11k&i + X1k
« Propagate the points through measurement:
Visk+1k = Y (Xik+1]k)-
o Calculate C;, and Dy:

Measurement update

2ny 2ny
T
G = Z)’i,k+l\k‘§,‘ wi, Dy = Zyi,k+1|kwi-
i=1 i=1
« Expected measurement: J7k+1|k = Dx.
« Calculate the covariance of the measurement:
Yy o _ T
Pt = CeCp + Rt
e The cross-covariance of the state and the measurement
XY T
P = Ser1kCe -
« Compute the Kalman gain Ky = P,f?]]‘k(Pgﬁlk)_l.
« Estimate the posterior state:
KXer1lk+1 = X1k + Kk 1 V1 — Vi 115)-
« Estimate the posterior error covariance
Prtik+1 = Pry1jk — Kk+1P£?1|kKkT+1.

As mentioned in [2], the expression is less sensitive to the
roundoff error and preserves symmetry as well as positive
definiteness. This is a property inherited from the EKF, even
though we are using a different form of linearization.

VIl. COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of the CKF,
the square root CKF (SRCKF), and the proposed CO-EKF
are calculated in terms of floating-point operations (flops)
[30]. To compute the Cholesky decomposition of any matrix
of order n x n, n’ /3 + 2n* number of flops operation [30]
is required. With this, we calculate the total flops count of
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a CKF with m sample point as
C(n, ny, m) = (615 + (2 + ny)2n, + 3ny + 2n3)m
2 3 2 2
+zny + (T +2n)n + G+ 4nx)ny

3
+ (1 +2n)ny + 13, (43)

where n, and n, are the dimension of the state and the
measurement, respectively and for the CKF, m = 2n,.
We count the flops required to implement the proposed
CO-EKF as

C(ny, ny, m)
8
= (6n§ + (3 + 2ny)ny + 3ny)m + —ni

3
+3n2 + 2Qny — Diyny + ny + 6nyn? + 3. (44)

Now to calculate the flops count of the SRCKF, we need to
calculate flops for QR decomposition. We assume that the
Householder algorithm is used for it. For any matrix of order
m x n, the computational complexity of the Householder algo-
rithm is 2mn® — 2/3n> flops. With such QR decomposition,
the total flops for the SRCKF are calculated as

C(ny, ny, m) = (8n; + (3 + 2ny)2n, + 4ny + 2n)m

+2n) + 2miny + dnenl + 21 +ny. (45)

We compare the flops count of the filtering algorithm by
varying state dimension, n, for several fixed ny/n,, such as
1/3, 1/4 and 1/20, and plotted in Figs. la - 1c. From the
figures, it can be seen that the flops count of the SRCKF
is (always) higher than the proposed CO-EKF. At a lower
value of n,, the flops count of the CKF, the SRCKEF, and the
CO-EKF seem to coincide. To illustrate this, now we take a
smaller value of n, such as 5, and vary the ny/n, from 0.2 to
1, and the flops count vs. ny/ny is plotted in Fig. 1d. From
the figure, we can see that the flops count of the SRCKF is
much higher than the CO-EKEF, particularly when the dimen-
sion of the measurement vector approaches the state vector’s
dimension.

It can be noted that while calculating the cumulative com-
putational complexity, we have not accounted the function
evaluation related to the state or measurement equation. Due
to this reason, the actual time of the computation differs from
the flops count. Moreover, the specific function evaluation of
a given state-space model can be easily accounted in flops.

VIII. FILTERING PERFORMANCE METRICS

In this section, we briefly discuss the performance metrics
which we use to compare the performances of various filter-
ing methods.

