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ABSTRACT: Allosteric drugs have been attracting increasing interest over the
past few years. In this context, it is common practice to use high-throughput
screening for the discovery of non-natural allosteric drugs. While the discovery
stage is supported by a growing amount of biological information and increasing
computing power, major challenges still remain in selecting allosteric ligands and
predicting their effect on the target protein’s function. Indeed, allosteric
compounds can act both as inhibitors and activators of biological responses.
Computational approaches to the problem have focused on variations on the
theme of molecular docking coupled to molecular dynamics with the aim of
recovering information on the (long-range) modulation typical of allosteric
proteins.

Here, we present a protocol that combines docking-based
screening, information on the conformational dynamics

of the protein, and machine learning (ML) to classify ligands
of the molecular chaperon Hsp90 as activators or inhibitors.
To this end, we develop a classifier of activation/inhibition of
Hsp90 allosteric ligands that is trained on data from a panel of
ensemble docking results. The data set for this study is built
from a database of 133 known Hsp90 ligands.
Three different ML methods are compared with the best-

performing algorithm, achieving an average balanced accuracy
of 0.90 (over 10-fold cross-validation) in correctly separating
inhibitors from activators. A comparison with a direct
classification of the chemical properties of ligands suggests
that the ML prediction is not dependent on the similarity
among the molecular structures but recovers hidden
similarities in functional effects of different ligands.
The improved knowledge of gene organization coupled with

the advances in gene editing and structural analysis methods
can potentially start a whole new era in drug discovery.1,2 In
particular, improved target identification can shed light on
biomolecules whose perturbation via small-molecule binding
results in a functional response, transforming a disease
phenotype into a normal one. The extraordinary complexity
of biochemical networks in healthy and disease conditions3,4

and the costs associated with drug discovery are however
hampering the advent of this new era of therapeutics, as shown
by the relatively low numbers of new drugs approved in the
past few years.5,6 Most drug discovery efforts aim at targeting
the active sites of enzymes or the orthosteric sites of regulatory
proteins. Because of the evolutionary and structural con-
servation of such sites across the proteome, issues related to

selectivity, off-target effects, and development of drug
resistance have started to appear.
In this context, allosteric ligands have recently emerged as a

viable complement or alternative to active-site directed
molecules, with novel potential as drug candidates or chemical
tools.7−10 Allosteric ligands bind to sites that are generally
distinct and distal from the classic orthosteric ones. In doing
so, they can perturb the target not only by inhibition but also
through modulation or activation of specific functions. This
represents an advantage in terms of fundamental and
applicative perspectives. In fundamental research, chemical
modulators (effectors) can be used to direct signaling pathways
and whole cells toward desired functional states, representing
important tools for understanding the roles of specific
biomolecules in complex biochemical networks.11,12 In
biomedical applications, since they target sites that are
generally less evolutionarily conserved, allosteric ligands can
be highly selective, even among different members of the same
protein family,13 providing new opportunities for therapeutic
discovery.
To date, most (non-natural) allosteric ligands/drugs have

been discovered using high-throughput screening. The ever
growing amount of sequences and structural information
combined with the increases in computing power and the
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improvement of predictive algorithms are starting to facilitate
the discovery of allosteric modulators, but major challenges
remain to develop approaches focused on rational drug design.
Computational approaches to the problem have focused on

variations on the theme of molecular docking. Binding
affinities predicted by docking simulations are routinely used
in virtual screening to estimate relative ligand rankings and to
inform further steps in lead identification.14,15 Efficient
screening of large libraries of compounds is achieved by the
use of approximate scoring functions and simplified strategies
for conformational sampling.16 Typically, a static model of the
target structure is used. However, recently the influence of
protein dynamics on the recognition process has been more
accurately modeled using ensemble strategies.17−22 These
strategies involve the docking of a molecular ligand libraries
over an ensemble of selected geometries of the protein,
creating a more realistic representation of the ligand bound to
the different expected conformations of the target. The use of
an ensemble of conformations reduces the dependence of the
docking results on the target structure.23 Ensembles can be
extracted from unbiased molecular simulations of apo
structures24 and more often by sampling of protein
conformations from holo structures containing first-generation
ligands.25 Under the assumption of conformational selection, a
set of different ensembles representing different binding states
would have selective preferential binding for different ligands.
On the basis of this hypothesis, previous studies have used “a
panel of ensembles” for virtual screening,26 whereby a vector of
binding affinities against the panel is used to generate a specific
fingerprint for each ligand.
This type of data has high dimensionality both in the

chemical and conformational space and is best suited for
analysis using ML methods, which have been increasingly
adopted in drug discovery studies. Indeed, they contributed to
the improvement of performance in virtual screening
studies27−29 and they have been effectively used in the
enhancement of structural-based virtual screening and
scoring.30,31 ML methods are mostly data-driven, and their

performance is often dependent on the size and quality of the
data set. To this end, they may present limited transferability,
and care is required in reporting results and the scope of
applicability.
The combination of ML with molecular simulations can

dramatically advance the process of selection of allosteric
ligands with a desired impact on the function of the target.32

