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   Abstract 

In recent years, a lot of interest has been generated in structural health inspection automation.  Although 

a number of computer-vision based crack detection techniques have been designed but further research 

is needed. Firstly, they are crack focused so there is a requirement to research for Pits. Secondly, these 

techniques have not been used in practical visual inspection as they are often developed under near-ideal 

conditions, not in an on-site environment, which contain more complexities such as variable shapes, glare, 

and loss of focus due to curved surfaces. Thirdly, there is a need to detect pits and pit-to-cracks of 

microscopic level for early assessments. 

This research presents an automated inspection technique that is able to perform detection and 

measurements of on-surface micro-flaws caused by corrosion fatigue, including classification of pits and 

cracks by using artificial intelligence (AI) technology. It is an industry-driven application that can be used 

for both rail axles and pipelines.  

It has been used for two purposes. First purpose, is to serve as part of a tool to enable early detection of 

cracks and assess the remaining service life of a corroded axle. The measurement of the damage depends 

on the detection of small microscopic cracks (around 0.1-0.3mm long) within the corroded area. This 

serves as an input value into the remaining-life software in the RAAI project. The results have been 

validated by the Polimi data showing that the implemented method is able to provide a prompt outcome 

including highlighting location, measuring and counting specific features, using on-site data. The second 

purpose, is to create a tool that can provide assistance to a corrosion assessment operator. The outcome 

includes highlighting, measuring and counting specific features plus it is able to classify between pits and 

cracks, using on-site data. It also implements industrial standard, considering the closeness of the pits, 

their size and density. Thus, the tool reduces the skill level requirement of an operator, as the algorithm 

sets a standard for the desired defects to be counted in quantitative measures. The applicability of the 

proposed method has been evaluated on images taken from the field. The evaluation results confirm the 

high adoptability of the proposed method for defect inspection in an on-site environment. 

Firstly, new databases have been designed and created for the project that includes data handling, data 

gathering and data labelling. Database of such nature doesn’t exist per existing research for the specific 

research problem.  The data has been gathered by multiple sources that includes three site visits as well 

as data by performing bending testing at TWI, which expands the depth of the database. Pixel-wise 

labelled database of 165,888,000 data inputs, consisting of 115 microscopic pit images and 20 crack 

images has been created for this research task. 
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Secondly, advance unsupervised image segmentation based detection, localisation, measurement and 

assessment is built that produces better results than the state-of-the-art algorithm, for this specific 

industry-driven problem. Watershed and Morphological-based (shape) algorithms are implemented for 

analysing and assessment. This includes tasks such as finding shapes, detecting edges, removing noise, 

object detection, counting objects, segmentation, filtering and region analysis. It is able to show 

quantitative results such as number of flaws detected, along with the flaw’s length, area, eccentricity, and 

their location shown on the image. They were then tested at different sites such as data from Ireland, Italy 

and UK; and validated with real data such as number of flaws, their average length and the longest flaw. 

Detailed indicative measures were applied to test and validate the system’s performance such as 95.2% 

accuracy, 55% precision, f1 score 56%, probabilistic rand Index (PRI) 91.7%, CV is 42.8%, VOI as low as 

41.08%, and Global consistency error (GCE) as low as 2.6%. 

Thirdly, novel supervised machine learning methods are proposed. Especially, deep learning model is 

implemented as an image-wise classification model, pre-trained with AlexNet. The resultant outcome 

displays the class of the image to which it belongs. If the image has a pit, then the Pit model is able to pick 

it with 91.4% accuracy, and if the image has a crack, it is picked by the Crack model with a high accuracy 

of 98%. Another deep learning model implemented is a pixel-wise segmentation, based on a combination 

of two state-of the art models, UNet with VGG16. It shows performance with global accuracy of 93%. With 

a validation accuracy of 95% on validation training dataset and testing mean accuracy of 91%, mean IoU 

is 63.71% with a weighted IoU being 90.4%. 

Lastly and most importantly, a Defect Detection System (DDS) has been designed, implemented, tested 

and verified in a real-industrial application. It is a practical solution with a ready-to-use and resource-

efficient design. The setup requires a laptop, portable microscope and an automated scanner. The laptop 

is attached to the microscope which capture flaws with up to 0.08mm size length sensitivity and saves 

data in images/video format. The microscope is mounted on the scanner, that auto-rotates the camera 

circumferential as well as in axial axes, along the structure component being inspected. It is based on the 

combination of both supervised and unsupervised learning methods by merging their strengths. Detects, 

measures and localises by unsupervised image segmentation, so it doesn’t need to perform lengthy pixel-

wise labelling; and classifies the flaws by using deep learning so it doesn’t need to hard-code complex 

computational values. It is simple yet efficient.  
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1    Chapter 1 

  Introduction 
 

 

This chapter presents the project motivation, aims & objectives and background 

of the project and also introduces some of the main concepts related to the project 

in a downward hierarchy at the end of this chapter. This project is about analysing 

the structural integrity of on-surface flaws like pits and cracks as a non-destructive 

testing method, achieved by developing and applying traditional image-processing 

techniques and then later on using more advanced methods like machine learning. 
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1.1 PROJECT MOTIVATION AS AN INDUSTRY NEED 

In order to solve a problem, the first step towards it is to understand what the problem is. The 

research area lies within Structural Integrity (SI), which is a huge subject area in itself. There are 

many areas within it including inspection, monitoring and assessment; it also includes non-

destructive testing (NDT) which include methods like Magnetic Particle Inspection (MPI), Eddy 

Current; then there are different kinds of flaws; and many diverse applications.  

 

Figure 1-1-Target research area showing corrosion fatigue stages and inspection methods 

The target area for this research is specifically to look into flaws such as cracks and pits, more 

specifically to look into the initial stages of the flaws. The first two stages as shown in figure 1.1, 

are the focus of the research. Some work has been done for crack stage but very limited work is 

available for pits and pit-to-crack stages. If the flaw can be detected at an early stage then it will 

be more useful in predicting the overall life of the structure and hence damages might be 

prevented. 

The reliability of structures is an important factor in the construction phase as well as in the 

maintenance phase. For structural health inspection, a need has been felt for systems to become 

automated [1]. By developing an effective system to assist in structural reliability assessment, it 

is potentially possible to reduce the maintenance costs and still extend the useful life of a 

structure. Moreover, the condition of the structure health can be judged, in a more objective way 
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by acquiring and processing relevant data. This will be achieved by developing image-processing 

and machine learning tools to better enable the visual corrosion assessments. 

The European rail network is targeting a considerable expansion of passenger and freight traffic 

by 2020. In order to achieve this, increased reliability and availability of rolling stock is necessary 

whilst maintaining the same or a better level of safety. The axle life is a crucial part of both the 

safety and economic performance of the vehicles and the axle deteriorates through its lifetime by 

means of fatigue and corrosion mechanisms. Periodic inspection is used to ensure that these 

mechanisms have not compromised the axle safety however inspection that takes a vehicle out 

of service, impacts on the economic aspects of train operation. Hence a portable device needs to 

be considered that can be taken for on-site inspection. 

For corrosion assessment, generally there are a number of measurements and classification to 

be done by following an industry standard which is API-579-1 FFS pitting assessment. This 

standard will be applied if pipelines are used but different analyses are required for high cycle 

fatigue such as rail axles. These assessments are restricted by the need to carry out manual 

assessments of the pits.  

Table 1-1  Current Inspection methods with their detection limitations 

Systems Detection limit Need 

Industry standard (MPI,  

Eddy Current etc.) 

1-2 mm length 0.5mm or less 

Assessment Manual visual assessment and 

pit counting 

Automation 

The existing system in the industry for identifying cracks during the initiation stage is less 

established than is generally believed. The current inspection methods for both pits and cracks 

are shown in table 1.1 along with minimum requirements for the proposed system. Currently for 

cracks, existing methods are MPI and Eddy Current which are able to pick flaws up to 1-2mm of 

length. While for pits, it is done by manually counting and measuring them as shown in figure 1.2. 

Hence, a system is needed that can detect flaws of size around 0.5mm or smaller and also needs 

to shift more towards automation from manual inspection. 
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Figure 1-2 Example of manual visual assessment and pit counting  

A new method must be devised that can effectively assist visual tests and improve detection rates. 

TWI has always been at the forefront of the research, development and application of many 

advanced and conventional NDT technologies. The reasons behind pursuing this project are as 

follows: 

• Time: It will give results in less time as compared to the currently time-consuming method 

to count the number of pits and cracks individually by the skilled operator.  

• Classification: It will be able to classify cracks and pits 

• Objectivity: The assessment of microscopic pits is a subjective matter and the suggested 

method could present an objective approach for inspection and assessment. 

• Consistent: Results will be in quantitative terns and therefore will be consistent as human 

error is possible when manual assessment is performed. 

• Cost: It will be cost effective in relation to the expensive equipment used in other methods. 

• On-site inspection: Portability of the equipment as it can be taken anywhere as 

compared to other methods which involve large instrument equipment. 

• Skill: A relatively less skilled operator could inspect in comparison to some methods that 

require an absolute professional and skilled operator for the inspection task  

• Assessible equipment: The equipment is easily accessible for operators to conduct the 

inspection, which is a microscopic 2D camera with LED lights. 

• Scale: Detection of early stages of corrosion fatigue will be possible. 
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Data that will be collected could be used for two purposes. First purpose is to help create a tool 

that can provide assistance to a corrosion assessment operator. This means that as an output, 

Defect Detection System (DDS) should be able to display the processed image by highlighting 

the flaws visually plus save the flaw information, like flaw count, dimensions, area covered, in a 

file.  This could be done by using image processing techniques. It will be ideal if it is able to 

distinguish between a crack and a pit flaw. This could be done by using machine learning or deep 

learning to classify between the flaws. Hence the system will be able to show where and what 

kind of flaw is present, on the investigated area.  

The second purpose of the system is to estimate the remaining life of the axle given the presence 

of corrosion fatigue. It does this by detecting microscopically small cracks as shown in figure 1.3, 

which appear originating from corrosion pits in the corrosion fatigue process. Then the life is 

estimated from the average length of the cracks.  This means that as an output, the defect 

detection system (DDS) result will have dimensions of all the cracks and its average. This will 

serve as an input value into the remaining-life software. 

 

Figure 1-3 Example of a crack length within the size of the research need captured 

For the DDS requirements to be filled, the first purpose will be followed as it will serve for both 

purposes. The second purpose just needs crack length information which is also needed for the 

first purpose. 
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1.2 PROJECT AIM AND OBJECTIVES 

The aim of the project is to develop image acquisition and analysis techniques specifically for 

corrosion assessment by using an NDT method, and to apply them in useful situations for example 

for rail axle or pipeline inspection. The computer vision and image processing techniques that will 

be applied in this work are time-efficient and relevant in industrial applications. The rail axles suffer 

from high cycle fatigue during operation and also corrosion due to the environment, which 

modifies the fatigue properties. In order to identify when the cracking process is beginning; a 

microscopic image of the axle surface will be used. 

The project will require taking images from real axles, which contain a mixture of corrosion and 

cracks and to develop an image analysis technique to automate the identification of pits and 

cracks within the corrosion. It is expected that the outcomes of this research will have a significant 

impact on automatic detection of such flaws using images. 

Objective 1 

Analysis of Images of Corrosion to facilitate assessment and classification for an operator. 

• Acquire images 

• Analyse images with image processing methods 

• Create a map/profile of the image 

Objective 2 

Development of algorithm for detection of micro-cracks in pitted corroded areas (example rail-

axle) in order to locate and measure the features. The information generated from the program 

could be analysed by other experts such as corrosion or fracture experts.  

Objective 3 

Implementation of Pattern Recognition such that input images with specific features such as 

pitting or cracking could be detected automatically with the software and classed according to 

their pattern.  

• Use of machine learning 

• May also apply deep learning methods  

 

Deep learning methods will be explored as they are known to be effective for solving problems 
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from unstructured data. They are particularly useful as they have an ability to automatically learn 

features from a large abstract data set.  

1.3 BASIC FRAMEWORK 

In simple terms, the main concept to solve this industrial problem is to collect data and run image 

processing on it to extract useful information required as shown in figure 1.4. 

 
Figure 1-4 Initial basic framework of the project 
 

1.4 RESEARCH PHASES 

The research was divided into three major phases which are system setup, data and image 

processing illustrated in figure 1.5.  

 

Figure 1-5 Initial research design based on key project phases 

1.5 PROJECT KEY TERMS 

Structural health inspection plays an important role during the different phases of structures 

especially during the operational phase and construction phase for large scale constructions. 
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Hence a need has been felt for such systems to become automated [1]. It has been seen that a 

huge part of construction depends on proper management, and management requires specific 

skills and expertise in their particular area. This increases the cost of construction, maintenance 

and time consumed for structural health monitoring and inspection. Automation also becomes 

crucial for remote regions of structures. If a system could collect data and automatically analyse 

the data, the cost of maintenance could be greatly reduced as this will help in reducing the skilled 

labour requirement and the time consumption. This is the reason why in the recent times, 

automation in structural health inspection has gathered a lot of interest.  Keywords related to the 

project are introduced in this section, while their detailed explanation will be given in the next 

chapter literature review.  

1.5.1 Structural integrity defects 

There are many different kinds of defects. This project will deal with the effects of corrosion 

damage like pits and cracks. Corrosion is typically explained in terms of chemical or 

electrochemical oxidizing process whereby a metal gradually wears away or is altered from its 

usually desired chemical composition. The chief concern in many applications is the capability of 

these closely related forms of corrosion to lead to accelerated failure of structural components by 

damage [2], or by acting as an initiation site for cracking, causing severe loss of functionality or 

even catastrophic failure [3]. Important studies have been carried out and some investigations 

made show that all crack nucleation initiate at corrosion pits [4] [5]. At the beginning of the 

corrosion process, pitting appears and further in the process cracking is generated. This suggests 

that understanding pits along with cracks is highly important for assessment as corrosion costs 

billions of pounds to the government each year [6].  

Cracks may develop because of the cyclic stress that the structures are subject to and then these 

cracks will grow and may possibly lead to an in-service failure [7]. The reasons for the initiation of 

a crack are several and diverse. Initiation often occurs at discontinuities especially with the 

existence of corrosive agents like water, oxygen and other chemicals. Working at high-cyclic rates 

will cause components to suffer from cyclic fatigue, which increases the size of cracks and leads 

to failure. Mobile structures, including all sorts of vehicles will always likely to be highly stressed 

and will be at risk of fatigue failure. Cracking is an indication that an area is experiencing more 

stress than it can handle. Finding and assessing those stress areas will determine whether the 

parts need to be repaired or replaced. 
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1.5.2 Non-destructive testing 

There are two different ways of testing the material structures; one is destructive and the other 

one is non-destructive. Nondestructive testing (NDT) is a wide group of analysis techniques used 

in science and industry to evaluate the properties of a material, component or system without 

causing damage while destructive testing (DT) includes those methods that cause the material 

some loss or damage and are usually done on a sample of the material to find out its properties 

such as tensile strength, hardness and fracture toughness. Testing is, mandatory for safety critical 

components in applications such as aerospace, oil and gas, pressure vessels and nuclear power, 

for the verification of weld quality or the monitoring of corrosion damage in service. The common 

general NDT methods being used in the industry include visual inspection, liquid penetrant, 

ultrasonic, eddy current, radiographic and magnetic-particle inspection. 

The current NDT method for the assessment of corrosion on an accessible surface is by 

performing visual inspection which means manual counting of the pits. It is at best supported by 

a pit depth gauge or similar device. Although corrosion can be measured in the laboratory by 

optical methods to a high degree of accuracy but these measurements tend to be slow and require 

precision scanning of small areas [8]. For corrosion assessment, there are a number of 

measurements and classification to be done by following an industry standard API-579-1 FFS 

pitting assessment [9]. This standard is applied to the pipeline assessment but these are not 

related to high cycle fatigue such as the axles. Therefore, there is a need for an instrument that 

can be used directly for a quantitative on-site inspection for such a scenario. 

1.5.3 API 579-1-2007 Standard  

This is an American Petroleum Institute’s Recommended Practice 579, Fitness-For-Service 

(FFS). Part 6- Assessment of Pitting corrosion will be applied (for pipelines), as it relates to the 

specifics of pit assessments. The FFS assessment deals with the structural integrity evaluations. 

It also provides methodologies for conducting these assessments and guidelines to make 

decisions on whether the component should remain in run, go for repair or needs to be replaced. 

The assessment procedures in part 6 can be used particularly for evaluating pitting corrosion, 

which is the area of our research interest. When a structural component faces cyclic stress then 

such pits usually become cracks, so the pits need to be monitored from early on. There are three 

levels of assessment and for this project the main focus will be on level 1 and level 2, as these 

levels are difficult to automate at present. 
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There is a software tool developed by TWI called the Integrity-wise which uses the calculations 

and formulas on the basis of the API-579. The API standard for its calculations, needs the depth 

of the flaw as well. The pits that have been counted and measured manually are entered into the 

system to assess the pitting corrosion but this is limited to higher graded levels only and the 

measurements of all the pits must be entered manually.  

1.5.4 Image processing (IP) 

The rapid development of digital computers has led to a vast expansion of applications for 

computer vision systems. Processes that previously had to be done manually can now be 

automated using computers and cameras. Computer vision and image analysis have very high 

demands for processing power, something that still is a problem for real time applications. While 

the computers and vision algorithms are getting very advanced, to a level where they supersede 

human capacity for certain tasks, there are still tasks that have been deemed too difficult [10]. To 

be able to replicate the functionality of an human eye has been a challenge because the human 

visual cortex is a vastly advanced and highly trainable computer that has an amazing ability to 

analyse images, and the tasks it performs are in many cases difficult, if not impossible, to replicate 

digitally. It however is limited by a shorter endurance. This is true for most kinds of real-world 

applications; there is seldom a one best way to solve a computer vision problem, and it is therefore 

important to be able to quickly draft an algorithm and test its effectiveness. 

There are two principal applications of image processing because of which there is a huge 

excitement for the field. One is for human perception and the other for machine perception. For 

example, improving pictorial information is for the humans and processing scene data for 

automatic machines [11].  

Nowadays, image processing technology shows more and more power in many fields such as 

medical, industrial and commercial areas. In recent years, image processing technology is widely 

used in medical science to help understand and gather information from biomedical images of 

nature of human biological systems. Transformation from 2D to 3D images, automated feature 

finding and image comparison is the magnificent outcomes of the image processing technology. 

Moreover, image processing is also applied in textile industry to detect yarn parameters, the 

roughness of textile surface and the defect of textile, which is proved to be very effective.  

It is a vast field dealing with manipulation and interpretation of the contents of digital images, and 

involves varied algorithms for many different purposes. Many of the different steps could be 
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restoring the effects of corruptions during image acquisition; enhancing an image aid visualization 

and display; segmentation to identify regions and objects in an image on the basis of homogeneity 

criteria, such as colour, intensity or texture; and deriving properties and features of the regions 

that can be used to interpret the image. 

1.5.5 Machine learning (ML) 

Machine learning is a data-driven technique which is able to perform classification based on 

pattern recognition. It comprises of a series of methods, that enable computers to adopt certain 

desired behaviours based on the training of given example datasets instead of programming the 

computer with hard rules. This approach is beneficial especially for complex problems, because 

clear rules or equations are rarely available or known in those such cases. 

Many of the techniques of image processing can serve as a step in the overall classification and 

analysis of the objects in an image, though pattern recognition techniques have been developed 

independently of image processing. A set of properties or features extracted using the appropriate 

Image Processing algorithms are the input data for the Pattern Recognition algorithms. But the 

Image Pre-processing stages will often be minimal as most enhancement and segmentation 

operations will change the values of the original image data and so affect the accuracy of the 

classification system. While these techniques have been used successfully over the years to a 

variety of applications, very little work has been described using defects especially pit images, 

and these data may offer new challenges to Pattern Recognition and Classification. 

Neural networks process information in a similar way the human brain does, that is NN tries to 

replicate the functionality of a human brain [12]. The network is composed of a large number of 

highly interconnected processing elements that are called neurons [13], working in parallel to 

solve a specific problem. The neural networks resemble the brain mainly in two respects; 

• Knowledge is acquired by the network through a learning process [14] 

• Inter-neuron connection strengths known as synaptic weights are used to store the 

knowledge [15]. 

They are typically used in problems that may be couched in terms of classification, or forecasting. 

Some examples include image and speech recognition, textual character recognition, and 

domains of human expertise such as medical diagnosis, geological survey for oil and financial 

market indicator prediction. This type of problem also falls in the domain of classical artificial 

intelligence (AI) so that engineers and computer scientists see neural nets as offering a style of 
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parallel distributed computing, thereby providing an alternative to the conventional algorithmic 

techniques that have dominated in machine intelligence [15]. 

Although many of the features extracted from the images can be used as input to Pattern 

Recognition systems, intelligent techniques such as Artificial Neural Networks are now being used 

for complex datasets where traditional techniques have been unable to provide satisfactory or 

reliable classifications [13]. Neural networks are often used for statistical analysis and data 

modelling, in which their role is perceived as an alternative to standard nonlinear regression or 

cluster analysis technique [16]  

1.5.6 Deep learning (DL) 

Deep learning is a branch of machine learning that attempts to model high level abstractions in 

data with multiple processing layers composed of multiple linear and non-linear transformations. 

The focus of deep architecture learning is to automatically discover such abstractions, from the 

lowest level features to the highest level concepts. The algorithms may be supervised or 

unsupervised and applications may include pattern analysis (unsupervised) and classification 

(supervised). Deep learning methods aim at learning feature hierarchies with features from higher 

levels of the hierarchy formed by the composition of lower level features. The ability to 

automatically learn powerful features will become increasingly important as the amount of data 

and range of applications to machine learning methods continues to grow [17].  There are different 

kinds of DL architectures such as deep neural networks, convolutional deep neural networks, 

deep belief networks and recurrent neural networks discussed in the next chapter in detail. 

1.6 RESEARCH CHALLENGES 

There are several difficult challenges to be addressed in the project, including: 

• The corrosion assessment technique will need to follow the API 579 standard [2] including 

many complex calculations for the structural integrity due to pitting corrosion on the 

pipelines for different levels and grades 

• In order to use image analysis for rail axle inspection, the main issue of background “noise” 

must be solved. This can be achieved through image processing methods (e.g. edge 

detection, image enhancement, etc.) and image pre-conditioning/filtering. 
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• In order to identify cracks within the corrosion on the axle surface, the area and its 

properties need to be detected and identified. It can be solved using advanced image 

analysis and pattern recognition methods (e.g. segmentation, deep learning, etc.). 

• The information gathered in the project will be used to develop and propose design 

guidance for automatically rail axle visual inspection. 

• Image acquisition especially to get clear images is difficult. Some of the factors which 

affect the images to be of good quality could be the lighting, glare, brightness, blurring, 

surface material, surface roughness, scratches and grinding marks. 

• An appropriate size of a flaw needs to be decided on the basis of which the system will 

detect and count. 

• To make ground truth images is a challenge in itself as it is a subjective area on the matter 

of which different experts opinions exist. 

1.7 THESIS CONTRIBUTIONS 

The major contributions, as shown in figure 1.6, that have been made to the research area are as 

follows: 

        

Figure 1-6 Major contributions to the research area 

 

1. Data (Chapter 3 and 4) – Data creation, collection (plus improvement) and labelling for 

pixel-wise pit data set of 141 million training data points (attained from 115 images) and 
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100 image-wise classification has been acquired. Practical requirements were collected 

and analysed, a protocol for data acquisition was designed and implemented. The 

databases have been built and ground truth labels have been made. No existing data set 

of such nature is present as per my knowledge. 

2. Unsupervised Learning (Chapter 5) – Design and implementation of unsupervised 

learning method that produces better results than the state-of-the-art algorithm, for this 

specific industry-driven problem. Based on the database collected, advanced image 

segmentation methods have been investigated without using ground truth in the methods. 

Comparison has been done and performance was fully evaluated.  

3. Supervised Learning (Chapter 6 and 7) – Deep learning methods implemented is a 

combination of two high-end models based on UNet and VGG16 which produces results 

that are better than its individual counterparts. Machine learning techniques have been 

investigated firstly, supervised learning has improved the performance because the labels 

have been applied in the training process. Further, deep learning methods have been 

explored in this particular application and the performance has been improved 

significantly. 

4. DDS Application (Chapter 8) – The implementation of advanced AI based image 

processing techniques and novel machine learning techniques, as an industrial on-site 

application, in the research area, is a contribution on its own. As per my knowledge, such 

a system has not been built for detection and measurement of corrosion fatigue using NDT 

methods of microscopic visual inspection on rail axles.  
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5. Syeda J. Image processing and machine learning for detection of pits and cracks for rail 

axles using NDT. 57th Annual British Conference on Non-Destructive Testing (BINDT) 
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Research engagements:  

Presented the research work along with the improved project equipment used for data collection, 

to the following esteem dignitaries: 

1. European Committee for welding of Rail Vehicles (ECWRV) tour  

2. Sir Mark, Government Chief Scientific Adviser in the United Kingdom, (https://www.twi-

global.com/news-events/news/2018-01-technology-in-action-as-ukri-chief-executive-

professor-sir-mark-walport-visits-twi/) 

3. Hayaatun Sillem, CEO of the Royal Academy of Engineering (RAE). 

4. Regional Growth Fund (RGF) Tour visitors 

1.9 THESIS STRUCTURE  

This will give an overview of the following chapters. The structure of this report is as follows: 

Chapter 2  This chapter serves as a literature-based background to understand the complete 

project problem from the NDT perspective, such as understanding the structural 

flaws that need to be inspected, their morphology, different stages of corrosion, 

existing non-destructive techniques being used in the industry such as MPI, Eddy 

Current and ultrasound along with their limitations to this specific industry-problem. 

It reviews existing literature by discussing all methods that are relevant for the later 

chapters such as image segmentation, machine learning and deep learning 

methods for baseline research. 

Chapter 3  This chapter discusses different methods and materials to setup a data acquisition 
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system. It starts by discussing reasons of selecting the chosen NDT technique 

verifying through experimental investigations such as MPI. Later on, discusses the 

selected materials and equipment, and the pre-requisites for the data collection 

such as the sample selection, camera selection, preparing the surface and then 

system setup. The design framework of the project is explained in depth.  

Chapter 4  Image collection is the first and foremost step of the defect detection system. The 

correct sample collection and selection has been discussed in this chapter in detail. 

It also includes creating a ground truth database which is essential in order to 

analyse the performance of the algorithms. This is the first main contribution as 

there are no existing pixel-wise labelled database for a microscopic pit data from 

rail axles. 

Chapter 5  This chapter discusses three main unsupervised image segmentation algorithms 

implemented for this research, such as watershed, Morphological and Gaussian 

based FCM clustering. For each of them, it shows individual steps along with visual 

outcomes and also presents the effects of variation of flaw-size parameter. Later 

on in the chapter, flaw detection results are shown along with measurements and 

then evaluation of these methods is implemented on the basis of multiple metrics 

to quantify their performances. In the end, a comparison to one of the state-of the 

art segmentation methods is made vs the findings of this research. 

Chapter 6  This chapter provides an overview of the design steps that were necessary to set 

up supervised classification and begin training. This includes discussion of 

classifier algorithms, datasets used, model implementation, spatial and textural 

feature extractions such as local binary patterns, gradients and other parameters 

that were applied for the detection system in terms of machine learning. It then 

discusses experimental results based on the metrics for comparing and analysing 

different classifier’s performance.  

Chapter 7 This chapter provides an overview of the design steps that were necessary to set 

up the network and begin training for deep learning methods. It discusses three 

main supervised deep learning models implemented for this research such as 

Image-wise classification model, Pixel-wise UNet model and a novel model which 

is a combination of UNet_VGG16. For each of them it discusses their detailed 

architecture, implementation, hyper parameters such as learning rate, batch size, 
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then displays visual results and conclusions.   

Chapter 8 This chapter presents the Defect Detection system (DDS) along with its industrial 

impact (RAAI). It shows the workflow and application of the system including 

verified results from on-site data. 

Chapter 9 This chapter summarises and concludes on some of the major points discussed in 

the previous chapters.  This list includes data collection, creation and labelling and 

then all the experimental results produced by unsupervised image segmentation, 

supervised learning with extracted features such as local binary pattern, and deep 

learning performing pixel-wise segmentation as well as image-wise classification. 

In the end, it discusses possible improvements to enhance performance for future 

research.  
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2    Chapter 2 

Project background through literature review  
 

 

This chapter serves as a literature-based background to understand the 

complete project problem from the NDT perspective, such as understanding 

the structural flaws that need to be inspected, their morphology, different 

stages of corrosion, existing non-destructive techniques being used in the 

industry such as MPI, Eddy Current and ultrasound along with their limitations 

to this specific industry-problem. It also reviews existing literature by 

discussing all methods that are relevant for the later chapters such as image 

segmentation, machine learning and deep learning methods for baseline 

research.  



Chapter 2-Project background through literature review 

Juvaria Syeda: Doctoral Thesis    19 
 

2.1 INTRODUCTION TO THE PROJECT BACKGROUND 

In this chapter, project background will be laid through literature research. In order to solve a 

problem, the first step is to understand what the problem is. Then look into existing methods 

and if they can’t give satisfactory required results then new methodologies are proposed. In 

order to solve the problem in hand, different disciplinary aspects had to be considered. This 

includes: 

• Understanding the flaw (section 2.2 - structural integrity)  

• Explore general inspection methods in the industry (section 2.3 - non-destructive 

testing) 

• Existing inspection method used for rail axles and pipelines application and its 

limitations for this specific problem 

• Research state-of-the-art detection systems dealing with somewhat similar problem 

(section 2.4 – image anomaly detection systems) 

• Investigate traditional image processing methodologies (section 2.5) 

• Research different machine learning models (section 2.6) 

• Understand the capability of neural networks and its working (section 2.7) 

• Proposed inspection methodology (NDT + image processing + machine learning) 

based on the above literature review and investigate how to implement in rail axles 

and pipelines application for corrosion fatigue (section 2.8) 

• After performing in-depth research in this chapter, project’s conceptual framework and 

research design will be discussed in the next chapter (Chapter 3)  

Many structures like building, pipelines, axles, containers may have problems due to the 

environment and the material they are made of. Due to this, failures like pits and cracks are 

expected which will affect the integrity of the structure. In order to be sure they are working 

fine, they need to be monitored and also assessed. Maintenance costs goes into this 

procedure to be able to prevent any failure or accidents. There are many methods by which 

they can be checked but they might be damaging to the material hence we use the non-

destructive testing (NDT) methods in this project. There are many NDT methods, which can 

be selected on the basis of different things like surface detection, size of defect etc. But these 

methods either require the component to be placed in a container or they need to be taken 

apart from the rest of the model or require a highly skilled labour. For this project, we are 

interested in on-surface flaws and to be able to detect an early formation of pits and cracks 

with a flaw size less than a millimetre. Currently the situation here in United Kingdom is that 

the axles are withdrawn because of corrosion, sometimes they may have no cracks or low 

percentage of cracks. But still, once they detect a crack or pits they are put aside out-of-
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service. They are not utilised properly and are being wasted. In order to secure them back, a 

proper assessment has to be done in order to confirm their working condition.  

Currently when the visual method is used they have to count each and every pit and crack 

manually, which is a very long and tedious job so if they find defects they don’t do the further 

assessment and just take it out of service. If this process could be automated it will hugely 

improve on the speed and consistent accuracy of the inspection. If it is done with a simple 

microscopic camera then the issue of portability will also be solved also such equipment does 

not require highly skilled labour. 

In this project, the on-surface defects will be monitored and assessed by using a simple 2D 

microscopic camera. It will count the number of defects and also tell the size of the defect in 

terms of length and area. There are many challenges in getting a good quality clear image 

because of the image acquisition restrictions like correct lighting, camera angle. The images 

may be shiny, blurry and have surface roughness. Image processing techniques will be used 

to try and solve these issues. Moreover, images may have other objects in the frame, which 

need to be ignored. Another challenging task is to be able to make the computer understand 

and differentiate between different defects like cracks and pits. Tasks like these could be 

achieved by using intelligent systems like neural networks, which are based on feature 

extraction algorithms. In order to analyse the images of the defects, the first step is to 

understand the defects properly especially the geometry and shape of the defects in a 2D 

image and maybe 3D for the later stage. For this project, pipelines for pits with industry 

standard and rail axles for pits and cracks are taken as the typical sample for experiments.  