A. ROOT MEAN SQUARE ERROR

The absolute filtering performance or estimation accuracy
of the filters can be evaluated by the root mean square
error (RMSE), which can be calculated at k-th time step
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FIGURE 1. Flops count vs. state dimension (nx) plot of the CKF, SRCKF and CO-EKF when (a) ny /nx = 1/3, where ny, varies from 1 to 10, and nx
varies from 3 to 30; (b) ny /nx = 1/4, where ny varies from 1 to 10, and ny varies from 4 to 40; (c) ny /nx = 1/20, where ny varies from 1 to 10, and
ny varies from 20 to 200; (d) the flops count vs. ny /nx plot for ny = 5, and ny, varies from 1 to 5. Although the CKF takes the lowest flops count to
execute, it is not free from Cholesky decomposition error. Both the proposed CO-EKF and SRCKF are free from Cholesky decomposition error and

among them the CO-EKF has the lowest flops count.

as [2, p. 243]

M
1 ~
RMSE; = i E (Xik — Xix)?,
i=1

where M is the total number of Monte Carlo (MC) runs,
Xk and &, are the truth and estimated state at the k-th
time-step of i-th Monte Carlo runs.

B. NORMALIZED (STATE) ESTIMATION ERROR SQUARED
The consistency of a filter during estimation is crucial to prac-
titioners, and it can be evaluated by the normalized estimation
error squared (NEES). The NEES at k-th time-step is defined
as [2, p. 234] [31]

NEES; = (X — Xk)” Pg (X — o),

where X} is the truth, )?klk is the posterior state estimate,
and Py is the posterior error covariance. The average
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NEES (ANEES) for M Monte Carlo runs can be defined
as [2, p. 234]
| M
ANEES; = — ;NEEs;.
=
The filter is considered to consistent [2, p. 235] if ANEES;, €
[y, up], where I, and u;, are lower and upper bound, respec-

tively. For 95 % probability region, /;, and u; are computed as
follows [31]:

2 2 3

I, = nx[(l — 9an) ~1.96 9an] . (46)
2 13

= nx[(l - 9an) +1.96 9an] L@

If the ANEES; < I, then filter is considered ‘pessimist’
(‘under confident’), since the posterior error covariance is
very high compare to its true value [2, p. 245]. On the
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contrary, if ANEES; > u; then filter is said to be
‘optimistic’ (‘over confident’), since the covariance (P ) is
too small [2, p. 245].

C. BIAS NORM

The bias norm [32] of a filter obtained from M Monte Carlo
runs, can be evaluated as

Bias norm; =

T . .
where the norm of any vector a = [al a --- an] , is given

by llally = \Ja] + a3 + - +a2.

D. FAIL COUNT OR TRACK LOSS

A fail count or track loss situation occurs in filtering when
the absolute estimation error fails to settle below the speci-
fied limit, denoted by ep. In such a case, the state estimate
deviates from its path without following the real truth state.
We define the filter fails to track in that MC runs when
X} — Xl > e}, where X} and X}, are the truth and estimated
state at last time-step of i-th Monte Carlo runs.

IX. SIMULATION RESULTS
Problem 1: Here we consider a
system [10] with process equation:

single-dimensional

Xieg1 = X +td(Xp) + ni,

and the measurement equation:

Vi1 =ty (Xes1) + v,

where ¢p(Xy) = SA(1 — sz), (X)) = Xe(1 — 0.5&%),
ne ~ N, Qp), and vy ~ N(0, Ry). During simulation,
weuse b =0.5,d = 0.1, = 0.01 sec, Oy = b*> t and Ry =
d? t. We assume the initial state of the system is Xy = —0.2,
the initial posterior state estimate is )€0|0 = 0.8 and the initial
posterior error covariance is Pojo = 2. The estimation is done
for 4 sec. The system has two stable equilibrium points at
1 and —1, and one unstable equilibrium point at 0. Even for a
moderate estimation error, the estimated state settles at wrong
equilibrium points, and a fail count situation occurs [10].
The state is estimated by the EKF, the CKF, the CO-EKEF,
and the TO-EKF. For a single representative run, we plot
the truth and estimated state obtained from different fil-
ters in Fig. 2a. From the figure, we see that the CKF, the
CO-EKEF, and the TO-EKF follow the truth, whereas the EKF
loses track. It happens due to a large estimation error of the
EKF forces to settle the estimate to a wrong equilibrium
point. The filtering performance has been compared in terms
of root mean square error (RMSE) obtained from 1000 MC
runs and is shown in Fig. 2b. From the figure, it can be
seen that the TO-EKF provides a better result than the EKF.
The CKF and the proposed CO-EKF provide almost identical
results. We also compare the filtering performance in terms of
average NEES, and average NEES plot of the different filters
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excluding the failed runs (with e, = 1) is shown in Fig. 2c.
Further, we have plotted the bias norm of different filters vs.
time in Fig. 2d. The Fig. 2d shows that the EKF has the largest
bias norm, whereas the TO-EKF retains the lowest. The CKF
and the CO-EKF show almost similar performance.

