TR/05/85 March 1985

Properties of Estimators of

Parameters in Logistic Regression Models.

by

Z. Al-Sarraf and D. H. Young

21486051



Summary

Properties of various types of estimators of the regression
coefficients in linear logistic regression models are considered.
The estimators include those based on maximum likelihood, minimum
chi-square and weighted least squares. Theoretical approximations
to the biases of the estimators are developed. The results of a large
scale simulation investigation evaluating the moment properties of the
estimators are presented for the case of a logistic model with a single

explanatory wvariable.
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1- Introduction

In the statistical analysis of binary data when explanatory

variables are present, the logistic regression model plays a central

role. To introduce the model, let Y; ,Y »,... .Y represent g independent
binomial random variables where Y; represents the number of successes
in a set of n; independent trials. For the ith group, let xi; ,....Xi,
denote the wvalues on k explanatory variables which are thought to
influence the individual trial probability of success, denoted by P;,
for the ith group, i=1,.,,,g. For this situation, the linear logistic

regression model is

Log (Pj/Qj)=xiB, 1 =1 ...g (1.1)
where Q; = 1 - P; and
’)El:(l,xll ,...,Xik)’ E':(BO’BI”Bk ) (12)

The regression coefficients in [  are usually all unknown and there

are a number of well-known methods for estimating them (see Berkson,(1955))

which we now review.

(i) Maximum Likelihood

The most commonly used method of estimation is probably maximum
likelihood (ML), since these estimates can now be routinely obtained

using statistical packages such as GLIM (Baker and Belder 1978),

The kernel of the log-likelihood may be written as

- I=] o1 - o1
r(b) = 2 0'{b' b 1080 + o X b)) (1'3)
where p; - yi/nj denotes the observed proportion of successes in the ith
group. In matrix form the first and second order derivatives of the

log-likelihood are given by
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Where
Q. P.
YZ = diag ((nl(p12p—1+q12Q—1 ))) (1.14)
1 1
If we put
OR () .
_ :(Yz)gz , (1.15)

\%
aﬁj ) ~2
p=b,

then B is given by the solution of the k+1 equations given by
~2

Dy =0 (1.16)

An iterative solution can again be found using a Newton-Raphson approach

similar to that outlined for the maximum likelihood estimation procedure.

The calculations are conveniently performed using GLIM as follows. If we
let
_ 2 _ 2
Yii = mpi s Yip = niq (1.17)
(1.18)

! !
Hip = €xp (>~(i BN) Hip = €xp (- X E)

R(B)

then from (1,11), minimization of ~ 1s equivalent to minimization of

R * () = §<yﬂuﬁl+-Xng§) (1.19)

~

B)
Minimisation of R* ~ is seen to be equivalent to maximisation of the
log-likelihood when the {yi i} and {yi»} are treated as observations on

independent exponentially distributed random variables with means },til

respectively. To use GLIM, the data are entered as g pairs of

and 2
the vectors for the tth pair being

vectors of observations,



(nj + Dinj +2) —— say (1.27)
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A modified WLS estimate is theresore given by the value of £ which

Minimizes
g 2
* * ok !
S B)= 2 W (Z. -X.B) (1.28)
~ i=1 1 1 1~
for which the solution is
B o= XWX X wrzr (1.29)
o _ * * _ A -1 -1 -1 -1
where z* =z ,...,z ) and w* = diag ((ni(pi+ni )(qi+ni )/(1+ni )(1+2ni )) .
g
If we let N= > n; and assume that with fixed g
i=1
lim, —on;/N=X;, i =1,....,¢ (1.30)
i

where 0 < A; < 1, then if the logistic regression model is correct, it

is well-known that
1

N2(B-B) d MNOXVOTH (1.31)

where V diag (( AiPiQi)) and we useﬁ to demote any estimator from the

~

PN

set It EI’BZ’B\3’B4 follows that the four estimators all have the same

~

asymptoric properties with
E, () =B, cov, B)= X'V, x)~! (1.32)

In section 2, we develop approximations to the biases of the estimators
correct to order N . In section 3, the results of a fairly large scale
simulation investigation to compare the moment properties of the esti-
mators for a number of sample sizes and parameter configurations when
there is a single explanatory variable are presented. These results
considerably extend the findings made by Berkson (1955) who considered
the particular case g = 3, nj = 10, 1 = 1,2,3 and showed that the simple
WLS method was more efficient than the ML and MCS methods of estimation

under a number of success probability configurations.