Indeed, a major limitation in docking simulations is the lack of
information on the functional consequences of the allosteric
binding event. While relative binding affinities and geometries
can be reproduced close to experimental accuracy, there is no
predictive score to discriminate inhibitors from activators,
agonists from antagonists or partial agonists.33 Experimental
assays typically report on the orthosteric function, in most
cases by direct measurement of a relevant biochemical
parameter that involves the active/orthosteric site. This may
not necessarily reflect the affinity of binding at the allosteric
site.34−36 In most cases, binding is only one aspect of an
intricate interplay of structural and dynamic factors that
emerges from the cross-talk between the allosteric ligand and
the protein and define functional responses. As a consequence,
the derivation of structure−activity relationships (SARs) for
allosteric ligands is typically much more complex than for
orthosteric ones.
This unmet challenge calls for new approaches that integrate

information on binding, conformational dynamics, and bio-
logical activity because the desired readout of the binding
event is a change of functional state in the protein that is not
directly or easily modeled by single docking calculations.
Here, to progress along this fascinating avenue, we explore

the potential of ML models trained on molecular simulations
to predict the functional effect of allosteric ligands on proteins.
Allosteric ligands can either activate or inhibit protein function.
As a test case, we focus on the difficult case represented by the
Hsp90 chaperone system, a molecular machinery essential for
cell development and maintenance that works by facilitating
the folding of a broad spectrum of clients.37−42 Proteins of the
Hsp90 family (Hsp90 in the cytosol, Grp94 in the ER and

Figure 1. 3D structure and domain organization in Hsp90. The N-domain is colored in green, the middle in white ,and the C-domain in red. The
ATP molecule is shown in its binding site in van der Waals representations with atom type coloring. The allosteric site is also highlighted.
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Trap1 in mitochondria) are homodimers with two chains
consisting of three globular domains, the N-terminal (NTD),
middle (M), and C-terminal (CTD). The functions of the
chaperone are regulated by ATP hydrolysis in the NTD, where
ATP processing is coupled to Hsp90 conformational
reorganization and consequent client remodelling (see Figure
1). Early work by Neckers’ group and recent computational
studies reported an allosteric site at the boundary between the
M- and C-terminal domains that modulates ATP-related
functionalities10,43−45 (see Figure 1). The discovery of this
allosteric site facilitated the development of different series of
allosteric ligands that are able to perturb Hsp90 mechanisms,
by either inhibition or activation of ATP processing. Kinetic
and biochemical data indicated that the functional effects of
the ligands are critically coupled to their influence on the
conformational dynamics of the protein.
In this work, we ask whether we can develop a reliable

predictor of activation/inhibition for Hsp90 allosteric ligands.
Model training is driven by ensemble-based structural,
dynamic, and energetic characterization of allosteric binding.
Our approach to classify allosteric ligands as activators or

inhibitors of ATP hydrolysis in Hsp90 entails three steps (see
Figure 2).

First, a panel of structural ensembles is generated by cluster
analysis of conformations from molecular dynamics simu-
lations of representative holo structures, in which Hsp90 is
bound to ATP in the N-terminal domain and to an allosteric
effector in the allosteric site. Then a library of allosteric
compounds is docked against the Hsp90 structural panel.
Finally, a predictive model for functional classification of the
allosteric ligands is trained taking into account the structural,
dynamic, and energetic properties of the resulting complexes.
From the literature, we collected 133 compounds with known
activity against Hsp90, comprising 49 inhibitors and 84
activators (see supplementary Figure S1). This data set was
used to train and test the predictive model. The protein

conformational ensembles for docking were generated by
atomistic molecular dynamics simulations in explicit water of
Hsp90 in complex with three different ligands: one activator
(CC26) and two inhibitors (ND2 and Novobiocin) (see
supplementary Figure S2).
We note here that in our model, the dynamics of the protein

and potential allosteric effects determined by the cross-talk
between the ligand and the chaperone is taken into account
explicitly in these preliminary simulations with the three
representative of activators and inhibitors. In this context, it is
worth noting that our work aims to investigate how short time-
scale changes in the structural dynamics of the chaperone
dimer in the presence of small molecule effectors may
determine the onset of the motions that are eventually relevant
for function. The underlying hypothesis is that nanosecond
time scale residue fluctuations of Hsp90 in regions that are
specifically responsive to the presence of ligands may facilitate
the large-scale domain rearrangements that lead to a
functionally competent/incompetent state. These concepts
were previously probed via computational and experimental
approaches.46

To keep the generation of the structural ensembles
independent from the data set used for training, these ligands
were not included in the training and test data sets.
Each replica of molecular dynamics was run for 400 ns,

saving structures every 100 ps, and the resulting trajectories
were combined into a single metatrajectory. The panel of
structural ensembles for docking was built to take into account
the conformational variations induced by the ligands and
approximate the most relevant states in Hsp90 functionally
oriented dynamics. To this end and to qualitatively account for
the cross-talk between the presence of a ligand and the
different domains of Hsp90, geometrical cluster analysis of the
metatrajectory was repeated using four different reference
frameworks: the backbone atoms of N-terminal domain
(Clust-N); the backbone atoms of middle domain (Clust-
M); the backbone atoms of N-terminal and middle domains
(Clust-NM), and the backbone atoms of middle and C-
terminal domains (Clust-MC). In addition to these domain-
based frameworks, a cluster analysis of the allosteric site was
performed, where the ligand binding site was defined as the
ensemble of residues that are within 1 nm of any bound
allosteric ligand in at least 75% of all visited structures
collected in the metatrajectory. This latter criterion was used to
consider the most relevant local interactions between residues
in and around the binding pocket and the ligand. It is worth
underlining here that, during MD, the spectrum of contacts
dynamically evolves.
Next, the representative structures from the three most

populated clusters for each of the four domain-based
ensembles were selected as a target for docking experiments.
The total number of structures in the three most populated
clusters always account for at least 45% of the metatrajectory.
In addition, the two main representative structures resulting
from the allosteric-site based clustering were added. Two
structures were enough to recapitulate more than 95% of the
structural variability observed in the pocket.
Cluster analysis of the molecular dynamics metatrajectory

yielded a total of 14 representative protein structures for the
following step of docking. This collection was generated to
capture the propensity of Hsp90 to populate conformations
potentially endowed with different functional properties. After
docking the ligand library to each of the selected representative