The images used are: standard images from the industry of different grading; real images 

which include normal corrosive pitting method and also pin-needle method. The image 

processing techniques and neural networks methodology have several applications especially 

in the field of structural integrity like bridge, roads and on other materials as well. 

Following sections dissect the problem through literature research to understand key factors 

involved to lay the foundation of a defect detection system (DDS). It starts with an explanation 

of cracks and pits, then explores different existing NDT methods, explain different image 

processing techniques and lastly investigates into the advance field of neural networks.  

2.2 UNDERSTANDING THE FLAW  

In order to analyse the defects by image processing techniques, the first step is to understand 

the flaw’s working and morphology to be able to identify them correctly. The material of the 

structure is also vital as different materials respond differently due to their structural properties.  
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The choice of material of construction is a compromise between investment (expensive 

resistant material) and maintenance costs. Economic consequences are to repair or replace; 

over-design to avoid it; preventive (time-based) or predictive (condition-based) maintenance 

like painting; shutdown of equipment; contamination of product; loss of efficiency; loss of 

valuable products; damage to equipment adjacent to corrosion failure; and worst of all, loss of 

life. Also the life cycle costs are to be managed like maintenance, NDT, visual, condition 

monitoring, unplanned or planned shutdowns, repair costs, and warehousing of spare parts. 

2.2.1 Material used: Steel 

The major material used in structures in the industry is steel. There are two major types of 

steel, which are carbon and stainless. The stainless steel has a passive layer consisting of 

some percentage of chromium. So when it gets exposed to the corrosive environment, then 

pitting starts and that is why generally it has localised form of pitting. Carbon-steel has a lower 

corrosion resistance [18] as it doesn’t have a passive layer so it is directly exposed to the 

corrosive environment. The sample material that we’ll be dealing with in the project is carbon 

steel, which is used both in pipelines and rail axles. 

2.2.2 Kinds of defects 

An important part of maintenance has to do with the visual inspection of the structures. These 

structures can be affected by different kinds of defects typical of steel surfaces and structures, 

such as cracks and corrosion. These two kinds of defects are clear indicators of the condition 

of the metallic surface and thus are of great interest. In order to monitor and assess them they 

need to be detected [19]. If the crack remains undetected and unrepaired, it can grow to a size 

where it can cause sudden fracture. Therefore, care is needed to visually discover such 

occurrences in areas prone to high stress concentration [3]. 

Corrosion is the undesirable deterioration of materials of construction due to chemical or 

electro-chemical influences initiating from the interface material or environment [20]. There 

are two different kinds of corrosion associated with cracking corrosion fatigue, and stress 

corrosion cracking. This project deals with pitting due to corrosion and corrosion fatigue, where 

cracks initiate from pits 

2.2.3 Types of corrosion 

Corrosion has a huge part to play in the deterioration of structures and components and so it 

would be beneficial if we can have a solution where the components like rail axles do not need 

to be taken out of service and they can be monitored and assessed with NDT method applied. 
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Many research journals have discussed corrosion being the vital source of damages. The 

prime source of failure is environment-assisted fracture in the industries like in oil and gas 

pipelines, chemical plants, bridges, power plants, aircraft and civil engineering structures [21]. 

Many of the metallic structural failures and degradation are caused by corrosion fatigue [22]. 

The reason of axle failures in number of accidents has been corrosion fatigue [22] because of 

which the axles are taken out of service.  Different types of corrosion could be better 

understood through a pictorial view, figure 2.1 to understand the varied classification of 

corrosion. 

 

Figure 2-1 Corrosion Classification adopted from [20]  

 

In this project, we’ll be dealing with the following kinds of corrosion: pitting corrosion, corrosion 

fatigue and stress corrosion cracking. Pitting corrosion is formed due to the exposure of the 

corrosive environment; corrosion fatigue and SCC occur due to the mechanical mechanism 

added like cyclic stress in the rail axles or stress leading to SCC. 

2.2.4 Stages of corrosion  

Corrosion fatigue is a term used to describe cracking including both initiation and growth, in 

materials subject to the combined actions of a fluctuating (cyclic) stress and corrosive 

environment [23]. Different stages in fatigue cracking in air and in a corrosive environment are 
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shown in figure 2.2 and it can be seen that the number of cycles required to cause failure is 

much less in a corrosive environment than in air. Although there will be no surface film 

breakdown as we are dealing with carbon steel. The major factors influencing corrosion fatigue 

are surface conditions, stress/load/cycle frequency parameters, environmental conditions as 

well as the material properties. It is assisted by the corrosive environment through the different 

stages; pit initiation, pit growth, the transition from pit to crack, crack growth and fracture. 

 

Figure 2-2 Stages in fatigue cracking in air and in a corrosive environment [23] 

 

If a defect can be detected at an early stage [24] then it may be more useful in predicting the 

overall life of the structure and hence extreme catastrophic deterioration may be prevented. 

For this purpose, a lot of industry-based research is being done in the area of identifying the 

different stages of corrosion fatigue [8] as shown in figure 2.3 and predicting early stages of 

damage development.  

 

Figure 2-3 Four stages of crack growth in high cycle corrosion fatigue [8] 
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An important point that has been well established is that in materials undergoing pitting 

corrosion, all crack nucleation originates from pits  [25]. At the beginning of the corrosion 

process, pitting appears and further in the process cracking is generated. The transition from 

pit to crack is the most significant stage in terms of predicting the damage process. The pit 

size is dependent on the electro-chemical and mechanical conditions and it varies with the 

increase in exposure time [26]. The transition from the pit to crack is initiated when two most 

important criterias are satisfied which are; the stress Intensity factor (SIF) and when the crack 

growth rate is greater than the pit growth rate [27]. A corrosion fatigue crack is generally 

straight lined [28] and not branched. Data from such type of experiments are shown in the 

form of an S-N curve where S is the cyclic stress range and N as the number of cycles to 

failure. By using such graphs, the lifetime of a structure under cyclic load may be predicted 

[20]. 

2.2.5 Morphology of the defect 

By now we know what cracks and pits are and how they form but now we need to know the 

geometric features of the defects so that we can exploit those by using our processing filters. 

The morphology of the defects could be applied for the image processing as a region marker 

and for neural networks processing as a feature classifier. The reason why we need to 

understand and study the basics of corrosion and its morphology is so that the computer can 

apply correct processing steps accordingly and take efficient and effective steps to detect 

them. 

The morphology of pitting may vary considerably [29], in terms of geometric shape [30] and 

depth-width ratio also known as the aspect ratio, as shown in figure 2.4 and this is why it is so 

challenging to detect them. In many studies, the pits have been represented by a semi-

elliptical shape [31]. They propagate with complex directionality, as a function of local stress, 

microstructure and chemistry. They can act as local stress raisers in a material and hence can 

participate in the failure of a material through fatigue and/or stress corrosion cracking (SCC) 

mechanisms.  
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Figure 2-4 Varied Pit Shapes according to ASTM assessment Guide [32] 

Experiments done by [33], show that the shape of the pits growth is nearly hemispherical until 

they reach the pit-to-crack transition stage and the cracks seem to be activated due to a 

secondary pit or crack at the bottom of the primary pit. 

The properties given to vessel-like structures are very closely related to the properties of a 

crack [34]. While carrying out image processing for crack detection on underground pipelines 

[35] define three basic properties of cracks: they branch like a tree; more or less have a 

constant width; and the intensity distribution of crack feature cross section looks like a specific 

Gaussian curve. 

 

Figure 2-5 Typical example of micro-cracks in an image taken from an axle 

 

For a component under-going cyclic stress like a rail axle, these cracks tend to be thin [36] 

vertical lines as they are usually along the rotational direction as seen in figure 2.5 above. 
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2.3 EXISTING INDUSTRIAL NDT METHODS & THEIR LIMITATIONS IN RESPECT TO 

PROJECT PROBLEM 
The selection of the most appropriate NDT method, for a particular component (in this case, 

rail axles and pipelines) is based on a number of factors such as: 

•        Material of the structure and method of assembly (e.g welding, casting etc) 

•        Thickness of section  

•        Geometry of the component 

•        Type of defect to be detected 

•        Access 

•        Cost inspection equipment availability 

•        Operator skill level of inspection 

 

Each sub-section discusses the method for general purpose and in the end of the paragraph 

also explains as to why it is not suitable for this project i.e discussing the limitation of the 

method in this case. 

 

Nondestructive testing (NDT) does not permanently alter the article being inspected hence it 

is a highly valuable technique that can save both money and time in product evaluation, 

troubleshooting, and research. A brief summary of some of the advantages and disadvantages 

of the very basic methods for general purposes is shown in figure 2.6 below. 

 

Figure 2-6 Summary of basic Non-Destructive Testing Methods [37] 
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Descriptions of the features of common NDT methods including visual inspection, liquid 

penetrant, magnetic-particle, radiographic, ultrasonic and eddy current which are currently 

used in industry are discussed below. They are sometimes used in combinations to improve 

and verify the assessment. Research effort is being applied all the time to come up with more 

effective ways of achieving reliable and cost-effective inspections. In this project, most likely 

a combination of methods will be applied such as microscopy and MPI. 

2.3.1 Visual Inspection 

It is one of the most widely practiced and probably the first method of NDT. It checks for the 

surface condition, roughness, defects or other changes like dimensions. It is basically reliant 

on the inspector’s eyesight, attention and judgement so if the defects are too small then they 

might be too difficult to detect. Also, it is extremely time-consuming to count all of defects and 

of course continuous viewing is restricted with frequent rests. Much of the success of this 

method is dependent on the surface condition and the lighting arrangements. It requires 

surface preparation like cleaning. Traditional methods usually quantify corrosion by visual 

comparison of the area under study with dot patterned charts or grading charts as shown in 

figure 2.7. The methods like MPI and/or Eddy currents are used when the defects are big 

enough like greater than 1-2mm to locate the flaw. Then visual inspection is performed for 

further assessment. 

 

Figure 2-7 Visual inspection using a mobile camera 

2.3.2 Liquid Penetrating testing (PT) 

Another method for finding surface cracks and flaws is to use a penetrating dye as shown in 

figure 2.8.  This is an old technology but it still works well. It can be used on a relatively smooth 

and non-porous material. Its use is confined to the detection of surface breaking 

discontinuities. This method requires proper surface cleaning before applying the penetrant 

and then cleaning preparation as the contaminants can mask the defects; it uses a 

considerable amount of consumables; post cleaning is essential to remove the chemicals; and 
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requires very stringent safety procedures like the chemical handling precautions. It has a 

limited resolution for very fine cracks so it is not suitable in regards of the scale we are looking 

for in this project. 

 

Figure 2-8 Liquid penetrating testing (PT) example 

 

2.3.3 Magnetic Particle Inspection (MPI) 

This method is the most widely used in industry. It is somewhat similar to the Liquid Penetrant 

method but is only applicable to magnetic materials. This method is used for detecting surface 

discontinuities as shown in figure 2.9. This testing method consists of establishing a magnetic 

field in the part to be tested, applying magnetic particles to the surface of the part, and 

examining the surface for accumulations of particles that are attracted to the discontinuities. 

Few points considered for this method are the surface must be cleaned thoroughly before the 

test; the method can only work on magnetic materials; it cannot detect deep internal flaws; 

proper alignment of the magnetic field and defect is critical [6]; large currents are required for 

very large parts; if very high currents are applied then it may cause damage to the component; 

paint and other non-magnetic coverings adversely affect the sensitivity; and the components 

will have to be demagnetised and cleaned later on. This method is insufficient for the size we 

are aiming for in this project as this can be done only when it is more than at least 1mm.  
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Figure 2-9 Magnetic particle inspection (MPI) example 

 

2.3.4 Ultrasound Testing (UT) 

High frequency sound waves have the ability to transmit through solids and liquids and the 

associated technologies are known as ‘ultrasonic’ when the frequencies are above the hearing 

range of humans. The UT method is very commonly used for inspection for internal flaws and 

for precise flaw detection in relatively small areas of components as shown in figure 2.10.  It 

requires considerable skill to interpret the display for example the relationships of flaw size, 

flaw distance and flaw reflectivity so the skill required by the operator is relatively high. There 

are also some limitations in its ability to detect certain kinds of cracks like those in very thin 

sections [38], and it is very sensitive to the orientation of flaws.  

 

Figure 2-10 Phased array Ultra sound (UT) example 
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2.3.5 Eddy Current testing (ECT) 

This method uses the principle of induction. Generating a high frequency current in a coil and 

holding that coil close to the surface of a metallic object generates ‘eddy-currents’ in the 

surface of the object [39]. It is generally used when a flaw is anticipated so it is used over small 

areas rather than for large-scale testing. Figure 2.11 shows a sample outcome of the eddy 

current testing (ECT) method and figure 2.12 shows eddy current array (ECA) example. A 

high degree of operator skill is required as the results can only be confidently received from a 

very experienced operator; only conductive materials can be inspected; requires calibration 

on a set of specimens; and many other parameters can affect the responses [40]; The tests 

generally are restricted to surface breaking conditions and slightly subsurface flaws. 

 

Figure 2-11 Eddy current testing (ECT) example  

 

Figure 2-12 Eddy current array (ECA) example 

 

 

5 scale 

divisions 
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2.3.6 Radiography (RT) 

It uses X-rays or gamma rays to produce an image of an object on film. Figure 2.13 shows a 

sample outcome of radiographic image. The main key points are that there are safety issues 

like possible radiation hazard for personnel; the equipment is cumbersome; it requires access 

to both sides of an object which is not possible in on-site case; usually two operators are 

needed; qualified staff must be employed; the rays are dangerous so they must be used inside 

a protective enclosure; a relatively expensive equipment investment is required; a film or 

image processing facility to develop, wash, fix and dry is usually required before results can 

be seen; and it is not good at defining the presence or through thickness dimensions [41] of 

small cracks. For purposes of this project, it is not portable and cannot be taken on-site and is 

not accessible from both sides. For above mentioned reasons, this method is not considered. 

 

Figure 2-13 Radiographic (RT) image example 

 

2.4 STATE OF THE ART TECHNIQUES USED FOR DEFECT DETECTION 

Different perceptions have been taken in order to take in account the problem of defect 

detection in materials. These could be broadly categorised as image processing methods and 

learning-based methods [3]. The former entails methods based on image filtering like Gabor 

filters [42], wavelets-based approaches [43] or methods based on the geometry of the defect 
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[35] while the latter makes use of typical pattern recognition tools, such as neural networks 

[44] self-organizing maps [45] or support vector machines [46] 

Another perspective into this problem is in terms of the data collection device. There are some 

research groups that are working particularly in the area of defects detection using microscopic 

imaging such as Aalen University as mentioned in 2.4.6 in detail. For this aspect, the device 

portability requirement of the project as well as the size of the defect being investigated, needs 

to be considered carefully. There are many good quality microscopes but most of them are not 

suitable for on-site application as they are not portable and also most of them are not cost-

effective for every day industry usage. 

Another way of the classification could on the basis of the kind of defects detected. Mostly the 

studies are based on a solution for a specific type of defect [47] [48]  but there are some 

researches which are for general applications. These are mainly focused on the crack 

detection mostly for concrete [1] [49] [24] , asphalt [50] or pavement [51] but as far as corrosion 

is concerned, there are very few studies regarding this problem such as described in [29] 

refers specifically to detecting corrosion in metals.  

This shows that a lot of work still needs to be researched in this area. Currently the system 

being used in the industry is by manually counting the pits using visual inspection and for the 

cracks using the MPI method. Emphasis has been laid for the crack defects but not much has 

been applied in terms of the analysis of pits [52]. 

2.4.1 Detection of cracks using fuzzy logic and an ANN model 

The study [1] presents fuzzy logic and artificial neural network based models for accurate 

crack detection on concrete. Features are extracted from digital images of concrete surfaces 

using image processing which incorporates the edge detection technique. The properties of 

extracted features are fed into the models for detecting cracks. Two kinds of approaches have 

been implemented in this study: the image approach which classifies an image as a whole, 

and the object approach which classifies each component or object in an image into cracks 

and noise. The models have been tested on 205 images and evaluated on the basis of five 

measures of performance.  

The limitation of the work is that it sets criteria that the image of concrete should not contain 

any object other than concrete. Otherwise, due to the use of edge detection technique, the 

models detect the edges of these objects as cracks. Also, if the human eye itself cannot see 

the crack in the image, neither can any of the models in this research. The crack has to be at 

least visible no matter how much noisy the surface of the concrete is, only then is it possible 
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to detect cracks using these models. But in case of the project problem, most of the times, the 

flaw is not visible at all or sometimes not distinct with extra sample features present.  

2.4.2 Detection of cracks using image processing and ANN 

Research was carried out by [53] to evaluate the cracks which are sometimes formed when 

molten steel is solidified to make slabs. Removal of these cracks save time, effort and 

production expense; and reduces costs if detected at an early stage. They have implemented 

an image analysis system, and its block diagram is shown in figure 2.14. It consists of four 

major steps which are the edge enhancement and noise reduction; binary segmentation; 

colour segmentation and Hough transform. These follow as: wavelet transform (2D discrete 

Haar), non-linear diffusion (Anisotropic diffusion), adaptive Gaussian filtering; then edge 

detection (SUSAN- Smallest Univalue Segment Assimilating Nucleus), morphological filtering 

to find exact location; then k-means clustering (HSV – Hue, saturation, value), feature 

extraction to find the area perimeter length, Artificial Neural Networks (ANN); and then in the 

end used Hough transform to calculate the size and position of the defect. The experiment 

results were 97% sensitive, 96% specific and 96.5% accurate.  

 

Figure 2-14 Block diagram of a proposed algorithm by [53] 

This detection method is based on the features extracted from image processing and then fed 

into the ANN so it is more of an object detection approach.  
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2.4.3 Micro-cracks detection using an image segmentation technique 

An image segmentation technique was used by [46] to detect micro-crack defects in the multi-

crystalline solar cells. They have used electro-luminescence (EL) and high-resolution cameras 

to capture the defects with dimensions smaller than 30micron.  The micro-crack pixels and the 

background are not significantly different in their grey scale values but the micro-cracks can 

still be identified as they appear in the form of strong lines with a low intensity and high 

gradient. There are four major things to consider: bus-bars which are the dark vertical lines; 

fingers which are the light horizontal lines; micro-cracks that appear in the form of a line or an 

intersection of lines like a star and the background. Block diagram of the algorithm can be 

seen in figure 2.15. Following are the steps involved in this system. 

1. The first step is the image pre-processing where filtering was applied in the frequency 

domain to remove the periodic interruption of fingers by removing high-frequency 

components and retaining the low-frequency domains components like micro-cracks 

to get inverse Fourier transform image and further normalised to 128 to minimise the 

error due to the inconsistency of grey-level between cells.  

2. The second step was to implement the anisotropic diffusion filtering which gives equal 

response to any pixels so it was programmed to consider both the intensities, gradient 

as well as grey level of each pixel, in order to produce a smoothed image with the 

important edges intact and then the resulting image obtained is by subtraction to 

produce a new, enhanced image that makes the micro-crack line more visible.  

3. The third step is the post- processing which consists of the following steps: apply 

segmentation using a high threshold value that produces image consisting of mainly 

incomplete but noise-free edges and then using a low threshold value that gives an 

image that contains complete edges and noise; reconstruction of the binary image 

followed by dilation and opening; next the intensity tracing and thresholding are applied 

to further reduce the noise and unwanted shapes such as scratches and clusters since 

the grey values of the micro-cracks are relatively less in comparison to the artefacts. 

The pixels which have the same grey intensity value at the same location bounded by 

the same contour are traced and extracted then the mean value for each pixel group 

is computed which is used for thresholding the shapes like if the mean value of any 

shape is less than the specific threshold, retain the shape otherwise eliminate it. The 

last step helps to reduce the number of shapes significantly and hence helps to 

improve in the feature extraction. 

4. The fourth step is the shape analysis which is performed to distinguish between micro-

cracks and other objects from the dataset examples of varied micro-cracks shapes and 

will produce features from angular radial transform (ART) shape descriptors that could 
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be used later in machine learning and classification. The micro-crack has a more 

distinct fluctuation which increases the average distance between the two spectrums 

hence resulting in a better discrimination of the shapes. The features are used to train 

the artificial classifier. 

The performance of the algorithm is quantitatively evaluated in terms of three measurable 

metrics which are sensitivity, specificity and accuracy as the previous journal discussed.  

 

Figure 2-15 Block diagram of the proposed algorithm by [54] 

This method is based on data collected by high-resolution cameras and also have used 

electro-luminescence (EL) which is able to capture high quality images but such cameras are 

often not portable to be able to taken on-site. 

2.4.4 Classification of corrosion based on colour analysis technique 

One of the studies on corrosion is based on the colour analysis technique[55]. A scanner-

based image analysis was generated for the concrete corrosion that is a simple and cost-

effective technique [56]. The second approach was based on artificial intelligence, in particular 

using Deep Learning methods. The framework is specifically suited for image processing, 

offering good speed and great flexibility. It also offers the opportunity to easily use clusters of 

GPUs support for model training which could be useful in the case of large networks. The first 

step was to collect a good dataset to be used to train the network. They were able to collect 

around 1300 images for the “rust” class and 2200 images for the “non-rust” class. Around 80% 

of the images were used for the training set, while the rest was used for the validation set. The 

dataset was very small so they used an existing model. 
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This method is restrictive based on the colour of the rust. Though it is much easier to collect 

and label more data in such a case but usually when microscopic inspection is done, the rust 

material is cleaned off the specimen to get a good idea of the on-surface cracks and pitting 

corrosion under the rust layer, as will be discussed in chapter 3 in detail. So, for this project, 

labelling the data will be much more challenging and complex. 

2.4.5 Image classification based on a CNN model 

Convolutional networks are powerful visual models that yield hierarchies of features. One of 

the researches [57] show that convolutional networks by themselves, trained end-to-end, 

pixels- to-pixels, exceed the state-of-the-art in semantic segmentation. The key insight was to 

build “fully convolutional” networks that take input of arbitrary size and produce 

correspondingly-sized output with efficient inference and learning. Fully convolutional 

networks were defined in depth. They adapted contemporary classification networks like 

AlexNet, the VGG net, and GoogLeNet, into fully convolutional networks and transferred their 

learned representations by fine-tuning to the segmentation task. A skip architecture is defined 

that combines semantic information from a deep, coarse layer with appearance information 

from a shallow, fine layer to produce accurate and detailed segmentations. For project 

purposes, pixel-wise classification method might be considered and implemented in the later 

stages of the research. 

2.4.6 Inspection applying deep learning models on microscopy images 

The research [58] on prospective identification of hematopoietic lineage choice by using deep 

learning, uses image patches from brightfield microscopy and cellular movements. It shows 

the potential of deep learning with microscopy using a high-end device. 

Machine learning research group at Aalen University Germany have been involved in research 

[59] that deal with microscopic images and deep learning. The study [60] based on research 

from top journals and conferences, presents a review of medical image analysis using deep 

learning. It discusses the advantages of using deep learning on medical images along with a 

short summary of a few applications. Another research [61] at Aalen University discusses an 

efficient machine learning based detection of heart disease using Random Forest algorithm. 

The dataset consists of patient’s information such as age, gender, body mass index, smoking 

condition, previous familiar cases, diet, cholesterol, glucose, high blood pressure etc.  

The research [62], more relevant to our problem, is an additive manufacturing application that 

uses deep learning‑based model for defect detection in laser‑powder bed fusion. The data set 

has been collected using thermographic camera and infrared. The model architecture is shown 
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in figure 2.16, that performs on an entire image with an image-wise processing approach. The 

model uses these thermographic imaging to detect printing defects such as delamination and 

splatter with an accuracy of 96.8%. However other defects such as cracks and pores have not 

been evaluated.  

 

Figure 2-16 Model architecture of the research at Aalen University [62] 

 

2.5 IMAGE PROCESSING METHODS 

This project is about analysing the structural integrity defects like pits and cracks as a non-

destructive testing. After acquiring the images, they will be analysed by using traditional image 

processing methods. Currently the method being used is the visual inspection method [63] by 

manually counting the number of pits.  

Previously, different image processing techniques have been discussed and used depending 

on the material and the purpose of the project. A lot of work has been done in the medical field 

[64] towards analysing images. Some work has been done for detecting cracks in different 

industry applications with either different scale of the defect area or different high-end optical 

technique, which are not suitable for commercial use keeping the economical aspect in mind. 

However, in the area of corrosion very less work has been done, and that too for micron level 

resolution pitting is extremely limited.  

Automatic detection of defects on various surfaces is an area of active research, which is 

based on digital images. Image processing and threshold based decision making is the basis 

of most of the research in this field. Understanding some of the key methods and techniques 

existing in the IP area would be beneficial to do a research of the complex methods. Following 

are some of the techniques concerned with image pre-processing that typically involves 
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restoring the effects of disruptions that have occurred during the acquisition of the images, 

reformatting the image data, and then enhancing the image for visual inspection and 

interpretation or segmentation of regions and objects in an image on the basis of similarity 

criteria that permit features to be extracted for further tasks, such as classification which is the 

next section of this chapter. 

2.5.1 Image enhancement  

These methods are mainly used to improve the perception of a piece of information in images 

depending on the task at hand [65]. The pixel values are manipulated to achieve desired 

enhancement, and is used mainly for adjusting the image contrast, histogram equalization, 

de-blurring, filtering, noise reduction and edge sharpening. As a consequence of these 

techniques the pixel grey-level values that is the intensities of the output image will be modified 

according to the transformation function applied on the input values. It should be noted that in 

some image classification applications, enhancement techniques are avoided [65] since 

modifying the grey-level values will affect the accuracy of the classification system. 

Linear 

This method is used [66] to enhance the contrast of an image whose pixels are of a similar 

grey level like in a really dark image. In order to ameliorate the contrast in a particular grey 

level band, linear transformations map a certain grey level band to a wider one. All pixels 

below a certain grey level will appear black while all pixels with a grey level greater than a 

certain level will be white. Pixels between these values will be mapped to values between 0 

and 255.  

Power and Log 

These transformations map narrow grey levels to wider ones. For example, a log 

transformation [67] will map low narrow grey levels to a much larger band. If most pixels have 

a grey level between 0 and L/4 where L is the maximum grey level, mapping them to a 3 times 

wider scale will enhance contrast. However, pixels with an original grey level between L/4 and 

L will be reduced to a 3 times smaller band. Those transformations are interesting in cases 

where the image is clear or dark. The log transformation can enhance details in a dark image. 

By mapping the darkest pixels to brighter ones, more details appear. Gamma correction is a 

way to accentuate contrast, just as log transformation. Gamma transformation’s impact is 

related to the value of gamma, as changing it makes different bands of grey levels wider or 

smaller. A low value of gamma will make dark pixels brighter, while a high value will make 

bright pixels darker. Gamma correction maps narrow bands of pixels to larger ones. 
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Filters 

To modify an image, we can use filters. A filter will alter a pixel in the image according to its 

neighbors. Using filters can help sharpen or smooth an image. There are many kinds of filters 

that can be used such as mean, median filter, Gaussian filter, Wiener filter, order-statistic filter, 

edge-emphasizing filter, Laplacian operator filter and linear motion filter. For example median 

filtering [68] is a nonlinear method used for the removal of impulsive noise. It is executed by 

choosing a mask of odd length which moves over the image and at each center pixel the 

median value of the data within the window is taken as the output. Wiener filter [68] often 

produces better results as it is applied to an image adaptively tailoring itself to the local image 

variance, performing little smoothing where the variance is large and more smoothing where 

the variance is small. It works best when it is used to remove Gaussian noise.  

Histogram equalization 

Enhancement can be accomplished by using this which can stretch the image contrast 

between the background and foreground pixels and help highlight specific details in the image. 

The main objective of histogram equalization is stretching out the grey levels of an image 

matching a specified histogram, uniform distribution by default [69]. For example, if an image 

is mainly dark, making the brightest pixels of the image actually bright can produce a brighter 

image. But in some scenarios it might over saturate the area causing an object to wash out. 

Contrast Limited adaptive histogram equalization 

It is known as CLAHE for short. Unlike histogram equalisation, it operates on smaller data 

regions like tiles rather than on the entire image. Each tile’s contrast is enhanced so that the 

histogram of each output region approximately matches the specified histogram [70], uniform 

histogram by default. The contrast enhancement can be limited in order to avoid amplifying 

the noise which might be present in the image so the problem of over saturation is solved by 

this enhancement technique. It does not cause some of the intensities to be too bright but still 

manages to make the subtle smaller features more pronounced. But if the tiles are kept too 

small it might enhance the noise as well. 

Thresholding transformation 

These transformations take an input image and return a black and white image. Each pixel 

above a certain grey level is returned white while the others are returned black. Thresholding 

transformations isolate objects from the background. The object is made white while the 

background stays black. It obviously works better when the object to show and the background 

have different colors [71]. The main problem with this technique is to find the threshold so that 
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all the pixels of the object are white and all the pixels of the background are black. Different 

thresholds can be chosen given the details we want to enhance. 

2.5.2 Edge detection 

In the active field of computer vision, edge detection is considered a well-developed area on 

its own. Edges help in segmentation and object recognition by defining the boundaries 

between regions in an image so the main objective of these techniques is to find the edges of 

the objects of an image [72]. Often there is a sharp change in intensity at the region boundaries 

and that is why edges and region boundaries are closely related. The basic theme to find the 

edges is to look for places in the image where the intensity changes rapidly or suddenly. It 

works by detecting discontinuities in brightness. Edge detection is used for image 

segmentation and data extraction in areas such as image processing, computer vision, and 

machine vision. 

Many studies have applied and researched these methods [73] [1]. The most common edge-

detectors are named after their inventors such as Sobel, Prewitt, Roberts and Canny. The 

basic edge-detectors usually decide whether or not a pixel lies on an edge independently of 

the neighbouring pixels, and as a result, noise can fragment the boundary of a region, or miss 

a region. Canny method is considered one of the most powerful edge detectors [74]. It differs 

from the other common ones, as it uses two different thresholds to detect strong and weak 

edges. It includes the weak edges in the input only if it is connected to a strong edge. Therefore 

it is more likely to detect true weak edges rather than getting noise.  

2.5.3 Morphological filtering 

It is a broad set of operations that process images based on shapes. The above discussion 

on edge-detection and clustering indicates that further processing is required to correct any 

insufficiencies or errors in the segmentation due to noise in the image, and a full segmentation 

of an image usually involves several different segmentation algorithms. The binary image after 

thresholding may contain noises and small residual spots that mask the useful information to 

be interpreted. To eliminate these artefacts, morphological processing can be applied.  

However they might also be applied for pre-processing purposes to clear the image before 

taking any steps.  

There are basically two morphological operations [75]. They perform the shrinking and/or 

expanding operations with regard to a certain structuring element (SE). Mathematical 

morphology could be used to detect the boundaries of objects and their skeletons for 

example, by taking the dilation of an image and then subtracting away the original image, thus 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/pixsub.htm
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highlighting just those new pixels at the edges of objects that were added by the dilation. 

These filters may also be used for thinning or pruning of the edges as either a pre or post 

processing technique.  

In the morphological operations [76], a specific rule appropriate to the requirement is applied 

to the pixels in the neighbourhood and a value is assigned to the corresponding pixel in the 

output image. The choice of the structuring element is of high importance as they probe the 

image, they are typically much smaller than the image. The rule used to process the pixels 

defines the operation. The basic filters used are as follows:  

For an erosion operation the value of the output pixel is the ‘minimum’ value of all the pixels 

in the input pixel’s neighbourhood. So in a binary image if any value is set to ‘0’ the output 

pixel is set to ‘0’. For dilation operation, the value of the output pixel is the ‘maximum’ value of 

all the pixels in the input pixel’s neighbourhood. So in a binary image if any value is set to ‘1’ 

the output pixel is set to ‘1’. Opening operation is a combination of two basic operations, 

erosion and dilation with the same structuring element. Opening by a disk-structuring element 

can smooth the boundary, break narrow parts and remove small objects. The SE should be 

large enough to remove the small objects in the image but not large enough to remove the 

larger ones. Closing operation is also a combination of two basic operations, dilation and 

erosion, but in reverse order. Closing by a disk-structuring element can fill narrow bays, 

eliminate small holes and also smooth the boundary. 