Lastly, we compare the filtering performance in terms
of fail counts. The percentage fail counts obtained from
1000 MC runs are presented in Table 1. From the table,
we see that the EKF has the highest fail counts (because fre-
quently it settles to a wrong equilibrium point), whereas the
TO-EKF has the lowest. The fail counts of the CKF and
CO-EKF are almost similar. As it is a single-dimensional
problem, any difference in execution time is quite modest and
is not reported.

TABLE 1. Percentage fail counts of different filters obtained
from 1000 MC runs.

Filter Fail count (%)
EKF 23.6
CKF 6
CO-EKF 6.2
TO-EKF 3.5

Problem 2: In this example, we consider a three-dimensional
Lorentz system [8] with the following state space model

X1 = d(X) + b,
Ve = v(Xi) +dvg,
where ¢(X;) = X + §tf (Xy) and y (X)) = Sth(Xy). Here,
Xy € R3 is the state of the system, and V; € R is the
measurement equation. The function f (X’) and A(X') are given
as
f(X) =[rn(=X + X2), nX) — &, — X1 A3,
—r3X; + X0,

and

BX) = (X7 — 0.57 + A2 + X2,

nr and v are uncorrelated white Gaussian noises with zero
mean and covariance §¢f = 0.01. The parameters ry, r
and r3 are known as Prandtl number, Rayleigh number and
geometric factor, respectively. In this problem, we choose
rp = 10, = 28 and r3 = 8/3 [8], [10]. The value of
ry = 28 is more than 24.74 which means that the system
is unstable and the trajectory is quite sensitive to the initial
condition. The values of system parameters have been taken
as b = [0 0 S]T and d = 0.2. The system is initialized
with Ay = [—0.2 —-0.3 —O.S]T. The filter is initialized
with 22’0‘0 = [1.35 -3 6]T and with the initial covariance
Pojo = 0.35 I. Estimation is performed for the time span
of 0 to 4 sec.

We implemented the EKF, the CKF, the CO-EKF and
the TO-EKF, and the truth vs. estimated state (TO-EKF)
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FIGURE 2. (problem 1): (a) The truth and the estimated values (obtained from the EKF, CKF, CO-EKF, and TO-EKF) for a single representative run;
(b) the RMSE vs. time plot for the EKF, CKF, CO-EKF, and TO-EKF obtained from 1000 MC runs; (c) the average NEES of different filters vs. time plot
obtained from 1000 MC runs; (d) the bias norm of the EKF, CKF, CO-EKF and TO-EKF vs. time plot obtained from 1000 MC run.

plot is shown in Fig. 3a. During the implementation of the
CKF, we encountered the Cholesky decomposition error,
so we use the square root CKF (SRCKF) [18]. The filter-
ing performance is compared in terms of RMSE obtained
from 100 MC runs. The RMSE of three states obtained
from 100 Monte Carlo runs are plotted in Figs. 3b-3d.
From the figures, it can be observed that for state-1 and
state-2, the TO-EKF provides a more accurate estimation
than the EKF. The SRCKF and the CO-EKF results are
comparable.

