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ABSTRACT

Let G be a simply-connected domain in the t—plane (t = x + 1y),
bounded by the three straight lines x = 0, y = 0, x =1 and a Jordan arc
with cartesian equation y = 1 (X). Also, let g be the function which maps
conformally a rectangle R onto G, so that the four corners of R are
mapped onto those of G. In this paper we show that the method con-
sidered recently by Challis and Burley [2], for determining approx-
imations to g, is equivalent to a special case of the well-known method
of Garrick [8] for the mapping of doubly-connected domains, Hence, by
using results already available in the literature, we provide some

theoretical justification for the method of [2].

Keywords : Numerical conformal mapping, method of Garrick.
Subject Classifications: AMS (MOS) : 30C30; CR: 6.1. m.

Condensed title: Two numerical methods for conformal mapping.







1. Introduction

Let Q be a given doubly-connected domain bounded by two closed
Jordan curves, and let f be a function which maps conformally a circular

annulus A onto Q. Also, let G be a simply-connected domain of the form

G={(x,y):0<x<1,0 <y <t(x)}, (L.1)

and let g be a function which maps conformally a rectangle R onto G, so
that the four corners of R are mapped onto those of G. This paper is
concerned with the comparative study of two numerical methods for computing
approximations to the conformal maps f and g. The two methods are res-
pectively the well-known method of Garrick [4,8,11-13,15], for the approx-
imation of f: A — Q, and a method proposed recently by Challis and
Burley [2], for the approximation of g: R — G. The motivation for
undertaking this study emerges from [7] and [10,p.p.73-74], where it is
pointed out that the two methods appear to be closely connected, for the
following two reasons:
(i) The problem of determining g: R — G is equivalent to that of
determining f: A — Q, for a certain symmetric doubly-connected domain Q.
(i1) Both methods are iterative, and both involve Fourier analysis and
Fourier synthesis at each iterative step. Furthermore, both methods can
be made computationally efficient by the use of the fast Fourier transform.
In the present paper we investigate further the connection between
the two methods, and show that the method of Challis and Burley is, in fact,
a special case of the method of Garrick. Hence, by using results already
available in the literature, we provide some theoretical justification
for the method of [2], We also show that the method of Garrick can be
applied directly to the problem of determining g: R — G, for a wider
class of domains than that defined by (1.1).



The details of the presentation are as follows:

Sections 2 and 3 concern the method of Garrick, and are based on
the detailed treatment contained in [4,p.p.194-207]. More specifically,
in Section 2 we summarize the theory on which the method is based, and
in Section 3 we describe the general Garrick algorithm. In this latter
section, we also summarize the available theory concerning the convergence
of the method.

In Section 4, we describe the simplifications that occur in the
Garrick method, in the two cases where the boundary curves of Q are as
follows: (a) Both curves are symmetric with respect to the real axis.
(b) The outer curve is the unit circle and the inner curve is symmetric
with respect to the real axis.

Section 5 contains the main results of the paper. Here we show that
the algorithm of Challis and Burley is equivalent to the simplified
algorithm of Garrick, corresponding to a domain of the form (b). We also
show that the Garrick algorithm, for a geometry of the form (a), can be
applied directly to the problem of determining g: R — G, in the case

where G has the more general form,
G={x,y):0<x<l,uu(X) <y <12(x)}. (12)
Finally, in Section 6 we present the results of several numerical

experiments and make a number of observations concerning the convergence

of the method of Garrick, and hence of that of Challis and Burley.

2. Preliminary results

Let Aq be the annulus

Ag={ziq<|z|<1}, 0<q<1, @.1)

and let the function F be regular in Aq and continuous on A_. On the



boundary of Aq , let

Fe'® =w@) + ivi@) ., 0 < ¢ <21, 2.2)
and

F@e ®) = w(@) + iva@) , 0 < ¢ < 2m, (2.3)
and observe that

1 p2n ¢ _1 2 ¢
], Fe)do=—[" Fae'")dg

= a+if, 4
say. Also let L, be the space of real 2n-periodic functions which are
square integrable in [ 0, 2n |, Then, the real and imaginary parts of the

boundary values (2.2)-(2.3) are related by

vi(9) =B+ (K+Rq) [ui(+)] (¢) + Sq [u2(+)] (9) @5)
and

v2(9) =P - Squi()]($) - K+ Rq)[u2(+)](9) 26)
where K, Rq and Sq are three linear integral operators in the space Ls .
These ooperators are defined as follows.
K is the well-known operator for conjugation on the unit circle.
That is, for ueL,, K[u(+)](¢) is defined by the Cauchy principal

value integral
1o (-t
K[u(-)](¢) ;:Epvj0 cot (T)u(t)dt 2.7)

The other two operators, Rq and Sq depend on the real parameter q,
0 <q<1, and are defined by

1 2n
Rq[uOI@®) =] ggo-nu®d (2:8)

and

Squ()1(9) = % [ hg(6-Dudt (2.9)
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where the kernels gq and hq are given by the absolutely convergent series

0 2k
g =4 1q _ sin ko (2.82)
k=1 ‘74
and
© 2k
hg(9) =43 —— sinkg. (2.92)
a i

The relations (2.5) - (2.6) are derived in [4, p. p. 194-197], where
also the properties of the operators K, Rq and Sq are studied in detail;

see also [16,p.568], [11], [12,p.499] and [13, §17.4]. In particular,

we note the following three basic results:

(i) If ueL,, then also K[u], Rq[u], Sq[u]eL,.
(ii) For any constant c,
K[c] =Rg[c] =Sq[c]=0. (2.10)
(ii1) Let s (¢;u) denote the Fourier series of a function uelL,. That is
s(¢;u) ~%°+§(akcosk¢+bksmk¢) , 2.11)
=1

where ak , bk are the real Fourier coefficients of u . Then,

s(¢; K[u]) ~ i (—bxk cos k¢ +ak sin k), (2.12)
k=1
s(¢;Rg[u]) ~ i lzq—zzk(—bkcos kd + ak sin ko), (2.13)
k=1 '74d
s(¢;Sq[u]) ~ i 1—2qu (—bk coskd + aj sin ko) . (2.14)
k=1 174

(In fact, the series on the right of (2.13) and (2.14) converge
absolute and uniformly. For this reason, the sign "~" in (2.13)

and (2.14) can be replaced by "=".),



We return now to the boundary values (2.2) - (2.3) of F, and let
1 < . .
s(93u5) ~ 3 aj’0+l§‘1(aj’kcos ko+bj sin k)5 j=12, (2 .15)

Where, because of (2.4),
a,,=a,,=2a. (2 .15a)

Then it follows from (2.5) - (2.6) and (2.11) - (2 .14) , that

s(¢;Vj) ~ B+§I(Aj,kcos k¢+Bj,k sin k¢); j=1,2, (2.16)
Where
A = 1b, (14 + 26, a5/ (1-0%)
B, =i, (1+a™) - 22, a5} /(1-0%) .

A, =126 4 af b (4™ (1)

B, =122, " —a,, (1+a™)}p/(1-q™) .

Furthermore, it can be shown easily that the Laurent series of the

function F 1is

F(z) = z ckzk, zeAq , 2.17)
where
Co=a+if, (2.17a)
and

0 = 1,y —a, =i b =) @2.17b)

¢ = 0@,y —a, 1 @)+, ~b, L a N (1-a7) ;
k=1,2,....;

see [4,p.197] and also [11,p.20] and [16,p.569] .



3. The method of Garrick

Let GQj; j = 1,2, be two Jordan curves in the w-plane, which are

starlike with respect to w = 0, and are given in polar coordinates by

0= {w:w=pj ©)c¥, 0<0<21}; j=12, (3.1)

where 0 <p, (0)<p;(0),0e€ [0,2n]. Also, let Q be the doubly-connected
domain which is bounded externally and internally by 0Q; and 0Q, respect-
ively, i.e.

Q =Int (0Q;) N Ext (0€). (3.2)
Then, for a certain value q, 0 < q <1, Q is conformally equivalent to
the annulus

Aq = {z:q<|z[<1}, (3.3)
and the reciprocal of the inner radius
M := ljq , (3.4)
is called the conformal module of Q .
Let f be the function which maps conformally Aq onto €, and recall
the following well-known results:
(1) f can be extended continuously to Xq ,

(i1)  On the boundaries |[z| =1 and |z| = q of A, fis given by two

q’
continuous boundary correspondence functions 0; and 6,, which are defined
by
i i0
£ =p,©0,@ne'"® | 0<o<on, (3.5)
and

£ (qe'®)=p, 0,0 @ | 0<p<an (3.6)

(ii1) The requirement that |z | = 1 is mapped onto 0Q; defines f uniquely,
apart from a rotation in the z-plane. Here, we normalize the mapping by

requiring that



[0, -9)do=["©0,0)-0)dp=0.. (3.7)

The method of Garrick involves the iterative solution of three
nonlinear integral equations, for the unknown boundary correspondence

functions 0, and 0,, and the unknown inner radius q of Aq. The method

is based on applying the results of Section 2 to the auxiliary function

F(z) : = log {f (z)/z}
= log | f(z)/z| + 1 (argf(z) - argz) . (3.8)

This function is regular and single-valued in Aq, continuous on Xq
and has the boundary values

F(e'®) = logp,(8,(4)) +i (6,(4)-¢) (3.9)
and
F(ge' ) =log p, (0,(9)~logq + 1(8,(6)~¢) - (3.10)
Therefore, the relations (2.5) - (2.6) hold with
w,(6) = logp, (0,8 » u, (@) = logp,(0,($)) — logq @3.11)
and
Vi) =0, j=1.2 (3.12)

More specifically, because of (3.7), the constant g in (2.5) - (2.6)

is zero and the two relations give respectively

0,(0) = ¢ +(K+Rq) [logp, (8,(-))] (§) +Sqllogp,(0,(-))] ($) (3.13)

and

0,(9) = o—Sqllogp,(6,(-))] () — (K +Rg)[logp, (6,(-))] ($) (.14)

(In deriving (3.13) - (3.14), we made use of the fact that
(K+Rq) [logq] = Sq [logq] = 0; see Eq. (2.10).) Also, from (2.4),



-logq = log M

— [ oz, (0,(6) -~ logp. (O (B} (3.15)

Thus, the functions Gj ; j = 1,2, and the radius q of Aq satisfy the

equations (3.13) - (3.15) . These three equations are known as the
integral equations of Garrick.

The existence of a solution (0;,0,;q) of (3.13) - (3.15) is guar-
anteed by the fact that any doubly-connected domain is conformally
equivalent to a circular annulus. Regarding uniqueness, we have the
following theorem which is proved in [4].

Theorem 3.1 ([4,p.200], The equations (3.13) - (3 .15) always have a

unique solution (0,0, ;q) , such that the functions Gj ; ] = 1,2, are

continuous and strictly monotonic increasing in [0,27w] .

Another uniqueness result, which does not invlove the monotonicity
requirement of Theorem 3.1, is also established in [4], under the
assumption that the boundary curves 0Q;; j =1,2, satisfy an €d-condition.
This condition is defined as follows.