Reconstruction operation [77] uses two images as inputs, a marker and its mask, instead of 

one image and its SE. Hence, it is based on the concept of connectivity rather than an SE. 

The reconstruction applies a dilation or erosion on one image, called the marker, based on 

the characteristics of another image which is called the mask. This is repeated until the 

application acquires stability that is does not change the result anymore. It could be 

understood as repeated dilations of the marker image until the contour of the marker image 

fits under the mask image. 

There are many other techniques that can be used like Skeletonization [43] is used to reduce 

all objects in an image to lines, without changing the essential structure of the image. 

Perimeter determination is used to find the perimeter pixels of the objects in a binary image. 

A pixel is considered a parameter pixel when the pixel is on and one or more of the pixels in 

its neighbourhood is turned off. Top-hat filter [35] could be used to eliminate particular features 

from an image. The basic method considers; applying opening to an object, and then doing a 

subtraction with the original image. It can also be used to enhance contrast in an image. 

Bottom-hat can be defined as the difference between the ‘closing’ of the original image and 

the original image.  
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2.5.4 Image Segmentation 

Image segmentation techniques are found out to be strongly application dependent as each 

is applied and adapted according to the application features involved [66]. The basic steps 

involved in the detection could be: Smoothing to suppress as much noise possible without the 

true edges being destroyed; Enhancement to enhance the quality of the edges in the image; 

Detection to make a decision on which of the edge pixels to keep and which to eliminate as 

noise; and Localisation gives the exact location of the edge. This technique is used to isolate 

regions and objects of interest depending on its similar properties such as grey-scale, colour 

or texture. The process is to divide an image in to multiple parts to identify relevant information 

from the digital image. In order to characterise the defects in an image like its size, locations 

and shapes, they need to be segmented from the background.  

Thresholding 

The simplest technique is thresholding. It can be regarded as partitioning pixels into 

foreground object and background based on the comparison between the grey level of a pixel 

and a threshold. A large number of algorithms have been proposed like Otsu and histogram 

because they are efficient in performance and simple in theory. The algorithm automatically 

computes a threshold based on a given distribution or histogram of grey levels [78]. There are 

different parameters to consider to threshold an image. The basic idea is based on a clip level 

or value to turn the grey scale image into a binary image. The most important problem is to 

choose optimal thresholds [71]. Otsu is an effective method as it uses the calculated optimum 

threshold value to separate the two classes, the foreground and background, by maximizing 

the interclass variance [79].  

Histogram thresholding could be used if the histogram of an image includes some peaks by 

separating it into a number of modes. Each mode corresponds to a region, and a threshold 

exists at the valley between any two adjacent modes. An appropriate threshold value is found 

in an iterative fashion in this midpoint method [80] with the basic steps  being: apply a 

reasonable initial threshold value; then compute the mean of the pixel values below and above 

this threshold, respectively; also compute the mean of the two means and use this value as 

the new threshold value; continue this until the difference between two consecutive threshold 

values are smaller than a pre-set minimum value. 

Clustering 

This segmentation method is used for good recognition for image processing. It is a specific 

method as it can make characteristic classification of the pixels by computing similarity 

between them. It basically organizes the objects into groups based on certain attributes. There 
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are many methods which are effective for this task. Some of the popular ones are k-means 

and FCM.  

In K-means clustering [81] algorithm, data vectors are grouped into predefined number of 

clusters. At the initial stage, the centroids of the predefined clusters are initialized randomly. 

The dimensions of the centroids and the data vectors are the same. The assignment of each 

pixel to the cluster is done on the basis of how close they are in terms of the Euclidian distance 

measure. Once all the pixels have been assigned to their respective cluster, recalculation of 

the average of each cluster is performed. This process is continued for a fixed number of 

iterations or until no significant changes result for each cluster mean [53]. An image 

segmentation method was proposed by [82] based on the collaboration of self-organisation 

map (SOM) neural networks. It clusters the pixels in image according to colour and spatial 

features with the SOM neural networks. Results produced show that it is better than K-means 

or single SOM neural network, but it also has a drawback which is to manually set the number 

of regions to be segmented.  

Fuzzy C-means clustering is also known as FCM in common. It is a method of clustering which 

allows one piece of data to belong to two or more clusters unlike the k-means clustering which 

assign them to a single cluster. This allows the pixels to belong to multiple classes with varying 

degrees of membership.  

Watershed 

This technique is a fine example to see how effective it can be to combine many morphological 

operations to achieve a segmentation task [83]. Separating objects in an image where objects 

are touching each other is segmentation. Watershed is often used in images where it is 

required to segment touching objects.  

2.5.5 Feature Extraction 

In machine learning terms, it can be defined as an individual measurable property or 

characteristic of a phenomenon that is being observed. They are the input which is fed into 

machine learning models like K-nearest neighbour or Adaboost ensemble, to receive a 

prediction or classification output, so the model is only as good as the features provided to it. 

This means that selecting good features is an important task that should not be 

underestimated hence traditionally a good research is done for manual features selection and 

engineering. It relies on domain knowledge or partnership with domain experts, to create 

features that will make algorithms work better. The basic idea is to transform the raw data 

into feature vectors to show the learning algorithm how to learn the desired characteristics 
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[84]. Some of the handcrafted descriptors that have been previously proposed in studies are 

features like Scale-Invariant Feature Transform (SIFT) [85] and Histogram of Oriented 

Gradients (HOG) [86].  

The input to the model are images that are comprised of pixels. These raw pixel values from 

an image can be transformed into substantially more meaningful and useful information. They 

could be a pattern or a distinct structure within the image, referred as an image patch that 

contrasts from its immediate surroundings by either texture, colour, or intensity. Such texture 

regions can be defined as the statistical spatial distribution of their pixel intensities [87]. 

Texture analysis can help in segmentation or by extracting information about the defects in 

the images with the help of characteristics such as brightness, colour, shape and size [88]. 

Detectors that rely on gradient-based and intensity variation approaches are able to detect 

good local features. There are two approaches, structured and statistical, to analyse an image 

texture in computers.  

Many texture segmentation methods include the extraction of texture descriptors that are 

based on local responses to hand-designed filter banks typically with a set of scales and 

orientations such as GLCM descriptors, Gabor filters [42], local spectral histograms [89], Edge 

detection [64] [73], spatial frequency and an average grey level [87]. Other popular texture 

features used include statistical descriptors such as Local Binary Patterns (LBPs) [48], co-

occurrence matrices, and wavelet transforms. Segmentation of texture descriptors include 

approaches like k-means, region splitting  and watershed [76]. Deep learning methods have 

been able to perform better than most of these methods in classification and segmentation 

tasks especially the CNNs. These approaches have enabled to learn multiple levels of 

abstraction, by replacing these hand-crafted descriptors to trainable filters combined in a 

cascade of layers. Hence the research was shifted towards this technology, which is discussed 

in detail in the next chapter.  

Similarly, there are many colour based models such as RGB and HSV that are used for 

machine learning purposes. They can be classified into groups based on Wu and Sun (2013) 

research. The hardware-orientated spaces are based on the hardware equipment used to 

reproduce the colours, such as RGB, YIQ, and CMYK. Another is the human-orientated 

spaces that are not sensitive to small colour changes but rather based on hue and saturation 

such as HSI, HSL, HSV and HSB which resemble to the concepts of tint, shade, and tone. 

Then there is the Instrumental spaces group, that are based around the property that the 

colour coordinates of an instrumental space are the same on all output media, with models 

such as XYZ, L*a*b*, and L*u*v* as examples. Each colour space has a particular reason for 

its development and so each of them have an advantage over the other when applied for 
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classification and recognition tasks [90]. In short, there are various features based around 

texture, intensity or colour descriptors. Images have different colour spaces such as RGB, 

LAB, HSV and different texture variations can be extracted like LBP, HOG and gradients  

2.5.6 Histogram of Oriented Gradients (HOG) feature 

It is one of the effective methods to extract features from pixel for classification purposes  [91]. 

Once image gradient vector has been researched it is easier to understand the functionality 

of the HOG feature, as it is based around it. The method starts by performing pre-processing 

that includes re-sizing and colour normalisation, then compute gradient vector of every pixel 

along with its magnitude and direction.  

Later on divide the image into many 8x8 pixel cells. In each cell, the magnitude values of these 

64 cells are binned and cumulatively added into 9 buckets of unsigned direction. This means 

no sign hence 0-180 degree rather than 0-360 degree, which is a more practical choice based 

on empirical experiments. For improved robustness, if the direction of the gradient vector of a 

pixel lays between two buckets, its magnitude proportionally splits between the two bins 

instead of going into the closer one. To better understand this, let’s say if a pixel’s gradient 

vector has magnitude 8 and degree 15, it is between two buckets for degree 0 and 20 and 

value ‘2’ would be assigned to bucket 0 and value ‘6’ to bucket 20. This makes the histogram 

much more stable when small distortion is applied to the image.  

Then for the final step, slide 2x2 cells block that means 16x16 pixels, across the image. In 

each block region, four histograms of four cells are concatenated into one-dimensional vector 

consisting of 36 values and then normalised to have a unit weight. The final HOG feature 

vector is the concatenation of all the block vectors. Then this can be fed into a classifier for 

learning pattern recognition tasks. 

2.6 MACHINE LEARNING   

Machine learning is one of several methodologies of the grand scale Artificial intelligence field. 

It teaches machines tasks that are easy for humans to perform but hard for them to formalize 

how it was performed [92]. Formally, machine learning can be defined as, a computer program 

that is said to learn from experience E with respect to some class of tasks T and performance 

measure P, if its performance at tasks in T, as measured by P, improves with experience E” 

[93]. In simpler terms, it is an application of Artificial Intelligence (AI) that provides computer 

systems the ability to learn and improve from experience without explicit programming. Once 

a computer algorithm is trained, the algorithm can apply the relationship learnt during training 

to solve similar problems. Basically, there are two types of machine learning techniques, one 
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is unsupervised learning and the other is supervised learning. Supervised learning further falls 

down in to two categories; regression and classification. 

Classification refers to a procedure that assigns data objects to a set of classes. Classifiers 

are pattern recognition methods that perform partitioning based on certain features derived 

from an image using data with known labels [94]. The most common example of a feature is 

the image intensities like a histogram can provide feature with two apparent classes. Several 

methods have been researched on classification of images. Following sections explain 

different popular classifiers such as Tree, SVM, KNN, Ensemble, and Random Forest. 

2.6.1 Linear discriminant analysis (LDA) 

It is one of the simpler methods of supervised classification that classifies data by finding linear 

combinations of features. It classifies the samples into groups that are mutually exclusive with 

the objective to attain maximised between–group variance and minimised within-group 

variance. It assumes that different classes produce data based on the Gaussian distributions 

so the model is involved in searching the parameters for such distribution. The parameters 

are used to calculate boundaries that can be linear or quadratic functions and these 

boundaries are then used to conclude the new data class. If the available variables are two 

then the separators between the groups will become lines. If there are three variables available 

then the separator is a plane. When the number of variables is higher than three then the 

separators become a hyperplane. 

 

Figure 2-17 Illustration of machine learning linear discriminant analysis 

It is best to use this model when a simple model is required that is easy to interpret, or when 

memory usage during training is a concern or when model is needed that is fast to predict. 
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2.6.2 Logistic Regression 

This model is commonly used as an initial start for binary classification problems due to its 

simplicity. It can predict the probability of a binary response belonging to one class or the 

other.  

 

Figure 2-18 Illustration of machine learning Logistic Regression 

This model is best to be used when data can be clearly separated by a single, linear boundary 

or if it’s being used as a baseline for evaluating more complex classification methods. 

2.6.3 Naive Bayes 

This is also one of the simpler methods which is better suited for less complex problem cases. 

It’s a high-bias with a low-variance classifier. When there is a limited amount of data to be 

trained then using this model might have a slight advantage over logistic regression. Naïve 

Bayes makes calculations based on Bayes’ theorem. Naïve Bayes assumes the features are 

independent of each other [95]. If two classes are being dealt with then high probability to the 

observations belongs to one class, and low probability to the other class. A threshold is defined 

on the basis of which the separation between the two classes are made.  

It is best to use this model for a small data set with many parameters, or when a classifier 

that’s easy to interpret is needed or when CPU and memory resources are a limiting factor. If 

the data grows in size as well as variance then it is better to work with a more complex model. 

Also, its simple analysis is not a good basis for complex hypotheses. 
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Figure 2-19  Illustration of machine learning Naïve Bayes model 

 

2.6.4 K-Nearest Neighbour 

KNN is a type of instance-based lazy learning, meaning there is no actual training phase 

involved. It starts when there is a new data entry where it looks to classify objects based on 

the classes of their nearest neighbours in the dataset. The model looks for the specified k 

number of nearest neighbours so if the value of k is 5, then the class of 5 nearest neighbours 

are found. If a label or class is being applied then the model takes a vote to see where it should 

be classed. 

KNN predictions assume that objects near each other are similar hence it is known to be a 

‘guilty by association’ algorithm. It categorises data points based on their distance metrics 

such as Euclidean, to other points in a training dataset. Basically it looks for 𝐾 number of 

training observations closest to a test observation, counts how many observations in each 

class out of 𝐾, and return an estimate of the likelihood this test observation belonging to a 

particular class. 

One of the drawbacks to this method is that it can be deceived by irrelevant attributes that 

might obscure important attributes. But there are ways to correct this issue, such as applying 

weights to the data. Weights are assigned to the contributions of the neighbours so that the 

closer neighbours contribute more to the average than the more distant ones. 

When the class distribution is skewed, it causes a downside affect to the ‘majority voting’ 

classifier.  A more frequently prevailing class will dominate the prediction of the new example 

because they are more common in the k-nearest neighbours just due to their large numbers.  
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Figure 2-20 Illustration of machine learning K-Nearest Neighbour classifier 

Since all the training data is kept so as the number of data points grow, the requirement for 

both, the time taken for testing and memory usage increases. Although the training time in 

comparison might be less. It doesn’t make an assumption about the data so it is useful and 

robust with regards to the search space, for instance, classes don't have to be linearly 

separable. It has a relatively high accuracy but not competitive in comparison to better 

supervised learning models. It is versatile as it is suitable for classification or regression. 

2.6.5 SVM 

It classifies data by finding a linear decision boundary or a hyperplane to separate the classes 

on the basis of maximum margin. Margin can be defined as the amount of space, or 

separation, between the two classes as defined by a hyperplane. The best hyperplane being 

the one with the largest margin between the two classes. When a linear boundary separation 

is not possible then the algorithm employs a loss function to penalise points on the wrong side 

of the hyperplane. It uses a kernel transform to transform nonlinearly separable data into 

higher dimensions, where a linear decision boundary can be found. In simpler terms, in case 

of dealing with more than two classes, the model creates a set of binary classification sub-

problems, with one SVM learner for each of the sub-problem.  

It provides a better generalisation to the model. This means that the classifier accomplishes 

high performance on the training data as well as it produces high predictive accuracy for the 

future data from the same distribution as the training data [96]. But on the other hand, they 

need to be trained and tuned up front, so a lot of time needs to be invested in the model before 

it can be used. Also, its speed is heavily impacted if the model is used for more than two 

classes. 
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Figure 2-21 Illustration of machine learning SVM Model 

 

2.6.6 Decision Trees 

The models are created in the form of a tree structure that can deal with both classification 

and regression, also known as Classification and Regression Tress (CART). This technique 

keeps splitting the dataset into smaller subsets until all the observations in one subset belong 

to one class [97]. 

They are used to build a model by a recursive binary partition of a labelled dataset into 

increasingly homogeneous nodes. Different measures can be used to measure this 

homogeneity. One of them is known as Gini’s diversity index. There are other split criterion 

options like Twoing rule and Maximum deviance reduction (also known as cross entropy). The 

classification tree tries to optimize to pure nodes containing only one class so when all 

observations belong to the same class, this index is minimised. At each step the node with the 

highest G value is split. The splitting process continues until no further subdivision can reduce 

the Gini index [98]. The final result should be a fully-grown classification tree whose lower 

nodes include cases belonging to just one class. 

 

Figure 2-22 Illustration of machine learning Decision Tree Model 
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The number of branches and the values of weights are determined in the training process. 

Additional modification, or pruning, may be used to simplify the model. Interpretation of 

classification trees increases in complexity as the number of terminal nodes increases. It 

allows to predict responses to data by following the decisions in the tree, from the beginning 

of the root, right down to a leaf node. Classification trees give responses that are in nominal 

form such as true or false, while regression trees give the response in numeric form. The 

complexity of the tree is defined by the number of branch splits and depending on its 

complexity, they have quick training and prediction speeds, moderate predictive accuracy and 

low computational memory requirements. Full representation of the path taken from root to 

leaf can be easily tracked which is useful if results need to be shared.  

2.6.7 Ensemble  

When unique trees are used for classification, they are highly sensitive to the input data and 

with small changes in the dataset, they can produce completely different models. Ensemble 

learning techniques have recently received much interest as a tool to overcome this limitation 

of decision trees, to obtain better predictive performance. These models are a combination of 

weighted base classifiers that achieve higher predictive performance in comparison to other 

individual underlying classifiers. 

The choice of algorithm selected is important as it affects the quality of the ensemble. They 

are tend to be slow to fit because they often need many learners. The information needed to 

create a classification ensemble is Predictor Data (X), Responses (Y), Ensemble aggregation 

method, number of ensemble learning cycles and weak learners. We can divide the ensemble 

methods into two groups: 

• Boosted trees - Base learners are biased and are generated sequentially. Basic 

motivation is to exploit independence between the base learners. The overall 

performance can be boosted by weighing previously mislabelled examples with higher 

weight. For example, AdaBoost with Decision Tree learners and Gradient boosting 

Machines [99] 

• Bagged trees– Base learners try to decrease variance and are generated in parallel. 

Basic motivation is to exploit independence between the base learners since the error 

can be reduced dramatically by averaging. For example, Random Forest  

One of the examples is AdaBoost that works on the same principle of using many smaller, 

weaker models and combine them together into a final summed prediction. It is called adaptive 

because it uses multiple iterations to generate a single composite strong learner. The basic 
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idea of boosting is to add new models to the ensemble in a sequence for a number of 

sequences. In each iteration, a new weak model is added to the ensemble and a weighting 

vector is adjusted to focus on examples that were misclassified in previous rounds. The result 

is a classifier that has higher accuracy than the weak learners’ classifiers. AdaBoost is more 

effective at reducing bias than bagging, but bagging is more effective than AdaBoost at 

reducing variance [100]. 

2.6.8 Random Forest 

One of the most used ensemble learning methods is Bagging method. It consists of trees that 

are trained independently by re-sampling on the same by bootstrapping. That is generating 

new datasets of the same size as the initial one by random sampling with replacement. Some 

of the original samples occur again in the newly generated dataset. The observations that are 

not included in any of the new datasets are called out-of-bag observations. The trees obtained 

are not pruned and are used to classify the out-of-bag observations. As each initial 

observations is included inside the out-of-bag of several trees, its class is estimated several 

times. The final estimation assigns each observation to the most voted class [101].  

Random forest (RF) classifier is a bagging based method. It is an ensemble of large number 

of decision trees around 500 to 2000 [102] by using bootstrapping that run randomly for a 

specified number of times. Each run votes for the most accurate results given the training set 

passed through the classifier. The result is based on the most voted for tree. 

 

Figure 2-23 Illustration of machine learning Random Forest model 

The major reason for the popularity of a random forest instead of a decision tree, is that it 

combines the predictions of many decision trees into a single model. The reasoning is that a 
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single ensemble model built, with even many mediocre models, will still be better than one 

good model. They are less prone to overfitting since the classification error of one permutation 

can be overcome by the ensemble of permutations. This way the large number of trees 

reduces generalisation error. Over-fitting can occur with a flexible model like decision trees 

where the model memorises the training data and learn any noise in the data as well, which 

makes it difficult to predict the test data. It is less computationally expensive and does not 

require a GPU to finish training. A random forest can give you a different interpretation of a 

decision tree but with better performance.  

2.7 NEURAL NETWORKS  

Deep learning (DL) methods are slowly gaining popularity over traditional machine learning 

methods. One of the big challenges with traditional ML models is a process called feature 

extraction. It can be challenging to determine in advance which features should be used for a 

particular problem, as such decisions require domain knowledge and are naturally heuristic. 

All successive steps can become futile with a poor choice of features [93]. The capability of 

learning to focus on the right features by themselves, requiring little guidance, makes deep 

learning an extremely powerful tool for modern machine learning. At present, deep learning is 

the state-of-the-art approach to machine learning, and is prominent in numerous fields, such 

as computer vision, speech recognition, and natural language processing. Hence the potential 

of deep learning is growing especially for heavily complicated use cases like image 

recognition. 

It is also known by the name of deep structured learning or hierarchical learning. One high-

level definition is that it is a class of machine learning techniques that exploit many layers of 

non-linear information processing for supervised or unsupervised feature extraction and 

transformation, and for pattern analysis and classification. Since its emergence in 2006 as a 

new area of machine learning, it is being applied in a vast range of applications. The key note 

is that these layers of features are not designed by human engineers, they are learned from 

data using a general- purpose learning procedure. The significant aspect of deep learning 

algorithms lies in neural networks which are inspired from neurons in human brain and, try to 

replicate human learning functionality.  

2.7.1 ANN  

Artificial neural network (ANN) can be defined in many different ways such as, it is a collection 

of nodes or units that are inter-connected via adaptive weights to form a directed weighted 

graph, which can learn distributed representations and ultimately the task at hand. They are 

loosely modelled after the structure of biological neural networks, such as the neural network 
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in a human brain. They can also be defined as, a computing system made up of a number of 

simple, highly interconnected processing elements, which process information by their 

dynamic state response to external inputs. In general, such systems are able to improve their 

performance by considering previous examples, and do not require any programming specific 

to the task they are learning about. They were found to be particularly useful in domains 

where knowledge and decision processes are poorly understood, or the data is subject to 

uncertainty [103]. 

They have been successfully used in a wide range of applications involving pattern 

recognition and classification, object recognition in image processing, control systems in 

engineering, forecasting and in applications in commerce, retail industries, engineering 

and biomedicine [104]. Some of the major reasons for their popularity are as follows: 

Because they have a proven ability by which they can derive meaning from complicated or 

imprecise data, they can be used to extract patterns and detect trends [105] that are too 

complex to be noticed by either humans or other computer techniques. A trained neural 

network can be thought of as an "expert" in the category of information it has been given to 

analyse. This expert can then be used to provide projections given new situations of interest 

and answer those situations.  

Another big advantage is its ability to learn how to do tasks based on the data given for training 

or initial experience known as adaptive learning  [106] as shown in figure 2.24. Artificial neural 

networks can modify their behaviour in the response to their environment. This factor, more 

than any other, is responsible for the interest they have received. When they are shown a set 

of inputs, which perhaps have specific desired output, they self-adjust to produce consistent 

responses.  

 

Figure 2-24  An ANN performing adaptive learning; [106] 
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Thirdly an ANN can create its own organisation or representation of the information it receives 

during learning time which means that it can self-organise itself [107]. 

2.7.2 Basics of neural networks 

The inventor of one of the first neuro-computers, Dr Robert Hecht-Nielsen has provided the 

most basic and simple definition of an artificial neural network. He has defined it as a 

computing system made of a number of simple and highly interconnected processing elements 

that process information by their dynamic state response to external inputs. 

ANNs are processing devices, algorithms or actual hardware that are roughly modelled after 

the neuronal structure of the mammalian cerebral cortex but on much smaller scales. A large 

ANN might have hundreds or thousands of processor units, whereas a brain has billions of 

neurons with a corresponding increase in magnitude of their overall interaction and emergent 

behaviour.  

Simple neuron 

An artificial neuron is a device with many inputs and one output. The neuron has two modes 

of operation; the training mode and the using mode. In the training mode, the neuron can be 

trained to fire or not fire, for particular input patterns. In the using mode, when a taught input 

pattern is detected at the input, its associated output becomes the current output. If the input 

pattern does not belong in the taught list of input patterns, the firing rule is used to determine 

whether to fire or not. Figure 2.25 shows a single neuron with its working. 

 

Figure 2-25  A single simple neuron [108] 

 

Complicated neuron 

The previous neuron doesn't do anything that conventional computers don't do already. A 

more sophisticated neuron shown in figure 2.26 is the McCulloch and Pitts model (MCP). The 

difference from the previous model is that the inputs are 'weighted', the effect that each input 
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has at decision making is dependent on the weight of the particular input. The weight of an 

input is a number which when multiplied with the input gives the weighted input. These 

weighted inputs are then added together and if they exceed a pre-set threshold value, the 

neuron fires. In any other case the neuron does not fire. 

 

Figure 2-26 Workflow of an MCP neuron [108] 

In mathematical terms, the neuron fires if and only if 

𝑋1𝑊1 + 𝑋2𝑊2 + 𝑋3𝑊3 + ⋯ > 𝑇 

The addition of input weights and of the threshold makes this neuron a very flexible and 

powerful one. The MCP neuron has the ability to adapt to a particular situation by changing its 

weights and/or threshold. Various algorithms exist that cause the neuron to 'adapt'; the most 

used ones are the Delta rule and the back error propagation. The former is used in feed-

forward networks and the latter in feedback networks. 

Network layers 

The most common type of artificial neural network consists of three layers of units: a layer of 

"input" units is connected to a layer of "hidden" units, which is connected to a layer of "output" 

units [109]. The activity of the input units represents the raw information that is fed into the 

network. The activity of each hidden unit is determined by the activities of the input units and 

the weights on the connections between the input and the hidden units. The behaviour of the 

output units depends on the activity of the hidden units and the weights between the hidden 

and output units. This simple type of network as shown in figure 2.11 is interesting because 

the hidden units are free to construct their own representations of the input. The weights 

between the input and hidden units determine when each hidden unit is active, and so by 

modifying these weights, a hidden unit can choose what it represents. 
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Architecture 

Feed-forward networks: These networks allow signals to travel one way only [70] from input 

to output. There is no feedback loop i.e. the output of any layer does not affect that same 

layer. Feed-forward ANNs tend to be straight forward networks that associate inputs with 

outputs. They are extensively used in pattern recognition. This type of organisation is also 

referred to as bottom-up or top-down. 

Feedback networks: They can have signals travelling in both directions [110] by introducing 

loops in the network. Feedback networks are very powerful and can get extremely 

complicated. Feedback networks are dynamic; their 'state' is changing continuously until they 

reach an equilibrium point. Feedback architectures are also referred to as interactive or 

recurrent. This technique is not a new technique. The mathematical model of back-

propagation was first developed in ‘70s and was originally reused by Yann LeCun. This was 

one of the first real applications of Deep Learning. However a major step forward was made 

in 2012 when Geoff Hinton won the ImageNet competition by using Deep Learning network, 

outperforming other more classic algorithms. 

Transfer Function 

The behaviour of an ANN depends on both the weights and the input-output function that is 

specified for the units. These input-output functions are also called transfer function [45]. This 

function typically falls into one of three categories: linear (or ramp) where the output activity is 

proportional to the total weighted output [103]; threshold where the output is set at one of two 

levels, depending on whether the total input is greater than or less than some threshold value 

[51]; or sigmoid where the output varies continuously but not linearly as the input changes 

[46]. Sigmoid units bear a greater resemblance to real neurones than do linear or threshold 

units. 

To make a neural network perform some specific task, we must choose how the units are 

connected to one another and we must set the weights on the connections appropriately. The 

connections determine whether it is possible for one unit to influence another. The weights 

specify the strength of the influence [107]. 

Training models 

There are two kinds of training models: supervised and unsupervised methods. The 

supervised methods are those which incorporate an external influence, so that each output 

unit is told what its desired response to input signals ought to be. The idea behind this model 

is to compare the output with the desired output. Paradigms of supervised learning include 
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error-correction learning, reinforcement learning and stochastic learning. An important issue 

concerning supervised learning is the problem of error convergence that is the minimisation 

of error between the desired and computed unit values. The aim is to determine a set of 

weights which minimises the error.  

The unsupervised methods are those which don’t use any external human influence and are 

based upon only local information. It is also referred to as self-organisation, in the sense that 

it self-organises data presented to the network and detects their emergent collective 

properties.  

A neural network learns off-line if the learning phase and the operation phase are distinct and 

it learns on-line if it learns and operates at the same time. Usually, supervised learning is 

performed off-line, whereas unsupervised learning is performed on-line. Supervised learning 

procedures have achieved a reputation for producing good results in practical applications, 

which are gaining in popularity [82]. 

2.7.3 CNN  

A Convolutional Neural Network (CNN) is a specific class of deep, feed-forward artificial neural 

networks that use convolution instead of general matrix multiplication in at least one of [its] 

layers [92]. They learn to recognize patterns depending upon training classes. The theoretical 

principles of deep learning, including the ideas behind Convolutional Neural Networks are not 

new, however they were limited by the computing resources available at that time. The 

availability of powerful processing units (GPUs) and large quantities of data available for 

training deep neural networks has helped them gain new prominence in recent years. Hence 

many significant achievements in this area have occurred in mainly just the last three to four 

years and there is a large number of research still ongoing on this topic. They have been 

successfully applied for pattern recognition problems, for example sentence classification and 

modelling, face recognition, image classification and object detection in images. 

Convolutional Neural Networks (CNNs) are specialized for the use with inputs that have a grid-

like topology. For example when working with images, each input feature map would be an 

array that contains one colour channel of the input image, while each output feature map would 

be the extraction of one particular feature at all locations of the input. Regular ANN, i.e. 

networks that are made up of only linear and activation layers, are not able to scale to large 

data, such as large images, very well. For instance, an image with a resolution of 1920 × 1080 

and 3 colour channels, would require 1920 × 1080 × 3 = 6220800 parameters for just a single 

neuron. By foregoing general matrix multiplication in favour of convolution, thereby only 

connecting parts of an input that have a strong spatial relationship, the number of connections 
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is greatly reduced. This also results in their trained features being translation invariant, i.e. 

features are being recognized by the network even if they vary in some way [111]. Fully-

connected layers are “regular” neural network layers that are connected to all activations in 

the previous layer. As such, their activation can be calculated with a matrix multiplication. 

2.7.4 Pre-trained Network Architectures 

State of the art in CNN's  Krizhevsky et al. created AlexNet [112], GoogLeNet by Szegedy et 

al. [112] and VGG16 by Simonyan & Zisserman [113]. Such CNN Net could be applied using 

transfer learning for the new database, Gao and Mosalam [114] applied the transfer learning 

using VGG16 on the image based structural recognition. 

The number of nodes in the input and output layers can generally be determined by the 

dimensionality of the problem. There are a few pre-trained networks that are used for 

segmentation tasks, which are in the following sections. 

2.7.4.1 AlexNet 

It is one of the pioneer Deep Neural Net that was developed  [112]. It won the ImageNet 

challenge in 2012 by a large margin as one of the first CNNs to be used for image classification 

problems. It was initially trained to recognize 1000 different objects. It achieved a top5 error 

rate of 15.3 %, over 10 % better than the runner-up that did not apply CNNs [115]. From then 

onwards, more or less following nets are based on its architecture.  

It contains five convolutional layers from C1 to C5 plus three fully connected layers from FC6 

to FC8 with the final one being a softmax output layer. Additionally, it has three layers applying 

max pooling. It uses ReLU activation function instead of Sigmoid or Tanh functions which 

makes it speed up by more than 5 times with same accuracy. To reduce overfitting, dropout 

is applied in the first two fully-connected layers with a probability of 0.5 for each neuron. At 

test time, the output of each neuron is multiplied by 0.5. It is designed as a fully convolutional 

network in [57], however it is not able to accomplish the same image segmentation 

performance as its more complex and innovative rivals, VGG and GoogLeNet architectures. 

2.7.4.2 GoogLeNet 

This architecture was developed based around the idea of Network in Network’ structures 

[116] and achieved the new state of the art for image classification in the ILSVRC14. 