‘We compare the consistency and bias of the filters in terms
of average NEES and bias norm, respectively. The average
NEES and bias norm of the different filters are calculated,
excluding failed trajectories. We define an estimator fails to
track when Z;g)loo(xl,k — é?l,k)z > 10%. Fig. 4a shows
the average NEES vs. time plot. From the figure, it can be
observed that the average NEES of the SRCKEF, the CO-EKF,
and the TO-EKF are within the lower and upper bounds which
are [, = 2.5391 and u, = 3.4988, respectively. However,
the EKF does not lie within the bounds. The bias norm of
different filters is shown in Fig. 4b. From the figure, we see
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that the EKF has the highest bias norm, whereas the SRCKEF,
the CO-EKEF, and the TO-EKF provide similar results which
are lower than the values obtained from the EKF. The
relative execution time of different filters with respect to
the EKF are reported in Table 2. From the table, it can
be seen that the SRCKF demands almost double compu-
tational time than the EKF, however, the CO-EKF and
the TO-EKF take nearly 20% less execution time than
the SRCKF.

TABLE 2. The relative execution time taken by different filters.

Filter Execution time
EKF 1.00
SRCKF 2.08
CO-EKF 1.63
TO-EKF 1.61
CKF 1.59
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FIGURE 4. (problem 2): (a) Average NEES vs. time plot; (b) bias norm vs. time plot for the EKF, SRCKF, CO-EKF, and TO-EKF for 100 MC runs.

Problem 3: In this example, a bearing only tracking (BOT) Process model: The target dynamics on the X-axis in
problem [33] has been considered where a moving target is discrete-time is
being tracked. The target and platform kinematics are shown
in Fig. 5. Xe+1 = FXr + Ting, (48)
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FIGURE 5. (problem 3): A target (ship) is moving on a straight line and an
observer (aero platform) passing on the top of it and measuring bearing
angles.

X1 F_[1T _[1%)2
Xog | “lo1f S
with X ; and X, are the position and velocity along the
X-axis, respectively. The process noise 1y is white Gaussian
with mean zero and covariance g = 0.01m?/sec”.

Observation model: The platform dynamics in discrete-time
domain may be represented as

where X}, =

k=1,2,-
k=1,2,--

Xp ke = Xpk + Axp
Yp.k = )_’p,k + Ayp i

> Hsteps (49)
» Mstep (50)

where X,  and y, ; are the average platform position coordi-
nates, ngep = 20, Axp ;. and Ay, ; are assumed to be white
Gaussian and mutually independent noises with covariances
re = Im? and ry = 1m?, respectively. The average platform
position co-ordinates are X x = 4kT and y, = 20, where
T = 0.2 sec is sampling time. The bearing measurement is
represented as

Yp.k

— ) vk
Xk —Xpk

Ve = ¥ Xk Ypk» Xt g ]+ s =tan™! (

The measurement noise, vs is white Gaussian with zero
mean and covariance r;, = (3°)2. The random platform
perturbation induces extra error in measurement. Combining
all these uncertainties, the measurement equation will be
approximated as

Vi = v Xp.k» Ypk» X1kl + Vies (5D

where vy is the equivalent measurement noise with mean zero
and covariance Ry given by [33],

?,%,er + [Xl,k _)_Cp,k]zry
(X% — Zp il + 35 )2

The EKF, the SRCKF, the CO-EKF and the TO-EKF are
implemented on the problem described above. The initial
truth of the state is Xy = [80 1]7 and we initialize the
estimators with the initial state estimate (/'\Afo‘o) and the error
covariance (Ppjo) as discussed in [33]. For a single repre-
sentative run, the truth vs. estimated state (TO-EKF) plot

E[vi] =Ry =

+ 7.
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for position and velocity are shown in Fig. 6a and Fig. 6b,
respectively. Filtering performance is compared in terms of
RMSEs, which are calculated over 100 MC runs.

