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Abstract: Off-grid renewable energy system is a critical infrastructure in providing electrical 
power for small communities, especially in remote and rural areas where grid connection points 
are not available. Due to the diurnal and intermittent nature of solar irradiance, the photovoltaic 
(PV) power plant can introduce generation and load power imbalance issue. Anaerobic 
digestion biogas power plant (AD) also has a part-load operation constraint that needs to be 
met. To overcome these issues, electrical energy storage (EES) such as Graphite/LiCoO2 needs 
to be employed to provide generation flexibility. The research work provided in this paper is 
twofold. An optimal operating regime is devised for the PV-AD-EES hybrid system, followed 
by a study on the levelized cost of electricity (LCOE). Degradation cost per kWh and 
degradation cost per cycle for EES are considered. 22 years (1994-2015) of irradiance data for 
Turkwel Gorge Dam, Kenya (1.90°N, 35.34°E) and the Kenya national load are used for the 
study. With the current technology costs and a discount rate at 8%, it is shown that the capital 
cost for LiCoO2 needs to be reduced to 200 $/kWh to be economically competitive with 
dispatchable source such as AD biogas power plant by considering the EES degradation costs. 
 
Index Terms – Off-grid system, battery capacity degradation, photovoltaic system, LiCoO2 
battery 
 
Nomenclature 
 
∆𝑆𝑂𝐶 Change in state of charge (%) 

∆𝑡 Hour interval 

𝜂!!" EES round-trip efficiency (%) 

𝜂#$ PV array efficiency (%) 

𝜎 Degradation rate for PV (%) 

𝜀 Solar irradiance (Wm-2) 

a, b and c Quadratic fuel cost function constants for biogas generator 

AD Anaerobic digestion 

𝐶%&!"#$ Fuel cost for biogas generator ($) 

𝐶%&%&'(") Labour cost for operating the biogas power plant ($0.05/kWh) 



 2 

𝐶%''() Net present value of asset, i.e. PV, AD, EES, controller or inverter ($) 

𝐶%''()*&,!-.#/  Fixed operation and maintenance cost for asset, i.e. AD, EES or PV 

($/kW) 

𝐶%''()*&,0(1&$  Total O&M cost for asset, i.e. AD, EES or PV ($) 

𝐶%''()*&,2&)  Variable operation and maintenance cost for asset, i.e. AD, EES or 

PV ($/kWh) 

𝐶%''()31()#1(1&$ Net present value of electricity production from asset, i.e. AD or PV 

to be stored in EES ($) 

𝐶*+,455#1 Capital cost for asset, i.e. AD, controller, EES, inverter or PV (Unit is 

asset dependent) 

𝐶!!" Net present value of electrical energy storage ($) 

𝐶!!"6#7$&8#9#:1 Replacement cost per discharge cycle ($) 

𝐶!!";#<=>? EES degradation cost due to energy discharge ($) 

𝐶-+' AD gas cost (6.97 $/mcf) 

𝐶./')455#1 Installation cost for asset, i.e. AD, controller, EES, inverter or PV 

(Unit is asset dependent) 

𝐶0&2455#1 Operation and maintenance cost for asset, i.e. AD, controller, EES, 

inverter or PV (Unit is asset dependent) 

𝐶0&2@2-:1 Operation and maintenance cost for PV per hour ($) 

CF Capacity factor (%) 

𝑑 Discount rate (%) 

𝑑((', 𝑒((' and 

𝑓((' 

Three-parameter equation constants for EES rated cycle life at deep 

discharges 

DOD Depth of discharge (%) 

𝐸%''();-)#811(1&$ Net present value of electricity produced by asset, i.e. AD or PV for 

direct consumption (kWh) 

𝐸%& Net present value of electricity production of biogas generator (kWh) 

𝐸!!" Net present value for EES electricity output (kWh) 

𝐸!!"31()# Electricity to be stored in EES (kWh) 

𝐸!!"6&1#/ Rated energy capacity of EES (kWh) 

𝐸!!"3"(5) Electricity discharge by EES at stage X,	𝑋 ∈ 	 {1,2} (MW) 

𝐸#$ Net present value of electricity generated by PV farm (kWh) 
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𝐸"78,97' Surplus electricity generated by PV system (kWh) 

EES Electrical energy storage 

EMS Energy management system 

FiT Feed-in tariff 

LCOD Levelized cost of delivery ($/kWh) 

LCOE Levelized cost of electricity ($/kWh) 

LCOE:;;<= Levelized cost of electricity for generation asset, i.e. PV or AD 

($/kWh) 

LCOE>?;=<@ Levelized cost of electricity for system ($/kWh) 

LCOS Levelized cost of storage ($/kWh) 

LiCoO2 Lithium cobalt oxide 

LHV Lower heating value (905 btu/ft3) 

𝑚 Number of EES cycles (integer) 

𝑛 System lifetime (years) 

𝑁*A/ Number of controllers (integer) 

𝑁!!" Number of EES replacements (integer) 

𝑁./B Number of inverters (integer) 

𝑁#$ Total number of PV panels (integer) 

𝑁")A8( Number of PV panels for generating electricity for storage (integer) 

NDC Normalised discharge capacity (%) 

NaS Sodium-sulphur 

NiMH Nickel-metal hydride  

O&M Operation and maintenance 

𝑃%& Output power of biogas power plant (MW) 

𝑃%&,&. Rated power capacity of biogas power plant (MW)  

𝑃%&,-: Minimum output power of biogas power plant (MW) 

𝑃%''();-)#81 Power generated with asset, i.e. AD or PV for direct consumption 

(MW) 

𝑃%''()31()# Power generated with asset, i.e. AD or PV for storage (MW) 

𝑃*A/ Rated power of controller (kW) 

𝑃!!"3(B) EES power discharge at stage X, 𝑋 ∈ {1,2} (MW) 

𝑃-(/(8+)CA/ Power generation (MW) 
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𝑃DA+E Power demand (MW) 

𝑃./B Rated power of inverter (kW) 

𝑃#$ Output power of PV plant (kW) 

𝑃#$6&1#/ Rated capacity of PV plant (kW) 

𝑃"78,97' Surplus power generated by PV farm (MW) 

PV Photovoltaic 

𝑅𝑎𝑡𝑒𝑑𝑐𝑦𝑐𝑙𝑒 Rated cycle life of EES (integer) 

SOC State of charge (%) 

𝑆𝑂𝐶DAF(8 The minimum SOC value of a cycle (%) 

𝑆𝑂𝐶2+G Maximum state of charge (%) 

𝑆𝑂𝐶2(+/ Mean state of charge (%) 

𝑆𝑂𝐶2C/ Minimum state of charge (%) 

𝑆𝑂𝐶HI8('IA9E SOC threshold (%) 

𝑆𝑂𝐶J,,(8 The maximum SOC value of a cycle (%) 

SSR Self-sufficiency Ratio (unitless) 

𝑡 Time (hour) 

 
1. Introduction 
 

Electrical energy storage (EES) plays an increasingly important role in electrical power 
systems, especially for energy balancing in off-grid systems. With the escalation of energy 
demand and the pressure to reduce environmental pollution, renewable energy source such as 
solar photovoltaic (PV) needs to be adopted [1, 2]. For countries located in Africa at the equator, 
e.g. Kenya, there is an abundant amount of solar insolation throughout the year. In addition, 
the waste product generated from the large agricultural industry in Kenya makes electrical 
power generation from biogas power plant via anaerobic digestion (AD) a desirable option [1]. 
Hence, the optimal hybrid energy system for a rural community in Kenya should consists of 
solar PV and AD biogas power plant. In this paper, the term AD represents the combination of 
the anaerobic digester and the biogas power plant. 

In general, off-grid hybrid renewable energy systems perform better with multiple energy 
sources compared to a single energy source [3]. This can be explained by the fact that different 
energy sources have different technical constraints, and may be used to complement each other 
and to maximise the security of supply. The generation costs could also be potentially reduced. 
However, the control, design, and optimization of such systems is a complicated matter. In 
general, many of these systems were designed to with the aim to minimize the total generation 
cost such as the levelized cost of electricity (LCOE) [3, 4]. 

The operation strategy for a system with an EES and PV generator is relatively simple. 
Surplus energy is stored in EES and discharges if the load is greater than generation. The 
interesting questions arise for systems with multiple energy sources. For the case where a 
dispatchable source such as AD is included, it is required to determine how the EES is charged 
and which dispatchable source (AD or EES) to use when the load demand is greater than the 
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generation. As mentioned in [4], there are three basic control strategies for a PV-Diesel-EES 
system. These are known as zero-charge strategy, full cycle-charge strategy and the predictive 
control strategy. The EES is never charged with the diesel generator in the zero-charge strategy. 
Diesel generator is used to charge the EES to 100% state of charge (SOC) when the generator 
is on for the full cycle-charge strategy. Predictive control strategy requires the forecast of 
renewable generation and load demand to charge the EES. The advantage of this strategy is 
that energy wastage in surplus energy production from renewables is reduced. An interesting 
research question to be answered is to determine the optimal point for the SOC, between 0% 
to 100% to be charged with AD in order to provide a minimum operational cost [4]. In other 
words, the strategy will be less of an extreme and is between zero-charge and full cycle-charge. 