Previously, such as in AlexNet, and VGGNet, conv size is fixed for each layer. But this 

architecture is based on a concept of inception module that is a technique that have different 

sizes or types of convolutions for the same input and stacking all the outputs. Hence, 1×1 

conv, 3×3 conv, 5×5 conv, and 3×3 max pooling are done altogether for the previous input, 

and stack together again at output. 
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When images enter, different sizes of convolutions as well as max pooling are applied. Then 

numerous kinds of features are extracted. After that, all feature maps at different paths are 

concatenated together as the input of the next module. It also differs from others as it applies 

global average pooling at the end of the network instead of using fully connected layers. There 

are 22 layers in total with numerous inception modules connected together to go deeper. It is 

already a very deep model compared with previous AlexNet but not too deep compared with 

ResNet invented afterwards. 

2.7.4.3 VGGNet 

The VGG network architecture was introduced by Simonyan and Zisserman in their 2014 

paper [113], where the authors explored the effect that, depth of a convolutional network, has 

on its image recognition accuracy. This network is characterized by its simplicity by using only 

3×3 convolutional layers stacked on top of each other in increasing depth up to 19 weight 

layers. This showed a significant improvement on the previous state-of-the-art. The team won 

first and second places in localization and classification tracks respectively at the ImageNet 

Challenge 2014 submission. There is a number of different network configurations presented 

in [113], ranging from 11 to 19 weight layers. But due to its depth and number of fully-

connected nodes, they weigh quite large and also it is slow to train them. 

VGG is used in many deep learning image classification problems; however, sometimes 

smaller network architectures are needed such as SqueezeNet, GoogLeNet etc. This VGGNet 

was adapted by [57] specifically the VGG-16 with 16 weight layers, as fully convolutional. Of 

the three evaluated architectures, the FCN-VGG16 performs the best. 

2.7.4.4 ResNet 

The deep residual network, or Resnet in short, is a very deep neural network architecture, also 

known as network-in-network architecture. It was developed [117] with the deepest evaluated 

network having a depth of 152 layers, about 8 times deeper than the VGGNet architecture. It 

demonstrates that extremely deep networks can be trained using standard SGD and a 

reasonable initialization function, by using residual modules. ResNet is a form of exotic 

architecture that banks on micro-architecture modules, as shown in figure 2.27, unlike the 

traditional sequential network architectures such as AlexNet and VGG. The term micro-

architecture refers to the set of “building blocks” used to construct the network. A collection of 

micro-architecture building blocks, including the standard CONV, POOL, etc. layers, leads to 

the macro-architecture itself. 
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Figure 2-27 The residual module in ResNet as originally proposed by [117] 

 

When using very deep networks, the vanishing gradient problem may prevent weights to 

update their value, thereby effectively preventing any learning. This effect can cause deeper 

networks to actually have a higher training error than a shallow network. This problem is solved 

by the residual networks by adding shortcut connections to the network. Even though ResNet 

is much deeper than VGG16 and VGG19, the model size is actually substantially smaller due 

to the usage of global average pooling rather than fully-connected layers.  

2.7.4.5 DenseNet 

It is a logical extension of ResNet, where the architecture has a fundamental building block 

where a previous layer is merged into a future layer. Reasoning here is by adding additive 

merges, the network is forced to learn residuals (errors i.e. diff between some previous layer 

and current one). In contrast, DenseNet paper [118], proposes concatenating outputs from the 

previous layers instead of using the summation. It was developed in 2017, so it’s a new 

technique in the field, which got Best Paper Award with over 2000 citations. 

In the DenseNet architecture in order to improve accuracy and speed of training, each layer 

is directly connected to each other layer in a feed-forward fashion. Hence, each layer obtains 

additional inputs from all preceding layers and passes on its own feature-maps to all 

subsequent layers. So with the help of concatenation, each layer is receiving a “collective 

knowledge” from all preceding layers. 
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2.7.5 Optimisation algorithms 

2.7.5.1 Adam  

It is derived from the name ‘adaptive moment estimation’, presented in [118], the Adam 

optimisation algorithm is an alternative to SGD. It has been demonstrated empirically that 

Adam compares favorably to other stochastic optimization methods in practice.  

2.7.5.2 Gradient Descent 

In order to find the minimum of the loss function, the gradient descent algorithm can be applied 

which iteratively moves towards a set of values that minimize the function by taking steps in 

the negative direction of the function gradient. The learning rate has been set too high in the 

left image, causing overshooting. In the right image of figure 2.28, the learning rate has been 

set too small, causing trapping in a local minima [119] 

 

Figure 2-28 Illustration of the gradient descent algorithm. [119] 

2.7.5.3 Stochastic Gradient Descent 

Stochastic gradient descent (SGD) is a simplification of the regular gradient descent algorithm 

that does not compute the gradient exactly. Instead, the gradient is estimated for each iteration 

on the basis of one randomly picked example. By randomly picking each of the examples for 

each iteration, the hope is that the algorithm will in the long term behave like the regular 

gradient descent algorithm above.  

However, in practice it is usually necessary to decrease the learning rate gradually over time. 

Unlike the regular gradient descent, the SGD introduces a source of noise by randomly 

sampling the training examples, which does not vanish even when a minimum is reached. As 

training with SGD can be slow, by extending it with momentum, i.e. an added velocity to the 

algorithm, it is possible to accelerate the learning process. The momentum is set to an average 

of the negative gradient that decays exponentially. [92] 
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2.7.5.4 Mini Batch Gradient Descent 

A variation of gradient descent, the mini-batch gradient descent splits the dataset into small 

(mini) batches. It serves as a compromise between the regular and stochastic gradient 

descent, as it computes the gradient for a small number of examples at each step. This has 

been empirically shown to result in smoother convergence.  

2.7.6 Hyper-parameters 

For machine learning, there are some parameters that are set before the start of the learning 

process and they are not influenced by the learning process itself, these are called the hyper-

parameters. For deep learning, the training algorithms are almost always iterative, and as such 

they require a pre-set starting points, that can be used as the basis for the iterations. If this 

initial state is set badly, the learning time can be greatly increased. It is even possible that the 

algorithm may never converge at all [92]. There are several strategies for the initial setting of 

the parameters. The search for the best hyper-parameters is a large part of building any 

suitable model [120].  

2.7.6.1 Initial weights 

Weight initialisation has been shown to be one of the most important factors for speeding up 

neural network training, and as such is an important concept to review in closer detail. With 

proper data normalization the assumption is that after training approximately half the weights 

will be set to a positive value, while the other half will be set to a negative value. Accordingly, 

one strategy might be to set all weights to zero. However, in practice this does not lead to 

good effects. If every weight is set to zero, then every neuron in the network will compute the 

same output, which also means all weights will be updated by the same value during 

backpropagation. This means there is no source of asymmetry between the neurons. 

Accordingly, while the general question of how to specifically initialize weights is a difficult task 

and still debated by researchers, it can be said with certainty [92]that the initial parameters for 

two hidden units, which have the same activation function and are connected to the same 

inputs, must have different initial parameters. One common approach is the initialization of all 

weights to a small random value that is not identical for all neurons. 

Another approach is to use available pre-trained weights for a model that has been trained on 

similar data. For example, [57] uses the pre-existing VGG net pre-trained on the ILSVRC and 

performs fine-tuning. 
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2.7.6.2 Regularisation 

Regularization describes “any modification [made] to a learning algorithm that is intended to 

reduce its generalisation error but not its training error” [92]and as such is an important 

concern for machine learning in general, that aims to reduce overfitting.  

L2 Parameter Regularization: One often-used method of regularization, also referred to as 

weight decay, adds a penalty to the cost function. The L1 regularization effect is markedly 

different from L2 regularization. Instead of scaling linearly, the parameter norm penalty is a 

constant factor. The solutions with L1 regularization are generally sparser, with regards to 

some parameters having an optimal value of zero. This makes L1 well-suited as a feature 

selection mechanism, in order to simplify the problem by only taking into account some of the 

available features. 

Dropout: It is a way to prevent overfitting in deep neural networks that have a large number of 

parameters. By randomly dropping units, as well as their connections, from the network during 

training, complex co-adaptions on the training data are prevented. This allows training a large 

number of separate networks in a reasonable amount of time, as all networks can share the 

same weights for the hidden units that are present. [112] 

When testing the network, by using a single un-thinned network that has smaller weights, it is 

possible to approximate the effect of averaging the predictions of several thinned networks 

together. The left side shows a standard neural net, while the right side shows how the net 

can be thinned by applying dropout to it. As shown in figure 2.29, the crossed out units are 

dropped [121]  

 

Figure 2-29 Dropout applied to a neural net. [121] 
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2.8 PROPOSED INSPECTION METHODOLOGY OF THE PROJECT 

Based on the above literature review, an inspection methodology is proposed keeping in view 

aspects of NDT, image processing and machine learning. This has been suggested after 

careful investigation on how to implement in rail axles and pipelines application for corrosion 

fatigue. From NDT point of view, it is used as a visual aid to see the component unlike visual 

inspection which is done by sighting directly by eyes. From NDT point-of-view, it may be 

classified as a type of visual/optical inspection or taken as a separate type of NDT method 

known as microscopy. At times, it might be aided with MPI as discussed in chapter 4. 

The proposed methodology is a combination of microscopy and advance image processing 

methods. It will have the advantages of microscopy (and visual inspection) methods and will 

be able to overcome some of its disadvantages by applying automation. The reason for 

choosing this particular method is its sensitivity to small surface cracks. Some of the key points 

of the method are as follows: 

1. Portability: The equipment can be taken anywhere as compared to some of the other 

methods which involve large instrument equipment.  

2. Cost of equipment: In comparison to other methods it is cheap hence it is cost effective 

in relation to the expensive equipment used in other methods like X-ray machines. 

3. Used for both defects: Different methods are used for different kind of defects. This 

method gives good assessment for both the pits and cracks, others may be good for 

one but not for the other defect. 

4. Operator skill: A relatively less skilled operator could inspect in comparison to other 

methods that require an absolute professional and expert skilled operator for the 

inspection task. 

5. Easy accessibility: The equipment is accessible for operators to conduct the tests, 

which is a microscopic 2D camera with LED lights in comparison to the large CT 

scanners. 

6. Size of defect: This method deals in micron size defect detection. For such accuracy, 

either an optical microscope could be used but it is not portable or other methods like 

MPI that cannot detect that small defects, the defects need to be at least 2mm or bigger 

to start with to be able to detect anything. 

7. Operator cost: The method will minimise the time-consuming manual counting of 

defects and hence reduces the labour cost required. 

8. Time effective: It will give results in less time as compared to the currently time-

consuming method to count the number of pits and cracks individually by the skilled 

operator.  



Chapter 2-Project background through literature review 

Juvaria Syeda: Doctoral Thesis    66 
 

9. Consistent results: Methods which are human-dependent lack the factor of consistency 

as the interpretation of the same site can differ between two operators. 

It is at the high end of the on-surface flaw detection right now as it can be as effective as to 

be able to detect a micro level defect yet still be extremely portable and cost-effective. This 

method is suitable for the specific application we require and hence selected due to this reason 

in comparison to other NDT methods. The other methods like MPI and/or eddy currents are 

used primarily for crack detection when the flaws are big enough like greater than 1-2mm. 

This will be further investigated in chapter 3 (section 3.2), by conducting experiments using 

different NDT methods on same dataset. 

2.9 CHAPTER SUMMARY 

The knowledge that was gained from the preliminary research helped to establish the 

fundamentals of this project which included the understanding of the defects to be detected, 

their morphology, different stages of corrosion; other NDT methods being used in the industry 

such as MPI, Eddy Current and ultrasound along with their limitations to this specific industry-

problem; different image processing methods and their functionalities; and understanding of 

the key concepts of classification by neural networks and pattern recognition. 

Most importantly, it can be seen by the literature review that there is a gap in the industry for 

an automated inspection system that can analyse and classify cracks and pits as well as make 

assessments for the pits for 2D images. There is limited research done in this area where they 

are usually based for crack detection and generally they are not dealing with real on-site 

complicated images. One of the other research show colour-based segmentation by picking 

features based on the rust of the component but this doesn’t reflect the actual pits which are 

hidden underneath the rusting.   

The literature survey acknowledges that very few studies have been done for the automation 

of specifically detecting pitting corrosion. By developing an effective system to assist in 

structural reliability assessment, it is potentially possible to reduce the maintenance costs and 

still extend the useful life of a structure. Moreover, the condition of the structure health can be 

judged in a more objective way. So the system that will be built is based on a real industry 

problem.  

For corrosion assessment generally there are a number of measurements and classification 

to be done by following an industry standard which is API-579-1 FFS pitting assessment. This 

standard will be applied if pipelines are used but different analyses are required for high cycle 
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fatigue such as rail axles. For now, these assessments are restricted by the need to carry out 

manual assessments of the pits. 

The other purpose of the system is to estimate the remaining life of the axle given the presence 

of corrosion fatigue. It does this by detecting microscopically small cracks, which appear 

originating from corrosion pits in the corrosion fatigue process. Then the life is estimated from 

the average length of the cracks.  This means that as an output, the DDS result will have 

dimensions of all the cracks and its average. This will serve as an input value into the 

remaining-life software.  
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 System design and Setup  
 

 

This chapter discusses different methods and materials to setup a data 

acquisition system. It starts by discussing reasons of selecting the chosen NDT 

technique verifying through experimental investigations such as MPI. Later on, 

discusses the selected materials and equipment, and the pre-requisites for data 

collection such as the sample selection, camera selection, preparing the surface 

and then full complete system setup. The initial layout of the detect detection 

is explained in depth. It further considers the image analysis frameworks to be 

used for the defect detection system 
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3.1 INTRODUCTION 

In this chapter, project’s detailed conceptual framework and refined research design is 

presented based on the proposed methodology discussed in chapter 2. This chapter is based 

on phase 1 of the research design called system design and setup, where it discusses the 

journey of the complete data collection setup including trials, tests, selection and upgrade of 

devices and procedures. As shown in figure 3.1, it starts with planning experiments with other 

NDT methods on same data to explore the capacity of other methods in light of the project 

goal and requirements; secondly it discusses the upgrade of devices and improvements of 

procedures for data collection; thirdly data capture trials are performed; lastly an operational 

protocol is devised for data collection system. 

 

Figure 3-1 Design & setup components (Research Design's phase 1) 

The process of implementing a strategy for damage detection and characterization for 

engineering structures is crucial to the safety and continued use of the structures. The goal is 

to provide a diagnosis of the state of the constituent materials, both of the different parts of 

the structure as well as the entire structure, at any time during the life of a structure. 

Specifically, the project is concerned with the identification of cracks and pits of passenger 

and freight train axles. As the axle deteriorates through its lifetime through fatigue and 

corrosion mechanisms, it is important to ensure its structural integrity through inspection or 
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monitoring, often using non-destructive testing (NDT) techniques. The methods used are also 

applicable to other situations involving corrosion or fatigue (e.g. pipework). 

3.2 CONCEPTUAL FRAMEWORK  

The system expectation, as discussed in project motivation, is that a data collection system is 

needed that can acquire good quality images keeping in mind that it needs to be portable for 

on-site visits.  

 

Figure 3-2 Detailed Conceptual Framework of the research project 

Once the image has been collected by the system, it can be put in the analysis system that 

will produce a visual image with localised flaws so that the results don’t need to be interpreted. 

With this note, the conceptual framework for the project, as shown in figure 3.2 was designed. 

This is an improved and more detailed version of the conceptual framework. 

3.3 RESEARCH DESIGN 

In order to achieve and follow the conceptual framework, the research was split, as shown in 

figure 3.3, into three major phases consisting of the System (design and setup), Data (creation 

and labelling), and DDS (defect detection system).  Some of the main tasks based on the 

phases of research design and thesis chapters are as follows:  

 

Phase 1 includes: System design (Chapter 3); System setup (Chapter 3) 
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Phase 2 includes: Data acquisition (Chapter 4); Data labelling (Chapter 4) 

Phase 3 includes: 

• Unsupervised classification (Chapter 5)  

• Supervised classification (Chapter 6)  

• Intelligent supervised classification (Chapter 6)  

• Detection system (Chapter 7) 

• Conclusions based on main classifier performances (Chapter 5-8) 

  

 
Figure 3-3 Research design of the project 

 

3.4 INVESTIGATION OF NDT METHODS ON A SAME SAMPLE DATA 

For the early research stage, different viable and existing NDT techniques were explored in 

order to carry out corrosion fatigue assessment. This means that a comparison was to be 

carried out discussing the capability of other NDT methods to detect initial stage corrosion 

fatigue for the axle crack samples. The prime focus was around the early development of the 

corrosion fatigue which includes pit initialisation as well as pit-to-crack transition, typically at a 

stage before conventional NDT detects the cracks. As mentioned earlier, there has not been 

much work done in this area. The objectives of the work carried out was to establish the best 

possible method and procedure for detection of pits and micro-cracks within corrosion. The 

existing NDT method is a visual examination (possibly with a photographic record) and then 

manual counting and pit assessment. The test sample used for the series of experiments, 

were two cracks developed by corrosion fatigue in a single axle at TWI (Figure 3.1). The tests 

were carried out on the 6 o’clock and 12 o’clock rotational positions for the axle. 
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Figure 3-4 Axle set-up on fatigue rig and water circulation 

3.4.1 Visual Inspection with USB microscope alone 

The USB microscope (see details in section 3.3) was held in a scanner and scans were taken 

at 5mm square intervals. With details of the microscope magnification used during the tests, 

it was possible to size the features observed on the microscope images. However the method 

has its limitations; it is a 2D method with no information of the depth of the pits or the crack. 

This method depends a lot on the surface condition of the sample. When the sample is shiny 

due to surface finish, glare can be seen on the image and potentially hides the desired 

features. (Some of these results are recorded during the monitoring of crack growth and are 

not directly comparable). 

 

Figure 3-5 Reconstruction of series of images to visually see full crack length 
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Due to the image size and the interval of shots taken, some of the cracks were stitched as 

shown in figure 3.5, however it was not applied to all of the images.   

3.4.2 MPI with USB microscope without contrast paint 

In this case a magnetic yoke was used, in the same way as for standard MPI, except that the 

residual field was used to observe the cracks. The difference between MPI with contrast paint 

and without using contrast paint can be seen in figure 3.6. The impact of using contrast paint 

can sometimes be significant (especially for the detection of cracks).  

 

Figure 3-6 - Improvement in crack visibility after applying MPI (without using contrast paint) 

3.4.3 MPI by contrast paint and magnetic yoke 

This used a standard procedure to BS ISO 9934 where the method can carry out an inspection 

through non ferromagnetic coatings up to approximately 50 µm.  The results are recorded for 

comparison using a digital camera. The results from the conventional MPI method are shown 

in figure 3.7 and figure 3.8. 
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Figure 3-7 Nomenclature for ACPD of Cracks (6 o'clock) 

 

Figure 3-8 Nomenclature for cracks at 12 o'clock 
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3.4.4 MPI with microscope with contrast paint 

The same procedure as above was used except that contrast paint was applied before 

magnetization. 

 

Figure 3-9 Image by microscope after applying MPI with contrast paint  

Figure 3.9 displays the results of the microscope and MPI with contrast paint. The contrast 

paint does highlight the crack. Through the microscope software, measurements of the cracks 

can be carried out. It can be seen that the use of the magnetic particles (with or without 

contrast paint) emphasises the cracks. 

3.4.5 High Frequency Eddy Current 

This method uses an eddy current probe, an instrument typical of the type used to detect 

cracks in the aerospace industry. The amplitude of an indication from a 0.2mm deep slot is 

displayed on a screen and is used as a reference, and indications above this value are 

recorded. This enables a crack length to be obtained by manual marking on the sample of 

probe position on the sample. A rough estimate of crack depth can be obtained by comparing 

the amplitude of the crack indication with that from different depth slots.  
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 An example of the display for a crack at the 6 o’ clock position is given in figure 3.10. This 

was obtained using a reference of a 1mm deep slot giving 6 scale divisions. Using the ACPD 

depth measurement as a reference (see Section 3.2.6), the number of scale divisions for the 

different crack depths can be shown in figure 3.11.  These suggest that the eddy current 

method produces the most amplitude change for smaller crack depths, with the larger depths 

(say greater than 1mm) uncertain. The eddy current probe covers a surface area of around 

2mm diameter, therefore cracks closer than this will combine to produce the indication. 

However it is clear that this cannot be used for crack depth sizing. 

 

Figure 3-10 Eddy current indication for crack A (3mm deep by ACPD) at 6 o'clock 

 

Figure 3-11 Comparison of Eddy Current indication size and ACPD 

 

 

5 scale 

divisions 
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3.4.6 ACPD (depth measurement) 

The ACPD method gives an indication of crack depth. It is used as a measurement rather than 

a search tool, and has a range of depth measurement up to many mm. The instrument is 

manufactured by Karl Deutsch. The results of the ACPD measurement using the crack 

nomenclature used in figure 3.7 and figure 3.8 are shown in figure 3.12 and figure 3.13 

 

Figure 3-12 ACPD Measurements for cracks at 6 o'clock 

 

Figure 3-13 ACPD Measurements for cracks at 12 o'clock 

The complexity of the cracking may cause some errors in these measurements, as the 

electrodes are 2mm apart and can sometimes cover more than one crack. 
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3.4.7 Eddy Current Array (ECA) 

Eddy Current Arrays (ECAs) were investigated for the crack detection. The ECAs are 

multiplexed by the EDDYFI ECTANE instrument and 2 flexible probes were used. The flexible 

probes were used as the profile of the axle changes. Depending on the area of concern, 

several scans are required in order to ensure full coverage. The arrays performed scans along 

the profile of the transition area or along the diameter of the axle. Results from the eddy current 

array were taken with two flexible array probes, ‘short’ and ‘long’. The probes were set up on 

a reference block with slots up to 2mm deep. The probes could be scanned around the 

circumference (with the array axial) or axially (with the array circumferential). The former is 

better suited for probe handling but the scans on the reference blocks are not valid for 

comparison as they have to be scanned in the other direction. 

Some results are shown in figure 3.14 and 3.15 showing crack at 6o’clock position of axle. 

Figure 3.14 shows ECA long probe scanned circumferentially axial response (crack direction 

horizontal above) whereas figure 3.15 shows ECA short probe scanned axially transverse 

response (crack direction vertical). The crack indication is clear in general but blurred because 

the effective size of each sensor in the array is several mm. 

 

Figure 3-14 ECA long probe scanned circumferentially axial response at 6-o‘clock  
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Figure 3-15 ECA short probe scanned axially transverse response at 6-o‘clock  

3.4.8 Phased Array Ultrasonic Testing (PAUT) 

For these tests, ultrasonics with a skip method (where the UT beam was bounced off the 

interior bore of the axle) was used. This method ensures volumetric coverage where cracks 

were observed by the methods above. PAUT was the only volumetric method used for the 

report. These scans, figure. 3.16 & 3.17, show that the corner echo is very clear from these 

cracks, but the detail of the crack cannot be seen. 

PAUT being the only volumetric method used for the tests could display and measure the 

height of the cracks. The measurements given from the PAUT could be correlated with the 

ACPD depth measurement. However due to the number of cracks produced and their location, 

PAUT could not display individually the cracks. In Figure 3.17, where the cracks were located, 

the CSCAN data grouped the cracks altogether. 
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Figure 3-16 CSCAN data from Phased Array Indication at 6-o‘clock 

 

Figure 3-17 CSCAN data from Phased Array Indication at 12 o'clock 
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3.4.9 Conclusions 

On the basis of the following points, it was concluded that the data will be gathered by using 

microscopic visual inspection NDT technique with/without MPI.  

1. The microscope method is best when the cracking is at a very early stage, typically 

with crack sizes of the order of 0.2mm. 

2. When the cracking is developing, using a magnetic ink and magnetic field enhances 

the crack indications.  

3. The conventional MPI method would be useful for cracks above about 2mm in length 

(Note this does not necessarily mean that all cracks of 2mm length can be detected). 

4. Contrast paint assists by reducing the surface “noise” as well as enhancing the visibility 

of the crack 

5. The conventional high frequency eddy current probe is good for detection of small 

cracks, but cracks above 1-2mm in depth cannot be distinguished for depth. 

6. ACPD- it is suitable for crack depth measurements in individual locations but not for 

scanning 

7. EC – Detects large cracks but is unable to resolve crack details. 

8. PAUT is useful to detect the total depth of cracks when the depth has exceeded a 

certain value and this method does display the content of the volume inspected. 

However, the resolution of the method is not sufficiently fine to distinguish between 

cracks. The equipment used for PAUT is more difficult to set-up than the other tests. 

A skilled technician is required to carry out the tests. 

After selecting the appropriate NDT method to gather data (I.e in this case the USB 

microscope, with and without MPI). The next step is to setup a system for surface inspection, 

which is covered in the rest of the chapter. 

3.5 CAMERA SELECTION 

Selection of an appropriate camera is one of the vital steps in detecting and identifying defects 

in the components by using optical techniques. The USB microscope was initially selected for 

reasons of cost and portability. It was compared for optical performance with a higher quality 

optical microscope to ensure that it has sufficient optical quality. They were both used to test 

the same area of a rail axle containing cracks of the size which needed to be detected for early 

analysis of crack growth. A replica method was used to obtain samples for the optical 

microscope. The results showed that the USB microscope chosen had sufficient optical quality 

for the requirement. 
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The digital ( e.g USB) microscopy images enable features of operation and analysis that may 

not be available for conventional optical microscopy. They are assisted by dedicated software 

tools, and permit access to any detail through the computer monitor [122]. They offer modest 

magnifications (up to about 200×) without the need to use eyepieces, and at very low cost. 

Images can be recorded and stored using methods similar to a webcam on the computer. The 

camera is usually fitted with a light source, although extra sources (such as a fibre-optic light) 

can be used to highlight features of interest in the object. USB microscopes offer the great 

advantage of being much less bulky than a conventional stereo microscope so they can be 

used in the field, attached to a laptop computer. 

The important factors on the basis of which the camera was selected was minimum sensitivity 

required and the quality of the images within reasonable economics. From the sensitivity 

perspective, a microscope was needed that was able to extract initial phases of corrosion 

fatigue. Information required from the images is to be able detect flaws within corrosion which 

are around 0.3mm or greater in length as an input for the corrosion fatigue crack growth model. 

This capability can be seen in figure 3.18 showing Image-A885-L2 as an example. 

 

Figure 3-18 Crack (initiating from a pit) with length less than 1mm  

Although the camera is satisfactory from the resolution point of view it should be noted that 

the depth of focus is quite limited, which is important when imaging a curved surface, and the 

area of an image is only a few mm square, so a large surface requires many images. The 

impact of these limitations is discussed in more detail below. 
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3.5.1 Selected model   

The camera being used for the visual inspection of the defect is a microscope which includes 

an adjustable, polarized light source seen in figure 3.19. Reflection and glare are controlled 

by this advanced polarization feature. It makes this model the ideal choice when examining 

materials that are reflective or which generate glare such as metals. It is a USB type 

microscopic camera Dino-Lite AM4113ZT with the following specifications:  

 Magnification 10x- 60x, 200x  

 Polarizer  

 LED lighting  

 1.3 Megapixel resolutions – 1280 x 1024 pixels 

 Field of View (FOV) - 19.5 x 15.6mm at 20x to 1.8 x 1.4mm at 220x 

 Weight 105g  

 

 

 
Figure 3-19 Dino-Lite AM4113ZT USB microscope 

The microscope detected cracks of similar size to those detected by replica. The number of 

pixels in the optical microscope per unit distance was roughly three times higher than that in 

the USB microscope. Therefore at some level measurements of around 2μm the optical 

microscope will give more accuracy and detail than the USB microscope. However details of 

this level are not required as the cracks are usually much greater in length than this. Crack 

width measurements might be affected, although these are not usually used. Although it 

should be noted that in both cases, there is no direct comparison of the same crack (there are 

many cracks and it was impossible to identify them), it is clear that the maximum crack size 

ranges observed by both methods was very similar at each cyclic level. Therefore, it is 
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reasonable to conclude that any measurements of crack lengths will not be affected by using 

the device selected. 

3.5.2 Current upgraded model 

A more advanced and sophisticated version of the previously selected microscope was used 

in the mid stage of the project. The Edge series provide superior image quality and great 

flexibility in use for professional applications shown in figure 3.20. The high-quality optics 

provides a very sharp, bright and natural colour image with very low aberration and vignette. 

The adaptable and exchangeable caps provide for even more flexibility in use for all kinds of 

applications. By removing the end cap, the full range of magnification can be obtained or more 

working space can be achieved. A closed cap is included for protection of the lens in dusty 

environments or when working with liquids and a diffuser cap is supplied to spread the light 

on the object evenly. The features for the Dino-Lite Edge AM7115MZT USB microscope are 

as follows: 

 Magnification 20x- 220x  

 Polarizer  

 LED lighting  

 5 Megapixel resolutions - 2592 × 1944 pixels 

 Field of View (FOV) - 19.5 x 14.6mm at 20x to 1.8 x 1.3mm at 220x 

 Weight 140g 

 

 

Figure 3-20 Dino-Lite Edge AM7115MZT USB microscope 
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This camera delivers good image quality with an optical magnification power of 10x - 230x and 

with illumination flexibility options.  With an integrated cutting-edge optics, advanced 5MP 

sensor, and low-loss MJPEG compression, this camera provides incredibly crisp and fluent 

imaging with low power consumption. The innovative Flexible LED Control enables partial 

illumination to enhance edge contrast and provides intensity adjustment for better adaptability. 

It also has a built-on polarizer with it.  

3.5.3 Software installation 

The microscope is supplied with its own software called the Dino-Capture. The one which 

comes with latest edge model is the ‘Dino-Capture 2.0’. The Dino-Lite software allows the user 

to capture image of the inspected specimen then record the image or a video. It also provides 

features for measuring objects within the image according to the magnification given to the 

software.  

3.5.4 Future upgrade model 

A 3D camera for the future will be able to take in account the on-surface depth measurements 

of the defects as well. This will be useful for the API-579 assessment as one of the 

requirements of the standard is the depth of pits. The API discusses pipelines as a standard 

sample that has large scale and dimensions involved. The assessment is not based 

specifically for rail axles. 

3.5.5 Capabilities and challenges of the microscope 

The microscope is connected to a laptop via USB cable and can be controlled via the software 

on the laptop. The camera allows a live preview to be seen on the screen, to obtain a sharp 

focus when taking images, since the effects of changing the microscope focus control is 

immediately observable on screen. It could be used directly on the surface structure without 

any support. But it could also be used with some support like the scanner or the microscope 

holder. 

The magnification values have been studied in order to acquire the appropriate images. It will 

be interesting to use a higher magnification in order to observe whether other types of 

information will be available at that value of magnification. Cracks are detectable (visible) at 

two appropriate magnifications as seen in figure 3.21 showing the same flaw with two pictures, 

ImageA884-17 and ImageA885-17, to highlight the difference. This gives an option to choose 

between sensitivity and covered area. 
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Another camera with 3D capacity could be envisaged with different or higher specs 

nevertheless the USB microscope is sufficient for the work related to 2D images. The 

specification of the microscope enabled inspections with different lighting like UV and 

polarized. It was noted that the UV light was not the first choice however this light could have 

been optimized if special phosphorescent liquids were used. The quickest way to inspect the 

components was by using the polarized microscope which required only good cleaning.  

 

Figure 3-21 Example of same flaw captured at two different magnifications 

Some of the challenges of the data acquisition is that the data set is from real rail axle 

specimen. With this setup, especially when it involves data from on-site axles, the images 

acquired are not that straight forward to process which include the following problems to 

acquire a quality image. 

1. Uneven lighting causes a blotch of white shade as shown in figure 3.22, by using two 

pictures, ImageB409-16 and ImageB678-16, which then causes to effect on the results 

of image analysis based on thresholding method. 

 

Figure 3-22 Example of uneven lighting issue using two different images  
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2. Depth of focus limitation gives blurred images as shown in figure 3.23, by using two 

pictures, ImageC152-16 and ImageA832-17 

 

Figure 3-23 Example of restrictive depth of focus issue using two different images 

3. Due to the lack of variation in contrast, sometimes the flaws might be missed. MPI 

method can be used to enhance the cracks as shown in figure 3.24. It shows image 

ImageB079-17 with lack of contrast and then ImageB098-17 taken after applying MPI 

 

Figure 3-24 Example of lack of contrast issue and MPI method applied on it 

4. The surface roughness of the material might come across as a flaw, as can be seen 

in figure 3.25 using ImageC667-L1. But they are actually just some sketching marks 

on the surface. 