The RMSE of position and velocity are plotted in Fig. 6¢
and Fig. 6d, respectively. Please note that the RMSEs are
calculated excluding track loss cases which is defined when
terminal position error goes beyond 15 m. From the figures,
it can be seen that the RMSEs for both position and velocity
are almost similar for all filters and somewhat better than the
EKF. We also compare the filtering performance in terms of
the average NEES and the bias norm. For the 95% proba-
bility concentration region, we calculate [, = 1.8285 and
up = 2.1791 using Eqgs. (46)—(47). The average NEES of
the EKF, the SRCKF, the CO-EKF, and the TO-EKF are
plotted in Fig. 7a. From the figure, we see that the average
NEES of the SRCKF, the CO-EKF, and the TO-EKF lie in
the concentration region whereas the EKF has a high average
NEES value and does not lie in the defined region. Fig. 7b
compares the bias for all the filters. From the figure, we see
that the SRCKEF, the CO-EKEF, and the TO-EKF have similar
bias norms, and only the EKF performs poorly.

Lastly, the filters are compared in terms of track loss and
execution time and are shown in Table 3. We calculate the
percentage of track loss from one hundred thousand MC runs.
From Table 3, it can be seen that the EKF has the highest track
loss, followed by the TO-EKF. The track loss of the CO-EKF
and the SRCKF are both very low and are nearly the same.
However, the execution time of the SRCKF is higher than
the CO-EKF.

TABLE 3. Percentage track loss and relative execution time taken by
different filters.

Filter Track loss (%) Execution time
EKF 0.163 1.00
SRCKF 0.007 1.40
CO-EKF 0.009 1.20
TO-EKF 0.021 1.14
CKF 0.007 1.17

Problem 4: In this problem, we consider a real-life pas-
sive underwater bearing-only tracking (BOT) problem [32],
[34]. It is assumed that the target moves with a constant
velocity and the observer follows a maneuvered path. The
target movement and observer maneuvering are presented
in Fig. 8. Our main objective is to estimate the trajectory
of the target i.e. position and velocity of the target from
the noisy sensor measurement. We denote the target state
variable as X! = [XI’ X XI’ th]T and the observer states
by X0 = [A0 X9 AP XY ]T. We define a relative state vector
as X = X — X =[x X XQ]T, and the dynamic
model (process equation) in discrete-time domain can be
represented as

X1 = F X — ug g1 + k., (52)
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FIGURE 6. (problem 3): The truth and the estimated value of (a) position; (b) velocity obtained from the proposed TO-EKF for a single
representative run; (c) position RMSE vs. time plot; (d) velocity RMSE vs. time plot of the EKF, SRCKF, CO-EKF, and TO-EKF for 500 MC runs. The
number of required sample points to implement SRCKF and CO-EKF are 2ny i.e. 4, and a third-order Taylor series approximation is used during the

implementation of TO-EKF.
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where the state transition matrix is
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163%)
F =
[Ozxz

Thyo
Iy |°

The effects of observer acceleration is accounted in
terms of deterministic input ug x+1, which is defined as

i kvt = (X7 — X0 =T XYy

7

0 0
k+1 T Xz,k_TXZ,k’
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The available noisy sensor measurement is given by

Vi = v (&%) + i,

where vy ~ N(0, 0’92). The true bearing is given by y (Xy) =
atan2(&X r, X2 1), and measured it from the observer to tar-
get in clockwise direction with respect to true north. The
parameters used in the simulation are tabulated in Table 4,
and the filtering run time is 30 min. The filters are initialized
as described in [32].

TABLE 4. The parameters used in tracking scenario.

Parameters Values

Initial range (1) 5 km

Target speed (s) 4 knots

Target course -140°

Observer speed 5 knots
Observer initial course 140°

Observer final course 20°

Observer maneuver From 13th to 17th min
g 1.5°

q 1.944 x 10~% km? /min®

In this problem, we implemented the EKF, the SRCKF,
the CO-EKEF, and the TO-EKF to track the target trajectories.
In Fig. 8, we show the target tracking using the proposed
TO-EKF. From the figure, we see that the TO-EKF starts
converging after maneuvering (please note the maneuvering
point in both own ship and estimated trajectory) takes place.
We compare the performance of the filters in terms of position

1 . . .
Initial Initial point ,
/
0sf / point _ R
LT p——— L !
point | _ _ _ Truth target )/
Py - Estimated TO-EKF ’
E X Observer at 18th min .
=05 K TO-EKFatisthmin |y .-
= - /i