Figure 2. Simplified scheme of the MD-ML strategy. Schematic
representation of the protocol followed in this work, which entails the
generation of a structural ensemble, the docking of ligand libraries,
and the training of learning algorithms for functional classification.
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structures, three measures were calculated for every resulting
complex: the docking score of the best pose for every
representative structure; the root-mean-square (RMS) of the
docking score for the 10 best poses; and finally, the RMSD on
the atomic positions of the first 10 poses, reporting on the
structural adaptation within the pocket. Ten poses per ligand
were selected as a compromise to provide a tractable and easy
to visualize number of configurations, while capturing
positional adaptation of the molecules to a changing binding
site. A total of 42 features was thus used for ML prediction.
The underlining hypothesis of our study is that features

describing the docking results of a ligand against a panel of
distinct conformational ensembles can be used as “dynamic
fingerprints” of its functional effect on the protein. We tested
this hypothesis under three assumptions: (1) the separation of
activators and inhibitors cannot be directly detected in the
feature space by cluster analysis; (2) the separation of
activators and inhibitors requires modeling a complex
relationship by supervised learning; and (3) the separation
cannot be trivially obtained by use of small molecule
fingerprints in the absence of information on the protein
structure and dynamics.
None of the features described above can independently be

used as a classifier and directly separate inhibitors from
activators. This is evident from the distribution of values for
every single feature against the two known ligand classes: in all
the cases, the pair of per-class distributions overlap (see
boxplot in Supplementary Figure 3). This suggests that a
model based on the combination of these features is required
to discriminate between the two classes. The first step is to test
if the separation of the two groups of ligands can be directly
detected with an unsupervised learning approach.
To this end, cluster analysis was performed to assess if a data

segmentation compatible with the two functional classes of
ligands (activators/inhibitors) can be detected. Two different
algorithms were used: k-means and agglomerative hierarchical
clustering. The target cluster numbers could be set to 2, but we
adopted an unbiased approach and explored values between 2
and 6. The ability to correctly separate ligand classes in the
clusters was estimated by cluster purity, which has values
between 0 (when the class labels are completely mixed in the
clusters) and 1 (clusters composed by only one class). Both
algorithms have similar purity values; in particular, when 2
clusters are considered, the purity is low (0.66 for K-means and
0.69 for hierarchical), and with more clusters, the purity
increases, remaining below 0.80 (for 4 clusters: k-means have
0.78 of purity and hierarchical have 0.79). The increased purity
is due to the reduced size of clusters that helps adapt to the
class separation. Yet, the value in the case of 2 clusters reveals
that is difficult to detect a segmentation of the compounds in
the functional classes directly by cluster analysis. This suggest
that it is not possible to automatically partition the space of the
data to identify inhibitors and activators. A model trained on
properties from the different binding conformations is
therefore needed.
In this framework, a classification model was built using

supervised learning. The model is trained to predict class labels
describing the functional effect of the ligand (i.e., activation or
inhibition). Three widely used algorithms were compared:
Logistic Regression (LR) as a baseline, Support Vector
Machine (SVM), and Random Forest (RF). The performances
of the three methods was compared after training and testing
using the holdout method, where the data set is randomly split

in training set and test set with the proportion of 70% and 30%
respectively. The performance in prediction is reported in
Table 1.

LR and SVM show similar performances while RF has
poorer performance. Nevertheless, all three methods show a
better classification power compared with the cluster
segmentation. A 10-fold cross-validation without shuffling
was performed to exclude any bias due to the simple holdout
split and to further compare the methods. This approach also
highlighted possible variability across the data sets and
facilitated interpreting the performance with more insight on
the chemical features of the molecules (see below).
SVM shows the best performance with an average balanced

accuracy of 0.90, compared with 0.87 (LR) and 0.79 (RF). In
Figure 3, per-fold balanced accuracy is reported. Only for one
fold, values are below 0.8. The results show consistency in
performance by SVM across the set. To confirm that the model
is properly trained, its convergence was assessed at the increase
of the training set. For each subset size ranging from 20 to
100%, 100 random samples were generated. SVM models were
trained and tested with holdout. Performance was evaluated as
median accuracy over the 100 random samples. The accuracy
converged to 0.89 for the subset at 80%. This suggests that
with a data set of ∼100 compounds the model can be built
with confidence (see Supplementary Figure 4).
Finally, the possible dominance of one type of ensemble

feature (docking score, rmsd, rms) in the prediction was
assessed by selectively excluding each feature in turn and
repeated cross-validation. In each case the variation in the
average performance was not statically significant (i.e., z test
score below 1; see Supplementary Figure 5), and therefore, no
feature was detected as dominant.
The classification model trained on docking against the

panel of representative conformations does not directly
account of chemometrics properties of the ligands. In the
context of compound selection, it is interesting to compare the
classification model with a direct analysis of the chemical
properties of the compounds. This is to assess if correct
classification can be obtained by small molecule fingerprints in
the absence of information on protein structure or dynamics.
Our data set comprises molecules representative of different

chemotypes (Supporting Figure 1). It may be possible to
qualitatively cluster these molecules with respect to shared
scaffolds: in our case, this results in eight different groups
(Figure 4).
Yet, the compounds can still display substantial differences

in their substituents in terms of dimensions, charges, and
functional groups. Therefore, a classification based only on the
core of the molecules would give only a rough estimate of the
chemical variability in the data set. For this reason, to explore