Scheduling regimes such as rule-based strategies [5] have the advantages in avoiding the  
need of renewable and load forecasting for optimal operation. Additionally, complexity is 
further reduced when online optimization is not required. The work did not mention the 
degradation and costs of EES and have highlighted as a future work. 

There are numerous amount of research works in cycle life studies and the costs due to EES 
degradation for hybrid renewable energy systems [6-9]. However, most do not consider partial 
charge-discharge cycles and uses depth of discharge (DOD), i.e. only accurate for initial SOC 
at 100% for EES cycle life calculations. Electrical energy delivered is also used to consider the 
DOD in some literatures such as [6] and the actual values of the two SOCs may be neglected. 
Theoretically as an example, the electrical energy output from EES at SOCs of 100% to 80% 
may be the same as a situation for 40% to 20%. Recent literatures [10, 11] have confirmed that 
partial charge-discharge cycles at different SOC states have a profound effect to the State of 
Health, i.e. discharge capacity of the EES, and consequently affects the total available cycle 
life. 

Due to irregular load demands and the PV power fluctuations induced from stochastic solar 
irradiance, the hybrid power system is highly susceptible to irregular SOCs and charge and 
discharge cycles. It is of paramount importance that the degradation costs and replacement 
costs are accurately accessed for EES in hybrid power system analysis and optimization. This 
work aims to provide a study on the economic projection of the hybrid system with the battery 
degradation costs included by considering the SOCs of each partial discharge cycle. To achieve 
this, an operating regime is proposed for the hybrid system that provides the optimal dispatch 
of PV, AD and EES. Having identified the power output and the SOCs for the system with 
respect to the system lifetime, LCOE is calculated for each asset and for the system. The cost 
and energy production will be critically analysed.  

Section 2 provides a literature review on renewable hybrid system and EES operations. 
Section 3 presents the data analysis and operating regime for the system. Case studies will be 
conducted and discussed. The cost analysis for the system will be presented in Section 4. The 
models for degradation per cycle and degradation per kWh will be derived. Finally, Section 5 
draws the conclusion and future work will be discussed. 
 
2. Literature review 
 

In the recent decade, there is an upsurge in research related to using EES for power systems, 
such as in charging regimes for electric vehicles [6, 7, 12], profit maximization with energy 
tariffs [13, 14] and off-grid system operations [2, 4]. Mostly, these literatures have considered 
the degradation effect of EES to an extent and have made attempts to consider the storage costs. 
However, the effects of irregular cycling and partial cycles of EES are not properly addressed. 
Some works have considered to use reference DOD to compute the rated cycle life for the EES. 

Reference [15] presents the grid-tied electrical hubs with distributed generation and energy 
storage for providing the electricity demand in Sri Lanka. The SOC for the EES has been 
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considered for the control of the dispatchable energy source. However, the cost of storage and 
degradation effect have not been included. 

The economic operation for a diesel-PV-EES island microgrid in rural areas with a two-
stage model predictive control strategy is proposed in [16]. The system’s economic is assessed 
with the LCOE metric. Replacement and operational costs for EES are included in the study, 
which is a function of DOD and cycle life. However, it is unclear how the DOD and cycle life 
are included and considered. 

Levelized cost of delivery (LCOD) is proposed in [17] to compute the levelized cost of 
EES in PV system. The highlight of the work is that it is necessary to include the electrical 
energy production costs, i.e. generators cost into the storage costs. The work could be improved 
by also including the cost aspect of EES degradation. 

EES degradation is considered with a fixed degradation cost in [18]. The cost 
competitiveness of the EES with respect to conventional generation is not provided. 

Comparison of different energy storage technologies in a variety of realistic microgrid 
settings has been developed in [19]. The Energy System Model aims to provide similar 
functions to the well-known microgrid software HOMER, but with improvements in battery 
modelling. It is not known if and how the costs in partial cycles and irregular discharges are 
considered. 

The economic feasibility of EES for electric bill management applications has been 
provided in [20]. A range of EES has been included, these are Li-ion, zinc battery, an advanced 
lead-acid, a sodium-sulphur (NaS) and a flow battery with no degradation consideration. The 
techno-economic assessment of distributed EES for load shifting application is provided in 
[21]. A Li-ion, NaS and a redox battery were included in the study but again no degradation is 
considered. 

The work in [22] aims to develop degradation cost functions for optimization models in 
off-grid power system. The battery replacement cost has been provided for different ratios for 
battery degradation cost to diesel cost. Levelized cost is not calculated for the system. 

An exhaustive study in determining the optimal combination of renewable electricity 
sources and EES connected to a 72 GW grid system is provided in [23]. The aim is to find the 
least-cost combination of renewable generation and EES to match the load demand. It 
concluded that excess renewable production can result in lower costs for the system. The 
argument is that the electrical load will be met with less storage, lowering the total system cost. 
The LCOE has not been studied and it is unknown how storage degradation costs are 
considered. 

Reference [7] proposes an optimal generation scheduling model for a system with thermal 
power plant, PV plant, wind farm and EES whilst considering the degradation cost of ESS. 
Lead-acid and nickel metal hydride (NiMH) batteries were considered. This work aims to 
include the temperature and DOD for the battery degradation cost. The battery degradation cost 
is modelled and fitted with a piecewise linear function. However, cycle life effects with 
irregular cycling were not considered and the degradation model is only applicable for the 
cycles with initial SOC at 100%. 

As reported in [13], a Feed-in tariff (FiT) scheme is already established in Japan to promote 
the use of PV generators with electric batteries. Also mentioned in [24], FiT schemes could 
benefit the deployment of EES in the current and upcoming PV systems. This has already 
happened in other countries such as Germany, where a FiT scheme that maximizes self-
consumption by using EES has been established. There are many researchers studied the 
operation of grid-connected PV-EES system, however, seldom attention has been paid to the 
impact of the EES degradation characteristics. The work in [13] aims to evaluate the energy 
and cost savings for a grid-connected PV-EES system for a household. Operational 
optimization model was constructed for considering the degradation characteristics of EES. 
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The model has two objective functions, known as the operating costs and energy savings.  The 
study concluded that a grid-connected PV-EES system was more useful in energy saving 
operation. The cycle degradation is defined by the number of cycles and the cycle degradation 
rate. DOD degradation is considered to have occurred when the DOD is more than 70%.  

The stochastic problem for microgrid energy scheduling with distributed generator and 
controllable loads such as plug-in electric vehicles is presented in [6]. EES degradation costs 
and cycle life were calculated with DOD. The DOD in this case is the ratio of the energy 
delivered from the EES to the rated energy capacity. Partial cycling is not included or discussed. 

HOMER has been used for the design of a PV-biomass-diesel hybrid systems for off-grid 
and grid-connected scenarios in [25]. The system’s configuration is optimized for different 
load profiles. Surrtte 6CS25P flooded battery is used for the off-grid case. Details or studies 
for the EES has not been provided. 

Reference [26] proposes a method to simultaneously optimize the rule-based operation 
strategy and the EES capacity for a grid-connected PV-EES system. Given the present cost of 
storage, it claimed that using EES with the conventional operation strategy is not profitable but 
increases the Self-sufficiency Ratio (SSR). It reported that the system uses more renewables 
with a higher SSR. 

A microgrid charging and discharging strategy is given in [8]. A three-parameter function 
is fitted to estimate the battery cycle life under different DODs. With this function, the 
depreciation cost model of li-ion battery is developed. The authors acknowledged that the 
battery charge and discharge cycles under working conditions are composed of several micro-
cycles with different DOD. To overcome this issue, the rain-flow counting method is employed 
to decompose the complex cycles to micro cycles of different DOD. Charge/discharge cycles 
are counted with corresponding to each range of the DOD for the year. Partial cycling is not 
included and this method may not be appropriate if the initial SOC is not at 100%. A sizing 
methodology with loss of load probability for an off-grid PV system with lead-acid battery is 
presented in [27]. This work also adopts the rain-flow counting method for battery lifetime 
estimation. It is unclear if the rain-flow counting method can accurately represent the EES 
degradation, and a comparison with capacity fade model should be made. 

A model for the operation of distribution companies in regulating price or locational 
marginal price mechanisms is given in [9]. Two types of EES were considered namely lead-
acid and lithium-ion. It could be observed that there were multiple partial charging and 
discharging, at different SOCs throughout the time interval. It needs to take into account of the 
partial cycles for a more accurate optimization problem formulation. 