> z o

Ak 477

s
7
//
15+ 7
7
4
Z
2 . .
o 05 1 15 2 25 3 385 4 45 5
X (km)

FIGURE 8. (problem 4): The figure shows a typical engagement scenario
where a target moves in a straight line, and the observer ship is
maneuvering to track the target. The estimation result shows TO-EKF
successfully tracks the target although the initial error is high.
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and velocity RMSE obtained from M = 500 MC runs. The
position RMSE at k-th time-step obtained from M MC runs
can be expressed as

A S
Pos = |37 ;(Xll,k = X+ (A — A5 0%

The position and velocity RMSE vs. time (excluding track
loss) are plotted in Fig. 9a and Fig. 9b, respectively.
We define the track loss when the terminal position error goes
beyond 1 Km (i.e e, =1Km). From the Figs. 9a-9b, we see
that the proposed filters are better than the traditional EKF,
and the TO-EKF is slightly better among them.

Now, we check the filtering consistency using average
NEES. For 95% probability concentration region, we cal-
culate the values of lower bound /, = 3.7559 and upper
bound u; = 4.2517 using Eq. (46) and Eq. (47), respectively.
We have plotted the average NEES of different estimators
in Fig. 10a considering the runs which achieve terminal
position error less than 150 m. From the figure, we see that
only the TO-EKF could reach within the bounds and all other
filters lie outside the bound. We also compared the filters in
terms of bias norm plotted in Fig. 10b. It can be seen that the
CO-EKEF has the lowest bias norm, whereas the EKF has the
highest one.

Lastly, we compare the filters in terms of track loss and
execution time which are shown in Table 5. The track loss
(for ¢, = 1km) has been calculated from 100 thousands
MC runs. Table 5 shows that the track loss of the EKF is
the highest, whereas the SRCKF has the lowest. The track
loss of the CO-EKEF is almost near to the SRCKF. However,
the execution time of the SRCKF is almost 1.5 times of
the CO-EKF.

TABLE 5. Percentage track loss when error bound is 1 km for
100 thousand MC runs and relative execution time
taken by different filters.

Filter Track loss (%) Execution time
EKF 5.032 1.00
SRCKF 2.046 2.17
CO-EKF 2.290 1.43
TO-EKF 2.732 1.68
CKF 2.046 1.82

Based on the four simulation examples, we can draw the
following broad qualitative conclusions:

(i) Both the TO-EKF and the CO-EKF consistently out-
perform the traditional EKF.

(ii)) Both the new filters have accuracy comparable with
that of the square root form of an integration-based
filter, and the CO-EKF also has track loss performance
which is comparable with the SRCKF. While the track-
ing example shows the track loss of the TO-EKF to
be higher than that of the SRCKE, it is still less than
the EKF.
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FIGURE 9. (problem 4): (a) The position RMSE vs. time plot; (b) the velocity RMSE vs. time plot of the EKF, SRCKF, CO-EKF, and TO-EKF for 500 MC
runs. The number of required sample points to implement the SRCKF and CO-EKF is 2ny i.e. 8, and third-order Taylor series approximation is used
in the implementation of the TO-EKF.
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FIGURE 10. (problem 4): (a) The average NEES vs. time plot calculated from 500 MC runs; (b) The bias norm vs. time plot of different filters

obtained from 500 MC runs.

(iii) Both the TO-EKF and the CO-EKF have execution
time that is higher than the EKF but below that of
the SRCKF.

Comparison with other numerical integration-based fil-
ters such as the Gauss Hermite filter and the unscented
Kalman filter leads to the same or similar qualita-
tive conclusions: the proposed filters yield compara-
ble accuracy to integration-based filters at a lower
computational cost. Results of numerical comparison
with other filters are omitted for brevity and clarity
of exposition.