Table 1. Performance of ML Approaches: Values of
Balanced Accuracy, Precision and Recall, False Positive
Rate, and False Negative Rate for All Three ML Models
Tested in the Paper

measure LR SVM RF

balanced accuracy 0.88 0.89 0.74
precision (positive predictive value) 0.92 0.96 0.81
recall (true positive rate) 0.88 0.85 0.85
false positive rate 0.12 0.07 0.37
false negative rate 0.12 0.15 0.15
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the possibility of classifying the function of molecules based
only on their chemical properties, we used a more quantitative
method based on cheminformatics similarity criteria. A
common method to evaluate the similarity among compounds
is to compute the Tanimoto coefficient on molecular

fingerprints.47 The efficacy of similarity algorithms tends to
vary with biological activity; therefore, the choice of the
fingerprint model usually depends on the system under study.
Here, our aim is specifically to introduce a metric for the
comparison with our ML-dynamics based predictions. Since

Figure 3. Performances of the 10-fold cross-validation for all the models. The values of balanced accuracy for every fold presented: the values for
Logistic Regression are in gray, and Random Forest are in orange and SVM in blue.

Figure 4. Subdivision of the studied molecules in distinct groups. The 2D structure of the scaffolds are divided in eight groups according to a
scaffold-similarity criterion. From left to right: CheCOSP molecules (CC), coumarine-based inhibitors (CB), goniothalamin (GT),
dihydropyridines (DP), the biphenyl inhibitors set is split in two groups (BP1 and BP2), the Zinc Group (Z), and last the compound labeled
with 1 makes his own group (Unk).
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the best fingerprint model for our data set is not known, we
tried two widely used methods: ECFP, a method that maps a
molecule with a set of fragments radially grown from each
heavy atom; and MACCS, which accounts for the presence/
absence of specific structural features.48 In both cases, the
molecules are clustered using k-means algorithm with a cluster
number varying from 2 to 6 (Table 2). The ECFP fingerprint

works better in separating the compounds between activators
and inhibitors when only 2 clusters are chosen, while with 3 or
4 clusters, the separation is similar. With 3 clusters, we found
that the CheCOSP20 group is separated. This consists only of
activators validated by experimental characterization. The
result shows that, despite a shared scaffold, there is a
substantial chemical variety in the group. Segmentation for
higher cluster numbers does not clearly lead to any grouping
consistent with the chemical properties of the ligands.
In Table 2, we report the performances of MACCS and

ECFP fingerprints in recognizing and assigning activators and
inhibitors, obtained with k-means clustering.
The best result obtained by ECFP fingerprint on two

clusters was compared with the best ML predictive model
obtained by SVM (all data in Supporting Table 1). The
comparison was broken down by chemical groups to explore
how the two approaches perform on different subclasses of
ligands. In Figure 5, we report the fraction of correct
classifications for every group in our data set. For the group
of three inhibitors (BP1, BP2, and CB), a high fraction of
correctly classified is observed for ECFP, meaning that
inhibitors have good chemical similarity, whereas for activators,
the fraction for ECFP is high only for CC group. In all the
other groups (Z, DP, Unk, and GT), the fraction is 0.
Interestingly, the SVM model correctly predicts as activators
even the groups with low similarity with CC (the group most
extensively characterized at the experimental level). In this
context, we notice that SVM still correctly predicts group Z to
0.3 (0.0 in the case of fingerprints), DP to 0.6, Unk and GT to
1. In contrast, inhibitors of the CB groups have good similarity
with the rest of the inhibitors, but they are not correctly
predicted by SVM.
Overall, the results of this comparative analysis suggest that

the characterization of allosteric binding with the partner
protein, which reverberates the cross-talk between the ligand
and the receptor, captures the main structural and dynamic
determinants at the basis of allosteric modulation. On the one

Table 2. Performance of the Fingerprinting Methods

MACCS ECFP

activator inhibitor activator inhibitor

K = 2
cluster 1 33 48 12 49
cluster 2 51 1 72 0
K = 3
cluster 1 45 1 67 0
cluster 2 0 47 17 2
cluster 3 39 1 0 47
K = 4
cluster 1 16 0 42 0
cluster 2 0 47 14 2
cluster 3 36 1 0 47
cluster 4 32 1 28 0
K = 5
cluster 1 44 0 31 0
cluster 2 1 32 0 42
cluster 3 0 29 0 28
cluster 4 0 13 16 0
cluster 5 4 10 2 14
K = 6
cluster 1 44 0 2 14
cluster 2 1 32 0 42
cluster 3 0 29 16 0
cluster 4 0 12 31 0
cluster 5 3 6 0 14
cluster 6 1 5 0 14