 

Figure 3-25 Example of rough surface of a material on a sample image  
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3.6  SCANNER IMPROVEMENT 

To make the data collection process more inclined towards automatic, a scanner or holder 

was required to hold the microscope. These parts are optional and are only to be used to 

support the microscope for improved data collection. 

3.6.1  Initial scenario 

Initially data was collected with holding the camera as a hand-held device as shown in figure 

3.26. This required a lot of laborious and steady work. As the sensitivity of the microscope is 

quite high, a slight bit of shake of the hands made a big difference, resulting in a distorted 

image. 

 

Figure 3-26 Setup of the data collection system without support 

Then a microscope stand holder was used in order to increase stability as there were many 

wasted blur images caused due to the shaky hands. The stand holder proved to be better than 

the hand-held method. But it still could not be used on the rail axle sample as it could not be 

rotated on the component. Apart from the fact that the system was nowhere near towards 

automatic data collection.  

There were a few other points to be considered in general. In order to see the growth of a 

specific pit through its stages, the pit position will need to be properly tracked on the 

component. This could be something where for each cycle on the bending testing, all images 

taken will be matched to a certain specific position on the component like by making markings 
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or using a transparent grid. One other consideration was to take images with correct 

orientation and alignment from both the vertical as well as horizontal sides.  

3.6.2  Manual chain scanner 

Mechanical scanner was used to improve data collection by making it more robust. The 

scanner consists of a number of small wheeled trolleys together with a screw attachment to 

hold on to the component with ease, for example an axle or a pipeline as shown in figure 3.27.  

 

Figure 3-27 Manual chain scanner along with the microscope and its holder 

This enables it to scan around and move along the component. The microscope could be 

attached with the scanner in two possible positions. One for axle body and the other for radii 

as shown in figure 3.28. 

 

Figure 3-28 Possible positions of the microscope on the component 
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This setup can be fastened on different sizes of the component since the wheels can be 

removed and the belt can be tightened around the component. This shows that it is able to be 

adjustable for wheel seat scan. The system setup can be seen in figure 3.29 with the support 

of a scanner along with the microscope holder. The microscope holder enables a more stable 

and accurate positioning and orientation of the microscope onto the specimen at different 

curvatures. The scanner has been tested during image acquisitions and has proven to be 

flexible and adaptable to different types of components and is modular. The microscope holder 

was also tested and was proven to be stable while acquiring the images.  

 

Figure 3-29 Setup of the data collection system along with a manual chain scanner 

 

3.6.3  Semi-automated scanner  

The first and far most benefit of using this scanner was that the acquisition method is semi-

automatic. It moves along length and around circumference. It has adjustable length to fit 

between seats from about 100mm to 1.5m. It also has an adjustable angle to enable 

microscope to point to wheel seats. Sketch design of the semi-automated scanner is shown 

in figure 3.30. 
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Figure 3-30 Sketch design of the semi-automated scanner 

 

The scanner was designed as to clamp directly on the axle as shown in figure 3.31. The motors 

enabled lateral motion in order to move along the axis of the scanner. Finally, the ring where 

the scanner sat rotates around the axis of the axle. The speed of motors was optimized in 

order to acquire a sequence of images along the circumference of the axis. The fingers could 

angle the probe in order to scan the radii on the axles. The position of where the camera will 

settle when using the scanner is depicted in figure 3.32. 

The sequence of the motor was programmed prior the validation tests; when the motor finished 

the sequence and stopped, the software would start the acquisition of data. A larger area could 

be covered with the scanner in comparison to manual testing. The collected data could then 

be post-processed. The amount of manual manipulation was reduced with the scanner. In 

addition, constant speed could be reached which allows constant acquisition of data. The 

addition of a microscope holder, the microscope was held steady during the tests. 

As to program scanning sequence, a control box was designed; different switches control the 

clamping motions, lateral movements and circumferential scanning. The control box was 

designed for the microscope to cover an area of 100mm2 per sec.  
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.  

Figure 3-31 Setup of the data collection system along with the automated scanner 

 

Figure 3-32 Position of where the camera settles when using the scanner  

Camera holder 
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Electric motor for 
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3.7  SURFACE PREPARATION MATERIAL 

The quality of surface preparation is critical since optical techniques are used to detect and 

identify the defects in the components. The success of visual inspection, with or without aids 

at detecting indications, relies highly on the surface condition and lighting arrangements. For 

this purpose, various chemical surface treatments were investigated by TWI in an earlier stage 

and the most efficient solution, in terms of being more reliable, effective and rapid, was 

chosen. Commercially available products were selected to facilitate on-site cleaning operation 

for the operator to account for the limitations of the on-site inspection. Hence, laboratory 

techniques such as ultrasonic cleaning or temperature assisted bath solutions that may be 

more effective and quicker were not considered. 

Rust is of high concern as they can compromise the results of the visual inspection by forming 

a thin layer of oxide on the surface and so the experiment was performed on a very heavily 

corroded steel plate. The chemical products compared were DE.SOLV.IT®, rust remover 

wipes supplied by Mykal; KURUST, water based rust converting primer supplied from 

Hammerite; and DEOX-C concentrated rust remover powder to be dissolved in water, rust 

remover solution but it is also available in gel and supplied by Bilt Hamber. The advantage of 

using liquid solutions is that they penetrate into any crevices and flaws which aid in removing 

corrosion completely. This is a big support when an inspection is done by optical techniques. 

 

Figure 3-33 Chemical rust remover and abrasives used 

The results show that Deox-C (20% concentrated) is the commercial product offering the 

highest performance between the three products initially tested. Note that in this case Deox-

C was in solution, and therefore might be difficult to apply for the inspector who is on-site. 

However, the same product can be found as a gel and as a consequence might be more 

appropriate to use on site. The advantage with the current liquid solution is that the 
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concentration can be modified according to the strength of the solution that is needed to 

remove the rust. This will not be possible with the gel. 

The selected chemical rust remover and the abrasives that can be used are shown in figure 

3.33 above. Following are the basic steps suggested to prepare the surface before running 

the software which are as follows: 

1. Use wire brush or other abrasives to remove excess rust on the surface. 

2. Apply Deox-C solution using a paint brush (20% concentrated) for 15 to 90 minutes 

depending on the level of rust present on the surface. To increase treatment speed, 

the solution sitting on the component surface should be renewed occasionally and rust 

which appears to be still attached to the surfaces can be brushed away. 

3. Remove the solution using lint-free cloth and rinse treated component surface with 

clean water and finally wait for the surface to dry after rinsing process. 

3.8  DATA SAMPLE TRIALS & TESTING 

Data collection is one of the most important steps in the project. The first step required is to 

find an appropriate sample for testing the image analysis tool, keeping the data specifications 

of the project in mind plus taking into account the stage of the software development.  

In the early stages it was necessary to devise set procedures and to know how the various 

features work with each other. Examples of these are: how to setup the camera, lighting, how 

to hold the camera at certain angles (for angled surfaces), how to gather flaw location 

information on the sample, and to be used as good input images by the analysis tool. For the 

initial first algorithm, a very simple and clear image, with either pits or cracks only, was required 

so that the working of the algorithm could be checked. There was a rail axle sample, but it was 

too heavily corroded and hence the pictures were not apt for the initial testing of the simple 

algorithm. Later in the project, data was collected from different real samples. The relevant 

features of these will be explained in the next chapter under data sets. Following are some of 

the samples that were used, to test the initial tool as well as to gain practice with the 

microscope. 

3.8.1  Sample 1: Real images 

These were real images of pitting and cracking on rail axles. These images were way too 

complicated for the initial stage of the algorithm though a couple of the images shown in figure 

3.34 and figure 3.35, did produce some sensible results. The detailed results will be shown in 

Chapter 5 but they still need to be verified by manual assessment by an experienced operator.  
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Figure 3-34 Sample of micro-cracks on an axle 

 

Figure 3-35 Sample 1: Pitting on an axle 

3.8.2  Sample 2: Standard images 

The next set of images that were used was from the industry API-579 standard. The algorithm 

worked well with these images. There are different levels and grades for pitting corrosion 

assessment, with figure 5.36 showing grade 1. The initial defect detection algorithm was tested 

on the API standard images from grade1 to grade 3. They were all verified using manual 

counting of the pits. 

 

Figure 3-36 Sample 2: Grade 1 pitting 
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3.8.3  Sample 3: Real image - Pipeline 

As the algorithm worked on sample 2, as shown in figure 3.36, the algorithm needed to be 

tested with some real images. For the initial experimentation, less pitted and simple images 

were required to be able to check that the algorithm was working. But the image acquisition 

has been a bit of a problem as the images have heavy pitting. 

For this a pipeline was used which seemed to be less pitted. But after cleaning the surface, it 

was seen that it was in fact very heavily pitted as seen in figure 3.37 so didn’t test with the 

software. Though some other images were taken from a simple steel block calliper but they 

were too shiny and scratched, as shown in figure 3.38 

 

 
Figure 3-37 Sample 3: Heavily corroded pitting on pipeline 

 
Figure 3-38 Sample 4: shiny and scratchy simple steel block calliper 
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3.8.4 Sample 4: Real image - Carbon steel block 

This time it was decided that the pits should be created by using a self-design so that the exact 

number of pits and the dimensions of each pits will be known already. For this to be made 

possible, some discussions were held with an operator familiar with pit assessment, and a 

researcher who is working on different methods of pit formation.  Firstly, two different designs 

were conceived; one was made with number of pits equal to six and the other with ten pits. 

Both had pits in different locations and a few different pit dimensions, which can be seen in 

figure 3.36. These patterns were used to test the accuracy of the algorithm. 

Some small 50mm by 50mm samples of carbon steel material were supplied, and a tape 

“mask” was made. The tape was selected and then holes were drilled in the chosen tape. The 

design part of the tape was kept on one side of the material and then the rest of the sample 

was covered with tape.  A solution of 3.5%Nacl solution was prepared, to serve as the 

corrosive environment for the exposed surface areas.  

First Method 

For the first method as shown in figure 3.39, a strong tape was used which was left dipped in 

the solution as seen in figure 3.40, but by the second day the water had started to leak through 

it which meant that it was not water-resistant. The methods which were decided after 

considering suggestions were unfortunately not that successful. The water started to leak 

inside through the tape as seen in figure 3.41.  

 

   

Figure 3-39 Pit formation Method 1 step 1 
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Figure 3-40 Pit formation Method 1 step2  

        

 

Figure 3-41 Pit formation Method 1 Outcome 

Second Method 

For the second method, water resistant tape was used. This was checked initially by making 

three simple holes using a needle. Then the material was tested by keeping the two holes on 

one side and then marking them. The markers seen in figure 3.42 are just for the indication 

of the location of the pin needle hole, and do not represent the size of it. This time an extra 

layer of protection for the edges with multiple layers of tape was made. After that it was left 

for exposure. However the tape also started to come off especially from the edges and through 

the holes. 
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Figure 3-42 Pit formation Method 2 along with its outcome 

Third Method 

For the third method, another way was devised by combining two materials, the water-

resistant tape and a lacquer solution. The same procedure as in the second method was 

followed but for the edges lacquer solution was used instead to make it less permeable. It 

was left dipped in 3.5%Nacl solution for two weeks. This experiment was more successful 

than the previous one as in this one, water didn’t leak in from everywhere but just a couple of 

loose areas. Finally some progress was made in experiments of pit formation as some parts 

were not corroded heavily as shown in figure 3.43. A few images of the sample were taken 

with an optical microscope, shown in figure 3.44. This technique is also mentioned by [2]  in 

a journal discussing varied methods on developing corrosion pits. 
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Figure 3-43 Pit formation Method 3 steps 

The results showed the initiation of pit formation as shown in figure 3.44 below. 

 

Figure 3-44 Pit formation Method 3 outcome on a sample 

3.8.5 Sample 5: Real image – Rail axle 
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This sample has less corrosion on it, hence it was most suitable for the project. It will be able 

to capture different stages from early pitting to cracks. This specific sample proved to be is 

one of the major portions in the database hence it is discussed in more detail’ in chapter 4. 

The setup of the experiment is shown in figure 3.45. 

 

Figure 3-45 Pit formation Method 4 set up 

The data collection system started to indicate some progress by working with real images. It 

shows a few pit formations in the early stages and the size can be seen by the scaled image 

in figure 3.46. 

 

Figure 3-46 Pit formation Method 4 outcome of a sample 
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3.9 DATA COLLECTION SYSTEM SETUP  

For the initial system setup, as a one off, there were a few necessary materials and equipment 

requirements. They were needed to be selected appropriately, keeping the requirements of 

the project goal in perspective. 

• Suitable camera was selected in order to take microscopic flaw images. 

• Scanner was designed and selected that can hold the camera at a specific distance 

and can rotate around the axle. 

• Sample pits were designed to experiment with the initial simple detection system. 

• Cleaning product was chosen, as the surface of the sample needs to be prepared. 

 

Once all of the above selections and upgrades were done then it was required to setup an 

image acquisition system, combining all these selected components together. Then there are 

a few operational pre-requisites that are required prior to the data collection each time. For 

the inspection of defects, the operating procedure, as shown in figure 3.47 consists of a few 

simple steps which are explained in the following sub-sections in detail.  

 

 

Figure 3-47 Devised operational protocol for data collection system 

3.9.1 Clean the sample 

This step is needed to capture exploitable images. In some cases, the component is covered 

in a layer of rust which needs removing in order to observe the presence of cracking and 

pitting. For rust removing, a chemical rust remover in the form of a gel is used due to its 

practicality and efficiency as discussed in section 3.5 earlier. The layer of product applied onto 

the specimen should be around 5mm thick in order to remove a sufficient amount of rust. It is 

then kept on the component for at least an hour in order for the cleaning process to be fully 

carried out. If the component is heavily rusted then it can be left overnight. But the gel could 

get hardened on the component. It is better to keep the component lubricated by moving the 

gel with a brush. Following the application of the rust remover, the area needs to be rinsed 

properly in order to get rid of the residue left by the reaction between the chemical and the 

rust.  

 



Chapter 3-System design and Setup 

Juvaria Syeda: Doctoral Thesis    103 
 

3.9.2 Check live preview 

Once the sample is cleaned and ready for collection, the microscope can be attached to the 

laptop via a USB cable. A live preview can be seen on the laptop screen, to check and ensure 

the connection between the microscope and the laptop.  When the sample area is visible on 

the screen, it makes taking images much easier. As the effects of changing the microscope 

focus control is immediately observable on screen. This helps in taking images of correct 

orientation as the image will seem tilted otherwise. 

3.9.3 Assemble the scanner 

If the manual scanner needs to be used, then the links need to be assembled according to the 

diameter of the component. The microscope is placed onto the holder and its position is 

adjusted such that the microscope touches the surface of the component. It should be put as 

close as possible to the surface in order to obtain images at high magnification with 

appropriate resolution. The semi-automatic scanner also requires a bit of setup too. 

3.9.4 Adjust the microscope settings 

Before taking the images, it is important to note the microscope's settings such as the 

magnification (indicated on the laptop screen as well as on the knob of the microscope), and 

the location of the microscope on the component. It is also required to adjust the polariser of 

the microscope which would help with better lightning. Finally, pictures can be taken with the 

microscope's software in order to keep a record of any anomalies encountered during the 

inspection. The image number should be noted systematically, correlated with the location of 

the microscope on the axle, to keep a note of the image location on the sample. Comparing 

different cycle’s flaw data throughout the experiment, can help keep a track on the growth of 

the pits or cracks. 

3.9.5 Data setup system 

The setup used for the image acquisition consists of three major components which includes; 

laptop with the software installed, microscope attached to the laptop via the USB port cable 

and, if required, the microscope holder with or without the scanner. The simple system setup 

without any support can be seen in figure 3.48 and system setup with a manual chain scanner 

can be seen in figure 3.49. 
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Figure 3-48 Setup of the data collection system without support 

 

 

Figure 3-49 Setup pf the data collection system with manual scanner 

 

This system needed to be improved during the project as discussed earlier, in order to 

enhance the image acquisition process. Hence the system for data collection has been greatly 

improvised and an updated scanner has been designed to take automatic images, where the 

microscope sits on a designed holder, as shown in figure 3.51. To acquire better contrast 

images, MPI may be performed on the sample, especially to detect cracks as discussed 

earlier. 

To communicate between microscope and matlab, an interface was used which is shown in 

Figure 3.50. This enabled more control on the speed of data acquisition with reference to the 

scanner movement. It collects videos from the microscope directly and stores the data in the 
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specified selected folder. This is an optional tool as data can be collected directly from the 

microscope as well. 

 

Figure 3-50 Data collection communication interface 

 
Figure 3-51 New data collection system setup with automatic scanner 

 

The above setup enables communication with the microscope and collects data. The data is 

collected as video and converted in image format later on. Images are then post-processed 

with embedded algorithms to highlight specific features.  

3.10 INITIAL LAYOUT OF DETECTION SYSTEM 

The development of an automatic detecting system is becoming a major requirement 

nowadays as it helps to manage resources more efficiently. For this project, the data acquired 
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is extremely big for which computers are crucial, as large data sets require a lot of complex 

computations and extraction of quantitative information. Hence, a system architecture was 

needed to be designed that could depict the different stages of the DDS (defect detection 

system).  

The description of a solution is also called a design [123]. It has also been argued that the 

combination of both conceptual and technical design, is the software design process [124]. 

Hence it is really important to think it through in the early stages. The design is then 

implemented and tested and if it doesn’t work then another solution is suggested. The main 

design framework of the project contains four stages; Data acquisition, Image pre-processing, 

Feature extraction and Classification as indicated in figure 3.52.  

 

Figure 3-52 Basic stages in the detection system 

Once the system has been setup, data has been collected then the images are passed into 

an image analysis system. The first part will include processing the images and finding the 

key areas-of-interest along with the flaw dimensions. The second part will include image 

segmentation based on key features for pits and cracks by using machine learning techniques 

and/or deep learning neural network. This system may be called the automatic defect 

detection system (ADDS). 

Image analysis is meaningful when information is obtained from digital images using digital 

image processing techniques. This involves processing an image into some basic elements in 

order to extract useful statistical data. It can include tasks such as de-blurring, correcting 

perspective distortion, finding shapes, detecting edges, removing noise, feature extraction, 

counting objects, and measuring region and image properties of an object. It is a broad term 

that includes a range of techniques that generally fit into these subcategories: Image 

enhancement to remove noise, image segmentation to isolate regions and objects of interest, 

Morphological filtering to remove more noise, Region/Feature analysis to extract statistical 
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data. In order to develop an advanced image analysis system, there are several steps to be 

taken, including: 

1. Collection/acquisition of Data: The data collected currently consists of 2D images by 

using a 200 magnification microscopic camera. Other possibilities will be reviewed. These 

could be used with two lights; LED lights to brighten the dark objects and UV lights. The 

material of rail axle and pipelines is carbon steel for example A1N and A4T.  

2. Standard API: The Standard API 579-1 part 6 is going to be followed for the procedure 

used in Non-Destructive Testing for the pits in the pipelines. 

3. Image pre-conditioning: Digital images are prone to a variety of types of noise. In the 

pre-conditioning phase, noise will be defined. Then several ways will be used in order to 

remove the noise such as: Linear Filtering, Median Filtering, Adaptive Filtering or 

Morphological filtering. 

4. Image enhancements include methods like edge detection, image enhancement, etc. 

Edge detection is the name for a set of mathematical methods that aim at identifying points 

in a digital image at which the image brightness changes sharply or, more formally, has 

discontinuities. The points at which image brightness changes sharply are typically 

organized into a set of curved line segments termed edges. Some of the Edge detection 

methods are; Roberts, Prewitt, Sobel and Canny. 

5. Image segmentation: Image segmentation is the process of dividing an image into 

multiple parts. This is typically used to identify objects or other relevant information in 

digital images. There are many different ways to perform image segmentation, including: 

Thresholding methods such as Otsu and Histogram; Clustering methods such as Fuzzy 

(FCM) or K-means; Transform methods such as watershed segmentation, Texture 

methods such as texture filters. 

6. Pattern recognition methods: A deep learning (DL) technique is a class of machine 

learning techniques that models hierarchical abstractions in input data with the help of 

multiple hidden layers. Machine learning methods are based on learning representations 

of data. For example, an image can be represented in many different ways but some 

representations are better than others at simplifying the learning task. Research in this 

area attempts to make better representations and create models to learn these 

representations that are loosely based on the working of a human brain. They are good at 

recognizing patterns so it may be possible to classify cracked and non-cracked images as 

well as pits or non-pitted directly from the original images by using Artificial Neural Network 

http://uk.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html?prodcode=IP&language=en
http://uk.mathworks.com/help/images/examples/texture-segmentation-using-texture-filters.html
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(ANN). However, the method using only ANN without image processing will require more 

computation time, since the training images have so much information. Thus, it is required 

to include the image processing before applying ANN step in order to develop an effective 

process. 

3.10.1 Image Pre-processing  

Image pre-processing is concerned with preparing the image data for the main processing 

tasks, and will typically include restoring the effects of corruptions that have occurred during 

the acquisition or transmission of the images, reformatting the image data, and then enhancing 

the quality of the image for visual inspection and interpretation or and to segmentation of 

regions and objects in an image on the basis of similarity criteria that permit features to be 

extracted for interpretation and classification tasks. [125]  

Grey-scale conversion: This is relatively straightforward and involves converting a true colour 

image, which has Red, Green, and Blue values for each pixel, and converts these to a grey-

scale value, by eliminating the hue and saturation information while retaining the luminance. 

An example of a converted image is shown in figure 3.53 below. 

  

Figure 3-53 Image pre-processing step of conversion to grey-scale 

Image enhancement: Improving the quality of the image for visual inspection and interpretation 

is the main goal of this task. This is particularly important for such images that tend to be 

complex and noisy, and interpretation of region or features that are important or of interest are 

enhanced for display or subsequent analysis [83] [126]. The histogram equalisation was 

performed for visual inspection only. Some image enhancement techniques that are 

appropriate have been displayed below.  
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Histogram Equalisation: This is one of several contrast changing operations and effectively 

spreads out the grey-level values along the total range of values in order to achieve higher 

contrast [69]. This is especially useful when an image has low contrast because of a small 

range of grey-level values, such that the background and foreground are bright at the same 

time, or else both are dark at the same time. Histogram equalisation involves constructing a 

histogram showing the distribution of grey-level values in an image. 

Noise reduction: Images often get corrupted during the image acquisition or transmission [74]. 

It is an extremely important step to remove or reduce such noises in many applications 

because the performance of succeeding image processing tasks will depend on the data being 

uncorrupted as possible. The images get corrupted by noise when some of the pixels of the 

original image are replaced with new pixels having luminance values near or equal to the 

minimum or maximum of the allowable dynamic luminance range. In order to smooth the 

image there are three common techniques mean filter, Gaussian (low pass) filter, and median 

filter. All three use data from the neighbourhood of a pixel to generate the new pixel value 

which leads to the images becoming smoother and less noisy. But using this technique has a 

consequence that makes the image less sharp and blurred.  

The mean filter simply replaces a pixel grey-value by the average value over its 

neighbourhood. Gaussian filter is similar to the mean filter, the difference being that the grey-

level values of the pixels in the neighbourhood are weighted according to their distance from 

the centre of the neighbourhood. The weights follow the standard Gaussian distribution. 

Median filtering is quite popular because, for certain types of random noise, it provides 

excellent noise-reduction capabilities, with considerably less blurring than for the other 

techniques for a similar size of neighbourhood. The median filter replaces the grey-level value 

of the pixel at the centre of a neighbourhood by the median of the grey-levels of the pixels in 

the neighbourhood, it is basically a non-linear filter to achieve good result in many Image 

Processing applications [64]. Median filters are particularly effective in the presence of impulse 

noise, because of its appearance as white and black dots superimposed on an image. 

Image segmentation: The edge-detectors that are commonly mentioned in the research are 

Prewitt, Sobel, Roberts and Canny. They are the most popularly used segmentation methods 

as they give fast and effective results depending on the desired goal. Different methods are 

applied for different applications and produce better results accordingly. An example of 

‘Canny’ method, as it is one of the most powerful operators, is shown below in figure 3.54 to 

display the effect and importance of this step on an image. 
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Figure 3-54 Canny operator being performed for image processing 

3.10.2 Feature Extraction 

Feature extraction is classified into the structural and textural features. The defects like pits 

and cracks do not have a well-defined structure. Pits may be more well-defined structurally so 

they can be defined by their area so for research purposes pits are taken as semi-elliptical 

shape objects while cracks as vertical thin lines (on rail axles, cracks tend to grow 

circumferentially and therefore the camera can be oriented to show these as vertical lines).  

Further research will be done on the morphology of the defects to be able to identify and 

classify them more accurately.  These defects are more identifiable through the difference in 

their colour and texture so more emphasis will be taken to extract these kinds of features in 

specific. So there could be three main features for the classifiers to be considered such as the 

morphology may be vertical thin straight lines for cracks and semi-elliptical shape for pits; 

colour on the basis that the defects will be darker than the background region; and texture 

needs to be explored further like they might be a fixed pattern of either the defect or the surface 

material which could be extracted. Some of the popular features that are extracted for image 

processing are as follows:  

Area means: The area measures are appropriate for images containing segmented regions 

and can be derived directly from the boundary by filling in the region defined by the boundary 

and then counting the number of pixels in the region. 

Grey-scale Histogram descriptors: These descriptors give measures of the distribution of grey-

level values in a segmented region, or the whole image, and can be visualised as related to 

the shape of a gray-scale histogram for the grey-level value. The main descriptors are the 

mean, standard deviation, dispersion, mean square value or average energy, entropy, 

skewness and kurtosis [88]. 
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Low spatial frequency components: The previous feature extraction techniques have been 

concerned with deriving grey-scale and spatial descriptors from the image. An alternative 

representation of the image data is the spatial frequency structure. In this representation, large 

low frequency components indicate the presence of larger structures in the image, while the 

high frequencies are related to the fines details and noise content of the image.  

The most popular transform in Image Processing applications is probably the Discrete Cosine 

Transform (DCT) because they are fast algorithms, and dedicated hardware, to compute 

DCTs and only a small number of coefficients are used the DCT-based approach to image 

recognition is extremely fast compared to other methods [127]. The DCT frequency 

components have also been used by other researchers for feature representation [128]. 

3.10.3 Classification 

This section introduces the general framework of the ANNs on the basis of which the next 

stage of the project will be designed. The basic terminologies have been discussed in the 

literature studies. This section will discuss the summary of the whole process and the some 

of the design issues to be considered. 

ANNs are computer-based mathematical structures, which have their origins in biological 

Neural Networks. The artificial neurons are set in layers and interconnected with each other 

with weights, and this enables the ANN to process non-linear statistical data and model 

complex relationships between inputs and outputs. ANNs are generally considered a ‘black 

box’ approach to pattern analysis and classification since the model parameters are hard to 

interpret in terms of physical meaning [15].  

Concept of programming by example or training is a very important property of the ANNs. The 

large number of weights between the nodes makes it difficult to pre-set them to obtain the 

correct result. Instead, the ANN is programmed using training data, and in the case of 

supervised learning, the correct target classification for the training data. Each time an input 

is presented, the network computes the output on the basis of the current weights, and then 

adjusts these systematically by an amount dependant on the difference between the output 

and the target output. This learning process continues iteratively until the ANN outputs value 

equal or close to the target, depending on the application [14]. 

Feed-forward Back-propagation ANNs are the most extensively used network to solve 

different kinds of problems across a varied area of applications [129]. ANN is capable of 

obtaining a new structure of internal connections that is appropriate for solving a determined 

task. Each layer is fully connected to the succeeding layer with weights, and input data Feeds-
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Forward to the hidden layer and then the output layer. This architecture is commonly known 

as a Multi-Layered Perceptron (MLP), where the term multi-layered perceptron is used for 

networks which consist of an input layer, one or more hidden layers and an output layer. The 

output of the network is determined by the activation of the units in the output layer. The choice 

of choosing the activation function is one of the design decisions. Majority of ANN’s use the 

sigmoid function as it is smooth, continuous, and monotonically increasing (derivative is 

always positive). Also, the sigmoid units bear a greater resemblance to real neurons than 

linear or threshold units. 

The Back-Propagation aspect of this architecture refers to the procedure used to adjust the 

values of each node’s weights during each iteration, until the training data generates the target 

outputs. In essence, the error between the ANN output and the target is propagated 

backwards through the ANN with the values of output layer nodes’ weights being adjusted by 

an amount dependant on the size of the error, and often the gradient of the error (i.e., how 

quickly the error is being reduced at each iteration, the followed by the weight of the nodes in 

the hidden layer. As the architecture of this type of ANN involves many layers of nodes, 

consideration needs to be given to the number of hidden layers, and the number of nodes in 

the inputs layer, hidden layers, and output layer.  

There is no theoretical limit on the number of hidden layers, most Pattern Recognition 

applications achieve very good classifications with 1 or 2 hidden layers, and extra layers tend 

not to improve the classification accuracy and incur large computation times. Some work has 

been done which indicates that a maximum of three hidden layers are required to solve 

problems of any complexity. The universal approximation theorem states that an Artificial 

Neural Network with one hidden layer can approximate any function with any desired 

accuracy, provided that it has enough neurons in the hidden layer and that the activation 

functions of the neurons are non-linear. However, for some functions the number of neurons 

needed in the hidden layer can be very large or even infinite.  

The number of nodes in the input layer is effectively set by the number of input features that 

are being used for classification. Increasing the number of features can be beneficial, as the 

cost of increasing computing time, does not always lead to more accurate classifications, as 

the features may not be completely independent, or may actually be representing more  

There are many techniques used to determine the optimal number of neurons in a hidden 

layer of an ANN. Some techniques try to increase and decrease the number of neurons and 

connections dynamically during the learning process, while other approaches use statically 

ANNs, with a different number of neurons each time. There is no easy way to determine the 

optimal number of hidden nodes without training using a range of numbers of hidden nodes 
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and checking the classification accuracy achieved with each, remembering that too many 

nodes cause training to diverge, or lead to over fitting.  

The number of nodes in the output layer is effectively set by the number of different output 

classification required. This is dependent on the design of the previous layers; normally it is a 

low number. 

3.11 IMAGE ANALYSIS FRAMEWORKS 

Advancement in the field of machine learning implicates to deal and tackle with immense 

amounts of data for training, learning and testing the systems, especially when dealing with 

image and video datasets. Graphical processing unit (GPU) is essential for running large 

machine learning frameworks plus memory and space requirements increase when dealing 

with images as compared to normal datasets. It is worth noting that all these DL frameworks 

are undergoing constant development with active contributions from researchers and the 

open-source community, and therefore the study results and conclusions from the reported 

comparative studies may have changed. 

3.11.1 MATLAB 

It is a high performance language yet very easy to use and has an extensive set of useful in-

built functions [10] for image processing specifically called the Image Processing Toolbox. 

With MATLAB and the IP toolbox combined together, image-processing operations can be 

written in a more compact and clear manner, thus providing an ideal software prototyping 

environment for the solution of image processing problems.  

For deep learning purposes, it provides a toolbox, Deep Learning Toolbox. with which only 

simple commands are needed to create and interconnect layers of deep neural network. It 

includes many examples for implementation as well as pre-trained networks. It allows to import 

pre-trained networks from ONNX, TensorFlow-Keras, and Caffe into MATLAB. Tools like 

Image labeller have been introduced last year which helps to label the data in an easier way. 

It also has an ‘ImageDataStore’ function that can be used to import data from image collections 

that are too large to fit in memory.  

3.11.2 Nvidia CUDA graphics card 

GPUs is a requirement for big machine learning frameworks [130]. The reason is that massive 

datasets are used for training, learning and testing such systems. Especially with the use of 

image and video datasets, the specification requirement increases quite high as compared to 

normal datasets. With the CUDA technology developed by Nvidia, it allows parallel computing, 
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utilizing the processing power of video cards, which can increase computation speed 

dramatically. As neural networks are inherently parallel algorithms, taking advantage of the 

ability of GPUs to perform a large number of calculations in parallel allows training of networks 

with good performance.  