Reference [5] presents the rule-based strategies for operating an EES connected to a self-
consumed PV system to reduce payments to the grid. As stated by the authors, presently the 
work does not consider the degradation cost of using the EES. 

As suggested in the literature review, at present there is little to no work in considering the 
costs of power system operation for EES energy discharge at different SOC ranges. This 
research aims to provide a method in incorporating partial cycles at different SOC ranges for 
the techno-economic assessment of a PV-AD-EES hybrid system with a proposed operating 
regime. 

3. Data analysis and operating regime 

3.1. Solar and load data analysis 
 
Real-life solar irradiance data were obtained from Solargis for Turkwel Gorge Dam, Kenya 

with coordinates 1.90°N, 35.34°E and elevation at 1170m. The dataset contains 22 years (1994-
2015) of data with sampling rate at 1 sample/15min. Since the PV output power is influenced 
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by the solar irradiance, it is crucial to know how season variations could impact the amount of 
solar irradiance received by the panels. The monthly solar insolation is computed for the dataset 
and for comparison purposes, the 22-year monthly solar insolation data from NASA were 
obtained in [28]. As solar PV is a non-dispatchable source, capacity factor (CF) is used to 
represent its annual energy output. CF is the ratio of the actual electrical energy output over 
the year to the maximum possible electrical energy output over the same time period. The CF 
is calculated for a 5 MW PV farm with inclusion of solar panel efficiency losses at 15% [1]. 
Fig. 1 presents the monthly solar insolation and the annual capacity factor for the PV farm. 
 

 
 

Fig. 1. Solar insolation and capacity factor for solar farm. 
 

As shown in Fig. 1, the differences in annual CF could be significant. The CFs are 15.2% 
and 16.3% for 2011 and 2009 respectively, which is more than 1% difference. This shows that 
it may be inaccurate to assume CF to be the same annually throughout the system lifetime. As 
reported in [29], a method to overcome this issue is to perform sensitivity analysis to CF to 
calculate the LCOE for hybrid system. However, CF only produces a single value by taking 
account of the energy generation, hence the information regarding the fluctuations and 
stochastic information will be missed. This should be taken into account for a more accurate 
LCOE analysis by using actual generation data per interval. The insolation results in Fig. 1. 
show a notable trend and is similar to the results from NASA. Least insolation is received 
during Spring (March to May) and Summer (June to Aug), with the most are received in 
Autumn (Sept to Oct) and Winter (Dec to Feb), with the exception in November due to repeated 
rain. 
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The Kenya national load data is similar to the studies used in [1, 17]. Table 1 presents the 
normalized load data for Kenya. The normalized load is multiplied with a 2 MW demand to 
represent the electrical load demand for a community in a rural area. 

 
3.2. Problem context 
 

The aim of the system is to provide the required electrical power, with PV, AD and EES to 
meet the load demand at all times. This means that the generation and load power should be 
balanced. The equality constraints for power balance are given in Equations (1) and (2). 

 
𝑃-(/(8+)CA/(𝑡) = 𝑃DA+E(𝑡)																																																								(1) 

𝑃-(/(8+)CA/(𝑡) = 𝑃#$;-)#81(𝑡) + 𝑃%&;-)#81(𝑡) + 𝑃!!"3D(𝑡) + 𝜂!!"𝑃!!"3E(𝑡)															(2) 
 

𝑃#$;-)#81  and 𝑃%&;-)#81  are the PV and AD power that is used to meet the load directly. 
𝑃!!"3D and 𝑃!!"3E are the stage 1 and stage 2 power output from EES. Stage 1 is when the EES 
decides to output power to meet the demand when the energy stored in EES is above a SOC 
threshold. Stage 2 is when the EES output power to meet the energy deficit in the system. 𝜂!!" 
is the round-trip efficiency for the storage system. This will be further elaborated with 
introduction of the operating regime in Section 3.3.  

The SOC limits are defined in Equation (3) to prevent EES over charging/discharging. The 
power output of biogas generator should not exceed its rated capacity as shown in Equation 
(4). Due to the minimum loading constraint for the biogas power plant, it is required to turn off 
when the power output is below 40% of its rated power output [1], given in Equation (5).  
 

𝑆𝑂𝐶2C/ ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶2+G																																																				(3) 
𝑃%&,-: ≤ 𝑃%&;-)#81(𝑡) + 𝑃%&31()#(𝑡) ≤ 𝑃%&,&. 																																										(4) 

𝑃%&,-: = 0.4 ∗ 𝑃%&,&. 																																																														(5) 
 

𝑃%&31()#  is the power output from AD that is stored in EES. 𝑃%&,-:  and 𝑃%&,&.  are the 
maximum and minimum power output from AD respectively. 𝑆𝑂𝐶2C/  and 𝑆𝑂𝐶2+G  are the 
maximum and minimum SOCs respectively. The instantaneous power output of PV plant is 
calculated as a function of panel area 𝑁#$, panel efficiency 𝜂#$ and instantaneous irradiance 
𝜀(𝑡) in Equation (6). 
 

Table 1 
Kenya normalized national load demand [1]. 

 

Hour Normalized load Hour Normalized load 
0 0.61 12 0.81 
1 0.57 13 0.80 
2 0.55 14 0.78 
3 0.55 15 0.79 
4 0.55 16 0.81 
5 0.62 17 0.81 
6 0.72 18 0.81 
7 0.82 19 0.86 
8 0.82 20 1.00 
9 0.86 21 0.96 
10 0.84 22 0.86 
11 0.82 23 0.71 
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𝑃#$(𝑡) = 𝜀(𝑡). 𝑁#$ . 𝜂#$ 																																																							(6) 
 
The schematic for the hybrid system is presented in Fig. 2. It shows that the bi-directional 

inverter is used to provide DC power to AC load, and is also used for charging the EES from 
AD. The cost and size of components are given in Table 2. 

 

 
 

Fig. 2. Schematic diagram of hybrid system. 
 

3.3. Operating regime 
 
In the microgrid context, energy management system (EMS) is employed by grid operators 

to monitor, control, and optimize the performance of the microgrid. The primary aims are to 
reduce electricity production costs and to continuously fulfil the load requirement. In explicit 
terms, the definition of energy management given in [33] is the procedure to “collect all the 

Table 2 
Cost and components size. 
 

 

PV 
(Sharp 
ND-
250QCS) 

AD 
(Caterpillar 
G3512E 
Genset) 

EES 
(Graphite/
LiCoOK) 

Controller 
(Outback 
FM 80) 

Inverter 
(Schneider 
Electric 
XW6048) 

Size 250 W 1.2 MW [30] 2 MW, 5 MWh  2 kW [1] 6 kW [31] 
Unit 20000 

[1] 
2  [1] 1 [1] 2500 834 

𝐶*+,455#1	 120 
($/unit) 
[1] 

$7.5M  [1] 1500 ($/kWh) 
[17] 

335 ($/unit) 
[1] 

1518 ($/unit) 
[31] 

𝐶./')%''() 108 
($/unit) 
[1] 

N/A N/A 6.7 ($/unit) 
[1] 

30.38 
($/unit) [31] 

𝐶%''()*&,2&)  N/A 𝐶%&!"#$ 	
+𝐶%&%&'(") 

0.42 ($/MWh) 
[17] + 
𝐶!!";#<=>? 

N/A N/A 

𝐶%''()*&,!-.#/  6 
($/unit/y
ear) [1] 

300 ($/kW-
year) [32] 

2.12 ($/kW-
year) [17] 

1.005 
($/unit/year) 
[1] 

4.6 
($/unit/year) 
[31] 
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systematic procedures to control and minimize the quantity and the cost of energy used to 
provide a certain application with its requirements.” In general, the control architecture of 
energy management can be classified into two types, namely Centralized control and 
Decentralized or Distributed control. Hybrid control featuring both centralized and 
decentralized is also an emerging architecture. As reviewed in [33, 34], the choice of the control 
architecture depends on the scale, configuration and assets ownership of the microgrid. 

The work in [35] presents a multi-agent decentralized EMS for autonomous polygeneration 
microgrids. In a decentralized architecture, each system component features a local controller, 
as opposed to the centralized architecture where a single controller executes the energy 
management for the system. Hence, decentralized architecture can increase the system 
reliability and reduce the chance of a system complete failure. On the other hand, decentralized 
architecture requires complex communication systems for local controllers to communicate 
and the achievement of global optimization can be challenging [33]. 