Figure 5. Performance comparison between SVM and ECFP. The graph reports the fraction of correct predictions obtained with the SVM method
compared with the cluster separation of ECFP values. An entry of the ECFP cluster is considered correctly separated if it is located in the cluster
that contains the majority of its class. The values are in pink for ECFP and in blue for SVM, the fractions are evaluated separately for every scaffold
group
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hand, this approach is not dependent on the similarities among
the molecular structures of the libraries of compounds under
exam. On the other hand, considering that specific
functionalities may determine recognition, binding, and the
successive functional regulation, it is important to underline
that the relevance of specific chemotypes for functional
modulation emerges from the ML analysis. This aspect is
aptly captured by the suitable combination of docking and
Molecular Dynamics.
The most successful predictor is a learned supervised model

built on features describing the protein−ligand interaction
across the whole set of representative structures from the
conformational panel. Attempts to use only some features or
some structures leads to poorer performance. This is consistent
with the current understanding that functional activation by
allosteric ligands is often mediated by the ligand “selecting”
some of the conformational states. Information on both
selected and nonselected states is required to identify effective
binding. This also suggests that the model has learned the
relationship between selective binding patterns and functional
effect. Therefore, the need for more sophisticated unsupervised
algorithm is explained: this relationship is multivariate, not
known in its analytical form and complex.
We propose that the ML strategy we have presented here,

while demonstrated on a specific but highly challenging case, is
not system-specific and could be extended to the study of other
allosterically regulated systems: in this context, we propose our
method as a valid complement to the selection of allosteric
leads for potential drug-development.

■ MOLECULAR DYNAMICS SIMULATION AND
ANALYSIS

The protein structure coordinates (PDB ID: 2CG9) for yeast
Hsp90 were downloaded from the Protein Databank. Initial
poses for ligand docking were derived from previously
published models.20,21,49,50 MD simulations were run with
Gromacs 2018.251 with the Amber03 force field.52 The
protein−ligand complex was solvated with TIP3P water
model in a dodecahedral box with minimal distance from the
solute of 1.4 nm, and counterions were added to neutralize the
system. After a minimization, the molecules were equilibrated
for 100 ps in the NVT ensemble and successively in the NPT
ensemble for 100 ps. The simulations were conducted at a
constant temperature of 300 K and at a constant pressure of 1
bar, with a coupling time of 2 ps. The electrostatic term was
described by using the particle mesh Ewald algorithm,53 and
the LINCS algorithm54−56 was used to constrain all bond
lengths. Available ATP parameters for the Amber force field57

were used, and ligands topologies were generated using
AnteChamber from the AmberTools module of AMBER1852

suite. The atomic point charges were generated with the AM1-
BCC charge model, and bonded and nonbonded parameters
were automatically assigned with the combination rules
defined by the AnteChamber module of the Amber Suite.
For each ligand-protein complex, a 400 ns of simulation was
run. Cluster analysis was performed on a combined
metatrajectory of all simulations with the representative
ligands. Rigid roto-translation fitting and RMSD calculations
were made on α carbon atoms of secondary structure segments
extracted with VMD software.58 Clustering was performed
with Gromos algorithm59 using a cutoff between 2 and 2.5 Å.

■ MOLECULAR DOCKING AND FINGERPRINT
ANALYSIS

All systems were prepared using the Maestro Software Suite
from Schrodinger (www.schrodinger.com): Bond orders and
atomic charges were assigned, and the hydrogens were added.
Protonation states were evaluated on acid and basic enzymes,
and hydrogen bonds were optimized. The protein was then
minimized with a Cutoff of 0.3 with respect to starting
configuration. The Glide60 software was used for molecular
docking: the putative binding site was mapped on a grid with
dimensions of 48 A, enclosing box, and 28 A, inner box.
Calculations with a fixed receptor and flexible ligand were
made with standard precision (SP) modality with OPLS3e
Force Field. No additional changes to default settings were
made. Fingerprint similarities were computed with the Canvas
program of the Schrodinger Suite, and the typing scheme is
atom distinguished by functional type with no scaling in 32 bit.