Definition 3.1 ([4.p.200]) . The Jordan curves

0Qj=tw:w=p;(@)e!®  0<0 < 2m}; j=12, (3.16)
are said to satisfy an €d-condition if:
(1) p1(0) >:1 and py(0) <m<I.

(11) There exist positive constants a,b and e such that
a(l+e)” < p,(0) <a(l+g) and b (1+e)" <p,(0)<b(l+¢g). (3.17)
(111) The functions pj(e); j = 1,2, are absolutely continuous in

[0,2%] and, for almost all 6 [0,2n] ,



ij'-(e)/pj(e)ls ed ; j=12, (.18)

where

4 I+m 4m
= + )
l-m (1-m)’

. (3.182)

Theorem 3.2 ([4,p.200]). If the boundary curves an ;] = 1,2,

satisfy an €d-condition with some ¢ < 1, then the equations (3.13) -

(3.15) have a unique solution (8; 0 , ;q), with continuous Gj ; J=1,2.4

We consider now the following Jacobi type iteration for the
analytical solution of Eqs (3.13) - (3.15).

Iteration 3.1

(D Set
O (dy— b+ & —
077 () =0;]=12.
(IT) Do steps (a) and (b) , with n = 0,1,2,... , until convergence:

(a) Determine q, by means of

~logay = | hogp, 0 (6) - logp, 6 (4 a0
(b) Determine

0™ (4) = ¢+ (K+ R, ) og p (0" ()| )+ Sq, | log p. 0" () (@

and
0" @) = 0-Sg, | 0gp, O () 0)- K.+ Rq, 10 2, 0 ()| )

The following convergence theorem is proved in [4].

Theorem 3.3 ([4,p.202]). Let the boundary curves 8Qj ; ] = 1,2,

satisfy an €6-condition, with some ¢ < 1, and let (8, 0,;q) be the
unique solution of Eqs (3.13) - (3.15). Also, let (Ol(n),egn);qn) be

the nth iterative values of Iteration 3.1. Then,
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Iegn) (cquﬂj(cp(pl <y2mA " j =12, (3.19)
and
Q. —ql<t A 3.20
n 4
where
I1+m 4e
Azz( }; and B = 2. (3.21)
I-m I-¢

In practice, Iteration 2.1 is performed in discretized form

where, in every iterative step, each of the functions log pj(ej () ;

j = 1,2, 1s replaced by its interpolating trigonometric polynomial of
degree N corresponding to the nodes rn/N; r =0 (1) 2N-1. The resulting
algorithm is based on the results (2.15) - (2.16), and may be stated as
follows.

Algorithm 3.1.
1)) Set

0 = ¢:j=12.

(IT) Do steps (a), (b) and (c) with n = 0,1,2,..., until convergence:
(a) Compute the coefficients agnlz and bgnlz of the trigonometric

Polynomials
) gy Lo 3 (@ ) L
Tj () =5 a0t go (aj,k cosk(1)+bj,k sin ko) +E aj’NcosNd) ; j=1,2,
(3.22)
Which interpolate the function logpj (ng)(q)); j=1,2, at
the points
(I)rzrn/N;r = 0(1)2N-1.
That is,
2N-1
1
a(-nlzz— Z ogP (9( )((I)r))cosk(br , k=0(D)N ,
15 N 5
and (3.22a)
(n) 2N-1 (n)
b],k: Z log p; (01" (b, )sing, : k=1(HN-1I
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(b) Compute q, by means of

L) -a®)

—logq, = —a,

2N-1

ZO tlogp, O (45)) - logp, O™ (9,))} (3.23)

(c) Withr=0(1)2N-1, compute the values,

0 @) = b + KR IV O 100 + 8¢, 117 0 1 00)

and

0 () = br =Sq [T™ 1) - K+Rq IIT™ ()] )

That is, from (2.15)-(2.16)
(n-+1) N ()
Gj (bp)=0p + kZZ:I {Aj,k coskdy +Bj,k sink¢;} ; r=0(1)2N-1, (3.24)

Where, for k = 1(1)N,
A = 14929+ 20 o8-y
B(“) @ g™ -2 k-
And A(n) {2b(n) k+b()(1+q W (-, (3.24a)

BY =(2a1P ¢k oV (14 gy 1-2%)

with
(n) (n)
b1 N -b 2N =0

The coefficients a( ) b(n), j =1,2, in Step 1I(a) of the

algorithm can be computed eff1c1ent1y, in 0(NlogN) operations by the
use of the fast Fourier transform (FFT). Similarly, in Step II(b),
the computation of the values ej (¢j); j = 1,2, can be performed by

the use of the FFT. That is, the algorithm requires the application
of four FFT s in each iterative step; see [12,13].
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Let Ej,k’sj,k and ‘X‘j,k’ﬁj,k be the final computed values of the
coefficients (3.22a) and (3.24a), and let q be the final approximation
to the inner radius q. Then, at points on the boundaries |z|] = land

|z| = q of Ay, the mapping function is approximated by

f () =exp{T, (¢)+i0, (¢)}
and (3.25)
£ (&) =exp{T, (¢)+i0, (¢)} .

where T"j; j =1,2, are the final interpolating polynomials, and

0,; j = 1,2, are the final approximations to the boundary correspond-

ence functions 0;; j=1,2. That is,

~ N-1 -
T (@) =2y, + > (@, coskp+b,, sink¢)+% 7, cos N
k=1

1
2
and (3.25a)

~ O, 5 l ~ . .
0,(9) =0+ ;(Aj’k cosk¢ + B, sinkd) +5 By sinN¢ ; j=12.