Traditionally, the optimization strategy employed by EMS for hybrid renewable energy 
systems are commonly achieved by artificial intelligent techniques or linear programming [33]. 
Artificial intelligent techniques that have been adopted are particle swarm optimization, genetic 
algorithm, fuzzy logic and neural network. These techniques have improved the optimization 
and performance of energy systems over the years. However, real-time and robust energy 
management techniques are still a major focus in future research, due to the drawbacks in 
determining the global optimal and the computational costs. This work employs rule-based 
approach to avoid the drawbacks of artificial intelligence methods and to achieve optimal 
dispatch. 

Microgrids can be categorized into five categories, where each category is designed to meet 
specific goals. These are namely the commercial/industrial, community/utility, 
campus/institutional, military and remote [36]. Taking these consideration in mind, this work 
focuses on developing an EMS for a remote community with generation assets locate closely 
together, simple data acquisition and inexpensive architecture; a centralized architecture is 
adopted for this system. 

The off-grid system will operate at the most cost-effective manner with the proposed 
regime. In essence, the operating regime will operate with the following characteristics: 

• Since the fuel cost for PV is zero, PV will be given the priority and firstly be used to 
meet the load demand before the deployment of AD or EES power; 

• Surplus PV energy will be stored in EES while fulfilling the SOC constraints; 
• AD will be used to meet the load demand when PV power is not available; 
• EES will be used to meet the deficit energy, i.e. the situation when no PV power is 

available and AD is switched off. 
• During the situation when there is not enough PV power, AD is switched off and EES 

has insufficient stored energy to meet the load demand; AD will then operate at 
minimum power output to meet the load demand. Any surplus energy generated from 
AD will be stored in EES. 

An interesting research question to be explored is “how does the EES dispatch method will 
influence the cost of the system and its components?”. To answer this, a SOC threshold is 
defined as 𝑆𝑂𝐶HI8('IA9E	  to classify the dispatch priority for EES and AD. The operating 
regime can be broken down into three phases as shown in Fig. 3, explained as follows: 

Phase 1 (Blue): In the first phase, the SOC at time 𝑡 will be compared with the predefined 
𝑆𝑂𝐶HI8('IA9E. If the SOC is greater than or equal to the threshold, then EES will be discharged 
first to meet the demand, given that the load is greater than the PV output. The power to be 
discharged is 𝑃!!"3D. It is expected that a higher 𝑆𝑂𝐶HI8('IA9E	will reduce energy spillage and 
surplus energy from PV will be better utilized. Less biogas will be used. However, more EES 
cycles will occur throughout the system lifetime due to excessive discharging. 
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Phase 2 (Brown): The regime will determine if there is deficit power at the instance. If so, 
EES will be discharged to meet the load while satisfy the constraint. The power to be 
discharged is 𝑃!!"3E. AD will be turned on to minimum output to meet the load if EES does 
not have enough stored energy. During this time, any surplus power from AD will be stored in 
EES. 

Phase 3 (Red): This phase will calculate the energy to be stored from the surplus power 
from AD and PV.  
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Fig. 3. Proposed hybrid system operating regime. 
 
3.4. Case study 
 

Case studies are conducted with MATLAB to verify the dispatch methods and operating 
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discharge over AD. Fig. 4 presents the results for 5 days of system operation in January. It can 
be seen that power curtailment has been applied to PV and the discarded surplus energy 
produced by PV is shown in green. At this point, the EES is fully charged. The EES is 
discharged to meet the power deficit, when PV output is increasing during sunrise and 
decreasing during sunset. The AD part loading constraint is triggered at these instances.  
 

 
Fig. 4. System’s power output for summer case. 

 
Fig. 5 shows the simulation results for 5 days of system operation in November. As stated 

previously, November is the month with most repeated rain in the year. This will introduce 
severe fluctuations to the PV power output. All of the PV power is used during the time period, 
either to meet the demand directly or stored in EES. Due to the power deficit, there are instances 
where both AD and EES are used to meet the demand. It can be confirmed that the operation 
of the hybrid system is achieved with the proposed regime.  
 

 
Fig. 5. System’s power output for spring case. 
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The SOC for the system with 𝑆𝑂𝐶HI8('IA9E at two extremes are presented in Fig. 6. It can 
be observed that deep discharges occur in Jan when 𝑆𝑂𝐶HI8('IA9E is set at 0%. The solar power 
is better utilized, i.e. less energy spillage due to the storage is fully used at the beginning of the 
regime. Contrary to the case for 𝑆𝑂𝐶HI8('IA9E is set at 100% as shown in the adjacent figure, 
the SOC is rarely discharged and is kept at high SOC. Surplus power will be wasted, i.e. will 
not be stored as EES is full in most of the time. 

For the case in November, the surplus power is not an issue as the EES is never fully 
charged. When 𝑆𝑂𝐶HI8('IA9E is set at 0%, the SOC is mostly at minimum 0%. This can be 
explained by the fact that the EES is used with priority, similar to the case in Jan with 
𝑆𝑂𝐶HI8('IA9E at 0%. The EES is less susceptible to full discharges when 𝑆𝑂𝐶HI8('IA9E is at 
100%. In general, the EES of a practical hybrid system will experience numerous partial cycles 
with different SOC ranges to fulfil the system energy requirement. 
 

 
 

Fig. 6. EES SOC for 0% and 100% 𝑆𝑂𝐶HI8('IA9E	in summer and spring cases. 
 

A sensitivity analysis for 𝑆𝑂𝐶HI8('IA9E with steps at 0.01, from 0 to 1 is carried out for the 
system’s lifetime operation. The power output and SOC are stored for cost analysis and will be 
presented in Section 4. 
 
4. Economic analysis 

 
Apart from capital costs, there are operational costs associated with EES and AD. These 

can be separated into fixed and variable costs. For AD, fixed operational costs include labour 
and routine generator maintenance. Fuel cost to produce electrical power is the variable 
operational costs for AD. The fixed operational cost for EES are the operation and maintenance 
(O&M) costs, such as routine battery services. As stated in [37], identifying the operating cost 
for EES is challenging since it does not consume fuel unlike the AD source. The energy cost 
can be assigned to the EES to represent the cost for charging and act as the “fuel” cost. In 
addition to this, another variable operational cost should be included to model the degradation 
of EES due to charging and discharging. This is known as degradation cost and can be broken 
down into two types, the degradation cost per kWh and degradation cost per cycle. 
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The Caterpillar G3512E Genset [30] is adopted to model the biogas power plant, with a 

rated capacity of 1.2 MW. The cost for AD power generation is given in Equation (7). 
 

𝐶%&!"#$(𝑡) = 𝐶-+'.
𝑃%&(𝑡). P𝑎. 𝑃%&K(𝑡) + 𝑏. 𝑃%&(𝑡) + 𝑐R

𝐿𝐻𝑉 																									(7) 
 

𝐶-+' is the AD gas cost at 6.97 $/mcf [38], 𝐿𝐻𝑉 is the lower heating value at 905 btu/ft3 
[30]. The fuel consumption is a quadratic function with constants 𝑎, 𝑏 and 𝑐 at 0.0016, -3.935 
and 10641 respectively. The fuel consumption curve is displayed in Fig. 7 and it shows an 
interesting relationship. The consumption is at the lowest when the power output is at the 
maximum. This is due to the generator achieves the highest operation efficiency at rated 
capacity. The generator set should be avoided to meet partial load demand, hence the constraint. 
 

 
 

Fig. 7. Fuel consumption curve for AD [30]. 
 
4.2. LiCoO2 degradation cost model and number of replacements 
 

In contrast to many research works which uses DOD or energy discharge content in kWh 
to calculate the EES degradation, this paper uses a capacity fade model to quantify the 
degradation costs. In recent years, there are published materials on the study in Li-ion capacity 
fading. The factors that are studied are mainly on DOD, discharge C-rate and operating 
temperature. In [39], the cycle life of a Graphite/LiFePO4 battery was researched and 
subsequently, the cycle life models were built. Three parameters were studied, with six 
temperatures from -30°C to 60°C, five DODs from 10-90% and four C-rates ranging from C/2 
to 10C. A power law relationship was established between the capacity fade and the charge 
throughput, which represents the amount of charge delivered by EES during cycling. The 
highlight is that the capacity loss was mainly affected by temperature and time, while the effect 
of DOD was less of a concern with a C-rate of C/2. 

The capacity loss rate of a Li-ion cell with nickel cobalt aluminium cathode under a 
restricted range (30-90% SOC) and full discharge (0-100% SOC) for two temperatures (25°C 
and 60°C) were studied in [40]. It found that capacity fading can be reduced with a reduced 
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SOC range. These can be explained by the formation of new resistance layer and the lack of 
contact between the primary particles with the micro-crack generation. 