■ SUPERVISED AND UNSUPERVISED LEARNING
In-house scripts for cluster analysis and supervised learning
prediction were developed in Python using scikit-learn
functions.61 Source code is released under GNU General
Public License and available at https://github.com/
alepandini/LIGXF. The Logistic Regression models were
trained using default settings in scikit-learn. These included
L2 norm for penalty estimation with 1e-4 tolerance for
stopping criteria and Limited-memory Broyden−Fletcher−
Goldfarb−Shanno algorithm (LM-BFGS) for optimization.
The SVM models were trained using a linear kernel and all
other settings were set to default values. The RF models were
trained with an increased number of trees (1000) compared
with default, and the best split at decision points was selected
by minimization of Gini impurity.
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J. A.; Miao, Y.; Smith, J. C. Ensemble Docking in Drug Discovery.
Biophys. J. 2018, 114 (10), 2271−2278.
(25) Cheng, L. S.; Amaro, R. E.; Xu, D.; Li, W. W.; Arzberger, P. W.;
McCammon, J. A. Ensemble-Based Virtual Screening Reveals
Potential Novel Antiviral Compounds for Avian Influenza Neurami-
nidase. J. Med. Chem. 2008, 51 (13), 3878−3894.
(26) Tian, S.; Sun, H.; Pan, P.; Li, D.; Zhen, X.; Li, Y.; Hou, T.
Assessing an Ensemble Docking-Based Virtual Screening Strategy for
Kinase Targets by Considering Protein Flexibility. J. Chem. Inf. Model.
2014, 54 (10), 2664−2679.
(27) Koutsoukas, A.; Monaghan, K. J.; Li, X.; Huan, J. Deep-
learning: investigating deep neural networks hyper-parameters and
comparison of performance to shallow methods for modeling
bioactivity data. J. Cheminf. 2017, 9 (1), 42.
(28) Baskin, I. I.; Winkler, D.; Tetko, I. V. A renaissance of neural
networks in drug discovery. Expert Opin. Drug Discovery 2016, 11 (8),
785−795.
(29) Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S.
DeepTox: Toxicity Prediction using Deep Learning. Front. Environ.
Sci. 2016, 3, 80.
(30) Morrone, J. A.; Weber, J. K.; Huynh, T.; Luo, H.; Cornell, W.
D. Combining Docking Pose Rank and Structure with Deep Learning
Improves Protein−Ligand Binding Mode Prediction over a Baseline
Docking Approach. J. Chem. Inf. Model. 2020, 60, 4170.
(31) Wang, B.; Yan, C.; Lou, S.; Emani, P.; Li, B.; Xu, M.; Kong, X.;
Meyerson, W.; Yang, Y. T.; Lee, D.; Gerstein, M. Building a Hybrid
Physical-Statistical Classifier for Predicting the Effect of Variants

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.1c00045
J. Phys. Chem. Lett. 2021, 12, 3724−3732

3731

https://doi.org/10.1038/nrd1904
https://doi.org/10.1038/nrd1904
https://doi.org/10.1080/17460441.2019.1637414
https://doi.org/10.1080/17460441.2019.1637414
https://doi.org/10.1038/nrd2199
https://doi.org/10.1038/nrd2199
https://doi.org/10.1038/nchembio.118
https://doi.org/10.1038/nchembio.118
https://doi.org/10.1101/2020.06.18.159418
https://doi.org/10.1101/2020.06.18.159418
https://doi.org/10.1101/2020.06.18.159418?ref=pdf
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1016/j.str.2019.01.003
https://doi.org/10.1016/j.str.2019.01.003
https://doi.org/10.1002/chem.201904523
https://doi.org/10.1002/chem.201904523
https://doi.org/10.1021/acs.jmedchem.8b00825
https://doi.org/10.1021/acs.jmedchem.8b00825
https://doi.org/10.1021/acs.jmedchem.8b00825
https://doi.org/10.1038/nchembio.318
https://doi.org/10.1038/nchembio.318
https://doi.org/10.2174/1568026611313010007
https://doi.org/10.2174/1568026611313010007
https://doi.org/10.2174/1568026611313010007
https://doi.org/10.1016/j.celrep.2020.107531
https://doi.org/10.1016/j.celrep.2020.107531
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.1074/jbc.M112.411686
https://doi.org/10.1074/jbc.M112.411686
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.1021/ja073687x
https://doi.org/10.1021/ja073687x
https://doi.org/10.1371/journal.pcbi.1006648
https://doi.org/10.1371/journal.pcbi.1006648
https://doi.org/10.1002/chem.201700169
https://doi.org/10.1002/chem.201700169
https://doi.org/10.1002/chem.201502211
https://doi.org/10.1002/chem.201502211
https://doi.org/10.1002/chem.201502211
https://doi.org/10.1038/srep23830
https://doi.org/10.1038/srep23830
https://doi.org/10.1038/srep23830
https://doi.org/10.1021/acs.jctc.9b00319
https://doi.org/10.1021/acs.jctc.9b00319
https://doi.org/10.1016/j.bpj.2018.02.038
https://doi.org/10.1021/jm8001197
https://doi.org/10.1021/jm8001197
https://doi.org/10.1021/jm8001197
https://doi.org/10.1021/ci500414b
https://doi.org/10.1021/ci500414b
https://doi.org/10.1186/s13321-017-0226-y
https://doi.org/10.1186/s13321-017-0226-y
https://doi.org/10.1186/s13321-017-0226-y
https://doi.org/10.1186/s13321-017-0226-y
https://doi.org/10.1080/17460441.2016.1201262
https://doi.org/10.1080/17460441.2016.1201262
https://doi.org/10.3389/fenvs.2015.00080
https://doi.org/10.1021/acs.jcim.9b00927
https://doi.org/10.1021/acs.jcim.9b00927
https://doi.org/10.1021/acs.jcim.9b00927
https://doi.org/10.1016/j.str.2019.06.001
https://doi.org/10.1016/j.str.2019.06.001
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c00045?rel=cite-as&ref=PDF&jav=VoR