At interior points z € A, , f(z) may be approximated by making use

of the Laurent expansion (2.17) of the auxiliary function F. That is,

f(z):zexp{ 3 ¢z } (3. 26)
k=N
Where, with by x=ban=0,

g,=14,, /2 (3. 262)
and
= @85, §) =i (byby, §93/(1-) (3. 26b)

¢ =" {8,,-3,, §) +i (b, —b,, T/ (1-3%); k=1(1)N .

Naturally, when z = ¢' ® and z=qe ' ¢, (3.26) simplifies to (3.25). There-
fore, E4. (3.26) can be used to represent the approximate conformal map

f(z) at any point z €A, .
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Let §§“) ; j 1,2, denote respectively the 2N—dimensional column

vectors
IN-1

X ={0" @) | s =12, (3.27)

(I'l) . . . .
where 6;"(¢,); j =1, 2, are the nth iterative values generated by

Algorithm 3.1. Then, the results of the following theorem are
established in [11].
Theorem 3.4. ([11, Theorems 4.6,6.1 and 12.1), Let the boundary

curves 0Q;; j = 1,2, satisfy an €d-condition, with some € <1, and let

(01, 02; q) be the unique solution of Eqs (3.13) - (3.15). Also, let

X, = {0,005 =12, (3.28)

Then, the sequence of iterates {(x\",xY ;q,)}, generated by

Algorithm 3.1, converge linearly to a unique solution (5?,52 :q)
where

i =%, 1 + 1%5-%, | =0(I/N) (3.29)
and

lq"-q| = 0(1/N) . (3.30)

Furthermore, if the functions p;; j =1, 2, satisfy the additional

condition

i) -2, < mlo,-0,] . (3.31)
P; P;
for some M > 0, then
Ix =%, || + |x; =%, [ =0(1/N?) (3.32)
and
1q°-q| = 0(1/N?) .
. 2N-1 . .
(Given a vector x = {xr }r:O , the norm || .|| in (3.29) and (3.32) is

defined by
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4. Special geometries

4.1 Symmetric boundary curves

If the two boundary curves 0Q;; j = 1,2, are both symmetric with

respect to the real axis, then

ej(—d)) = —9J-(¢) ; J=12, (4.1)

and
IOng(ej(—¢)=10gpj (Oj(d))) ;) =12, (4.2)

Therefore, if uj, and vj; j = 1,2, denote the functions (3.11) and (3.12),
then u; (-¢) =u; (-¢), vj (-¢) = vj (-¢); j = 1,2, and the results (2.15)- (2.17)

simplify as follows:

R4.1.1. The Fourier series of the functions uj; j = 1,2, are of the

form

1 0.8}
s(p;u.)~—a., + a., cosko; j=1,2. 4.3
(hup=g a0+ T aj coskp s | (4.3)

That is, the sine coefficients b. , in (2.15) are all zero.g

R4 .1 .2. The Fourier series of the conjugate functions vj; j = 1,2, are

o0

s(p;v.)~ > B. sinkdp; j =12, (4.4)
Vo bk

where the coefficients B; x and B, x are given by the second and fourth

formulae in (2.16a).

R4.1 .3. The Laurent series expansion of the auxiliary function F is

F(z)= i“ckzk , (4.5)
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where the ci are all real and are given by

Co = ai1,0 /2 , (458.)

and

¢k = {ark-a2,q"}/ (1-¢7%) , c.x = {a2.4q" —a1,kq**} /@-4?) ;

k=1,2,... .0 (4.5b)

Iteration 2.1 and the results of Theorems 3.1-3.4 remain unchanged,
but because of R4.1.1, formulae (3.22) and (3.23) of Algorithm 3.1
simplify respectively to,

N
T () =D al) coskd; j=12, (4.6)
k=0
with
2 X
al) = N > logp; (0 (¢,))coskd, ; k=0(DN, (4.6a)
r=0
and
1 N
—logq, = N > {logp, (0" (9,)) — logp, (65 (9,))} - (4.7)
r=0

(In the above the prime indicates that the first and last terms of
the series are to be taken with weight 1/2). Also, because of R4.1.2,
equation (3.24) simplifies to

N-1
e§n+l) (¢r):¢r+ZB§f‘£ sinkd, ; r=1(1)N-1, (4.8)
=1

where the coefficients Bf“lz and B(z“f( are given by the second and fourth

formulae in (3.24a). Finally, because of R4.1.3, the series (3.26) for

the approximate conformal map f simplifies as indicated by (4.5).
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4.2 Circular outer boundary and symmetric inner boundary

If the boundary 0Q; of Q is the unit circle, then p;(0) = 1 and

(3.13) - (3.15) simplify respectively to

0,(0) = 6+, [logp, 0, ())] (@) (4.9)
0,@=0 ~ (K+R,) [logp, (, ()] @) (4.10)
and
toga = [["logp: (0, (9)db (4.11)
T

Therefore, in this case, only the last two equations (4.10) - (4.11)
need to be solved iteratively for the unknowns 6, and q. Because of

this, Iteration 3.1 simplifies considerably as indicated below.

Iteration 4.1

(I Set

00 = ¢ .

(IT) Do steps (a) and (b), with n = 0,1,2,..., until convergence:

(a) Determine q, by means of

I = L Trogp, 00 (¢))d
ogq, = %L ogp, (857 (9))d¢ .

(b) Determine

e(2n+l) (d)) — ¢ _ (K_I_an) [10gp2 (e(zn) () )] (¢) e

Further substantial simplifications occur if, in addition to 0Q;
being the unit circle, the inner boundary 0Q; is symmetric with respect
to the real axis. In this case, corresponding to R4.1.1 - R4.1.3, we

have the following results.