Google has been working on tensor processing unit (TPU) since 2016, as a proprietary, non-

commercial artificial intelligence (AI) accelerator application-specific integrated specific circuit 

(ASIC). It is a chip specifically designed to work with and accelerate TensorFlow computations. 

There are other cloud computing solutions available for deep learning offered as a service by 

companies like Microzosft (Azure), Amazon (AWS), Google (AutoML Vision), and so on. One 

could also “rent GPUs in the Cloud” from these companies for training their deep learning 

models. 

3.11.3 Cluster computing 

This facility allows to run analyses requiring significant computational resources in a batch 

environment but it is not suitable for software requiring user interaction or a graphical user 

interface. It is configured to provide a single ‘head node’ and 20 ‘worker nodes’. The head 

node provides 8 cores and is intended for job management. Each worker node consists of 24 

cores with 512GB RAM.  

The SLURM workload manager is used to manage the worker nodes and the remote execution 

of individual analyses. But the users are not able to directly connect to the worker nodes, 

instead jobs are submitted to a queue and are distributed to worker nodes by the Slurm 

workload manger. When cores become available on worker nodes, Slurm selects the highest 

priority job from the queue that will fit within the available resources. The priority of individual 

jobs is based on the users’ base priority and the number of jobs they have recently submitted. 

Each analysis must have a batch script file. The file contains information about the job such 

as what executable to run, the number of cores required, and any other information required 

for Slurm to manage the analysis. Typically all files required by an analysis, along with the 

batch script file, are placed in the same directory. Then a terminal connection is opened, 

change the working directory to the directory where the files are located, then submit job to 

the queue using the sbatch command. In order for it to work, Matlab was needed to be installed 

and re-scripting had to be done according to the slurm requirements. 

3.11.4 Caffe 

It was developed at the Berkeley AI Research (BAIR) center and the Berkeley Vision and 

Learning Center (BVLC) at the University of California, Berkeley with “expression, speed, and 



Chapter 3-System design and Setup 

Juvaria Syeda: Doctoral Thesis    115 
 

modularity in mind” [130]. It is considered to be an easy-to-deploy production platform 

developed exclusively for DL-based computer vision systems and is believed to be one of the 

fastest ConvNet or CNN implementations available with an ability to process over 60 million 

images per day. 

3.11.5 TensorFlow 

TensorFlow, originally developed by researchers and engineers working on the Google Brain 

Team, is a platform-independent open source library that uses data flow graphs for numerical 

computation and is mainly designed for developing and implementing deep neural network 

models [131]. One major advantage of TensorFlow that vastly increased its popularity among 

DL researchers and companies is its ability to deploy computation to one or more CPUs/GPUs 

on a variety of systems and devices through a single application programming interface (API). 

Based on a comparative study of Theano, Torch, Neon, and TensorFlow DL frameworks, [132] 

concluded that TensorFlow, although a very flexible framework, is not as competitive as other 

studied frameworks in terms of its performance on a single GPU.  

3.11.6 Keras 

Keras is a high-level Python DL library and API capable of running on top of TensorFlow, 

CNTK, or Theano as the backend. It is well known, among both budding DL researchers and 

experienced ones, for its ease-of-use (minimal programming) and ability to allow fast 

prototyping. Like other open-source DL software frameworks, Keras is built on the guiding 

principles of user-friendliness, modularity, and extensibility. 

3.11.7 Conclusion 

The programming language chosen for the project implementation is MATLAB. The image 

processing and deep learning toolbox are useful tools for the project.  

Python and tensorFlow were applied for deep learning unet classifier model in order to 

compare with matlab time efficiency. Also used slurm through WinScp and Putty for cluster 

computing tasks to improve the training runtime of the models.  

Nvidia GTX970 graphics card with 8GB of RAM is used for the network training. Experiments 

were performed using MATLAB, and ran on the same Nvidia graphics card. This work had to 

face delimitations of RAM and GPU. Later on in the project, a cluster was setup as the desktop 

kept on crashing or giving memory error as the data involved is massive. An  
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This project has been run and tested on the Mac platforms and Windows operating systems 

that have MATLAB installed.  

3.12  CHAPTER SUMMARY 

This chapter discusses methods and materials to setup the data collection system. For early 

research stage different viable and existing NDT techniques were explored in order to 

establish the best possible method and procedure for detection of pits and micro-cracks within 

corrosion. The existing NDT method is a visual examination (possibly with a photographic 

record) and then manual counting and pit assessment. After the investigations, it was 

concluded that the data will be gathered by using microscopic visual inspection NDT technique 

with/without MPI.  

After selecting the appropriate NDT method to gather data, the next step was to setup a 

system for surface inspection. It discusses full details of the chosen methods of data collection 

by also giving reasons as to why the specific method was selected. Listed all the pre-requisites 

of the software experiment that need to be done before running it through the image analysis 

tool. It consists of all the steps taken such as sample selection, thorough sample preparation, 

appropriate camera selection and proper hardware setup. The main architecture of the project 

design is presented in this chapter. It also discusses existing frameworks that are used when 

dealing with image analysis that include MATLAB and TensorFlow.  

In the next chapter, data sites and labelling will be discussed in length, including specific 

requirements for ground truth and metrics that will be used for evaluating the system based 

on ground truth.
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4   Chapter 4 

Data Creation and Ground truth labelling 
 

 

Image collection is the first and foremost step of the defect detection system. 

It discusses the diversity of the database from multiple sources explaining in 

detail about the data origin. It also includes creating a ground truth database 

which is essential in order to analyse the performance of the algorithms. This 

is the first main contribution as there are no existing pixel-wise labelled 

database for a microscopic pit data from rail axles.  
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4.1 INTRODUCTION 

This chapter discusses the acquired and labelled data which is the first main contribution as 

there are no existing pixel-wise labelled database for a microscopic pit data from rail axles as 

per knowledge. After discussing the data collection design, setup and protocols in the previous 

chapter, this one focuses on the data itself. It explains the data origin giving details about the 

experimental setup, observations and findings of the data source. This gives a clear picture of 

the data acquired with full details. Once the images have been collected, they need to be 

labelled for quantitative evaluation as well as for training supervised models. In order to 

achieve a diverse and in-depth database for the defect detection system,  

• Planned experiments throughout to acquire data from multiple sources (4.2) 

• Started with laboratory trials conducted at TWI (4.3) 

• Then prepared for workshop investigations with experts in Polimi (4.4) 

• Performed validation trials on site 1 (4.5) 

• Carried out Inspection on site 2 (4.6) 

• Decided cut-off value based on workshop investigations (4.7) 

• Devised a labelling procedure (4.7) 

• Labelled the data which is also known as ground truth (4.7) 

• Created database consisting of data images and their labelled images (4.8) 

• Made selection about machine learning and deep learning models being multi-class or 

multi-label (4.9) 

• Considered important indicators to evaluate the performance of detection system. 

They are based on computational comparisons between processed/predicted image 

vs the ground truth giving quantitative performance results (4.10) 

Once all the material and equipment have been setup, and the main architecture of the defect 

detection system (DDS) has been decided, as discussed in the previous chapter, an image 

database is required for image analysis for the DDS. In order to do that, data needs to be 

collected either in the form of images or videos. Multiple sources of data have been included 

to give more depth and diversity to the database.  

 

Figure 4-1 Basic framework of detection system 
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As can be seen in figure 4.1, image collection is the input to the detection system hence the 

images collected are needed to be carefully acquired. Data creation, collection (plus 

improvement) of 3000 plus images and labelling for pixel-wise pit data set of 141 million data 

points (attained from 115 images) and 100 image-wise classification has been acquired. Later 

on, this chapter describes the data labelling requirements and procedure. One of the biggest 

challenges of the project was to label the data. It requires a lot of the expert’s time in order to 

label each and every micro-flaw with so much detail and correctness. It is a subjective matter 

even among the experts, highly time consuming and often really complex. Hence a set of 115 

images were chosen that best represented the whole dataset including varied sources and 

components, mixed lighting conditions, density coverage on the image, number of flaws 

present and sizes of the flaw. A cut-off size was needed to be determined as illustrated by 

figure 4.2. 

 

Figure 4-2 Showing varied cut-off thresholds of the flaw size to be detected 

Labelling procedure was devised in order to create ground truth as shown in figure 4.3 and 

figure 4.4. This labelled data is used for measuring the performance of the DDS, which is 

discussed in the end of this chapter. 

 

 

Figure 4-3 Showing the labelling procedure of the ground truth illustrated with an example 

 

 
Figure 4-4 Showing an illustration of the ground truth after labelling on sample images 
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4.2 DATA SOURCES 

Real data is of crucial importance especially if there is a specifically aimed industry problem 

that needs to be solved. When computer-aided data (images) are created and used in such 

cases, they do not tend to cover the limitations of the real-life scenarios of the problem. Hence, 

even if some of the results in the existing literature research might show promise, they still 

remain theoretical in value. Pits that are formed under controlled environment are more well-

defined and hence easier for the analysis to be conducted on them. While the real sample 

images deal with effects such as environment, grinding marks, scratches and other such 

factors. Hence, in comparison there are more complexities to deal with and therefore relatively 

more challenges to be analysed. As the thesis presented here is part of the industry-led RAAI 

project as an application, it was necessary to collect real data as a requirement. But also 

because there are no datasets available of such specifications.  

For classification purposes especially intelligent classifiers, the more data acquired, the better, 

as this increases the depth as well as the confidence of the database. Similar kinds of data 

can increase the confidence level of the database, while gathering it from different samples 

gives more depth and diversity to the database. Therefore a considerable amount of work was 

carried out on acquiring the knowledge of the flaws to be detected, how to measure them and 

how to improve the data collection system. This of course also required knowledge of the 

failure mechanisms resulting from the incipient flaws. 

As discussed in the previous chapter, the microscope was upgraded to improve image 

resolution and quality, and also the scanner was automated to improve data handling and 

ensure 100% coverage. This chapter is all about creating and improving the database. The 

next chapters are about making improvements to the image analysis system to speed up from 

manual analysis which will be discussed in the later chapters of the thesis. All images are 

taken with due courtesy of TWI Cambridge. Initially, there was more focus to capture pit 

images, as this represents the earlier stage in the corrosion fatigue process.  

The next four sections discuss the datasets gathered from different sites and samples; 

entailing the setup, observation and findings. The data sources include the trials at TWI, 

investigations in co-operation with Applied Inspection Ltd at two site locations and the 

validation at Politecnico de Milano. 

4.3 LABORATORY TRIALS AT TWI 

The test samples were two cracks developed in central radii by corrosion fatigue in an axle at 

TWI by applying 3-point bending test. The objective was to observe cracks generated by 
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corrosion fatigue. A water circulation system was put in place in order to ensure corrosion on 

the axle. When the tests were interrupted, the water system was stopped in order to allow 

clearance and image clarity for the microscope tests. 

4.3.1 Setup 

 

Figure 4-5 Axle set-up on fatigue rig and water circulation for lab collected data 

Figure 4.5 and Figure 4.6 display the tests carried out on the axle. The tests were carried out 

on the 6 o’clock and 12 o’clock positions for the axle.  

 

Figure 4-6 Location of the strain gauges for the lab tests 

The tests were carried out throughout the fatigue tests and contained cracks at two sites, one 

large one resulting from the coalescence of a series of cracks, and many micro-cracks which 

had not propagated. This testing carried on for several months. There were a few testing 

issues with the axle:  

• Water flow difficult to control – uneven corrosion 

• Limited access to crack area (under rig) made inspection difficult during test 

• Use of manual scanner made position of camera difficult to reproduce 
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• Limited scanned area for images meant sometimes there was no overlap, even 

while scanning in 5mm grid. 

• 3 point bend is not truly representative of axle fatigue  

4.3.2 Observations 

Images from previous cycles were stitched together to match the area of the crack locations 

to locate the earlier development of these cracks. To note the axial position of the flaw on the 

component, tracks were alphabetized from track A to track E. 

 

Figure 4-7 Sample axle that needs to have track markings to monitor flaw positions 

1st crack at 12 o’clock 

The tests were interrupted at regular intervals of 10000 or 25000 cycles in order to monitor 

the crack initiation and crack propagation as shown in table 4.1. The crack size shown is equal 

to the length of the crack times the depth of the crack. 

Table 4-1 Lab data Bending testing log for 1st crack at 12 o’clock 

Stop 
No. 

Date 
Load 
min. 
(kN) 

Load 
max. 
(kN) 

Cycles Status 
Crack 
size 
(mm) 

0 19/10/2016 38 380                   -   Test Start - 

1 23/10/2016 38 380       250,000 
Stopped for crack 

checking, no crack 
- 

2 30/10/2016 38 380       500,000 
Stopped for crack 

checking, no crack 
- 

3 04/11/2016 38 380       750,000 
Stopped for crack 

checking, no crack 
- 

4 07/11/2016 38 380    1,000,000 

Stopped for crack 

checking, no crack; load 

range increased to 

20kN-450kN 

- 

5 13/11/2016 20 450    1,250,000 
Stopped for crack 

checking, no crack 
- 



Chapter 4 – Data Creation and Ground Truth Labelling 

Juvaria Syeda: Doctoral Thesis    123 
 

6 20/11/2016 20 450    1,406,118 
Position limit triggered, 

no crack 
- 

7 25/11/2016 20 450    1,750,000 

Stopped for crack 

checking, crack initiation 

found at the transition 

part 

? 

8 04/12/2016 20 450    2,137,567 
Stopped for crack 

checking 
? 

9 12/12/2016 20 450    2,187,567 

Stopped for crack 

checking, crack depth 

reach 2mm, test 

terminated 

(30 to 

40) x 2 

 

A crack of around 1mm can be seen in figure 4.8 showing example Image B403-2016 after 

1250Kcycles, at the 5th iteration, where the load was increased after 1M. There is a magnified 

image of the crack shown along the side. The crack was traced in track B from checking the 

data log book. 

   

Figure 4-8 Image of 1st crack at 12 o’clock at 5th iteration 

 

The frame images, along the duration of the test for this particular flaw, can be seen in figures 

4.9-4.11 below, which show the flaw at other cycles subsequent to the 5th iteration. Image 

C055-2016 at 6th iteration, Image C442-2016 at 7th iteration, Image C510-106 at 8th iteration. 
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Figure 4-9 Crack image at 6th iteration from same 
area 

 

Figure 4-10 Crack image at 7th iteration from 
same area 

By stitching the image frames together, the full length crack in the 9th cycle can be seen as 

shown in figure 4.12. Images of the final cracks were also taken with an iPhone camera to 

capture the whole crack in a single frame. It can be seen that both the microscopic-stitched 

images and the mobile camera one are the same crack.  

 

Figure 4-11 Crack image at 8th iteration from same area  

 

Figure 4-12 Crack image at 9th iteration showing stitched image (including the specific area) 
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Figure 4-13 Crack Image taken with a mobile camera  

 

Figure 4-14 Magnified Crack image at 9th iteration 

 

Figure 4-15 Magnified crack image at 9th iteration showing improvement after applying MPI  

 

2nd crack at 6 o’clock 

For the rail axle test on the other side, it was loaded for 600,000 cycles in total. The testing 

log is shown in Table4.2. This crack was at 180 degree to the 1st crack. Example image after 

250K cycles, C722, with the Final Crack 600Kcycles, A934 are shown in figure 4.16 and 4.17. 
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Table 4-2 Lab data Bending testing log for 2st crack at 6 o’clock 

Stop 

No. 
Date 

Load 

min. 

(kN) 

Load 

max. 

(kN) 

Cycles Status 

0 23/01/2017 20 450                   -   Test Start for the other side 

1 26/01/2017 20 450       250,000 Stopped for crack checking, no crack 

2 06/02/2017 20 450       500,000 
Stopped for crack checking, with 1 or 

2mm crack depth 

3 10/02/2017 20 450       600,000 
Stopped for crack checking, crack is big 

enough so the test is complete 

 

  
Figure 4-16 Image of 2nd crack at 6 o’clock (a) at 2rd iteration; (b) at 3rd iteration 

 
Figure 4-17  Image taken with a mobile of the 2nd crack after using MPI 

4.3.3 Findings  

▪ The degree of cleaning influenced the appearance (contrast relies on oxide remaining) 

▪ Cracks visible at 0.3mm length at low magnification.  
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There were a few points that were learnt from this data case which were previously not 

considered: 

• Cracks could start in machining lines rather than corrosion pits which makes them 

difficult to distinguish. Some of the earliest sign of cracks were ignored due to this 

reason, that they were just grinding marks. But after checking with Eddy current and 

confirmation of presence of cracks there, the cracks were then considered as cracks. 

• Using MPI enhances the contrast of the images especially for the purpose of crack 

detection. Maybe the detail of the crack is not that clear but the deeper the crack the 

more visually it can be seen as illustrated through figure 4.18. 

  
Figure 4-18 Improvements in crack imaging by MPI ink without contrast paint 

 

4.4 WORKSHOP INVESTIGATION-1 

During this visit it was possible to compare different axle preparations (DeOx gel, MPI, 

polishing, grinding) and to investigate them in different ways (different zoom levels, 

microscope resolutions), keeping in perspective that the images will be used as an input to 

the classification defect system. Then the output of this system, the measured crack or pit 

lengths, will be used for the estimation of residual axle’s lifetime for the RAAI project. This 

workshop helped to inspect a set of axles, courtesy of Alstom with different surface conditions, 

some being more corroded than others, and some having cracks. Different combinations of 

microscope magnification and surface preparation was investigated.  

4.4.1 Setup 

The axle samples investigated were a high speed train (Pendolino), Trams (T1, T2 T3 and T4) 

and Freight (F9, F8, F7 and F3). The first step was to look through the axle sets visually and 

roughly outline the interesting areas. Then the next step was to check with these areas the 

microscope and mark the locations using paper and tape with a scale. Then the areas were 
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examined with different magnifications of the microscope. After that, a comparison was made 

of different surface preparations and use of MPI. 

The different surface preparation conditions during investigations were as follows: 

• Initial conditions: Axle surface as it is just after being removed from service; 

• After rust removal: Axle surface after rust removal by means of one or more 

applications of DeOx gel; 

• After grinding: Axle surface grinded by means of a grinder; 

• After air polishing: Axle surface polished by means of an air-polisher. 

Axle’s surface treatments when all carried out are performed in this order. In some cases, 

depending on the results, just some of these treatments are applied. 

Different digital microscopes have different resolution which are as follows: 

• Useful ratios to get defect sizes in millimetres after extracting them in pixel are, @60 it 

is 200px/mm and @180 it is 600px/mm.  

• TWI’s microscope has a higher definition than the other microscope used by Polimi 

which are, @60 it is 132px/mm and @180 it is 540px/mm.  

4.4.2 Observations 

Pendolino 

Images were taken of the Pendolino axle shown in figure 4.19 and it was observed that the 

corrosion present was very light, with a maximum pit size of 0.4mm and no cracks visible. The 

axle was therefore in the pre-cracking part of its life in corrosion fatigue.  

 

Figure 4-19 Data collection from the site sources along with marked areas 

The next line of action was that all axles be shot-blasted to remove as much corrosion as 

possible, any visible areas of pitting be marked, pitted areas to be EC tested, MPI tested using 
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a yoke and microscope examination to check for any corrosion fatigue cracking, Air polishing 

and chemical clean were shown to be effective at preparing the surface. 

 

Trams 

Images were taken using different tram axle sets and observed the following: 

• Tram-T1: Cracked and corroded 

• Tram-T2: cracked and corroded  

• Tram-T3: Corrosion and cracks in the wheel-seat radii, and corrosion in the journal radius. 

• Tram-T4: corrosion in the drive seat radius 

The suggested line of action was to first apply De/Ox on all corroded areas, inspect the 

localised areas with Eddy Current, MPI the areas and use black ink only, examine with the 

microscope. An air tool could be used for polishing out in any areas of light corrosion, and 

then the surface re-examined. 

Freight 

Images were taken of the Freight and observed that there was severe corrosion and some 

cracks (which were detected by EC beforehand). Initially the microscope was not able to detect 

cracks on the original surface because the surface corrosion obscured the detail. But after 

DeOx and MPI, cracks could be detected of the order of 0.4mm long.  

4.4.3 Findings 

• Cracks of the order of around 0.08mm could be detected with 180-200 magnification. 

• Cracks of the order of 0.2mm could be detected with 60 magnification. 

• It was deduced from discussion with the experts here, that the detection unit of 0.2-

0.3mm is considered as significant damage to be looked and investigated. Hence, this 

measurement could be used for labelling the ground truth images.  

• It was evident that using the higher magnification gave more depth (clarity) to the 

outline of the detected flaw. 

• It can be seen that surface preparation effects the image outcome and flaw detection. 

• The surfaces prepared by the polisher caused reflections and some difficulty of viewing 

the surface flaws. 

• MPI by using black ink without contrast paint and viewed in residual field, considerably 

enhanced the crack detection capability  

• Eddy current might be helpful in indicating the presence of a flaw with its location. But 

to find the measurements of the individual cracks is a bit difficult. 

• There might be times when it is not possible to detect either pits or cracks due to 

reasons like bad surface cleaning, ineffectiveness of MPI and/or poor microscope 
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resolution. An example is the Freight sample, where without DeOx and MPI the defect 

was not detected. 

 

4.4 VALIDATION TRIALS IN POLITECNICO DE MILANO (POLIMI) 

Polimi have been carrying out crack propagation tests on rail axles for many years. The 

purpose of the system is to estimate the remaining life of the axle given the presence of 

corrosion fatigue. It does this by detecting microscopically small cracks which appear 

originating from corrosion pits in the corrosion fatigue process. Then the life is estimated from 

the average length of the cracks detected. This measurement is normally done using replicas 

of the cracks and a travelling microscope. 

The results from the microscope will be compared with results from the same area, which 

means area with the same fatigue history, taken with a precision travelling microscope. The 

test areas were from a sample designed specifically for fatigue tests. This had a thinned area 

to induce failure. From previous work the axle was known to have a life of 10million cycles, 

and had been fatigued for 3 million cycles (1/3 life) at the centre of the fatigued area. At areas 

remote from the centre of the thinned area, less of the life had been used, as it was at a lower 

stress level.  

4.5.1 Setup 

The validation tests took place in PoliMi where two axles were prepared for the tests. Figure 

4.20 displays the axles used for the trials. 
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Figure 4-20 Axles used for the validation trials in PoliMi 

 

The axle on the top of the image is the axle designed for the corrosion fatigue tests in PoliMi; 

the corroded area was cleaned prior to the validation tests. It is required to clean the area 

before placing the microscope as corrosion product; other residue can fill the pits, and cracks. 

The second axle in figure 4.20 is a Pendolino axle, which should contain corrosion. The axle 

was cleaned prior to the validation tests. The location of the cracking is in the radii due to the 

loading and corrosion conditions. 

The axle was set up for testing as shown in figure 4.21 along with the microscope, oxide 

removal was done using the cleaning gel, the scanner was set up and data was recorded 

(around 1000 images and part of the circumference) at three longitudinal positions along the 

thinned area of the axle in order to compare different stress levels. The figure also indicates 

the flaw positions on the axle using a measuring tape.  The data was converted into individual 

images and the image analysis program used to output lengths of indications. 



Chapter 4 – Data Creation and Ground Truth Labelling 

Juvaria Syeda: Doctoral Thesis    132 
 

 

Figure 4-21 Axles used for the validation trials in PoliMi 

4.5.2 Observation 

Prior knowledge or experience has shown that if a very small threshold has been selected, a 

level of noise will also be selected in addition to the targeted features. Two thresholds were 

selected for the testing and validating purposes; 0.2mm at higher magnification and 0.6mm at 

lower mag. Three typical images from the three positions on the axle are shown in Figure 4.22, 

4.23 and 4.24 side by side with their resultant processed images, showing the cracks and pits 

picked from the threshold process.  

 

Figure 4-22 Image collected at position 140mm along with its processed outcome image 

Flaw 

positions 

indicated 

by using a 

measuring 

tape 
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Figure 4-23 Image collected at position 210mm along with its processed outcome image 

 

Figure 4-24 Image collected at position 240mm along with its processed outcome image 

The summary of crack lengths for two different positions at both High and Low magnification 

with their respective Indication lengths are shown in Table 4.3  

The FOV (Field of View) of Low mag = 4.9*3.6 while the FOV (Field of View) of High mag = 

2*1.5. The high mag is restricted by the FOV of (2*1.5), hence the longest crack attained by 

the image will be dependent on this factor. The maximum size detected could be slightly longer 

than 1.5mm if the crack has grown diagonally. To summarise, it has data from two typical 

areas (Position 14cm is in the most cracked area at the centre, and Position 24 is at the edge), 

and two magnification settings of the microscope.  

Table 4-3 Crack lengths produced from detection system with verified manual counting 

        Manual Counting  Image analysis results  

Position Mag  
cut-off size 

(mm) Frame # 
# of 

cracks 
Longest 

(mm) 
# of Flaws 
(incl. pits) 

Longest 
(mm) 

Average 
(mm) 

14 cm High  0.2mm F3 14 1.7 14 1.7 0.613 

24cm High  0.2mm F1038 6 0.5-1.0 13 0.875 0.341 

14 cm Low 0.6mm F167 52 2.5-3.0 47 2.809 1.05 

24 cm Low 0.6mm F1043 none  -  3 1.34 0.95 
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Crack size measurements were done by using the precision travelling microscope, to be able 

to validate the image processing results. The longest crack lengths measured in the middle of 

the hourglass, at position 14cm at low magnification, is measured to be 2.5-3 mm. The 

average crack lengths should be around 0.4mm (400 microns) while with a minimum cut-off 

criteria of 0.6mm, the average length is supposed to be around 1 mm.  

With a cut-off value set, the longest detected crack length will be same but the average lengths 

will change depending on the size set in the image analysis system. If the value is too low, 

then it detects a lot of noises as cracks, while if it’s too big then it doesn’t detect some of the 

flaws.  

Table 4.4 shows the results, showing validation for position 14. The average length, from the 

image analysis system produced at position 14cm was 1.05mm and the microscope validated 

with it being 1mm. The longest length, from the image analysis at position 14cm was 2.809mm 

and the microscope validated with it being between 2.5-3mm.  

Table 4-4 Verification of average and longest crack length at position 14cm  

        

Microscope  

measurements Image analysis measurements 

Position  Mag  

cut-off size 

(mm) Frame # 

Longest 

(mm) 

Average 

(mm) 

# of Flaws 

(incl. pits) 

Longest 

(mm) 

Average 

(mm) 

 

14 cm Low 0.6 F167 2.5-3 1 47 2.809 1.05 

4.5.3 Findings & Validation 

This data set provided a validation to the results produced by the image analysis system. So 

the post-processing method provides a quick way of highlighting, sizing and counting specific 

features. However, this is only possible with cleaned samples as corrosion and other residue 

can create false call. The method of cleaning should not create additional indications such as 

scratch marks or grinding marks which could be counted as cracks.  

The software does also reduce the level of skill the operator as the algorithm set a standard 

for the desired defects to be counted. However good quality images are necessary for analysis 

as blurred images cannot be easily analysed. 

4.6 ON-SITE INSPECTION-2 

This data visit was to perform in-situ inspection on the rail axles with the whole upgraded 

setup. Applied Inspection were carrying out inspections of a number of axles of ballast trains 

as shown in Figure 4.25. These rail axles had suspected corrosion on the outer radius of the 
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journals. The location is shown in Figure 4.26. An opportunity was taken to use the RAAI 

corrosion inspection system for additional inspection of the corrosion to check for cracking. 

 

Figure 4-25 Site images of Freight (ballast train) axles in depot for inspection 

 

Figure 4-26 Site image showing  location of suspected corrosion on axle 

  

 



Chapter 4 – Data Creation and Ground Truth Labelling 

Juvaria Syeda: Doctoral Thesis    136 
 

4.6.1 Setup 

The inspection had to be carried out with the scanner mounted on the journal. This was of a 

much smaller diameter than that for which the scanner had been designed. To cope with this, 

two sleeves were made to fit the journal and make the diameter larger. These are shown fitted 

in Figure 4.27. The scanner was then mounted and the suspect area scanned as shown in 

Figure 4.28. 

  

Figure 4-27 Site image of Sleeve to adapt to 
journal diameter 

 

Figure 4-28 Site image of Sleeve to adapt to 
journal diameter with the scanner mounted 

4.6.2 Observations 

The area to be inspected had been cleaned by a finishing air tool. It was found that the normal 

RAAI procedure for cleaning would have required a number of applications of the chemical 

gel to remove the corrosion product.  Areas of 4 axles were scanned with the system.  

The corrosion appeared to have different patterns within each area. One pattern of the 

corrosion on the surface was that of areas, around 5mm wide by up to 20mm long. Within 

these patches, the corroded surface was continuous rather than exhibiting isolated pits. The 

difference between a finished area and a corroded area as described above is shown in Figure 

4.29.  There were some areas where minor pitting in the finished areas could be observed as 

seen in Figure 4.30. One possible crack indication from a pit was observed shown in figure 

4.31, but it was concluded that this was from the machining marks.

 

 

Adjustments for 

microscope position and 

angle 
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Figure 4-29 Site image showing finished and 
corroded areas 

 

Figure 4-30 Site image showing Pits within the 
finished area

MPI was used to enhance any possible crack signals. A strong indication was found at the 

edge of the corroded area which can be seen in Figure 4.28, but it was concluded that this 

was a geometrical indication, as it followed the corrosion edge very closely. 

 

Figure 4-31 Site image indication at interface between corroded and finished areas 

4.6.3 Findings 

Therefore no reportable cracks were observed in the areas inspected, so the life estimation 

software could not be used (although an estimate of life can be made given no cracks were 

observed above a certain size). It is possible that as these were freight wagons with irregular 
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usage the corrosion growth was quicker than crack growth in this case, so any cracks created 

were corroded away.  

4.7 GROUND TRUTH 

Ground truth (GT) or reference data forms the basis for performance evaluation in image 

processing and computer vision [133]. Having a reliable ground truth for the image data is 

essential to evaluate algorithms for the image analysis. An important question to consider is 

that whether a quantitative performance evaluation is required. If evaluation is required, then 

goals need to be established for the ground truth data. For instance, the purpose of the 

application requiring the ground truth data, the measurement indicators that will be used to 

access quality and success, and conclusions that must be made from the ground truth data in 

terms of accuracy and performance.  

In simple terms, ground truth is the best possible knowledge of the data. It can be described 

in other ways for example, the gold standard, the ideal expected result, knowledge of the truth 

concerning a specific case, information via direct observation in contrast to inference. It is 

used in computing models to approve or disapprove research hypotheses. In the case of the 

cracks and pits in this work, no perfect knowledge of the real situation is easily available, so 

the ground truth is built up by expert elicitation of a selection of images. Its result for a model 

image analysis system is that the predicted output from the system is the same as the labelled 

ground truth (i.e the expert analysis), which would be 100% accuracy. However, the ground 

truth itself will be subject to inaccuracies particularly in this case. Nevertheless ideally, the 

model image analysis should be to be as close as possible to the ground truth and the system 

can be evaluated on this basis. 

Predicted output from the model = Labelled ground truth 

For both supervised and unsupervised classification, GT is used in order to compare and 

analyse algorithm’s performance using metrics indicators. But for supervised machine 

learning, it also serves as an input data to the classifier, on the basis of which the model learns 

to classify. Problem arises when there is no ground truth information for a particular case 

problem. As in this case, ground truth didn’t exist. Specifically, in this work for rail axles with 

microscopic pit and crack flaws, there was no pixel-wise labelled data available and therefore 

it was produced. 

This section discusses the steps that were taken for ground truth, which are as follows: 

• Know the cut-off size of the flaw  

• Calibrate the flaws based on the selected size 

• Label the images 
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4.7.1 Flaw Criteria based on Size & Magnification 

Labelling is closely related to finding the root-cause of the task. Some ML scenarios may 

involve a subjective measurement where it is difficult to define an underlying objective truth, 

for example, an opinion that needs to be automated. In such cases, the ML model will be 

limited in its performance as it is dependent on the training data provided. This research 

scenario is similar in this regard. 