Related to Protein-Drug Interactions. Structure 2019, 27 (9), 1469−
1481.e3.
(32) Ferraro, M.; Moroni, E.; Ippoliti, E.; Rinaldi, S.; Sanchez-
Martin, C.; Rasola, A.; Pavarino, L. F.; Colombo, G. Machine
Learning of Allosteric Effects: The Analysis of Ligand-Induced
Dynamics to Predict Functional Effects in TRAP1. J. Phys. Chem. B
2021, 125, 101.
(33) Wagner, J. R.; Lee, C. T.; Durrant, J. D.; Malmstrom, R. D.;
Feher, V. A.; Amaro, R. E. Emerging Computational Methods for the
Rational Discovery of Allosteric Drugs. Chem. Rev. 2016, 116 (11),
6370−6390.
(34) Pricer, R.; Gestwicki, J. E.; Mapp, A. K. From Fuzzy to
Function: The New Frontier of Protein-Protein Interactions. Acc.
Chem. Res. 2017, 50 (3), 584−589.
(35) Rinaldi, S.; Assimon, V. A.; Young, Z. T.; Morra, G.; Shao, H.;
Taylor, I. R.; Gestwicki, J. E.; Colombo, G. A Local Allosteric
Network in Heat Shock Protein 70 (Hsp70) Links Inhibitor Binding
to Enzyme Activity and Distal Protein-Protein Interactions. ACS
Chem. Biol. 2018, 13 (11), 3142−3152.
(36) Taylor, I. R.; Assimon, V. A.; Kuo, S. Y.; Rinaldi, S.; Li, X.;
Young, Z. T.; Morra, G.; Green, K.; Nguyen, D.; Shao, H.; Garneau-
Tsodikova, S.; Colombo, G.; Gestwicki, J. E. Tryptophan scanning
mutagenesis as a way to mimic the compound-bound state and probe
the selectivity of allosteric inhibitors in cells. Chemical Science 2020,
11 (7), 1892−1904.
(37) Flynn, J. M.; Mishra, P.; Bolon, D. N. A. Mechanistic
asymmetry in Hsp90 dimers. J. Mol. Biol. 2015, 427, 2904.
(38) Shrestha, L.; Patel, H. J.; Chiosis, G. Chemical Tools to
Investigate Mechanisms Associated with HSP90 and HSP70 in
Disease. Cell Chem. Biol. 2016, 23 (1), 158−172.
(39) Rasola, A. HSP90 proteins in the scenario of tumor complexity.
Oncotarget 2017, 8 (13), 20521−20522.
(40) Neckers, L.; Blagg, B.; Haystead, T.; Trepel, J. B.; Whitesell, L.;
Picard, D. Methods to validate Hsp90 inhibitor specificity, to identify
off-target effects, and to rethink approaches for further clinical
development. Cell Stress Chaperones 2018, 23, 467.
(41) Paladino, A.; Woodford, M. R.; Backe, S. J.; Sager, R. A.;
Kancherla, P.; Daneshvar, M. A.; Chen, V. Z.; Ahanin, E. F.;
Bourboulia, D.; Prodromou, C.; Bergamaschi, G.; Strada, A.; Cretich,
M.; Gori, A.; Veronesi, M.; Bandiera, T.; Vanna, R.; Bratslavsky, G.;
Serapian, S. A.; Mollapour, M.; Colombo, G. Chemical Perturbation
of Oncogenic Protein Folding: from the Prediction of Locally
Unstable Structures to the Design of Disruptors of Hsp90-Client
Interactions. Chem. - Eur. J. 2020, 26, 9459.
(42) Schopf, F. H.; Biebl, M. M.; Buchner, J. The HSP90 chaperone
machinery. Nat. Rev. Mol. Cell Biol. 2017, 18 (6), 345−360.
(43) Marcu, M. G.; Schulte, T. W.; Neckers, L. Novobiocin and
related coumarins and depletion of heat shock protein 90-dependent
signaling proteins. JNCI 2000, 92 (3), 242−248.
(44) Burlison, J. A.; Neckers, L.; Smith, A. B.; Maxwell, A.; Blagg, B.
S. J. Novobiocin: Redesigning a DNA Gyrase Inhibitor for Selective
Inhibition of Hsp90. J. Am. Chem. Soc. 2006, 128 (48), 15529−15536.
(45) Sanchez-Martin, C.; Serapian, S. A.; Colombo, G.; Rasola, A.
Dynamically Shaping Chaperones. Allosteric Modulators of HSP90
Family as Regulatory Tools of Cell Metabolism in Neoplastic
Progression. Front. Oncol. 2020, 10, 1177.
(46) Rehn, A.; Moroni, E.; Zierer, B. K.; Tippel, F.; Morra, G.; John,
C.; Richter, K.; Colombo, G.; Buchner, J. Allosteric Regulation Points
Control the Conformational Dynamics of the Molecular Chaperone
Hsp90. J. Mol. Biol. 2016, 428 (22), 4559−4571.
(47) Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an
appropriate choice for fingerprint-based similarity calculations? J.
Cheminf. 2015, 7 (1), 20.
(48) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J.
Chem. Inf. Model. 2010, 50 (5), 742−754.
(49) Morra, G.; Neves, M. A. C.; Plescia, C. J.; Tsustsumi, S.;
Neckers, L.; Verkhivker, G.; Altieri, D. C.; Colombo, G. Dynamics-
Based Discovery of Allosteric Inhibitors: Selection of New Ligands for