R4.2.1. The Fourier series of the function u,(¢) = logp, (6, (¢))—-logq
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is of the form,

s(p;u,) ~ iazyk cosko . (4.12)

(The coefficient a, o is zero, because joznu2(¢)d¢ =0.) o

R4.2.2 . The Fourier series of the conjugate functions v;(¢) =0,()—¢;

j=1,2, are
N-1
s(¢;3v)) ~ D By sink¢; j = 1,2, (4.13)
k=1
where
Bk = - 22,9/ (1-¢*%) , (4.13a)
and

Box =-azx (1-q*%)/ (1-¢*") . 5

R4.2.3. The Laurent series expansion of the auxilary function F is
F(z) = ick(zk—l/zk) , (4.14)
)
where the cx are all real and are given by.
Cv=-q as / (1-9*) ; k=1,2,... ., (4.14a)

The resulting simplified algorithm can be stated as follows:
Algorithm 4.1
(I) Set

0 = ¢.
(IT) Do steps (a), (b) and (c), with n=0,1,2,..., until convergence:
(a) Compute the coefficients a(zni of the trigonometric poly-

nomial

N
T," (¢) = D al) cosko, (4.15)
k=0
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which interpolates the function logp, (0% (¢)) at the points

¢, = r/N;r=0(1)N .
That 1is,

N

n 2 ' n
agi =7 2. logp (85 (9,)) cosko,. (4.15a)
r=0

(b) Compute q » by means of

N

=§Z’ logp, (0 (6,) . (4.16)

(c) Compute the values

N-1
05" (4,) = ¢, + X B3y sinkg, ; r=0(DN, (4.17)
k=1

where

B =—al) (1+q)/(1-q2). (4.17a)

Let a,, and @ be respectively the final computed values of the

coefficients (4.15a) and the final approximation to q. Then, because

of R4.2.3, formula (3.26) for the approximate conformal map simplifies to

- N
f(z)=zexp{ ZEk (" - 1/2") } (4.18)
k=1
where
gk:_akgz’k/(l_aﬂ‘) . (4.18a)

The results of Theorems 3.1-3.4 remain unchanged but, because
p1(0) = 1, Definition 3.1 of the €d-condition simplifies in an obvious

manner. In particular, the requirements (3.16) and (3.18) simplify
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respectively to

p2(0) <m <1 (4.19)
and

1P, 0)/p, (0)] < €8 (4.20)

Furthermore, it follows easily from the analysis in [4,p.p.203-206]

that, in this special case, the value of 8! can be taken as

1 4m?
o7 = I+m? + . 4.20a
1-m’ { l—mz} ( )
5. The method of Challis and Burley [2] and its connection

to the method of Garrick

Let G be a simply-connected domain in the t-plane (t=x+1y),
bounded by the three straight lines x =0, y =0, x =1, and a Jordan

arc with cartesian equation y = 1 (x), where 7t is positive in [0,1], i.e.

G={(x,y):0<x<1,0<y<1(x)}. (5.1)
Also, let Aj; j = 1(1)4, be the four corners of G, i.e.
A;=(0,0), A2 =(1,0), As=(l,t (1)), As=(0,T (0)), (5.2)
and let Ry denote the rectangle
Ry = {(§&,m) : 0<E<,0<n<H} , (5.3)

in the {-plane (§ = & + in) . Then, it follows from the Riemann mapping
theorem that, for a certain H, there exists a unique conformal map

g: R"— G, which takes the four vertices (0,0), (1,0), (1,H) and (0,H)

of R" respectively onto the four corners Aj;; j=1(1)4, of G. The unique
value of H for which the above conformal map is possible is called the

conformal module of the quadrilateral defined by the four boundary
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points Aj; j=1(1)4; see [5,6,14].

The purpose of this section is to show that the algorithm proposed
recently by Challis and Burley [2], for computing approximations to the
conformal module H and the mapping function g, is equivalent to applying
the simplified Garrick Algorithm 4.1 to a certain doubly-connected domain
Q. Our method of analysis is based on the following two observations;
see [7] and [10,p.p.73-74]:

(i) By using the Schwarz reflection principle, the conformal map g

can be extended to map the infinite strip {(&,n) : -0 < & < o0, 0 < 1n <(H}

onto the infinite domain bounded by the x-axis and the curve y=7 (x)

where 7 is the periodic function defined by
/’l\f(iX)I’E(X) , 0<x<1,

(5.4)
T (2+x) = T(x) .
This also shows that the function g(&) - { is periodic with period 2.

(i1) The exponential function
w = exp(imt) (5.5)

maps G conformally onto the upper half of a symmetric doubly-connected

domain Q, bounded externally by the unit circle

00, = {w:w=pa0)e’ , 0<0<2n} , (5.7)
where
p2(0) = exp{-nt (B/n)} , 00 <nm
and (5.7a)
p2 (2m-0) = p2(0) , nT<0<2m.
Similarly

z = exp (inf) (5.8)



21

maps the rectangle Ry conformally onto the upper half of the annulus
Ag = {z:q<|z| <1}, (5.9)
where

q =exp (-nH) . 5 (5.9a)

It follows from the above that the problem of determining g : Ry—G
is equivalent to that of determining f :Ay; — Q, where Q = Int (0Q;)N Ext (0Q>)
is the doubly-connected domain bounded by the unit circle (5.6) and the
symmetric curve (5.4). That is, the problem considered by Challis and
Burley [2] is equivalent to a problem of the type studied in Section 4.2,
Because of this, the equations on which the method of [2] is based emerge

easily from the results R4.2 .1 — R4 .2.3, as follows.