The first step to the ground truth was to set the required size of the flaw essential for the 

project. This was a difficult task as inspection is a subjective matter and hence it was important 

to get a sense of the diverse opinion on this matter. It was realised that it needs to be more 

quantified. Same images were given to different pit assessment experts and they were asked 

to mark what they would like the system to detect as a flaw and the feedback results were 

quite different from each other. From this, it was evident that there needs to be a standard 

minimum size, to be able to quantitatively detect the flaw.  

As discussed earlier, for the life prediction algorithm used by Polimi, for a Pit (p) the minimum 

size required is 0.5 mm or greater and for a crack (c) it should be 0.3 mm or more. If more 

conservative approach needs to be considered then, for a pit, it will be 0.2 mm or greater and 

for a crack it should be 0.1 mm or more, at the high magnification of the microscope as shown 

in Table 4.5. 

Table 4-5 Initial complicated flaw size cut-off criteria for image labelling  

Required size(mm) Mag FOV (mm) # of Pixels 

Pit Crack   x y Pit Crack 

0.5 0.2 60 6.5 4.8 100 40 

    200 2 1.5 320 128 

0.2 0.1 60 6.5 4.8 40 20 

    200 2 1.5 128 64 

A few calculations to establish the number of pixels in each case are considered here. These 

were done on the basis of the specifications of the camera being used. Images are taken at 

two magnification ranges with resolution of 960*1280; either at low mag which is around 60-

80 or high mag which is around 180-220. For example, to find the exact number of pixels 

@80mag with FOV= 3.6*4.9 => 266pixel/mm and 261pixel/mm. There are two approaches for 

the size; one is a bit more conservative than the other. So as an example, if the picture has 
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been taken @80 and we want to extract p>=0.5mm and c>=0.2 then the pixels equal p>=133 

pixels and c>=53.2 pixels. By these calculations, the approximate size, needed to be 

eliminated from the image, was known. 

The next step was to decide the magnification to be used as it seems that with a higher 

magnification, a more clear view of the sample is obtainable and the flaw is more pronounced 

while with the lower magnification, more area is covered because the field of view is bigger. 

As an example, an image with a few pits and also a crack, was taken at both magnifications 

(Figures 4.29 below). It can be seen in the figure that at a higher magnification the pit-to-crack 

flaw is more clearly visible. In short, the best way to detect a small flaw is to capture it at a 

higher magnification. So the higher the sensitivity to be detected, the higher the magnification 

required. However, this means that the field of view is smaller, so more scanning, more images 

and more processing is required. It will be necessary in practical situations to compromise 

these issues.   

  

Figure 4-32 Images showing the same area at different magnifications 

Hence, it can be seen in figure 4.32 that at same view at different magnifications, a crack is 

visible at the higher mag but at the lower mag it looks part of the pit edge but not so much as 

a definite crack. The solution might be to take pictures at higher mag only as these show better 

results with the Image processing. 

Table 4-6 Final flaw size cut-off criteria for image labelling 

Required size(mm) Mag FOV (mm) # of Pixels 

Pit Crack 

 

x y Pit Crack 

0.3 0.3 60 6.5 4.8 64 64 

0.1 0.1 200 2 1.5 64 64 
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To conclude, the initial flaw size criteria was quite complicated that required to develop 

separate processing algorithms for different flaws. But flaw size criteria was changed to make 

it more standardised for an image shown in Table 4.6. 

For a pit, the minimum size became 0.3mm from 0.2-0.5mm. For a crack, it became 0.1 and 

0.2.  It picks roughly around 64 pixels, which if its high magnification it is 0.1 mm and if it’s low 

magnification then it is 0.3 mm. In this case, the size is same for both the flaws, cracks and 

pits which makes it independent of the kind of flaw and the magnification of the microscope. 

Hence, no complicated calculations were required any more. In the end, just produce the flaw 

measurements for both magnifications, as the cut-off value is same. For pit and crack both, 

the thresholds selected for the testing and validating purposes were; at higher magnification, 

the minimum detectable size is 0.1mm and at lower magnification, the minimum detectable 

size is 0.3mm. 

4.7.2 Calibration measurements 

Once the criteria were selected, it became easier to compare the performance indicators of 

different image processing methods that were being examined. Hence this is a crucial 

stepping-stone in the ground-truth labelling. This step involved marking the flaws on the image 

by making measurements as shown in figure 4.33. These measurements will be used, to pixel-

wise label the images. Two tools were used for this purpose; one is the camera’s own software 

tool and the other is an open source measuring tool called ‘Image Measure’. 

 

Figure 4-33 Manual measurement step to produce ground truth 
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4.7.3 Labelling Procedures  

The first step towards this task was to measure the flaws. This was done by marking on the 

images attained which helped to determine the sizes of the defects and on that basis draw or 

label the ground truth images. Following are the different methods that were experimented for 

the ground truth images to be labelled: 

4.7.3.1 Manual marking  

This was the initial method used for labelling a shown in figure 4.34 but it didn’t seem accurate 

on a pixel-level. For it to be used as the standard basis for comparison, it lacked the required 

accuracy for the microscopic measurements. 

   

Figure 4-34 Showing original image and ground truth image after manual marking 

 

4.7.3.2 Photoshop marking- Labelling method1 

The image was marked by using Photoshop tool as shown in figure 4.35. This was better than 

the previous labelling system but research for a better labeller went on side by side.  
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Figure 4-35 Showing original image and ground truth after Photoshop marking 

 

4.7.3.3 Selected Image labeller method –Labelling method 2 

This was a more suitable labelling method used. The Image Labeller app provides an easy 

way to mark pixel-wise region of interest (ROI) labels on an image. This was performed by 

manually labelling each image frame from an image collection. This was the next step after 

doing the measurements; the exact dimensions of the flaw are done so they are marked 

accordingly. Hence these are based on the agreed upon size criteria of the flaw. They were 

marked on the basis of three criteria features which are; Background in BLUE, Pits in 

YELLOW, Cracks in RED and Pit-2-crack in PURPLE. The GUI of the MATLAB application 

can be seen in figure 4.36 that shows Image_A614-2016 being labelled depending on the set 

criteria. It can be seen in figure 4.37 that the image is labelled using all four categories using 

the Image Labeller application. 

 

Figure 4-36 GUI of Image Labeller showing an image being labelled 
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Figure 4-37 Image showing pits, cracks and pit-to-cracks marked by Image Labeller 

 

4.7.3.4 Selected Method – Json –Labelling method 3 

To save the outcomes of localisation and segmentation, a reliable and stable storage module 

was required. JavaScript Object Notation (Json) application has also been used for the 

labelling, as it saves extra information about the labelled image, which is more useful for deep 

learning. Labelled data was created by using this method for the keras model classifier for the 

pixel-wise deep learning model by using images with cracks.  

4.7.4 Conclusion  

This ground truth step has proved to be one of the biggest challenges of the research work. It 

is the standard against which the performance of the applied methods will be compared 

depicting an expert’s opinion. This section discussed the steps that were taken for ground 

truth which can be summarised as follows:  

1. Go through the database and select right data 

2. Manually identify, the pits and the cracks, into separate flaws 

3. Decide the cut-off value of the flaw size (section 4.7.1) 

4. Count the flaws 

5. Calibrate to measure the lengths and widths of the flaws (discussed in section 4.7.2) 

6. Validate them with experts 

7. Label them by marking (discussed in section 4.7.3) 

In the first step, calibration measurements as shown in figure 4.38, were made on the basis of 

the flaw size selected which is around 0.1mm for higher magnification and 0.3 for lower 

magnification.  
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Figure 4-38 Example of a higher magnification image being measured 

The next step is to label the images. Different methods were tried like manual marking, 

Photoshop marking and in the end Image labeller tool was selected. This has been shown in 

figure 4.39 using ImageB514-2016 as sample. The next step is to perform the metrics 

evaluation. To find efficiency of an algorithm, there are some measures that can be used to 

determine and analyse its performance. This is done by comparing the predicted data against 

the ground truth for evaluation. 

    

Figure 4-39 Sample image showing labelling marked by Image Labeller 
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In the next two sections of the chapter, it will discuss the database structure used that consists 

of both data and ground truth and then it will discuss important metrics that have been applied 

to evaluate the performance of the algorithms. 

4.8 DATABASE STRUCTURE 

Nowadays, many pre-trained networks are available but for a model to learn correctly, it 

requires data. Hence, assuming the right data is used, the size of the training set and/or ground 

truth data is the key to its accuracy. As the data grows larger, it improves the performance of 

the model. Supervised algorithms require response data i.e. manually-annotated ground truth 

to be fed into the classifier models. This is the challenging part as it requires massive amounts 

of correctly labelled data. For this research, flaw images were collected. Total of around 3000 

images were collected but many of them had to be discarded due to the bad quality of the 

images, which includes blurriness and bad lighting. As mentioned before, the data collection 

process was gradually improved during the course which has helped to gather better quality 

images for later phase of the research.  

Multiple options for labelling were considered before choosing the ‘Image Labeller’. Amount 

of labelled data was difficult in our case. Labelling rust and no-rust is easier in comparison to 

classifying pits and cracks as usually there are pits present when cracks are present. Another 

point is that labelling pixel-wise is more time consuming with each picture taking an hour 

minimum. In short, labelling is more complex in the specific project case. Labelled data 

consists of 141,312,000 (141 million) data points for training and testing the models. This is a 

very high number of data inputs hence it required powerful computational devices to run such 

models.  

The pit set ‘p1’ consists of 115 images that have pit flaw/s. This p1 data set has been used 

throughout the classification for comparison purposes, implemented IP, ML and DL 

techniques. Since this is pixel-wise labelled hence the size of observations as input are, 115 

times the image size. The resolution size of the images collected is 1280 times 960 which 

gives 1,228,800 pixels per image. So in total this means 141,312,000 many training & testing 

data into the classifier. This is a lot of data that requires a lot of computer processing and 

storage hence it had a lot of computational and hardware challenges to start with.  

To apply performance measures, a pixel-wise labelled dataset of 20 crack-only images and 

115 pit-only images, have been created. These images can be classified into ‘flaw’ or ‘not flaw’ 

main classes. For further specificity, flaws can be placed into four general classes which are 

as follows: 
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a) Cracks only 

b) Pits only 

c) Pit-2-crack 

d) Background 

The structure of the data sets for pixel-wise classification is a very simple one which contains; 

Pits only and Cracks only. For the image-wise classification for deep learning it contains two 

models; Pit or not-pit model, and crack or not-crack model. 

For the data collected, following shows the condition of the structure being inspected, from the 

different sources:   

• TWI – progress of flaws from pits to pit-to-crack to cracks; consists of both pits and 

cracks 

• Site visit 1 – used for experimenting with MPI with ink or no-ink for better images & 

flaw size discussion; consists of pits and few cracks 

• Polimi- majorly used for validation; consists of more crack images 

• Site Visit 2- for an on-site visit to diverse the data; consists of pits, no crack found 

 

4.9 SELECTION BETWEEN MULTI-CLASS AND MULTI-LABEL (FOR ML & DL) 

The image segmentation method used can count and locate flaw/s but cannot classify the type 

of flaw. For that, deep learning has been used in order to predict the flaw type in the image.  

The DDS can be designed in the two possible design models. This section discusses about 

the labelling and classification of the pixels and to select one of the methods for the output 

response. Multi-label models means a pattern that can belong to more than one-class. While 

multi-class means that the  

• Classes are mutually exclusive 

• Treated as OVR (one vs rest) case 

• Binary classification is simply multi-class classification with 2-labels 

For this project, in the broader sense, there are two major classes: 

1. Flaw: this consists of Pit, crack and both (Pit2crack i.e. crack initiating from a pit)  

2. Non-flaw: background 



Chapter 4 – Data Creation and Ground Truth Labelling 

Juvaria Syeda: Doctoral Thesis    148 
 

But we want to be able to differentiate between the flaws like when the flaw is a pit, crack or 

both. The reason to do this is that when the surface has a crack, then it is much more important 

that it should be detected.  

For pixel-wise classification, the problem is with pixels we want to label as both; so I have 

added it as a separate label so a pixel can only belong to 1-class i.e a multi-class classification 

solution. The reason why I want to add a separate label is that there are some pits/cracks 

which belong to both the classes otherwise the labelling will be highly challenging and time 

consuming as it will have to follow certain set of rules such as, 

1. If a crack is seen initiating from within a pit from one side then label it half way across 

as crack and rest as pit 

2. If crack seen from both the ends then all of it is a crack 

So instead of applying this, in case the object has ‘both’ then we just label it as ‘both’ which 

shows that it is still important as it has a crack but the inspector can double check it. For the 

images shown in figure 4.10, Red = crack, Purple= Both, Yellow=Pit, Blue = background 
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Figure 4-40 Image labeller showing ground truth marked with separate classes 

There are a few different solutions possible for this problem. 

Table 4-7 Defect labelling complexity showing different classes in the table 

Pixel # Defect type Defect labelled 

1 Has a crack only Crack 

2 Just background Background 

3 Has crack and pit both Both 

4 Has a pit only Pit 

 

• In simple terms or broader view just considering whether a pixel has a flaw or is just a 

background, considering the above pixel values as shown in table 4-7, the output will 

be as shown in table 4-8 

Table 4-8 Apply binary classification, flaw vs background 

Pixel # Defect 

1 1 

2 0 

3 1 

4 1 

 

• And if we want to apply two separate system; one for pits and one for cracks then the 

output will be as in the table 4-9 and table4-10 for pit and crack respectively.,  
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Table 4-9 Pit Model after applying two separate 
models for solving the problem 

SYSTEM 1 

Pixel # Pit 

1 0 

2 0 

3 1 

4 1 

Table 4-10 Crack Model after applying two 
separate models for solving the problem 

SYSTEM 2 

Pixel # Crack 

1 1 

2 0 

3 1 

4 0 

• If its multi-label then one pixel could belong to two columns at a time so the output will 

be as shown in table 4-11   

Table 4-11 Apply multi-model solution to the problem 

Pixel # Pit Crack Background 

1 0 1 0 

2 0 0 1 

3 1 1 0 

4 1 0 0 

 

• If its multi-class then all the columns need to be mutually exclusive of each other i.e. 

one pixel can only belong to one class, so output will be as shown in table 4-12 

Table 4-12 Apply multi-class solution to the problem  

Pixel # Pit Crack Background Both 

1 0 1 0 0 

2 0 0 1 0 

3 0 0 0 1 
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4 1 0 0 0 

 

Hence it can be seen that the difference with the multi-label and multi-class is the 3rd row in 

table 4-11 and table 4-12, which is the pixel associated with both a pit as well as a crack. To 

clarify this point, if we consider sample 7, as shown in figure 4.41 below and think of object-

wise classification (for simplicity) then the output we be, as shown in table 4.13. The method 

used is that the background is separate [all zeros], pits are separate, if pit then ‘1’ else ‘0’. 

Similarly for cracks, if crack then ‘1’ else ‘0’.  

Table 4-13 Apply the multi-class method on an example image 

Method 1 – Multi-Label Method 2 = Multi-class 

Crack = 10 Crack = 6 

Pit = 5 Pit = 1 

 Both = 4 

Background = rest Background = rest 

 

   

Figure 4-41 Images showing labelled data by using multi-class model solution 

 

4.10  PERFORMANCE METRICS TO QUANTITATIVELY EVALUATE MODELS 

The performance of an algorithm can be quantitatively evaluated by comparing the resultant 

processed or predicted image to the labelled ground truth image (GT), in terms of measurable 

metrics. All following metrics are based on four major measures; True Positive (TP), True 

Negative (TN), False Positive (FP), and False negative FN. 
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Where, 

Black colour = background  

White colour = detected flaw 

TP = True Positive -> It’s a flaw and it’s predicted as a flaw; HIT 

TN = True Negative -> It’s a background and it’s predicted as background;  

FP = False Positive -> It’s a background but it’s predicted as flaw  

FN = False Negative ->It’s a flaw but it’s predicted as background; MISS 

A = GT image  

B = Predicted image  

Multiple metrics have been implemented, that will be seen in the tables of the next three 

chapters later on. In total there are sixteen metrics that have been used for in-depth analysis 

for all methods. For image segmentation, five additional metrics have been added such as 

CV, RI, VOI, BE and GCE that are able to measure more in-depth performance. For machine 

learning and deep learning, all the above have been applied plus a few metrics for visual 

display have been added. Confusion matrix (CM), Scatter plot and Area under the curve (AUC) 

for ML and Intersection of Union (IoU) for DL. Metrics that have been used in this thesis, are 

mentioned by stating their definition or formula in this section, to get an overview of all 

performance indicators implemented throughout. These will just be mentioned by their 

abbreviations in the following chapters especially in tables when discussing the results of the 

implementations. 

4.10.1 Accuracy (Acc) 

The pixel accuracy is a simple metric that describes the fraction of all pixels that were correctly 

predicted, from the total amount of predicted pixels. Higher the value of accuracy means that 

the system performed better. The pixel accuracy is then calculated as, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

4.10.2 Sensitivity (TPR) 

Also known by Sensitivity, TPR, Recall or Lift Numerator. Higher value of sensitivity reflects 

better system performance. It is calculated as, 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/ (𝑇𝑃 + 𝐹𝑁) 

4.10.3 Specificity (TNR) 
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It is also known as True Negative Rate or TNR. Higher the value of specificity result means 

the system performed better. It is calculated as, 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) 

4.10.4 Precision (PPV) 

It is also known as Positive predictive value (ppv). When the value of Precision is high, it 

reflects that the system performance is also high. It is calculated as,  

𝑝𝑝𝑣 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃) 

4.10.5 Negative predictive value (NPV) 

Higher value of NPV reflects better system performance. Negative predictive value is 

calculated as, 

𝑛𝑝𝑣 =  𝑇𝑁/(𝐹𝑁 + 𝑇𝑁) 

4.10.6 Fallout (FPR) 

It is also known as False Positive Rate, Fall-out, (1-specificity), FPR. Lower value of fallout 

reflects better system performance. It is calculated as, 

𝑓𝑝𝑟 =  𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) 

4.10.7 False discovery rate (FDR) 

When the value of FDR is lower, it reflects that the system performed better. It can be 

calculated as, 

𝑓𝑑𝑟 =  𝐹𝑃/(𝐹𝑃 + 𝑇𝑃) 

4.10.8  Miss rate (FNR) 

It is also known as FNR, False negative rate, Miss-rate, (1-sensitivity). Of course, the less the 

system misses, the better it’s performance. It is calculated as, 

𝑓𝑛𝑟 =  𝐹𝑁/(𝐹𝑁 + 𝑇𝑃) 

4.10.9  F-score (f1) 
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The F-score considers both the precision and the recall in order to calculate the score. If the 

score is 1 then it is the perfect score, so the higher the better. The F1 score defines the 

harmonic mean of precision and recall, defined as 

𝑓1 =  2 ∗ 𝑇𝑃 /(2 ∗ 𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁) 

4.10.10 Root mean square error (RMSE) 

This is a value which calculate errors in the system so obviously the lower this value is, the 

better system performance it depicts. It is calculated as, 

𝑟𝑚𝑠𝑒 =  𝑠𝑞𝑟𝑡(𝑠𝑢𝑚(𝐴 − 𝐵). ^2)/𝑙𝑒𝑛𝑔𝑡ℎ(𝐴) 

4.10.11 Matthews Correlation Coefficient (MCC) 

Higher value of MCC reflects better system performance. Matthews Correlation Coefficient 

can be defined as, 

    𝑚𝑐𝑐 =  ((𝑇𝑃 ∗ 𝑇𝑁)  −  (𝐹𝑃 ∗ 𝐹𝑁))/𝑠𝑞𝑟𝑡((𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)) 

For Image segmentation 

For segmentation specifically, other indicators are also useful. If the segmentation result is 

more similar to the GT, RI and CV will be higher but VoI, GCE, and BDE will be smaller. 

4.10.12 Covering (CV) 

It is an overlap measure that can be also used to evaluate the segmentation effect. The higher 

the value of CV the better the system has performed. It can be calculated as, 

𝑐𝑣 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) 

4.10.13 Rand Index (RI) 

It is also known as Probabilistic Rand Index (PRI). It is a similarity measure that counts the 

fraction of pairs of pixels whose labels are consistent between the computed segmentation 

and the corresponding GT segmentation. Hence, a higher value will reflect that it has more 

similarity with each other.  

4.10.14 Global Consistency Error (GCE) 

It computes the degree to which two segmentations are mutually consistent. It is used to 

compute an error value, hence a lower value will mean better system performance.   
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4.10.15 Variation of Information (VoI) 

It is a similarity measure that is always used to measure the distance between two 

segmentations in terms of their average conditional entropy. Lower the value of VoI depicts 

less variation depicting better system performance. 

4.10.16 Boundary Displacement Error (BDE) 

It is an error measure that is used to measure the average displacement error of boundary 

pixels between two segmentations so when the value is low it shows the system performed 

better.  

4.10.17 Elapsed time 

It is the time taken by an algorithm to run the whole program. It will show more efficiency if 

takes less execution time. 

For Machine learning 

Evaluations that have been used are variations of the four major metrics indicators. These 

following metrics are just for display purposes to make the outcomes more clear for machine 

learning performance analysis. 

4.10.18 Confusion Matrix (CM) 

It is used to measure the type of errors produced by a classifier. The component of a confusion 

matrix is True Positive (TR), True Negative (TN), False Positive (FP) and False Negative (FN).  

4.10.19 ROC curve 

Another measure commonly used by machine learning experts is Area Under the ROC Curve. 

The ROC stands for Receiver Operating Characteristic (ROC). It measures the trade-off 

between true positive TR and false positive FR rates that means a plot between Precision and 

Recall values. Area Under the ROC Curve (AUC) is the total area under the curve out of 1. 

The higher the AUC, the more likely the classifier to predict more true positives. 

 

For Deep Learning 

The central metrics for deep learning are precision and recall, already calculated previously.  
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4.10.20 Intersection over Union (IoU) 

The Intersection over Union (IU) score measures the accuracy of an object detector, by 

calculating the similarity between the region that was predicted by the model and the ground 

truth. Hence higher value shows better performance by the system. This metric has been 

implemented for visual display of individual test images outcome for deep learning only as 

shown in figure 4.42. It is defined as,  

 𝐼𝑜𝑈 = (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝)/(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛)  

 

Figure 4-42 Example display of IoU performance indicator for deep learning evaluation 

 

4.11 CHAPTER SUMMARY 

This chapter discusses database that consists of original image captured and the labelled 

ground truth image. It mentions the data sources by explaining the setup of the experiment, 

observations and the findings. Some of the key findings from these experiments are 

summarised here. The degree of cleaning, influences the appearance as the contrast relies 

on oxide remaining. Flaws have bene seen at 0.2mm length with low magnification and 

0.08mm at higher magnification, sometimes even smaller than these values. Cracks could 

start in machining lines which makes them difficult to distinguish. Some of the earliest sign of 

cracks were ignored due to this reason that they were just grinding marks. But after checking 



Chapter 4 – Data Creation and Ground Truth Labelling 

Juvaria Syeda: Doctoral Thesis    157 
 

with Eddy current and confirmation of presence of cracks there, those machining marks were 

then considered as cracks. Using MPI enhances the contrast of the images especially for the 

purpose of crack detection. It was deduced from discussion with the inspection operators, that 

the detection unit of 0.2-0.3mm is considered as significant damage to be looked and 

investigated. Hence, this measurement will be used for labelling the ground truth images. It 

showed evidence that using the higher magnification gave more depth (clarity) to the outline 

of the detected flaw. Eddy current might be helpful in indicating the presence of a flaw with its 

location. But to find measurements of the individual cracks is difficult. There might be times 

when it is not possible to detect either pits or cracks due to reasons such as bad surface 

cleaning, ineffectiveness of MPI and/or poor microscope resolution. The Polimi data provided 

validation to the results produced by the image analysis system. So the image-processing 

method implemented provided a quick way of highlighting, sizing and counting specific 

features using on-site data. However, this is only possible with cleaned samples as corrosion 

and other residue can create false call. The method of cleaning should not create additional 

indications such as scratch marks or grinding marks which could be counted as cracks. The 

software also reduces the skill level requirement of an operator, as the algorithm sets a 

standard for the desired defects to be counted.  

Then it lists the steps taken for creating a labelled database that includes setting flaw size 

criteria, calibrating and procedures used for labelling images. With the labelled ground truth, 

the performance of the system can now be quantitatively measured, as to how well the system 

has processed the image. Multiple metrics have been implemented, that will be seen in the 

tables of the next three chapters later on. In total there are sixteen metrics that have been 

used for in-depth analysis for all methods. For image segmentation, five additional metrics 

have been added such as CV, RI, VOI, BE and GCE that are able to measure more in-depth 

performance. For machine learning and deep learning, all the above have been applied plus 

a few metrics for visual display have been added. Confusion matrix (CM), Scatter plot and 

Area under the curve (AUC) for ML and Intersection of Union (IoU) for DL. The next chapter, 

discusses the algorithms that implement image processing with a step-by-step explanation of 

each of the task including visual aids. 
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5    Chapter 5 

 Unsupervised methods 

implementation, comparison & evaluation 
 

 

This chapter discusses three main unsupervised image segmentation 

algorithms implemented for this research, such as watershed, Morphological 

and Gaussian based FCM clustering, after citing the initial trials and its results. 

For each of them, it shows individual steps along with visual outcomes and also 

presents the effects of variation of flaw-size parameter. Later on, flaw detection 

results are shown along with measurements and then evaluation of these 

methods is implemented on the basis of multiple metrics to quantify their 

performances. In the end, a comparison to one of the state-of the art 

segmentation methods is made vs the findings of this research. 
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5.1 INTRODUCTION 

This chapter discusses unsupervised learning methods which is the second main contribution 

to the research. After discussing the research design, system setup, data and ground truth in 

the previous chapters, from now onwards the final phase of the research design starts, which 

is all about image analysis.  Three methods of unsupervised learning have been implemented 

for this study which are based on watershed-based, Gaussian-based FCM clustering and 

morphological-based filtering, to investigate, make comparisons and evaluate on the basis of 

performance indicators. Then a state-of-the-art method has also been implemented on the 

same dataset to evaluate the performance of our research against a bench mark. This will 

enable to select the one with better performance for this specific industry problem dataset. 

This chapter consists of the following: 

• Implementation of the initial trials based on some basic functionalities (section 5.2) 

• Then for each of the three algorithms (watershed-based, morphological and gaussian) 

it explains main steps in the method along with visual aids (section 5.3-5.5) 

• Next, compares all three method’s flaw measurements using same sample image 

(section 5.6) 

• In the end, a state-of-the-art (SOTA) method is implemented that is compared and 

evaluated with other implemented unsupervised methods, using the same dataset, to 

choose the best performer (section 5.7) 

 

Figure 5-1 Example illustration of unsupervised learning steps  

 

To easily compare between different algorithm’s performances, two images have been 

selected and used throughout this chapter. This includes display outcomes of each step of 
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each algorithm as shown in figure 5.1, plus measurements of each flaws in the image and the 

results table saved as an excel file after applying performance metrics. Less complicated 

images are chosen so that an easily detectable visual can be displayed. ImageA186-2016 is 

a bit of a complex image that consists of unusual shaped pits and also has surface scratch 

marks whereas ImageB919-2016 is a visually clearer image to easily decipher results. The 

results show the exact location of the defects of pits or cracks in the image, the exact number 

of flaws as well as they give the measurements of each flaw. It produces an excel file with all 

the measurements for each pit counted.  

Implementation of all algorithms, except the initial trials, follow three major steps which include; 

pre-processing, segmentation and region extraction. The outcomes consist of the resultant 

segmented image along with two excel files. One has the flaw measurements such as flaw 

length and area etc and the other has the performance measures such as accuracy, recall 

and precision etc.  

As researched in chapter 2, image segmentation can be used to distinguish objects in an 

image. There are two approaches to apply segmentation which are region-based and 

boundary-based. Its main task is to assign labels to every pixel in an image in a way that the 

pixels that share same labels have some commonality of characteristics. They are created 

around the discontinuity and similarity of image intensity values, where the image is partitioned 

based on abrupt changes in intensity value such as edges. The resultant segmented image is 

a set of segments that cover the entire image otherwise it can also produce a set of contours 

extracted from the image. 

There are multiple factors involved in order to improve an image for segmentation tasks; first 

of all the task that needs to be achieved, suitability of the method to the task, the sequence of 

the methods applied as well as of course the image quality. Applying a combination of multiple 

methods improves the process but the trick is in the correct suitability of the sequence of the 

methods applied according to the target. 

Edge detection has been commonly used in this perspective where the points at which image 

brightness changes sharply are typically organised into a set of curved line segments called 

edges. They can be detected using various edge detectors such as Sobel, Prewitt, Roberts, 

LoG (Laplacian of Gaussian) and Canny. Another popular method is the Watershed transform, 

which is recognised as a powerful morphological tool used in image segmentation because of 

its simplicity, speed and complete division of the image [134]. It is grouped under region-based 

segmentation approaches, where it provides closed contours even when the regions have 

weak boundaries and low contrast.  
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5.2 INITIAL TRIALS OF IMAGE PROCESSING 

Image processing is a very vast subject, and there are a lot of existing researched methods 

that can be used in laying the foundation. Implementing an algorithm that works in this 

particular case was the challenging task. So the first stage in the initial phase, was to research 

on the topic whereas the second stage was to apply them to check their performance with the 

available data at the initial stage.  

This initial version has a combination of different image enhancements and edge detection 

techniques that are mentioned in the literature review but these have been implemented here 

as individual steps as shown in figure 5.2. Common edge detection techniques were compared 

such as Laplacian; Roberts; Sobel; Laplacian of Gaussian, zero-cross; Canny; Prewitt filters 

for the initial trials. These techniques try to find the edges of the objects of an image, for 

example by labelling them with white colour. Filling those white shapes will show where the 

actual objects are located, while blurred objects, which do not have sharp edges, will stay 

black or give a discontinued line of white dots. 

 

Figure 5-2 Block diagram of the initial algorithm of unsupervised algorithm 
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The main task was to perform segmentation that included steps such as; eliminate small 

objects from binary image by using a technique that works by removing all connected 

components that have fewer than ‘P’ pixels, fill the holes in the produced image and in the end 

apply feature extraction to get object’s centroid, lengths and other interesting features. Many 

varied images that consist of pipeline, a carbon steel block, real images as well as images 

from the standard, were used for testing purposes. Some images contain pits and some 

contain cracks. The main focus is on the pits, as not a lot of work has been done in this area 

in comparison to cracks.   

5.2.1 API standard grade 4 pitting as sample 

As an initial test sample, into an edge detector, an industry API-579 standard of grade 4 level 

pitting, as seen in figure 5.3, was used. The reason was to use a very basic image which is 

easy to verify by manual counting plus to get a rough idea of pit assessment. The detector 

used as an example is the Robert edge detector and the result is shown in figure 5.4. 

 

Figure 5-3 Sample image of API standard used for testing initial algorithm 
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Figure 5-4 Result of API standard image after applying ‘Robert’ edge detector  

5.2.2 Single pit and multiple pits as samples 

It is interesting to see the results produced, for different edge detectors for the same image 

input. All of the above mentioned edge detectors were tested. It can be seen that each of the 

detectors can be served for different purposes. For example, some are more sensitive to the 

edges as compared to the others. But sometimes less sensitivity is required so that only the 

prominent edges in the image are picked.  

For sample Image-08 that consists of a single pit shown in figure 5.5, figures from 5.6 to figure 

5.8 show result outcomes of Robert, Log and Canny detectors and illustrates the fact that 

Canny is the one which has picked more edges of the pit which is in the centre of the image 

and hence it can be seen that the shape of the pit is more prominent in the resultant image. 