Further analysis in cycle life study with restricted range for Li-ion cell were conducted in 
[11] with Graphite/LiCoO2 cells. It found that the capacity loss can be affected by the change 
in SOC (∆𝑆𝑂𝐶), mean SOC and C-rate. A power law model is developed for capacity fade of 
Graphite/LiCoO2 cells under different SOC ranges. Commented by the authors, the ∆𝑆𝑂𝐶 and 
mean SOC during operation should be minimized in order to decrease the long-term capacity 
fade rate, which results in higher number of equivalent cycles or increased cumulative 
discharge capacity throughout the EES lifetime. Also reported in [10], increased cycle life can 
be a result in cycling in lower charged states for Li-ion cells.  

The degree of EES degradation is a function of number of cycles, change in SOC and 
amount of energy that flows throughout it [22]. The normalized discharge capacity model in 
[11] is adopted to study the degradation cost for EES. However, there are several limitations 
with the model. Firstly, it is not able to capture the unexpected capacity loss behaviour for low 
SOC ranges, such as 0-60% in the presented case study. However, the results show that the 
propose model gives the pessimistic results for the low SOC ranges. The experiment results for 
normalized discharge capacity with respected to the equivalent full cycle are above the fitted 
curve. It is expected that there will be more cycles than the computed result from the model, 
therefore the degradation should be less for low SOC ranges. 

The second limitation is that in the study for complete discharge range i.e. 0-100% SOC, 
there is a sudden increase in capacity loss rate after 500 equivalent full cycles. This suggests 
that a new degradation mechanism is triggered and it is in a form of linear capacity fade model. 
To overcome this issue in our study, a function is fitted with the data points obtained from the 
normalized discharge capacity model with the number of equivalent full cycles for 100% DOD 
between 0-100% SOC. With inspection, this number is approximately 850 full cycles. The 
fitted function is shown in Fig. 8 and the data points generated from normalized discharge 
capacity model after 30% DOD are neglected as it prevents the best fit to the 100% DOD. Also 
after 45% DOD, it shows an increase in cycle life which is unreasonable. 

During a discharge cycle, the mean SOC is calculated with Equation (8) below: 
 

𝑆𝑂𝐶2(+/ =
𝑆𝑂𝐶J,,(8 + 𝑆𝑂𝐶DAF(8

2 =
𝑆𝑂𝐶)D + 𝑆𝑂𝐶)E

2 																							(8) 
 

𝑆𝑂𝐶J,,(8  is the SOC when discharge begins and 𝑆𝑂𝐶DAF(8  is the SOC when charging 
begins for each partial cycle. The time 𝑡M is used to locate the time when the SOC is at the 
maximum of a cycle. The change in SOC is given in Equation (9) below: 
 

∆𝑆𝑂𝐶 = 𝑆𝑂𝐶J,,(8 − 𝑆𝑂𝐶DAF(8 																																														(9) 
 

The rated cycle life and 𝑎((' are calculated with Equations (10) and (11) [11] respectively. 
 

𝑅𝑎𝑡𝑒𝑑𝑐𝑦𝑐𝑙𝑒"0*F77#),"0*%(G#) = 𝑒
OPQMRR

H.JKL∗(MRR3T&*)
+##5

U

R.WXY 										𝑤ℎ𝑒𝑛	𝑆𝑂𝐶J,,(8 ≠ 100%			(10) 
 

𝑎((' = 3.25 ∗ 𝑆𝑂𝐶2(+/ ∗ (1 + 3.25 ∗ ∆𝑆𝑂𝐶 − 2.25 ∗ ∆𝑆𝑂𝐶K)																							(11) 
 

where 𝑁𝐷𝐶 is the normalized discharge capacity at 80%. The three-parameter equation in 
Equation (12) [8, 26] is used to fit the rated cycle for deep discharge situations and 𝑆𝑂𝐶J,,(8 
is at 100% during a discharge cycle. 
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𝑅𝑎𝑡𝑒𝑑𝑐𝑦𝑐𝑙𝑒MRR%,"0*%(G#) =
𝑑(('

(𝐷𝑜𝐷 − 𝑒((')[##5
					𝑖𝑓	𝑆𝑂𝐶J,,(8 = 1	&	𝑆𝑂𝐶DAF(8 < 0.55		(12)	 

 
where 𝑑((', 𝑒((' and 𝑓((' are constants with values 1278, -0.36 and 1.265 respectively. 

 

 
 

Fig. 8. LiCoO2 cycle life function for discharge from 100% SOC. 
 

The purpose to calculate the degradation cost per cycle is to determine the number of EES 
lifetime replacements. The value for the whole EES is calculated and then the cost of every 
discharge cycle is recorded. The EES will need to be replaced once the max capital cost is 
reached [22]. The replacement cost per discharge cycle for year 𝑖 and cycle 𝑘 is calculated with 
Equation (13) and the number of lifetime replacements is calculated with Equation (14). 
 

𝐶!!"6#7$&8#9#:1
(𝑖, 𝑘) =

𝐶*+,MM3 . 𝐸!!"6&1#/
𝑅𝑎𝑡𝑒𝑑𝑐𝑦𝑐𝑙𝑒"0*F77#),"0*%(G#)(𝑖, 𝑘)

																								(13) 

 

𝑁!!" =
∑ ∑ 𝐶!!"6#7$&8#9#:1(𝑖, 𝑘)

\
]

/
C

𝐶*+,MM3 . 𝐸!!"6&1#/
																																											(14) 

 
𝐶*+,MM3 and 𝐸!!"6&1#/  are the capital cost and rated energy capacity of EES. 

𝑅𝑎𝑡𝑒𝑑𝑐𝑦𝑐𝑙𝑒"0*F77#),"0*%(G#) is the rated cycle life for the EES given a discharge cycle from 
𝑆𝑂𝐶J,,(8 to 𝑆𝑂𝐶DAF(8. Fig. 9 shows a comparison of Li-ion cells with different chemistries 
for the cycle life under a range of DOD from 100% SOC. LiCoO2 cells have a shorter life span 
as compared to other chemistries and LiFePO4 can double the rated cycle life at low DODs 
[41]. A lower degradation per cycle and degradation per kWh can be achieved with a higher 
rated cycle life. 
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Fig. 9. Comparison of Li-ion EES degradation costs and cycle life for discharge from 100% 
SOC. 

 
A sensitivity analysis with a range of 𝑆𝑂𝐶HI8('IA9E has been performed on the system to 

study the required number of EES lifetime replacements. Fig. 10 displays the simulation results. 
Since the number of EES cannot be a fraction, the obtained result is rounded up to the nearest 
integer. The number of replacement increases as the  𝑆𝑂𝐶HI8('IA9E is reduced. To explain these 
phenomena, Fig. 11 provides the histogram for changes in SOC and SOC occurrences for the 
lifetime operation with 𝑆𝑂𝐶HI8('IA9E at 0% and 100%. With 𝑆𝑂𝐶HI8('IA9E at 100%, the SOCs 
are mostly situated in the higher region and results in a higher 𝑆𝑂𝐶2(+/. However, the total 
number of discharges, which is given by the integral of the number of occurrences for Δ𝑆𝑂𝐶, 
is less than for the case when 𝑆𝑂𝐶HI8('IA9E is at 0. There are more deep discharges for the case 
with 𝑆𝑂𝐶HI8('IA9E at 0% as given by Δ𝑆𝑂𝐶. In summary, a 𝑆𝑂𝐶HI8('IA9E at 0% will generally 
on average result a lower 𝑆𝑂𝐶2(+/, but the increase in total number of discharges and the deep 
discharge cycles have a larger impact to the EES degradation and result in an increased number 
of EES replacements. 
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Fig. 10. Number of lifetime EES replacements for different 𝑆𝑂𝐶HI8('IA9E. 
 

 
 

Fig. 11. System’s lifetime SOCs and SOC differences for 𝑆𝑂𝐶HI8('IA9E at 0% and 100%. 
 
4.3. Levelized cost of electricity derivation 

 
The LCOE for individual components and the system are studied with the established 

operational cost models for AD and EES. It is of crucial importance to understand the cost 
implications of how each generation asset and EES will react to the operating regime. The cost 
is largely affected by the asset lifetime electricity production, as well as the operational costs 
or degradation costs for the case with EES. The original definition of LCOE is given in 
Equation (15) [1, 17]. 
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LCOE =
lifecycle	cost	($)

lifetime	energy	production	(kWh) =
𝐶*+, + ∑ 𝐶0&2(𝑖). (1 + 𝑑)3C/

C^R
∑ 𝐸(𝑖). (1 + 𝑑)3C/
C^R

			(15) 

 
𝐶*+, is the fixed capital cost of the asset and may include installation costs. 𝐶0&2 is the 

total operation and maintenance costs and 𝐸 is the total energy production, it is often given per 
year 𝑖  for asset lifetime 𝑛 , and a discount rate 𝑑  needs to be included to account for the 
depreciation in value for costs and energy. The discount rate used for the studies is 8% [17]. 
 