Let
X(E ) :=Re{gE+iH)} , (5.10)
so that
gE+iH) = X(E W i qX(E) , 0< &<, (5.11)
Then, since
f(z) = exp {ing(.i log zj} , (5.12)
in

the functions )?(&) and t()Ac(é)) are related to the inner boundary corres-

pondence function 0, of the conformal map f by

Q(@ziez(n@ (5.13)

and

WX (©) = —% logp, (0, (&) , 0<E< 1. (5.14)

Therefore, the results R4,2.1 - R4.2.3 imply the following:
R5.1. Let

A

f(ne) = —% logp, (0, (n£) +% logq (5.15)

=T(X(E)-H.



Then,

0

s(n&;ﬁ)~2§kcos knég , (5.16)

where the coefficients ak are related to those of (4.12) by

A 1

a,=—-—a, .o (5.16a)
T
R5.2. Let
A 1
v(nd) = - (0,(n&) - n€)
A
=x(§) -¢ . (5.17)
Then,
A oA
s(m&;v)~ ZBk sinkmg (5.18)
k=1
where
B, =4 (1+q*)/ (1-q%) (5.18a)
or, since q = exp(-nH),
A A
B, =a, coth nkH ., (5.18b)
R5.3. Because of (4.14) and (5.12), the mapping function g has a
series expansion of the form
g(c)=g+ Z(A:k sinkng , (5.19)

k=1
where the coefficients é\k are related to those of (4.14) by

(A:k=zck. (5.19.a)
T

Furthermore, because of (4.14a) and (5.16a) , the coefficients ek are

related to the Fourier coefficients of the function U by

a,=¢, sinknH. , (5.19b)
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The above results contain all the relations on which the method
of Challis and Burley [2] is based. (These relations are derived in
[2] by solving, by the method of separation of variables, two harmonic
mixed boundary value problems in the rectangle Ry.) The results also

show that Algorithm 4.1 can be expressed, in terms of the functions
Q(&) , I(Q(a)) and the conformal module H, as indicated below.

Algorithm 5.1
(I) Set

A\
xXV@E = ¢g.
(IT) Do steps (a), (b) and (c), with n=0,1,2,..., until convergence:

(a) Compute the coefficients a(“) of the trigonometric polynomial

T(“)(F,) = Za<“> coskm& (5.20)

which interpolates the function r(ﬁ\(n)(ﬁ)) at the points

Er=1/N; 1r=0(1)N.

That is,
N
al = 32 X® (&))coskré, . (5.20a)
N r=0
(b) Compute
L
2
LS ke, (5.21)
N r=0

(c) Compute the values
N-1
RODE )= + Y BOsinkn&, ;r=0()N, (5.22)
k=1

where

B(“)—a coth 7kH, (5.22a)
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Let a, and H be respectively the final computed values of the co-
efficients (5.20a), and the final approximation to the conformal module
H. Then, because of (5.19), the approximation to the conformal map g

is given by

N
g(Q)=c+Y ¢, sinkng, (5.23)
k=1
where
¢, =a, cosec kmH (5.23a)

It turns out that Algorithm 5.1 is, in fact, precisely the algorithm
proposed by Challis and Burley [2], This follows at once from their
paper, by observing that their notations f, a, y, a and by are related

to ours by
A
fx) = t(x), o) =x(&) —&, &) =T(x(¥) ,
a:=1/H and by := ﬁk .
In other words, the algorithm of [2] is just the special case of the
simplified Garrick Algorithm 4.1, corresponding to a function p; of
the form (5.7). Therefore, the results of Theorems 3.1 -3.4 hold and,

in this case, the requirements (3.16) and (3.18) of the €¢6-condition

can be replaced respectively by,
exp {-mt(x)} <m<1, xe [0,1], (5.24)
and
IT(x)] <&, xe[0,1], (5.25)

where 0 is given by (4.20a). If the above two requirements are satisfied,

with some ¢ < 1, then the Jacobi iterations of Algorithm 5.1 converge

linearly to a unique solution (X ,H"); §*={£* (ir)}N where

r=0 °

|28 || =0(1/N) and |H'~H|=0(I/N) ; (5.26)
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see Theorem 3.4. In fact, our numerical results suggest that the above
theoretical predictions are somewhat pessimistic; see Section 6.

In their paper Challis and Burley do not present any theoretical
results concerning the convergence of the Jacobi iterations or the
quality of the computed approximations. With reference to the iter-
ations they simply state the following; [2, p.173]:

"Some under-relaxation of the o, values (i.e. the values )?(&r)—ﬁr,
in our notation) is necessary in some cases, and helps to speed
convergence in other cases. Typically a relaxation factor of

0.5 must be used,"

However, our numerical experiments indicate that under-relaxation
is essential for the convergence of the iteration in four out of the five
examples considered in [2]. Furthermore, in three of these examples a
relaxation factor considerably less than 0.5 is needed to give as
reasonable rate of convergence; see Section 6. This is not surprising,
since all the curves considered in [2] do not satisfy an €6-condition,
with ¢ < 1.

We end this section by observing that the equivalence of the conformal
maps g : Ry — G and f: Ay — Q persists in the case where G has the more
general form

G—{(x,y):0<x<1,1(x)<y<120%x)}, (5.27)

with 1;(x) < 12(x), x€[0,1]; see [10, p. 74]. This follows easily from
the discussion at the beginning of the section. It also follows that,
in this case, the doubly-connected domain ft is bounded externally and

internally by the two symmetric curves
0Qi={w:w=pj0e?,0<0<2n;j=1,2 (5.28)

where
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p;(0) =exp{-nt,;(6/m)} , 0<6<m
and (5.28a)
pj(2n—9) =p,0® n <6< 2n.

Therefore, the Garrick Algorithm 3.1, modified as indicated in Section 4.1,
can be applied directly to the problem of determining the conformal map

g : Ry — G, in the case where G has the more general form (5.27).