the C-terminal Domain of Hsp90. J. Chem. Theory Comput. 2010, 6
(9), 2978−2989.
(50) Moroni, E.; Zhao, H.; Blagg, B. S.; Colombo, G. Exploiting
Conformational Dynamics in Drug Discovery: Design of C-Terminal
Inhibitors of Hsp90 with Improved Activities. J. Chem. Inf. Model.
2014, 54, 195.
(51) Abraham, M. J.; van der Spoel, D.; Lindahl, E.; Hess, B.
GROMACS User Manual version 2019. http://www.gromacs.org
(accessed 2019).
(52) Case, D. A.; Cerutti, D. S.; Cheatham, T. E. I.; Darden, T. A.;
Duke, R. E.; Giese, T. J.; Gohlke, H.; Goetz, A. W.; Greene, D.;
Homeyer, N.; Izadi, S.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Li, P.
L. C.; Liu, J.; Luchko, T.; Luo, R.; Mermelstein, D.; Merz, K. M.;
Monard, G.; Nguyen, H.; Omelyan, I.; Onufriev, A.; Pan, F.; Qi, R.;
Roe, D. R.; Roitberg, A.; Sagui, C.; Simmerling, C. L.; Botello-Smith,
W. M.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Xiao,
L.; York, D. M.; Kollman, P. A. AMBER 2018; University of
California: San Francisco, 2018.
(53) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N-
log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993,
98, 10089−10092.
(54) Hess, B.; Bekker, H.; Fraaije, J. G. E. M.; Berendsen, H. J. C. A
linear constraint solver for molecular simulations. J. Comput. Chem.
1997, 18, 1463−1472.
(55) Feenstra, K. A.; Hess, B.; Berendsen, H. J. C. Improving
Efficiency of Large Time-scale Molecular Dynamics Simulations of
Hydrogen-rich Systems. J. Comput. Chem. 1999, 20, 786−798.
(56) Hess, B. P-LINCS: A Parallel Linear Constraint Solver for
Molecular Simulation. J. Chem. Theory Comput. 2008, 4 (1), 116−
122.
(57) Meagher, K. L.; Redman, L. T.; Carlson, H. A. Development of
polyphosphate parameters for use with the AMBER force field. J.
Comput. Chem. 2003, 24 (9), 1016−1025.
(58) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular
dynamics. J. Mol. Graphics 1996, 14, 33−38.
(59) Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; van Gunsteren,
W. F.; Mark, A. E. Peptide folding: when simulation meets
experiment. Angew. Chem., Int. Ed. 1999, 38, 236−240.
(60) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.;
Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.;
Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: A new
approach for rapid, accurate docking and scoring. 1. Method and
assessment of docking accuracy. J. Med. Chem. 2004, 47 (7), 1739−
1749.
(61) Predregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.;
Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in Python.
JMLR 2011, 12, 2825−2830.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.1c00045
J. Phys. Chem. Lett. 2021, 12, 3724−3732

3732

https://doi.org/10.1016/j.str.2019.06.001
https://doi.org/10.1021/acs.jpcb.0c09742
https://doi.org/10.1021/acs.jpcb.0c09742
https://doi.org/10.1021/acs.jpcb.0c09742
https://doi.org/10.1021/acs.chemrev.5b00631
https://doi.org/10.1021/acs.chemrev.5b00631
https://doi.org/10.1021/acs.accounts.6b00565
https://doi.org/10.1021/acs.accounts.6b00565
https://doi.org/10.1021/acschembio.8b00712
https://doi.org/10.1021/acschembio.8b00712
https://doi.org/10.1021/acschembio.8b00712
https://doi.org/10.1039/C9SC04284A
https://doi.org/10.1039/C9SC04284A
https://doi.org/10.1039/C9SC04284A
https://doi.org/10.1016/j.jmb.2015.03.017
https://doi.org/10.1016/j.jmb.2015.03.017
https://doi.org/10.1016/j.chembiol.2015.12.006
https://doi.org/10.1016/j.chembiol.2015.12.006
https://doi.org/10.1016/j.chembiol.2015.12.006
https://doi.org/10.18632/oncotarget.16266
https://doi.org/10.1007/s12192-018-0877-2
https://doi.org/10.1007/s12192-018-0877-2
https://doi.org/10.1007/s12192-018-0877-2
https://doi.org/10.1002/chem.202000615
https://doi.org/10.1002/chem.202000615
https://doi.org/10.1002/chem.202000615
https://doi.org/10.1002/chem.202000615
https://doi.org/10.1038/nrm.2017.20
https://doi.org/10.1038/nrm.2017.20
https://doi.org/10.1093/jnci/92.3.242
https://doi.org/10.1093/jnci/92.3.242
https://doi.org/10.1093/jnci/92.3.242
https://doi.org/10.1021/ja065793p
https://doi.org/10.1021/ja065793p
https://doi.org/10.3389/fonc.2020.01177
https://doi.org/10.3389/fonc.2020.01177
https://doi.org/10.3389/fonc.2020.01177
https://doi.org/10.1016/j.jmb.2016.09.014
https://doi.org/10.1016/j.jmb.2016.09.014
https://doi.org/10.1016/j.jmb.2016.09.014
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ct100334n
https://doi.org/10.1021/ct100334n
https://doi.org/10.1021/ct100334n
https://doi.org/10.1021/ci4005767
https://doi.org/10.1021/ci4005767
https://doi.org/10.1021/ci4005767
http://www.gromacs.org
https://doi.org/10.1063/1.464397
https://doi.org/10.1063/1.464397
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B
https://doi.org/10.1021/ct700200b
https://doi.org/10.1021/ct700200b
https://doi.org/10.1002/jcc.10262
https://doi.org/10.1002/jcc.10262
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/jm0306430
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c00045?rel=cite-as&ref=PDF&jav=VoR