4.3.1. LCOE for PV 

 
The LCOE for PV can be calculated with Equations (16), (17) and (18) below: 
 

LCOE_` =
𝐶#$
𝐸#$

																																																												(16) 

𝐶#$ = 𝑁#$ . (𝐶*+,@2 + 𝐶./')@2) +x
𝑁#$ . 𝐶#$*&,!-.#/

(1 + 𝑑)C

/

C^R

																																		(17) 

𝐸#$ =x
(1 − 𝜎)C . ∑ 𝑃#$;-)#81(𝑖, 𝑗) + 𝑃#$31()#(𝑖, 𝑗)

)
a^M

(1 + 𝑑)C

/

C^R

																								(18) 

 
𝐶*+,@2 , 𝐶./')@2 , and 𝐶#$*&,!-.#/  are the capital, installation, and operation and 

maintenance costs respectively for PV. 𝜎 is the annual degradation constant for the PV panel 
at 0.5% [17]. 𝑃#$;-)#81  and 𝑃#$31()#  are the power output from PV that is used to meet the 
demand and to be stored in EES respectively, at hour 𝑗 and year 𝑖. Since the system is an off-
grid system, the wasted energy from PV generator, i.e. not used directly to meet the demand or 
stored in EES is not included in the lifetime energy production as the generated electricity will 
not be sold and the cost cannot be recovered, resulting a higher levelized cost. 

 
4.3.2. LCOE for AD 
 

The LCOE for AD can be calculated with Equations (19), (20), (21) and (22) below: 
 

LCOE:b =
𝐶%&
𝐸%&

																																																								(19) 

𝐶%& = 𝐶*+,4; +x
𝐶%&*&,!-.#/ . 𝑃%&,&. + ∑ 𝐶%&*&,2&)(𝑖, 𝑗)

)
a^M

(1 + 𝑑)C

/

C^R

																	(20) 

 
𝐶*+,4; and 𝐶%&*&,!-.#/  are the capital and fixed annual O&M costs for AD. The variable 

operation and maintenance cost for AD, 𝐶%&*&,2&) , is calculated with Equation (21) below: 
 

𝐶%&*&,2&)(𝑖, 𝑗) = 𝐶%&!"#$(𝑖, 𝑗) + (𝐶%&%&'(")/2). 𝑃%&∆𝑡(𝑖, 𝑗)																									(21) 
 

𝐶%&%&'(") is the labour cost for operating the AD at $0.05/kWh [32].  The AD lifetime 
energy production at present value is calculated with Equation (22) below: 
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𝐸%& =x
∑ 𝑃%&;-)#81(𝑖, 𝑗) + 𝑃%&31()#(𝑖, 𝑗)
)
a^M

(1 + 𝑑)C

/

C^R

																													(22) 

 
𝑃%&;-)#81 is the AD power output that is used to meet the demand directly and 𝑃%&31()# is 

the surplus power from AD that is produced while meeting the deficit demand. 
  
4.3.3. Levelized cost of storage (LCOS) 
 

Recently, the term LCOS has received attention in both the industry and academia [42, 43]. 
Since EES can provide a diverse range of services for power systems operation, e.g. frequency 
support, renewable integration, uninterruptible power supply, it is of significant interest in 
studying the cost effectiveness of deploying a specific type of EES, such as lead-acid, Li-ion 
etc. to perform certain tasks. LCOS has similar attributes to LCOE and is given by Equation 
(23) below: 

LCOS =
𝐶!!"
𝐸!!"

																																																											(23) 

𝐶!!" = 𝐶*+,MM3 . 𝐸!!"6&1#/ +x
𝐶!!"*&,0(1&$
(1 + 𝑑)C

/

C^R

																																(24) 

𝐶!!"*&,0(1&$ = 𝐶!!"*&,!-.#/ . 𝐸!!"6&1#/ +x𝐶!!";#<=>?(𝑖, 𝑘)
\

]^M

+x𝐶!!"=>?(𝑖, 𝑗)
)

a^M

						(25) 

 
𝐶!!"*&,!-.#/  is the fixed annual EES O&M cost. The variable operational costs for EES 

include the degradation per kWh cost and energy cost are calculated with Equations (26) and 
(27) respectively. 𝑚 is the number of discharge cycles per year. 
 
𝐶!!"!"#$%&

(𝑖, 𝑘) =
𝐶#$%''(

𝑅𝑎𝑡𝑒𝑑𝑐𝑦𝑐𝑙𝑒"&#)**"+,"&#,-."+(𝑖, 𝑘)
. 1𝑆𝑂𝐶(%%)*(𝑖, 𝑘) − 𝑆𝑂𝐶+&,)*(𝑖, 𝑘)5. 𝐸!!"/01"2 		(26) 

𝐶!!"=>?
(𝑖, 𝑗) = 𝐶!!"*&,2&) . 𝐸!!"31()#(𝑖, 𝑗)																																				(27) 

 
𝐶!!"*&,2&)  is the variable O&M cost for the energy 𝐸!!"31()# to be stored in EES. The 

lifetime electricity production is calculated with Equation (28) below: 
 

𝐸!!" = 𝜂!!"x
∑ [𝐸!!"3"M(𝑖, 𝑗)+𝐸!!"3"K(𝑖, 𝑗)])
a^M

(1 + 𝑑)C

/

C^R

																				(28) 

 
𝜂!!" is the round-trip efficiency of EES at 90% for Li-ion. 

 
4.3.4. Levelized cost of delivery (LCOD) 
 

Since EES is a storage device and is not a conventional electrical energy generating source, 
i.e. the asset does not generate electricity from primary energy source, it is necessary to take 
account of the cost for the energy conversion process from the primary form, i.e. solar 
irradiance or biomass into electricity. This is studied in [17] and the term LCOD was proposed. 
Equation (29) gives the LCOD for the system. 
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LCOD =
𝐶!!" + 𝐶#$31()#1(1&$ + 𝐶*A/ + 𝐶%&31()#1(1&$

𝐸!!"
																			(29) 

 
The charge controller cost is given in Equation (30) below: 

 

𝐶*A/ = 𝑁*A/. (𝐶*+,N(: + 𝐶./')*A/) +x
𝐶0&2N(: . 𝑁*A/
(1 + 𝑑)C

/

C^R

																					(30) 

𝑁*A/ = 𝑐𝑒𝑖𝑙 �
𝑃#$6&1#/
𝑃*A/

� . 𝑁*A/38(,																																									(31) 

 
𝑁*A/  is the number of controllers; 𝐶*+,N(: , 𝐶./')*A/  and 𝐶0&2N(:  are the capital, 

installation and O&M costs for the controller. The ceil function converts the number of 
controllers into the nearest integer above. 𝑁*A/38(,	 is 2 and is the number of controller 
replacements during the system’s lifetime [1]. 𝑃#$6&1#/ and 𝑃*A/ are the rated power output for 
the PV farm and the controller respectively. The cost for producing the electricity from AD to 
be stored in EES is given in Equations (32) below: 

 

𝐶%&31()#1(1&$ = 𝐶*+,4; +x
𝐶%&*&,!-.#/ . 𝑃%&,&. + ∑ 𝐶%&*&,31()#(𝑖, 𝑗)

)
a^M

(1 + 𝑑)C

/

C^R

						(32) 

𝐶%&*&,31()#(𝑖, 𝑗) = 𝐶%&!"#$(𝑖, 𝑗) + 𝐶%&%&'(") . 𝑃%&31()#(𝑖, 𝑗)																				(33) 
 

𝑃%&31()#  is the power generated from AD to be stored in EES as energy, the cost for 
producing the electricity from PV to be stored in EES is given in Equations (34) below: 

 

𝐶#$31()#1(1&$ = 𝑁#$ . (𝐶*+,@2 + 𝐶./')@2) +x
∑ 𝑁")A8((𝑖, 𝑗))
a^M . 𝐶0&2@2-:1(𝑖, 𝑗)

(1 + 𝑑)C

/

C^R

							(34) 

𝑁")A8((𝑖, 𝑗) =
𝑃#$31()#(𝑖, 𝑗)
𝜀(𝑖, 𝑗). 𝜂#$

																																																(35) 

 
𝑁")A8( is the PV panel area that is used to produce the surplus electricity for storage. The 

maintenance cost per hour for PV is calculated in Equation (36) below: 
 

𝐶0&2@2-:1
(𝑖, 𝑗) =

𝐶0&2@2(𝑖, 𝑗)
365 ∗ 24 																																																(36) 

 
4.3.5. LCOE for system 
 

The system’s LCOE is derived in Equation (37). It takes account of the total costs for 
operating the system and the energy output to meet the load demand. 
 