6. Numerical examples

The examples of this section involve the use of Algorithm 4.1, or
the equivalent Algorithm 5.1, for computing conformal modules of symmetric
doubly-connected domains of the form (5.1). However, we also present one
example involving the use of the general Garrick Algorithm 3.1.

The numerical results were computed on a Honeywell level 68 computer
by H. Freter [3] and M. Modi [17], two students at Brunei University.

They used programs written in double-precision Fortran, and performed
the trigonometric summations by means of the NAG Library FFT subroutine
COO6FAF.

In presenting the results we use the following notations:
N: Degree of interpolating trigonometric polynomials.
Mn,Hn @ Corresponding approximations to the conformal modules M, H,

ny : Number of iterations needed for the convergence of the JOR with
relaxation parameter w, where 0 < w < 1. (The abbreviation JOR
is used here to denote the Jacobi method with under-relaxation,
rather than over-relaxation. Of course, w = 1 gives the basic
Jacobi method described in the algorithms) . Unless otherwise
stated, the iteration is terminated when two successive iterates

to M or H differe by less than 107"?
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"Best" under-relaxation parameter for N=16, obtained by a simple

search procedure written by Modi [17].

Used for estimating the rate of convergence of the sequences of
approximations {My} or {Hx}. If the exact values of M, H are
known then we take
Ron = |MN— M| / |M2N— Ml or Ron = |HN— H| / |H2N - H| .

A A
Otherwise, we replace M, H by M,H were:

A
(1) M denote accurate approximations to M, obtained by an

orthonormalization method in [18,19],
AN
(i1) H is our most accurate computed approximation to H,

A
i.e. PAI:HQ where N is the largest value of N used.

Example 1. Algorithm 5.1 for the five domains considered by Challis
and Burley [2]. That is

where

G={(x,y) :0<x<1, 0<y<n1(x)}, (6.1)

(i)  t(x) =0.25+ 0.2sech? (2.5x) .
(i1) t(x) =1.5+x.
(ii1) t(x) =1-0.25cos 27nx .
(iv) t(x) =1+ 0.25 cos 2nx
(v) t(x) =1.25-(x-0.25)*

The numerical results corresponding to (1) - (i11) and (v) are

listed in Tables 1 (i) - (ii1) and (v) respectively. (As might be

expected the results for (iv) are exactly the same as those for (iii).)

Before presenting the results of our other examples we make the

following remarks concerning the convergence of the Jacobi iterations,
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the choice of under—relaxation parameter w, and the convergence of the
sequence of approximations {Hn} .
Remark 1. Let G be a simply—connected domain of the form (5.1), and

let
€:= sup |T(x)|. (6.2)
0<x<1
Then, Theor. 3,4 guarantees the convergence of the Jacobi iterations

provided that
8 < 1, (6.3)

where 8 is given by (4.20a) with m = max {exp(—nr(x) )} . For the
0<x<1

curves of Ex. 1 the values of € and &' are as follows:

(i) & =0.3849 , §' =2.7631. (ii) e=1.0, &'=1.0005.
(iii),(iv) : € =1.5708, 8'=1.0547. (v) €¢=1.5, &'=1.0816.
That is, all the curves of Ex.1 violate the convergence criterion (6.3).
Thus, with reference to the numerical results, it is not surprising
that the Jacobi iterations do not converge in the four cases (ii) - (Vv),
for which € > 1. For the curve (i) however, ¢ is appreciably less than
one and the iterations converge reasonably fast. This indicates that
the condition (6.3) can be rather pessimistic, because of the value of
8 '. That is, if € < 1 then the Jacobi iterations may converge rapidly,

even if the €d-condition of Theor. 3.4 is not fulfilled._

Remark 2. The results of Ex.1, and those of several other experiments
not presented here, suggest

w = 1/(1 +%%) (6,4)

as a suitable relaxation parameter for use with the JOR. For example,
for the domains (6.1), (i) - (v), this formula gives respectively the
values w = 0.871, 0.5, 0.288, 0.288 and 0.296, which agree closely with
the experimentally determined "best" under-relaxation parameters wy .
(Our motivation for experimenting with (6.4) emerged from the theoretical

results of Gutknecht [9] concerning the convergence of the Theodorsen



29

iteration for the mapping of simply-connected domains).,

Remark 3. The function p,(0) = exp{-nt(x)} corresponding to the curves
(i), (i1) and (v) of Ex. 1 are only piecewise differentiable. Thus,
although the conditions of Theor. 3.4 are not fulfilled, the theorem
indicates that

Hy - H| = 0(1/N) (6.5)

might be true. However, the values Ry listed in Tables 1(i) , 1 (ii)
and 1(v) suggest strongly that
Hy - H| = 0(1/N?%) . (6.6)

This experimental observation is also supported by the results of the
examples given below, and those of several other experiments contained
in [3]. Unfortunately, we have not been able to prove (6.6).

For the domain (6.1 iii) , the curve 0Q;, :w = pz(e)eie is analytic
and, in this case, the values IA{N:R;/N listed in Table 1 (iii) suggest
that

[Hy — H| = 0(a) , (6.7)
where 0.8 <a <1 . Of course, exactly the same remark applies to the

domain (6.1 iv).g

Example 2. Algorithm 4.1 for the following three doubly-connected

domains:
(i) Q = Int(0Q;) N Ext(0Q,) , (6.8)

where
80, ={w:|w| =1} and 0Q, = {w:w=p2(0)e®,0<0<2n}, (6.8a)
with
p,(0) = g{o.5+cos (9;211)} . (6.8b)

That is Q is a unit disc with a cardioid shaped hole; see [19,p. 100] .
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(i)

Q={(XY):|X]<2.5, [Y[<2.5 N {w:|w >1.0}. (6.9)

That is Q is a square of side length 5.0, with a circular hole of unit
radius; see [18,p.691]. (In this case, Algorithm 4.1 must be modified
in an obvious manner to take care of the fact that the inner, and not
the outer, boundary is circular.)
(ii1)

Q={{w:|w|<1.0} N {X,Y):|x]>0.5,]Y]>0.5}. (6.10)
That is Q is a unit disc with a square hole of side length 1.0; see
[18,p.694] .