2. Approximate Biases of Estimators

In this section we develop approximations to order N for the biases

of the ML, MCS and WLS estimators. Initially it is convenient to consider

a general class of estimation procedures in which the estimates ]§1 ,]§2, Bl



(i) Maximum Likelihood
putting

¢=2 nj {pilog % — log Qi} (2.10)

1 1

we obtain
Ur ==X X0 (pj —Pj) > Vis =2 Xjp Xjg 0jPQ; (2.1D)
i i
2
Wrst = 2 XirXisXi0iPQi Q) = P Zoru = 2 XXXy Xy 1P Qi (1 = 6py + 6F7)  (2.12)
The derivatives higher than first order are all constants and are O(N) so

Argtis O(N '2). and Bys , and Crg are O(N '3). We also have

E(U; ) =0 (2.13)
E(U;Ug) = Z n; PiQiXirXiS =II’S say (2.14)
1
where 1,3 = V5 is the (r,s)th element in the information matrix and
E(UrUsUp) =- 2 Xjr Xjs Xjt 0 P Qj (Qf —Pj) = — Wi (2.15)
1

Since E(U; Ug U; ) is O(N), the last two terms in (2.5) which are neglected
in (2.9) are O(N ?). Hence the bias of the ML estimator correct to

ON") is

using ¥ ¥ 1a¢bdyed _ja
c d (2.16)
(i1)) Minimum Chi-Square
Putting
2
¢ =2 nj (P —P) " /PQ; (2.17)
i
we obtain

(2P, —1)(P; —P;)?

U, :Zi: n;X;y PiQi — 2(Pi _Pi) (2.18)
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VI‘S =2 z XirXishy PiQi - 2(Pi —1) (Pi _Pi) + (2.19)
2
(2Pi _1)(Pi _Pi)
Wit =2, X:nX:o XN - (P, —P; 2.20
st : Ireiscitt 2PiQi (1 1) ( )



Since Vs is independent of f, Wy , Zisww and all higher order
derivatives are zero, we have from (2.5)
A rs
Pr —Br=-2 VU
S

=-Y ABug+3 % > AU (Vg —Ay) (2.34)
S S u

using the same approximation as in (2,22), where

Ars = E (Vyg) =ZZ (ni -1) P,Q; Xir Xis (2.35)
1
Standard calculations using Taylor series approximations gives
oo | PL] _ 5 Q% L
i i i
and
pi B
E nipiqi log (a) — log Q_ nipiqi - (ni - l)Pi - Qi
i
= n.PQ (Q . —-P) + 0 (2.37)
11 1 1 1
Hence
-1
E(Ug) = 2 Xj5 (Qj -P;) +O0(N ) (2.38)
1
and
E - A = -4 P - P 1 .
(Ug (V=2 )} KK K M R Q@ )+ 0D (2.39)
1
Using these results in (2.34) and noting that A= — I+ O(N ?),
2
we obtain for the bias of the WLS estimator
3 _1 rs P rt {Su _
b =2 I"Y x. (Q.-P)-X X X I"IP"Y x. x x. nPQ(Q-P) (2.40)
2 T s 1 17§ T U 7 Is itiuw 1111 i

Thus to order N ' | thebiases of the MCS and WLS estimators are equal. The
bias of the ML estimator will be greater than the biases of the MCS and WLS
estimators if
3y Y S Iy x. x.x: n.P.Q.(Q.-P)>Y IY x. (Q.-P.) (2.41)
s T U H it 11 171 1 S AR S 1

1S 1

3. Moment Properties Of The Estimators

In order to investigate the properties of the ML, MCS, WLS and MWLS
estimators, a large scale simulation investigation was made for the case
of a single explanatory variable with equally spaced values. Without loss

of generality, the linear logistic regression model was taken as

log(P/Q) = Bo + Bi(i-1). i = 1,..g (3.1)



11.

For the MCS estimators, the biases to ON ) are

EGP -pg) = Lal! S Q)+ 112 ¥ Q) +2EBLY - ) 3.7)

R 1 i
E(Bgz) - B =5{121 2 (Qj B + 1% z Xi(Qi—Pi)}+2E(B§1) - By) (3.8)
1 1

the same results holding for the biases of the WLS estimators.

In table 2, the biases of the estimators obtained by simulation are
given together with the approximation by (3.4), (3-5), (3.7) and (3.8).
The results show that the absolute values of the biases for the MWLS
estimators were consistently larger than those of the other three estima-
tors. The bias advantage of the WLS estimator compared with the MWLS
estimator is 1in agreement with the suggestions made by Hitchcock (1962).
In the case of B; it is seen that the ML estimates were systematically
too high while the other three methods gave negative biases in nearly all

cases.
Table 2
Biases x 10> of estimators for configurations shown in table 1 .
a)Po
Configuration ML  Approx(3.4) MCS WLS Approx(3.7) MWL
(1) -9.31 -5.10 -1.52 2.05 2.80 9.18
n=25 (ii) -4.29 -2.35 -1 .86 -1 .37 -0.11 2.41
(ii1) 2.14 0.30 1.66 2.67 -0.15 0.12
(iv) -2.87 -2.50 6.67 9.82 7.48 15.80
n=25 (v) -0.92 -0.64 0.35 0.63 0.71 2.03
(vi) -0.07 0. 14 -0.99 -0.40 -0.57 -2.38
(1) -3.21 -2.55 0.61 1.48 1.40 6.60
n=50 (i1) -0.13 -1.17 0.90 1.02 -0.06 3.11
(iii) 0.16 0.15 -0.14 0.14 -0.08 -0.66
(iv) -0.21 -1.25 4.29 5.12 3.74 9.82
n=50 (Vv) -1.48 -0.32 -0.79 -0.69 0.35 0.16
(vi) -0.04 0.07 -0.57 -0.35 -0.28 -1.05
(1) -1 .48 -1.28 0.35 0.66 0.70 3.59
n=100 (i1) -0.73 -2.35 -0.15 -0.12 -0.11 0.98