LCOE;?;=<@ =
𝐶#$ + 𝐶!!" + 𝐶*A/ + 𝐶./B + 𝐶%&
𝐸!!" + 𝐸#$;-)#811(1&$ + 𝐸%&;-)#811(1&$

															(37) 

𝐶./B = 𝑁./B . (𝐶*+,O:P + 𝐶./')./B) +x
𝐶0&2O:P(𝑖). 𝑁./B

(1 + 𝑑)C

/

C^R

																		(38) 
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𝐶*+,./B , 𝐶./')./B  and 	𝐶0&2O:P  are the capital, installation and O&M costs for the bi-
directional inverter. The number of required inverters is calculated with Equation (39) below: 
 

𝑁C/B = 𝑐𝑒𝑖𝑙 �
𝑃#$6&1#/
𝑃./B

� . 𝑁./B38(,																																										(39) 

 
𝑃./B  is the rated capacity of the inverter. 𝑁./B38(,  is 2 and is the number of inverter 

replacements during the system’s lifetime [1]. The total energy produced by PV and AD during 
the operation of the system that is used to meet the load demand directly are given in Equations 
(40) and (41) respectively as shown below: 

 

𝐸#$;-)#811(1&$ =x
(1 − 𝜎)C . ∑ 𝑃#$;-)#81(𝑖, 𝑗)

)
a^M

(1 + 𝑑)C

/

C^R

																									(40) 

𝐸%&;-)#811(1&$ =x
∑ 𝑃%&;-)#81(𝑖, 𝑗)
)
a^M

(1 + 𝑑)C

/

C^R

																																			(41) 

 
𝑃#$;-)#81  and 𝑃%&;-)#81  are the power generated from PV and AD respectively for direct 

consumption. 
 
4.4. LCOE analyses and discussion 

 
The LCOE results with 𝑆𝑂𝐶HI8('IA9E at different values are displayed in Fig. 12. The cost 

for AD is lower when 𝑆𝑂𝐶HI8('IA9E is at a higher value. This is due to AD has a higher dispatch 
priority than EES and more electricity is generated from AD. The cost for EES will increase as 
a result of a decreased energy output. LCOD has a similar curve to LCOS, but with a larger 
cost. As explained previously, LCOD takes account of the energy conversion costs from 
primary source to electricity for storage. The capital costs for AD and PV has a large 
contribution to the actual energy storage costs. The cost for PV increases as 𝑆𝑂𝐶HI8('IA9E 
increases, this is due to less energy delivered by EES, produced from PV is used to meet the 
load demand. Taking all the costs and electricity generation into consideration, it is more 
economical to have the 𝑆𝑂𝐶HI8('IA9E at maximum value and to run the system at minimum 
costs.   
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Fig. 12. LCOE for AD, EES and system at different 𝑆𝑂𝐶HI8('IA9E values. 
 

Due to the excellent round-trip efficiency, high energy density and high power density, it 
is expected that Li-ion batteries will be widely used in renewable hybrid systems [44]. However, 
the capital costs such as manufacturing and the cost of cobalt in cathodes are the major factors 
that prevent the wide-scale adoption at present. As discussed in [45], it is possible for Li-ion 
batteries to have a capital cost of 200 $/kWh by 2020. As such, Fig. 13 presents the results for 
the system LCOE with a sensitivity analysis on the EES capital cost. 
 

 
 

Fig. 13. System LCOE with different EES capital costs. 
 
At 1000 $/kWh, the system cost is reduced as compared to the original study at 1500 $/kWh. 

As the capital cost decreases, it can be observed that the differences in levelized cost are 
minimized with 𝑆𝑂𝐶HI8('IA9E variation. This signifies that the cost of EES degradation has less 
influence to the system’s cost. At 200 $/kWh, the largest difference in system’s levelized cost 
is 0.0028 $/kWh. The lowest levelized cost for the system is achieved with a 𝑆𝑂𝐶HI8('IA9E at 
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33%. It is more cost effective to cycle the EES more often and utilized the surplus PV energy 
than meeting the load demand with biogas. In future work, the carbon emission cost can be 
included in the cost generation for the analysis. Although biogas is seen as a renewable energy 
source, it still generates little amount of carbon emission due to the combustion process.  

 
5. Conclusions 
 

This work provides a techno-economic analysis of an off-grid photovoltaic, anaerobic 
digestion biogas power plant (AD) renewable energy system with Graphite/LiCoO2 storage. 
The highlight of this work is that the accuracy of degradation costs for electrical energy storage 
(EES) is enhanced by utilizing a capacity fade model, by obtaining the cycle life on partial state 
of charge (SOC) range cycling. This research opens a range of research opportunities and future 
work to be conducted, listed as follows: 

 
1. At present, most EES degradation effects focus on the discharging phase, i.e. depth of 

discharge and energy delivered by EES. The degradation effect due to charging phase 
should also be given; 

2. The optimization problem formulations for power system with EES should be modified 
to incorporate capacity fade model; 

3. Temperature [46] and C-rate should be included in the capacity fade model to provide 
a more realistic analysis; 

4. For illustration purposes, the proposed regime is of static nature. The variable to control 
the dispatch priority of EES and AD, 𝑆𝑂𝐶HI8('IA9E , can be of dynamic nature to 
minimize the system lifetime cost. This may need generation and load forecasting. 

5. More studies in partial SOC ranges is required in order to build cell degradation model 
for all possible SOC ranges. 

6. Capacity fade model for dynamic SOC cycling conditions, i.e. the cycle life due to a 
combination of different SOC ranges is needed. 

 
Based on the results obtained in this study, it shows that the Graphite/LiCoO2 is cost 

competitive compared to the dispatchable generator, i.e. AD biogas generator to provide 
electricity as the capital cost reduces to 200 $/kWh. 

 
Acknowledgements 
 

This research work was supported in part by the Guangdong University of Technology, 
Guangzhou, China under Grant from the Financial and Education Department of Guangdong 
Province 2016[202]: Key Discipline Construction Programme; in part by the Education 
Department of Guangdong Province: New and Integrated Energy System Theory and 
Technology Research Group, Project Number 2016KCXTD022; and in part by The Hong 
Kong Polytechnic University, Hong Kong China under the Incoming Visiting Ph.D. Students 
Programme.  

 
References 
 
[1] C. S. Lai and M. D. McCulloch, "Sizing of stand-alone solar PV and storage system 

with anaerobic digestion biogas power plants," IEEE Transactions on Industrial 
Electronics, vol. 64, pp. 2112-2121, 2017. 



 27 

[2] R. K. Akikur, R. Saidur, H. W. Ping, and K. R. Ullah, "Comparative study of stand-
alone and hybrid solar energy systems suitable for off-grid rural electrification: A 
review," Renewable and Sustainable Energy Reviews, vol. 27, pp. 738-752, 2013. 

[3] T. Tezer, R. Yaman, and G. Yaman, "Evaluation of approaches used for optimization 
of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy 
Reviews, vol. 73, pp. 840-853, 2017. 

[4] J. L. Bernal-Agustín and R. Dufo-López, "Simulation and optimization of stand-alone 
hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, vol. 
13, pp. 2111-2118, 2009. 

[5] F. Kazhamiaka, C. Rosenberg, and S. Keshav, "Practical strategies for storage operation 
in energy systems: design and evaluation," IEEE Transactions on Sustainable Energy, 
vol. 7, pp. 1602-1610, 2016. 

[6] W. Su, J. Wang, and J. Roh, "Stochastic energy scheduling in microgrids with 
intermittent renewable energy resources," IEEE Transactions on Smart Grid, vol. 5, pp. 
1876-1883, 2014. 

[7] B. Zhou, X. Liu, Y. Cao, C. Li, C. Y. Chung, and K. W. Chan, "Optimal scheduling of 
virtual power plant with battery degradation cost," IET Generation, Transmission & 
Distribution, vol. 10, pp. 712-725, 2016. 

[8] Z. Zhang, J. Wang, and X. Wang, "An improved charging/discharging strategy of 
lithium batteries considering depreciation cost in day-ahead microgrid scheduling," 
Energy Conversion and Management, vol. 105, pp. 675-684, 2015. 

[9] Y. Zheng, Z. Y. Dong, F. J. Luo, K. Meng, J. Qiu, and K. P. Wong, "Optimal allocation 
of energy storage system for risk mitigation of DISCOs with high renewable 
penetrations," IEEE Transactions on Power Systems, vol. 29, pp. 212-220, 2014. 

[10] H. de Vries, T. T. Nguyen, and B. O. het Veld, "Increasing the cycle life of lithium ion 
cells by partial state of charge cycling," Microelectronics Reliability, vol. 55, pp. 2247-
2253, 2015. 

[11] S. Saxena, C. Hendricks, and M. Pecht, "Cycle life testing and modeling of 
graphite/LiCoO 2 cells under different state of charge ranges," Journal of Power 
Sources, vol. 327, pp. 394-400, 2016. 