For each of the above domains £ = 1 .0, where now
£:= sup [py(0)/p,(0) . (6.11)
0<0<mn

Thus, following the observation of Remark 2, we perform the iterations

by applying under-relaxation with w = 0.5. The numerical results obtained

are listed in Tables 2(i)-2(iii).,

Example 3. Algorithm 3.1 simplified as described in Section 3.1 for

the square frame

Q={XY): x| <1,|Y|<1} N{(X,Y):|x|>a,|Y|>a;a<1}. (6.12)

Here the iterations are performed by applying under-relaxation
with w = 0.5 and using 10°% , instead of 1072 , as termination criterion.
The numerical results corresponding to the values a = 0.2, 0.5 and 0.8

are listed in Tables 3(i1) - (ii1) respectively.q
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TABLE 1
(1) =(x) = 0.25 + 0.2 sech? (2.5x)

wp = 0.894
N ni.o no.s Nwb Hn Rn
8 20 32 19 0.312 412 411 ]
16 20 31 17 0.312 436 037 3.8
32 20 31 17 0.312 442 327 4.0
64 20 31 17 0.312 443 901 4.0
128 20 31 17 0.312 444 294 4.0
256 20 31 17 0.312 444 393 4.2
512 20 31 17 0.312 444 417 4.4
1024 20 31 17 0.312 444 424 -

(i) t(x)=1.5 +x
Exact H = 1.779 359 959; [1].

wp = 0450
N njo Ng.s Nyb Hy Ry
8 d 56 60 1.777 332 776 -
16 d 62 57 1.777 849 844 4.0
32 d 62 58 1.779 232 217 4.0
64 d 58 62 1.779 328 010 4.0
128 d 62 62 1.779 351 971 4.0
256 d 62 62 1.779 357 962 4.0
512 d 62 53 1.779 359 460 4.0
1024 d 62 62 1.779 359 834 4.0

d:

The iteration does not converge.
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(ii1) (x) =1 - 0.25 cos (2mx)
Wp =0.293
N nj.o No.s Nyb Hx ﬁN: R

8 104 54 81 0.873 139 197 963 -
16 d 105 85 0.866 080 847 503 0.83
32 d 203 109 0.869 396 169 077 0.89
64 d 216 103 0.864 113 335178 0.93
128 d 194 103 0.864 087 604 097 0.95
256 d 194 103 0.864 086 767 469 0.96

512 d 194 103 0.864 086 763 146 -

1024 d 194 103 0.864 086 763 146 -

(v) t(x) = 1.25 -(x-0.25)*
wp = 0.298

N nj .o Ng.s Nyb Hn RN
8 d 97 93 0.969 915 579 -
16 d 117 80 0.970 314 993 3.0
32 d 103 85 0.970 459 144 3.7
64 d 125 79 0.970 499 045 3.9
128 d 125 84 0.970 509 396 4.0
256 d 125 84 0.970 512 022 4.2
512 d 125 84 0.970 512 682 5.0
1024 d 125 84 0.970 512 847 -
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TABLE 2
(i) Disc with cardioid shaped hole; Eq. (6.8).

N

Comparison value: M =1.196 339 075; [19]

N no.s My Rn
8 37 1.205 112 270 -
16 43 1.198 257 181 4.6
32 41 1.196 809 217 4.1
64 39 1.196 457 208 4.0
128 40 1.196 368 849 4.0
256 40 1.196 346 572 4.0
512 40 1.196 340 959 4.0
1024 40 1.196 339 548 4.0
(ii)square with circular hole; Eq. (6.9)

Comparison value: M=2.696 724 431; [18].
N ng.s My Ry
8 36 2.700 726 343 -
16 35 2.697 743 864 3.9
32 40 2.696 982 789 3.9
64 39 2.696 789 629 4.0
128 38 2.696 740 835 4.0
256 38 2.696 728 550 4.0
512 38 2.696 725 464 4.0
1024 38 2.696 724 690 4.0
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(ii1)  Disc with square hole; Eq. (6.10).
Comparison value: M = 1.691 564 903; [18].

N Ng s My Rn
8 41 1.689 012 511 -
16 47 1.690 899 766 3.9
32 48 1.691 396 274 4.0
64 49 1.691 522 547 4.0
128 44 1.691 554 297 4.0
256 51 1.691 562 250 4.0
512 46 1.691 564 239 4.0
1024 46 1.691 564 737 4.0

O
TABLE 3

Square frame: Egq. (6.11).

(i) a=0.2. Exact M = 4.570 860*  (ii) a = 0.5. Exact M = 1 .847 709
N No.s Mn R N No.s Mn Rn

36 27 4.574 809 - - 23 1.849 281 -
72 30 4.571 867 3.9 72 30 1.848 110 3.9
144 33 4.571 115 3.9 144 24 1.847 811 3.9
288 27 4.571924 4 288 22 1.847 734 4.1

(iii) a=0.8. Exaxt M =1.201 453~

N No.s Mn Ry
36 27 1.202 399 -
72 26 1.201 691 4.0

144 20 1.201 513 4.0

288 28 1.201 468 4.0

See [1]. O
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