(111) -0.54 0.07 -0.70 -0.61 -0.04 -0.86
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Table 3

Variances of estimators for configurations shown in table 1.

a)Bo
Conf iguration ML MCS WLS MWLS Approx(3. 3)
1) 0,2118 0,1848 0,1768 0.1581 0.1889
n=25 (i1) 0.1143 0.1083 0.1070 0.0974 0.1143
(ii1) 0.1272 0.1187 0.1190 0.1073 0.1176
(iv) 0.1127 0.0998 0.0983 0.0858 0,1018
n=25 v) 0.0603 0.0560 0.0552  0.0517 0.0586
(vi) 0.0661 0.0617 0.0620 0.0560 0.0688
(1) 0.1017 0.0957 0.0940 0.0863 0.0944
n=50 (i1) 0.0597 0.0581 0.0579  0.0551 0.0571
(iii)) 0.0627 0.0607 0.0605 0.0573 0.0588
(iv) 0.0538 0.0513 0.0510  0.0467 0.0509
n=50 (v) 0.0282 0.0273 0.0273 0.0262 0.0293
(vi) 0.0383 0.0372 0.0370 0.0351 0.0344
(1) 0.0480 0.0464 0.0459 0.0437 0.0472
n=100 (i1) 0.0301 0.0297 0.0296  0.0289 0.0286
(ii1) 0.0319 0.0316 0.0315 0.0306 0.0294
(iv) 0.0270 0.0264 0.0264 0.0251 0.0255
n=100 (v) 0.0141 0.0139 0.0139 0.0136 0.0146
(vi) 0.0174 0.0172 0.0172 0.0167 0.0172

b)B; (variances x 10%)

Configuration ML MCS WLS MWLS Approx(3.3)
(1) 2.5560 2.2950 2.2240 2.0080 2.5013

n=25 (i1) 1 .8980 1.7930 1.7740 1.6120 1.9580
(iii) 3.7530 3.1790 3.2030 2.7190 3.1078
(iv) 0.3037 0.2721 0.2668 0.2408 0.2903

n=25 V) 0.2476 0.2278 0.2234 0,2065 0.2360

(v1) 0.3098 0.2758 0.2761 0.2390 0.3386
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Table 4

Mean square errors and efficiencies of estimators relative to the ML

estimators for configurations shown in table 1.
a)Po

Configuration Mean Square Efficiencies
ML MCS WLS MWLS MCS WLS MWLS
(1) 0.2205 0.1851 0.1772 0.1665 119.1 124.4 1324
n=25 (i) 0.1161 0.1087 0.1072 0.0980 106.8 108.3 118.5
(ii1)  0.1277 0.1190 0.1197 0.1073 107.3 106.7 119.0
(iv) 0.1135 0.1043 0.1079 0.1108 108.8 105.2 102.4
n=25 ) 0.0604 0.0560 0.0552 0.0521 107.9 109.5 1159
(vi) 0.0661 0.0618 0.0620 0.0566 107.0 106.6 116.8
(1) 0. 1027 0.0957 0.0942  0.0907 107.3 109.0 113.2
n=50 (i1) 0.0597 0.0582 0.0580 0.0560 102.6 102.9 106.6
(111)  0.0627 0.0607 0.0605 0.0574 103.3 103.6 109.2

(iv)  0.0538 0.0531 0.0536 0.0564 101 .3 100.4 954
n=50 v) 0.0284 0.0273 0.0273 0.0262 104.0 104.0 108.4
(vi) 0.0383 0.0372 0.0371 0.0352 103.0 103.2 108.8

(1) 0.0482 0.0464 0.0460 0.0450 103.9 104.8 107.1

n=100 (ii) 0-0302 0.0297 0.0296 0.0290 101 .7 102.0 104.1
(iii)  0.0319 0.0316 0.0315 0.0307 101 .0 101.3 103.9

(iv) 0.0270 0.0269 0.0270 0.0278 100.4 100.0 97.1
n=10C (v) 0.0141 0.0139 0.0139 0.0137 101 .4 101 .4 102.9
(vi) 0.0174 0.0172 0.0172 0.0167 101 .2 101.2 104.2

(b)B1 (mean square errors X 10%)

(1) 2.6311 23040 2.2240 2.0293 114.2 1183 129.7
n=25 (ii) 1.9311 1.7970 1.7752 1.6353 107.5 108.8 118.1
(iii) 3.7684 3.2160 3.3745 2.9735 117.2 111.7 126.7
(iv) 0.3051 0.2767 0.2783 0.2685 110.3 109.6 113.6
n=25 (v) 0.2491 0.2238 0.2255 0.2192 108.9 110,5 113.6
(vi) 0.3099 0.2897 0.3099 0.2888 107.0 100.0 107.3
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