[12] A. Hoke, A. Brissette, K. Smith, A. Pratt, and D. Maksimovic, "Accounting for lithium-
ion battery degradation in electric vehicle charging optimization," IEEE Journal of 
Emerging and Selected Topics in Power Electronics, vol. 2, pp. 691-700, 2014. 

[13] A. Yoshida, T. Sato, Y. Amano, and K. Ito, "Impact of electric battery degradation on 
cost-and energy-saving characteristics of a residential photovoltaic system," Energy 
and Buildings, vol. 124, pp. 265-272, 2016. 

[14] M. G. Ippolito, M. L. Di Silvestre, E. R. Sanseverino, G. Zizzo, and G. Graditi, "Multi-
objective optimized management of electrical energy storage systems in an islanded 
network with renewable energy sources under different design scenarios," Energy, vol. 
64, pp. 648-662, 2014. 

[15] A. T. D. Perera, V. M. Nik, D. Mauree, and J.-L. Scartezzini, "Electrical hubs: An 
effective way to integrate non-dispatchable renewable energy sources with minimum 
impact to the grid," Applied Energy, vol. 190, pp. 232-248, 2017. 

[16] J. Sachs and O. Sawodny, "A two-stage model predictive control strategy for economic 
diesel-pv-battery island microgrid operation in rural areas," IEEE Transactions on 
Sustainable Energy, vol. 7, pp. 903-913, 2016. 

[17] C. S. Lai and M. D. McCulloch, "Levelized cost of electricity for solar photovoltaic 
and electrical energy storage," Applied Energy, vol. 190, pp. 191-203, 2017. 



 28 

[18] A.-S. Hamedi and A. Rajabi-Ghahnavieh, "Explicit degradation modelling in optimal 
lead–acid battery use for photovoltaic systems," IET Generation, Transmission & 
Distribution, vol. 10, pp. 1098-1106, 2016. 

[19] E. Hittinger, T. Wiley, J. Kluza, and J. Whitacre, "Evaluating the value of batteries in 
microgrid electricity systems using an improved Energy Systems Model," Energy 
Conversion and Management, vol. 89, pp. 458-472, 2015. 

[20] E. Telaretti, G. Graditi, M. Ippolito, and G. Zizzo, "Economic feasibility of stationary 
electrochemical storages for electric bill management applications: the Italian 
scenario," Energy Policy, vol. 94, pp. 126-137, 2016. 

[21] G. Graditi, M. Ippolito, E. Telaretti, and G. Zizzo, "Technical and economical 
assessment of distributed electrochemical storages for load shifting applications: An 
Italian case study," Renewable and Sustainable Energy Reviews, vol. 57, pp. 515-523, 
2016. 

[22] C. Bordin, H. O. Anuta, A. Crossland, I. L. Gutierrez, C. J. Dent, and D. Vigo, "A linear 
programming approach for battery degradation analysis and optimization in offgrid 
power systems with solar energy integration," Renewable Energy, vol. 101, pp. 417-
430, 2017. 

[23] C. Budischak, D. Sewell, H. Thomson, L. Mach, D. E. Veron, and W. Kempton, "Cost-
minimized combinations of wind power, solar power and electrochemical storage, 
powering the grid up to 99.9% of the time," Journal of Power Sources, vol. 225, pp. 
60-74, 2013. 

[24] A. S. Hassan, L. Cipcigan, and N. Jenkins, "Optimal battery storage operation for PV 
systems with tariff incentives," Applied Energy, vol. 203, pp. 422-441, 2017. 

[25] R. Rajbongshi, D. Borgohain, and S. Mahapatra, "Optimization of PV-biomass-diesel 
and grid base hybrid energy systems for rural electrification by using HOMER," Energy, 
vol. 126, pp. 461-474, 2017. 

[26] Y. Zhang, A. Lundblad, P. E. Campana, F. Benavente, and J. Yan, "Battery sizing and 
rule-based operation of grid-connected photovoltaic-battery system: A case study in 
Sweden," Energy Conversion and Management, vol. 133, pp. 249-263, 2017. 

[27] S. Mandelli, C. Brivio, E. Colombo, and M. Merlo, "A sizing methodology based on 
Levelized Cost of Supplied and Lost Energy for off-grid rural electrification systems," 
Renewable Energy, vol. 89, pp. 475-488, 2016. 

[28] "NASA surface meteorology and solar energy," NASA, [Online]. Available: 
https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi. [Accessed: 28.08.2017]. 

[29] A. S. Mundada, K. K. Shah, and J. Pearce, "Levelized cost of electricity for solar 
photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy 
Reviews, vol. 57, pp. 692-703, 2016. 

[30] "G3512E Caterpillar Gas engine technical data, Ref. Data Set DM8811-06-001," 
Industrial motor power corporation, 2013. [Online]. Available: 
http://attachments.impcorporation.com/21373414/Performance Data G3512E.pdf. 
[Accessed: 28.08.2017]. 

[31] A. Hassan, M. Saadawi, M. Kandil, and M. Saeed, "Modified particle swarm 
optimisation technique for optimal design of small renewable energy system supplying 
a specific load at Mansoura University," IET Renewable Power Generation, vol. 9, pp. 
474-483, 2015. 

[32] "CREST Cost of Energy Model: Anaerobic Digestion V1.4," National Renewable 
Energy Laboratory (NREL). [Online]. Available: 
https://financere.nrel.gov/finance/content/crest-cost-energy-models. [Accessed: 
28.08.2017]. 



 29 

[33] L. Olatomiwa, S. Mekhilef, M. Ismail, and M. Moghavvemi, "Energy management 
strategies in hybrid renewable energy systems: A review," Renewable and Sustainable 
Energy Reviews, vol. 62, pp. 821-835, 2016. 

[34] L. Meng, E. R. Sanseverino, A. Luna, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, 
"Microgrid supervisory controllers and energy management systems: A literature 
review," Renewable and Sustainable Energy Reviews, vol. 60, pp. 1263-1273, 2016. 

[35] C.-S. Karavas, G. Kyriakarakos, K. G. Arvanitis, and G. Papadakis, "A multi-agent 
decentralized energy management system based on distributed intelligence for the 
design and control of autonomous polygeneration microgrids," Energy Conversion and 
Management, vol. 103, pp. 166-179, 2015. 

[36] A. Maitra, A. Pratt, T. Hubert, D. Wang, K. Prabakar, R. Handa, et al., "Microgrid 
controllers: Expanding their role and evaluating their performance," IEEE Power and 
Energy Magazine, vol. 15, pp. 41-49, 2017. 

[37] T. A. Nguyen and M. Crow, "Stochastic optimization of renewable-based microgrid 
operation incorporating battery operating cost," IEEE Transactions on Power Systems, 
vol. 31, pp. 2289-2296, 2016. 

[38] J. C. Beddoes, K. S. Bracmort, R. T. Burns, and W. F. Lazarus, "An analysis of energy 
production costs from anaerobic digestion systems on US livestock production 
facilities," USDA NRCS Technical Note, 2007. 

[39] J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, et al., 
"Cycle-life model for graphite-LiFePO 4 cells," Journal of Power Sources, vol. 196, 
pp. 3942-3948, 2011. 

[40] S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, and K. Nakura, "Capacity 
fading of LiAlyNi 1− x− y Co x O 2 cathode for lithium-ion batteries during accelerated 
calendar and cycle life tests (effect of depth of discharge in charge–discharge cycling 
on the suppression of the micro-crack generation of LiAlyNi 1− x− y Co x O 2 
particle)," Journal of Power Sources, vol. 260, pp. 50-56, 2014. 

[41] T. P. Hanusa, The lightest metals: Science and technology from Lithium to Calcium: 
John Wiley & Sons, 2015. 

[42] V. Jülch, "Comparison of electricity storage options using levelized cost of storage 
(LCOS) method," Applied Energy, vol. 183, pp. 1594-1606, 2016. 

[43] "Lazard’s Levelized Cost of Storage Analysis V1.0," Lazard, 2015. [Online]. Available: 
https://www.lazard.com/media/2391/lazards-levelized-cost-of-storage-analysis-10.pdf. 
[Accessed: 28.08.2017]. 

[44] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," 
Materials today, vol. 18, pp. 252-264, 2015. 

[45] B. Nykvist and M. Nilsson, "Rapidly falling costs of battery packs for electric vehicles," 
Nature Climate Change, vol. 5, pp. 329-332, 2015. 

[46] S. Sun, T. Guan, B. Shen, K. Leng, Y. Gao, X. Cheng, et al., "Changes of degradation 
mechanisms of LiFePO4/Graphite batteries cycled at different ambient Temperatures," 
Electrochimica Acta, vol. 237, pp. 248-258, 2017. 

 