(iv)

X. DISCUSSION AND CONCLUSION

This paper proposes a new approach that is based on lin-
earization of the process and measurement equation with
first-order orthogonal Hermite polynomial, to solve a non-
linear state estimation problem. The developed estimation
method is expected to perform more accurately than the
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Taylor series-based linearization. The coefficients of the first
order polynomial are approximately calculated by evaluating
the integrals using two different alternatives: (i) third-order
Taylor series expansion of the function (ii) cubature integra-
tion method.

Since we are focused on recursively computing moments
with respect to the Gaussian measure, using an optimal linear
approximation (in integral squared error sense) under Gaus-
sian measure sounds like an intuitively more attractive choice
than using Taylor series based linearization. Four different
simulation examples show that the new filters consistently
outperform the EKF and give accuracy which is comparable
with computationally more expensive square root filtering,
at a lower computational cost.

APPENDIX A
Proof of Proposition 1: To calculate the coefficients Ag
and By, at first, we approximate the function ¢(x;) by a
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third-order Taylor series:

. ny 9 (x) ny Ny
) ~ 50+ 3 s "’ ¢ ST
i=1 j=1
%P (xy) o o
P EE—— — Xi kXi kX
axi,kaxj‘ykx= ;;; KKK
3p(xr)

—_— , (53)
0x; k 0xj k 0xp

. , k=0
where x; ; is the i-th element of the vector x;. The above
equation can be rewritten as

G (xe)
¢(xk) o~ o 0%p(w)
¢(0)+Z Xik Z 2
9xi Xk ox; ik lx=0
iy 2> ¢<x> :
k 3
+ZZX;I<X]I< 0x1.1 011 —i—gin’k
i=1 Jj=I1 xx=0 i=1
i
PP o O PP
P 3 sz’k Nk 53 o 9 )
Yik =0 ,1,1 xkx,kko
JFEL
e B P
k
. (54
+ - ZZ Z S L 54
i=1 j=1 I= 5 x=0
J#L l#tl#/

We use the following formula [35, pp. 38-39] to evaluate the
value of A and By:

o 1 n=0,

/ XN (30, )dx ={1x3x5x(m—1) neven,

I 0 n odd.
(55)

From Eq. (12), Ax can be calculated as

Ay = / () Hy ()T wioek )dx

/ G )xd N (xi; 0, Dy (56)

Substituting Eq. (54) and Eq. (55) in the above equation,
we obtain Eq. (27). Similarly, we can calculate

o oo
Be= [ dtwmtndn= [ GuAs0. D (57
—00 —00
Substituting Eq. (54), the above equation yields Eq. (28).

APPENDIX B .
Proof of Proposition 2: At xx = 0, Xy = Xy, and we use
the nabla operator (V), as defined above to write:

ny

Z AP (xr) eiT _ [Vngg(xk)T]Tleo

0x;
i=1 Bk =0

= Vo d(X) 1 - (59)
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Using the vector chain rule [35, p. 103], we can write
Vo = [V X 1V, = Vi [ R + Skexe]” Vg
= ST, V. (59)
Substituting the above in Eq. (58),
i I (xz)

ox,
=1 Ok o

= 50V s X0y,

= [Va d(X0)"1" 4 _ ., Seik- (60)

The third order partial derivatives can be expressed with the
help of V operator as

Ny Ny Ny Ny

Yy P =>"> MG jel. (6

i=1 j=1 xlkx]k i=1 j=1
where

M =V, V] diag(Vy,)
= S Vo, Vi, Stixdiag(S{ V). (62)
Substituting Egs. (60) — (62) in Eq. (27), we receive
ny Ry
Ar = [VadpXo" S M
k= [V, &(Xp)" ] i Kk + = ;,21 (¥)]

S(XO)| g5, ¢ - (63)

The second order partial derivatives can be expressed with the
help of V operator as

ny 2

Z Py = trace{Vy, Xk} = traCC{SHkVXkVXkSk\k} (64)
i=1 ~Tik

Using the cyclic property of the trace i.e. under circular
permutation trace is invariant, the above equation becomes

Ny

82
2
—1 axi’k

= trace{Sk St Va, V;k}

= trace{ PV, Vi, ). (65)

Substituting the above in Eq. (28), we receive Eq. (30).
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