For sample Image-09 that consists of multiple pits shown in figure 5.9, figures from 5.10 to 

figure 5.12 show result outcomes from Robert, Log and Canny detectors; once again 

highlighting that Canny has picked more edges but in this case it can be observed that if only 

subtle edge detection is required then either Robert or Log would be better options as Canny 

has a lot going on the resultant image which might not be suitable for some applications and 

requirements.  
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Figure 5-5 Sample test image used consisting of a single pit 

 

Figure 5-6 Result of single pit sample image after applying ‘Robert’ edge detector 



Chapter 5 –Unsupervised Learning implementation & evaluation 

Juvaria Syeda: Doctoral Thesis    165 
 

 

Figure 5-7 Result of single pit sample image after applying ‘Log’ edge detector 

 

Figure 5-8 Result of single pit sample image after applying ‘Canny’ edge detector 
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Figure 5-9 Sample test image used consisting of multiple pits 

 

Figure 5-10 Result of multiple pit sample image after applying ‘Robert’ edge detector 
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Figure 5-11 Result of multiple pit sample image after applying ‘Log’ edge detector 

 

Figure 5-12 Result of multiple pit sample image after applying ‘Canny’ edge detector 
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5.2.3 Real image from a rail axle component as a sample 

The sample in this test is a real image taken from a rail axle component shown in figure 5.13. 

The results for this image show that from Robert shown in figure 5.14, Sobel shown in figure 

5.15, LoG shown in figure 5.16 and Canny shown in figure 5.17 detectors; once again Canny 

is the one that has picked the edges with more sensitivity. Although LoG detector also shows 

some promise as it is better than the Robert and Sobel. Hence, Canny is a better choice as it 

shows more sensitivity by clear indication of the pits, which is required by the application. After 

edge detection, thresholding was applied along with filling the holes, to get the acquired pits. 

 

Figure 5-13 Real image from a rail axle component used as a test sample 
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Figure 5-14 Result of real original axle image after applying ‘Roberts’ edge detector 

 

Figure 5-15 Result of real original axle image after applying ‘Sobel’ edge detector 
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Figure 5-16 Result of real original axle image after applying ‘Log’ edge detector 

 

Figure 5-17 Result of real original axle image after applying ‘Canny’ edge detector 
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5.2.4 Initial algorithm drafted 

Grade1 pitting Image is the image that has been verified by the existing method of counting the 

pits. It gives the number of pits which is 47 in this case, after applying processing. The picture 

in figure  5.18 and figure 5.19, is covering an area =150*150mm. It can be observed and 

measured by the figure that the pits are of the same lengths and areas. It is an image from the 

standard to check and test my algorithms for simplicity.  

 

Figure 5-18 API standard image used for testing 

 

Figure 5-19 Result of API image after applying 
initial algorithm 

 

The proposed method of image processing has been performed on many varied images that 

consist of real images as well as images from the standard for testing purposes. Some images 

contain pits and some contain cracks and pits. The main focus is on the pits for the initial 

testing. These images have been taken in TWI from components like rail axle, pipeline, and 

carbon steel block as discussed. 

5.2.5 Conclusion  

For these trials performed, following points and conclusions were drafted out:  

1. Around 20 varied images were taken as samples for the algorithm. Some were partially 

successful and gave results; some gave incorrect results which could be seen by 

looking at the image and/or manually counting them. The summarised results can be 

seen in a tabular form in table 5.1 for some of the images tested.  

2. From the above point it is clear that data needs to be massively increased for the next 

stages of the research, in order to add more depth to the database. 
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Table 5-1 Outcomes of the initial algorithm along with the manual counting numbers. 

S.N Image Name Type Initial algo Manual Counted 

1 Image1-A042 Bmp 260 75-80 

2 Image2-grade1 Bmp 47 47 

3 Image3-grade2 Bmp 125 121 

4 Image4-grade3 Bmp 185 184 (+1 to 4) 

5 Image5-grade4 Bmp 380 370 

6 Image6-mc1 png 420 83 

7 Image7-A614 Bmp 265 30-35 

8 Image8-M1 Png used  

9 Image9- msample png used  

 

3. Three steps were used to know whether the result given by the algorithm is correct: 

algorithm runs successfully without any errors; produces a result; and is verified by 

using the existing method which is manually counting the flaws. 

4. From the above point it can be seen that the algorithm is still in its development phase 

and needs a lot of improvisation. 

5. The verification has been done as shown in Table 5.1 by the current existing method 

of counting each of the pits or cracks in the image, using a field operator.  

6. Considering the above statement, it was realised at this point that these verified 

numbers are just a rough estimate as it differed from one operator to the other. To 

solve this problem maybe a size threshold can be set for selection criteria, which links 

to the next point. 

7. Discussions with field experts needed to be organised regarding the topic of defect 

size, which ones to count in and which ones to ignore, that is how big or small the 

defect size should be, for it to be included for selection. 

5.3 WATERSHED-BASED ALGORITHM IMPLEMENTATION FOR IMAGE 

SEGMENTATION 

For image segmentation it is an effective tool that deals with the object’s boundary and finds 

local changes. It is based on watershed transform which targets to search for a border 

between two objects called catchment basins. It can be understood by the following concept 

that if water falls into these basins, level of the water rises until the neighbour basins share 

the same level. Hence, the outcome of the algorithm is a hierarchy of catchment basins [135].  
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Figure 5-20 Block diagram of Watershed Algorithm  

The algorithm basically works around the watershed concept and later on selects features 

based on length and intensity of the detected object. It starts by reading an RGB image as an 

input data. By the end, counts and make measurements of regions of interest (ROI) and then 

classifies pixels into defects/background by displaying the detected flaws in a different colour 

to the background for visual ease. This can be seen in a block diagram in figure 5.20. The 

main flow of the algorithm is discussed in this section, which includes some of the following 

steps:  

1. Read the RGB image;  

2. Convert it to grey scale;  

3. Get its histogram;  

4. Set a threshold value;  

5. Threshold the image to get a binary image of class logical by choosing either ‘<’ or ‘>’ 

sign to select bright objects or dark objects;  

6. Fill in the holes to get rid of small background pixels within the binary image;  

7. Label each object to make measurements of it;  

8. Apply pseudo random color labels to distinguish between them easily;  

9. Extract features of the detected objects;  

10. Then save the interesting measurement results like Area and length of each of the 

objects in an excel file for all the images. 
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11. Display the processed image, as a visual outcome of the algorithm.  

5.3.1 Conversion from RGB to Grey scale values 

After reading in a test sample, Image-06 shown in figure 5.21, the next step is the conversion 

from colour to grey scale shown in figure 5.22 by using rgb2gray. It converts RGB values to 

grey scale values by forming a weighted sum of the R, G, and B components, 0.2989 * R + 

0.5870 * G + 0.1140 * B. It converts by eliminating the hue and saturation information while 

keeping the luminance.  

 
Figure 5-21 Test sample used for showing Watershed algorithm implementation  

 

Figure 5-22 Watershed algorithm outcome after converting to grey scale 
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5.3.2 Normalised thresholding applied 

Applied normalisation as thresholding as shown in figure 5.24 below. The range is equal to 

the maximum range for the data type, so for 8-bit images the maximum range is 0-255. Note 

that normalization of RGB images is not supported, so the image is converted into grey scale 

first, as done in the previous step. This task is basically like enhancing the image contrast by 

stretching the histogram as shown in figure 5.23. Main step is to find the minimum and 

maximum values in the image and then equalize the image by swapping the minimum value 

to ‘0’ and the maximum value to ‘255’ to get a normalized threshold value.  

  

Figure 5-23 Showing the effect of applying normalised thresholding  

 

5.3.3 Thresholding based on normalized threshold value 

Then apply threshold to this value with the original image, to get a binary image as shown in 

figure 5.24. If the pixel value of the original image is less than the normalized threshold value, 

change it to value ‘1’, this is done in order to choose darker objects from the image. 

 
Figure 5-24 Watershed algorithm outcome after applying thresholding 
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5.3.4 Fill the small holes  

This step is to fill regions and holes in the binary input image. In this syntax, a hole is defined 

as a set of background pixels that cannot be reached by filling in the background from the 

edge of the image or hole is a ‘dark’ region surrounded by ‘bright’ regions. In simpler terms, 

‘0’s surrounded by ‘1’s is a hole.  

5.3.5 Trace the boundaries 

This step is used to trace the exterior boundaries of objects, as well as boundaries of holes 

inside these objects, in the binary image where ‘1’s pixel values belong to an object and ‘0’ 

valued pixels present the background. The output of the boundaries outlines applied is shown 

in figure 5.25 below. It descends into the outermost objects, also called parents, and traces 

their children that is the objects completely enclosed by the parents.  

 

 

Figure 5-25 Watershed algorithm outcome after tracing the object boundaries 

5.3.6 Label detected objects in the binary image 

To label the binary image to be able to count and measure the detected objects, connected 

components labelling procedure [136] is used. It goes through the image and based on pixel 

connectivity of neighbour size, groups its pixels into components. A connected component is 

a set of pixels that form a connected group [137]. This means that all pixels in a connected 
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component share similar pixel values and are in some way connected with each other. So in 

a binary image, this will mean the clusters of ‘1’s among the background values of ‘0’s. Once 

all groups have been determined, each group is labelled with a unique number. For example, 

the binary image in figure 5.26 &5.27 has three connected components.  

 

Figure 5-26 Showing Connected components in a 
binary image [138] 

 

Figure 5-27 Showing Labelled connected 
component in an image [138]

 

Extracting and labelling of various disjoint and connected components in an image is central 

to many automated image analysis applications. In the resultant image, the pixels labelled as 

‘0’ are the background and the pixels labelled as ‘1’ make up one object; the pixels labelled 

as value ‘2’ make up the second object; and so on. For better visual impact, they can be later 

changed to colour labelled components, where each label identifies each object in the label 

matrix by mapping it to a pseudo random colour (or follows a colour map). This quantifies the 

number of detected defects in the images.  

5.3.7 Extracting properties from the detected objects 

It is one of the central steps that improve the overall performance of the automated inspection 

system by extracting meaningful features from an image. Thus enabling the use of many 

pattern recognition and classification techniques to be applied to the resulting output [139]. 

Hence, this proved to be a crucial step which measures the detected object properties, for the 

black and white labelled image provided from the previous step.  

One of these particular values is a ‘centriod’ which is the centre of the mass. This is 

represented by (x,y) locations of where the middle of each detected object is located. Centroid 

is just one of the properties. There are many other interesting features like area, perimeter, 

eccentricity, average intensity of the object, major (length) and minor (width) axis lengths of 

the objects, that can be used for quantitative measurements. These results are saved in an 

excel file and is used for further specific data extraction.  
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5.3.8 Gathering specified information from the extracted properties 

Once the objects have been detected and their properties have been extracted along with their 

measurements, they can be used to further improve the results. Considering the size criteria 

of the objects detected, as discussed in chapter 4, the minimum cut-off value is set to the 

values 0.1mm for high magnification and 0.3mm for low magnification. Now the major axis 

length feature comes in handy, as it is used to remove all objects smaller than these specified 

values, which acts as a post processing step. 

These values were established to be the cut-off size in the late phases of the research. But 

for the initial phases, different combinations of area, major axis length and average intensity 

were applied to explore the result outcomes. This can be seen by showing a few set of visual 

examples (from figure 5.27 to 5.38) and tables (from table 5.2 to 5.5) to elaborate the point.  

Test Sample B514-2016 

This image contains many small pits that can be ignored and a few pits of the interested size. 

After applying region extraction in the previous step, the number of detected flaws counted 

are, flaws= 441 as shown in figures 5.28. This figure, a) shows the test sample Image B514-

2016, b) shows the resultant Watershed Binary image, c) displays traced object boundaries 

on the watershed applied image, d) shows the outcome of Colour-labelled connected 

components on the watershed image.  Then figure 5.29 shows histogram of the gray scale 

version of the image.
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Figure 5-28 Watershed outcome on B514-16 applying labelled connected components  

 

 

Figure 5-29 Watershed outcome on B514-16 showing histogram of the grey scale image  

 

After the initial stage of segmentation, different lengths of the object detected were tested, 

which in return produces different number of flaws picked. Table 5.2, shows different outcomes 

of the number of flaws based on the object length restrictions. The figure 5.30, shows visual 
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watershed results with same test sample, Image B514-2016 with different cut-off lengths 

producing and detecting different number of pits. 

Table 5-2 Watershed on B514-16 showing different outcomes based on cut-off length 

Image # Flaw Length (pixels) Number of Flaws 

B514-L1 

>= 20 57 

>= 30 39 

>= 40 29 

>= 50 22 

>= 128 2 

>= 320 1 
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Figure 5-30 Watershed results on B514-16 showing varied outcomes based on length  

 

Figure 5-31 Watershed coloured-labelled outcome with length cut-off set to 0.5mm  

From previous figure, the watershed coloured-labelled outcome can be seen in figure 5.31 

with length greater than or equal to 320 pixels, which equals to 0.5mm at 200 magnification, 

showing that only a single pit was detected on this cut-off criteria. 

Test Sample B005-L2 

It is an interesting image as it contains a crack, possibly one or, if it appears disjoint in 1-2 

places in the middle, then possible two or three cracks but it has scratches that need to be 

ignored. After applying this algorithm, the resultant figures are shown from figure 5.31 to 5.33. 

Figure 5.32 shows, a) the test sample Image B005-L2, b) the resultant Watershed Binary 

image, c) display of traced object boundaries on the watershed applied image, d) the outcome 

of Colour-labelled connected components on the watershed image. Then figure 5.33 shows 

histogram of the gray scale version of the image. 
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Figure 5-32 Watershed outcome on B005-L2 after applying labelled connected components  

 
Figure 5-33 Watershed outcome on B005-L2 showing histogram of the grey scale image 

 

After the initial stage of segmentation, different lengths of the object detected were tested, 

which in return produces different number of flaws picked. Table 5.3, shows different outcomes 

of the number of flaws based on the object length restrictions. The figure 5.34, shows visual 
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watershed results with same test sample, Image B005-L2 with different cut-off lengths 

producing and detecting different number of cracks. 

Table 5-3 Watershed on B005_L2 showing different outcomes based on cut-off length 

Image # Length Mean Intensity # of Cracks 

B005-L2 

>=40 - 99 

>=250 - 1 

>=100 - 2 

 

    :  

      

     
Figure 5-34 Watershed results on B0005-L2 showing varied outcomes based on length  
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From previous figure, the watershed coloured-labelled outcome can be visually seen in figure 

5.34, with different lengths showing that a single crack, two cracks and multiple cracks were 

detected on specific cut-off values. 

Test Sample B009-L2 

It is an interesting image as it shows 2 cracks. The figure 5.35, a) shows the test sample Image 

B009-L2, b) displays traced object boundaries on the watershed image.   

   

Figure 5-35 Watershed outcome on B009-L2 displaying traced object boundaries  

Table 5.4, shows different outcomes of the number of flaws based on the object length 

restrictions. The figure 5.36, shows visual watershed results with same test sample, Image 

B009-L2 with different cut-off lengths producing and detecting different number of cracks. 

Table 5-4 Watershed on B009-L2 showing different outcomes based on cut-off length 

Image # Pixel Length Mean Intensity # of Cracks 

B009-L2 

>=100 - 3 

>=200 - 2 

>=250 - 1 

>=100 70 3 

>=40 70 7 
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Figure 5-36 Watershed results on B009-L2 showing varied outcomes based on length  

Test Sample B918-L1 

This image contains clear good-sized pits that should be picked after surface noise removal. 

After applying region extraction in the previous step, the figure 5.37, a) shows the test sample 

Image B514-2016, b) shows the resultant Watershed Binary image, c) displays traced object 

boundaries on the watershed applied image, d) shows the outcome of Colour-labelled 

connected components on the watershed image. Then figure 5.38 shows histogram of the 

gray scale version of the image. 

     

     

Figure 5-37 Watershed outcome on B918-L1 after applying labelled connected components 
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Figure 5-38 Watershed outcome on B918-L1 showing histogram of the grey scale image  

 

Table 5.5, shows different outcomes of the number of flaws based on the object length 

restrictions. The figure 5.39, shows visual watershed results with same test sample, Image 

B918-L1 with different cut-off lengths producing and detecting different number of pits. 

Table 5-5 Watershed on B918-L1 showing different outcomes based on cut-off length 

Image # Length  Mean Intensity # of Pits/cracks 

B918-L1 

64 - 6 

128 - 2 

320 - 1 
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Figure 5-39 Watershed results on B918-L1 showing varied outcomes based on length  

5.3.9 Conclusion 

It has been able to detect and count the number of flaws, for both pits and cracks, with good 

shape extraction especially boundary details, as seen from numerous examples displayed 

above. This is the easiet yet effective method that fits the requirement smartly. It works better 

when the images are taken at a high magnification as they have clear edges and it is also 

affected by lighting conditions and data handling.  

5.4 MORPHOLOGICAL-BASED ALGORITHM IMPLEMENTATION FOR IMAGE 

SEGMENTATION 

Mathematical morphology [140] [141] is a popular methodology that is used for image analysis, 

smoothing, segmentation, edge detection, thinning, shape analysis and coding [142], where it 

examines the geometry of an image directly in the spatial domain. The advantage of 

mathematical morphology is its capability to identify and/or enhance features of specific shape 

and orientation in the data [77]. Morphology operates under the control of a structuring 

element, where regions can be reshaped or morphed in various ways. Image regions are the 

light and dark portions of an image and structuring element (SE) can be thought of as a 
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parameter to the morphological operation, which is based on the shape that needs to be 

extracted. The most fundamental operations are morphological dilation and erosion.  

 

Figure 5-40 Block diagram of Morphological algorithm 

Similar to the previous algorithms, it takes an RGB image as an input and displays the 

processed image in the end along with an excel file for the pit’s counts, measurements and 

performance. This can be seen in a block diagram in figure 5.40. 

5.4.1 Design and structure the implementation steps 

Some of the steps will be explained further and some have already been explained in the 

previous algorithm steps. The main flow of the algorithm consists of the following steps: 

1. Read the RGB image;  

2. Setup the parameters 

3. Add an outside border; 

4. Convert it to grey scale;  

5. Apply Contrast Limited adaptive Histogram Equalisation  

6. Used Kittler Minimum Error Thresholding to get an optimal threshold value 

7. Converted to binary image by using the threshold value above 

8. Created SE1 

9. Applied Erosion based on SE1 and then Reconstruction 

10. Fill the holes 



Chapter 5 –Unsupervised Learning implementation & evaluation 

Juvaria Syeda: Doctoral Thesis    190 
 

11. Performed dilation based on SE1 and then reconstructed again. 

12. Inversed the image 

13. Computed the regional maxima  

14. Created SE2 

15. Performed closing based on SE2 and then erosion. 

16. Removed small objects with a ‘p’ value 

17. Subtract to apply correction 

18. Thresholding applied by using ‘Tfm’ value 

19. Delete border 

20. Connected the components to label each object to make measurements of it;  

21. Apply pseudo random color labels to distinguish between them easily;  

22. Extract features of the detected objects;  

23. Then save the interesting measurement results like Area and length of each of the 

objects in an excel file for all the images. 

24. Display the visual processed images 

25. Assessment steps 

5.4.2 Setup the parameters 

Main parameters used in the algorithm are as follows:  

• R1: erosion radius number one, first cleaning of the background to remove the 

noise (value close to a pit radius) 

• R2: erosion radius number two, cleaning of the borders of the markers obtained by 

the first opening/closing step (R2<R1) 

• Tfm: threshold referring to the histogram computation allowing to remove false 

markers (the real markers have to highest grey levels on the displayed histogram 

and should ultimately be the only one to remain in order to have a satisfying count) 

• C: parameter useful to add a white border to the original image in order to be able 

to compute markers situated at the image edges, corresponding to the colour of 

the border 

• sc_high: scale factor for high magnification conversion to mm units 

• sc_low: scaling factor for low mag to get parameters converted into mm.  

5.4.3 Conversion from RGB to Greyscale values 

Performs conversion from RGB shown in figure 5.41 to grey scale as shown in figure 5.42. 
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Figure 5-41 Test sample used for showing Morphological algorithm implementation  

 

Figure 5-42 Morphological algorithm outcome showing conversion from RGB to grey scale 

5.4.4 Apply Contrast Limited adaptive Histogram Equalisation (CLAHE)  

Performed image enhancement based on the grey level intensities of the pixels. To enhance 

the contrast of the grey scale image by transforming the values using (CLAHE) Contrast 

Limited adaptive Histogram Equalisation [125]. CLAHE operates on small regions in the 

image, called tiles, rather than the whole image. It has greatly improved the image, as shown 

in figure 5.43. 
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Figure 5-43 Morphological algorithm outcome after applying CLAHE 

5.4.5 Kittler Minimum Error Thresholding 

Kittler Minimum Error Thresholding [143] was used to compute an optimal threshold. It is a 

function computing a special method to access the threshold value based on a repartition of 

pixel grey level value on both side of an evolving threshold value. 

5.4.6 Conversion to binary image 

Edge detection: brightness discontinuities i.e. intensity changes. After that converted to black 

and white scale shown in figure 5.44. 

 

Figure 5-44 Morphological algorithm outcome after conversion to black & white 
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5.4.7 Morphological operations performed on the binary image based on SE1 

Morphological filtering are based on shapes. They perform shrinking and/or expanding 

operations with regard to a certain structuring element (SE). A morphological structuring 

element (SE) called ‘strel’ was used to create a disk-shaped SE. The shape chosen depends 

on the type of feature being dilated. The morphological operators applied were erode, 

reconstruct and dilate. 

5.4.8 Morphological operation performed based on SE2 

Performed compliment to the previous resultant image and computed the regional maxima 

value. Then another SE was created for cleaning up the markers. This was followed by closing 

operation and then erosion.  

5.4.9 Removed small objects  

In this step white areas smaller than ‘p’ pixels were deleted from the binary image. Then 

computed extended max value so anything greater than ‘tfm’ value was deleted in the image.   

5.4.10 Delete border and label the connected components 

Connected the neighbours by applying the regional analysis methods which compute the 

regional maxima of the Image using specified connectivity as shown in figure 5.45 and 

coloured labelling in figure 5.46. 

 

Figure 5-45 Morphological algorithm outcome after applying connecting neighbours 



Chapter 5 –Unsupervised Learning implementation & evaluation 

Juvaria Syeda: Doctoral Thesis    194 
 

 

Figure 5-46 Morphological algorithm outcome after applying Region extraction 

5.4.11 Count the number of flaws and display it on the image 

In the end, displayed the image with the pits counted on the image as can be seen in figure 

5.47 below along with an excel file.  

 

Figure 5-47 Morphological algorithm outcome showing final result with flaw counts 

Isolate regions/objects from the background depending on its similar properties to identify 

relevant information such as its length, area, eccentricity and average intensity. 
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5.4.12 Nearest Neighbour  

This step gives the list of objects nearest or closest to each other. The results are then 

displayed and also the results are saved in a file. This enabled to find the nearest neighbour 

to a pit entering the centroid matrix as an input.  

5.4.13 Assessment steps applied based around API standard for 2D images 

The following steps have not been included, when comparing the performance of different 

algorithms. There are many additional steps to perform 2D-Pit assessment based on the 

industry standard [9], some of the mains ones are as follows: 

First assessment: refers to the first step of the API standard where it allows the user to know 

whether the proximity of two pits is considered to be dangerous. The result shows a danger 

scale, if danger it shows ‘1’ and if otherwise then shows ‘0’. 

Second assessment: This step is performed in order to re-dimension the LTA (Local thin area) 

of each pit or pit couple and display the result. The input is the output of first assessment, plus 

other values. In the end shows horizontal length, vertical length, new centre of LTA abscissa, 

new centre of LTA ordinate, origin abscissa of the new LTA, origin ordinate of the new LTA. 

In short, if first assessment passed then, it shows the value of the corresponding rectangle, 

otherwise shows it for the pit of interest.  

 

Third assessment (a): computes for the second time the distance between the LTAs (being 

either isolated pits or new rectangle areas) referring to the API standard second step. The 

result is a corrected set of values from second assessment only keeping the necessary LTAs 

from the new results. Third assessment (b): computes the array containing the final results 

and enables to display the final LTAs  

5.4.14 Varying parameter ‘p’ values to change flaw size detected  

For the initial phases, different combinations of ‘p’ value were applied to explore the result 

outcomes. This can be seen by showing a few set of visual examples from figure 5.48 to 5.53 

and tabular sheet from table 5.6 to 5.8 to elaborate the point. This ‘p’  equals a value 

(threshold) on the basis of which an object is removed if the number of pixels is less than value 

of p. This is done in the end to remove extra small objects in which we are not interested like 

for example a pit roughly smaller than 0.5mm but in terms of pixel area. There are two other 

values with which further comparisons can be made, R1 and R2. For these sets of 

comparisons they are R1 = 8 and R2=2. It can see in the table below, the comparison of 

removing ‘p’ pixels from the same image and the effect it has on the performance measures. 
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The good point about removing the unwanted pixel area later on in the processing, is that it 

does not dilate the shape of the pits. 

Test Sample B514-2016 

This image contains many small pits that can be ignored and a few pits of the interested size 

as previously discussed in watershed implementation of the same image. The figure 5.48, a) 

shows the test sample Image B514-2016, b) shows the resultant Morphological Binary image. 

    

Figure 5-48 Morphological outcome on B514-16 showing resultant binary image 

Table 5.6, shows different outcomes of the number of flaws based on the object length 

restrictions. Visual morphological result in figure 5.49 on same test Image B514-2016 with cut-

off length value of 7000 shows that it picks 3 pits. 

Table 5-6 Morphological on B514-L1 showing effect of variation in the cut-off size 

Image # Length  Mean Intensity # of Pits/cracks 

B514-L1 

2500 - Too many 

5000 - Too many 

7000 - 3 
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Figure 5-49 Morphological outcome on B514-16 with 7000 cut-off length  

Test Sample B918-L1 

This image contains clear good-sized pits that should be picked after surface noise removal. 

After applying region extraction in the previous step, the figure 5.50, a) shows the test 

sample Image B514-2016 and b) shows the resultant Morphological Binary image 

    

Figure 5-50 Morphological outcome on B918-L1 showing resultant binary image 

 

Table 5.7, shows different outcomes of the number of flaws based on the object length 

restrictions. The figure 5.51, shows visual morphological results with same test sample, Image 

B918-L1 with different cut-off lengths producing and detecting different number of pits. 

Table 5-7 Morphological on B918-L1 showing effect of variation in the cut-off size 

Image # Length  Mean Intensity # of Pits/cracks 

B918-L1 

2500 - 5 

5000 - 3 

7000 - 2 



Chapter 5 –Unsupervised Learning implementation & evaluation 

Juvaria Syeda: Doctoral Thesis    198 
 

   

     

     

Figure 5-51 Morphological results on B918-L1 showing varied outcomes based on length  

Test Sample C278-L1 

This image, as shown in figure 5.52 along with its ground truth, contains clear contrast good-

sized two to three pits that should be picked after surface noise removal where a) shows the 

test sample Image C278-L1, b) shows the labelled ground truth of the image    
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Figure 5-52 Morphological sample test image along with its ground truth image 

Table 5.8, shows different outcomes of the number of flaws based on the object length 

restrictions. The figure 5.53, shows visual morphological results with same test sample, Image 

C278-L1 with different cut-off lengths producing and detecting different number of pits. 

Table 5-8 Morphological algorithm for image C278-L1 showing variation effect in cut-off size 

Image # Length  Mean Intensity # of Pits/cracks 

C278-L1 

 

1000 - 4 

1500 - 3 

2000 - 2 

 

       



Chapter 5 –Unsupervised Learning implementation & evaluation 

Juvaria Syeda: Doctoral Thesis    200 
 

       

Figure 5-53 Morphological results on C278-L1 showing varied outcomes based on length  

5.4.15 Conclusion 

To determine the structuring element shape, the flaw being classified needs to be understood. 

It can be described based on the knowledge of the operators and the data collected. The 

assumption made in this study is that flaw indications are of darker colour in comparison to 

the background. The second assumption is regarding the type of flaw, if it’s a pit then it is likely 

to have an elliptical shape and if it’s a crack then it has an elongated shape. The shape 

information is extremely effective for detecting flaws which do not have a high contrast with 

the background.  

Many adjustments with the parameters were made in the earlier versions of this algorithm. 

The algorithm basically works on the shape extraction, around the morphological structuring 

element from the image. But it also includes many other steps which improves the 

performance of segmentation which are mentioned in the sub-sections above. This algorithm 

also attempts to apply Pit Assessment, based on the industry API-579 standard. Although, 

since the camera used was 2D and the assessment requires depth information, it is only 

considered as an attempt towards the assessment based on 2D information, which is shown 

as a last step of the algorithm.  

5.5 GAUSSIAN-BASED FCM CLUSTERING ALGORITHM IMPLEMENTATION FOR 

IMAGE SEGMENTATION  

Clustering is one of the common image segmentation methods [53] [81]. FCM stands for fuzzy 

c-means, which is an unsupervised segmentation algorithm that is based on the concept of 

searching cluster centres. This is done by iteratively adjusting their position and evaluation of 

an objective function. This iterative optimisation of the FCM algorithm is basically a local 

searching method. This searching is used to minimise the distance among the image pixels in 

corresponding clusters and maximise the distance between cluster centres. 
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Figure 5-54 Block diagram of FCM based Gaussian Algorithm 

The algorithm basically works around FCM clustering and also applies other segmentation 

techniques. It is a combination of a few techniques explained in the sub-sections. As in the 

previous algorithm, it starts by reading an RGB image as input. By the end, counts and make 

measurements of regions of interest (ROI) and then classifies pixels into defects/background 

by displaying the detected flaws in a different colour to the background. This can be seen in a 

block diagram in figure 5.54 The original images used as examples are real images as Image 

A186-2016 is shown in figure 5.55. The main flow of the algorithm is discussed in this section, 

which includes some of the following steps:  

1. Read the RGB image;  

2. Convert it to grey scale;  

3. Apply Gaussian convolution  

4. FCM clustering used 

5. Thresholding the image  

6. Apply morphological operations;  

7. Label each object to make measurements of it;  

8. Apply pseudo random color labels to distinguish between them easily;  

9. Extract features of the detected objects;  

10. Then save the interesting measurement results like Area and length of each of the 
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objects in an excel file for all the images. 

11. Display the visual processed images.  

5.5.1 Convert original image to grey scale 

After reading in the test sample, Image-A186-2016, the next step is the conversion from colour 

to grey scale as shown in figure 5.56 by using rgb2gray. It converts RGB values to grey scale 

values by forming a weighted sum of the R, G, and B components, 0.2989 * R + 0.5870 * G + 

0.1140 * B. It converts by eliminating the hue and saturation information while keeping the 

luminance. 

 

Figure 5-55 Test sample used for showing Gaussian algorithm implementation  

 

Figure 5-56 FCM Gaussian algorithm outcome after converting to grey scale 
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5.5.2 Apply Gaussian convolution for smoothing 

A suitable mask has been calculated, and then Gaussian smoothing was performed using 

standard convolution methods, the resultant outcome shown in figure 5.57. The result of 

Gaussian smoothing is a blurred image that removes detail and noise [64]. It uses a different 

kernel to a mean filter, which represents a bell-shaped hump. The Gaussian outputs a 

weighted average of each pixel's neighbourhood, with the average weighted more towards the 

value of the central pixels unlike the mean filter's uniformly weighted average. Because of this, 

a Gaussian provides gentler smoothing and preserves edges better than a similarly sized 

mean filter. 

 

Figure 5-57 FCM Gaussian algorithm outcome after Gaussian smoothing 

Mainly the reason for using Gaussian as a smoothing filter is due to its frequency response. 

Most convolution-based smoothing filters act as low-pass frequency filters, which means that 

they remove high spatial frequency components from an image. 

5.5.3 FCM clustering used 

It is one of the methods of clustering in which one piece of data may belong to two or more 

clusters. This is in contrast to k-means clustering which assigns them to a single cluster only. 

FCM allows the pixels to belong to multiple classes with varying degrees of membership. It 

can expose pixels in terms of grey value level so as that it can show hierarchical position of 

related defects by grey value. This grey scale based FCM clustering not only effectively 

suppresses noise interference but also rectifies wrong classification of pixels pretty easily. The 
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outcome of this is shown in figure 5.58. Then a thresholding was applied to the binary image 

as shown in figure 5.59. 

 

Figure 5-58 FCM Gaussian algorithm outcome applying FCM Clustering 

5.5.4 Thresholding the image 

 

Figure 5-59 FCM Gaussian algorithm outcome after applying thresholding 

5.5.5 Apply morphological operations 

Morphological operations are applied on the basis of ‘strel’ SE, which is disk-shaped as this 

will resemble to elliptically shaped pits. An opening operation is performed, consisting of 
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erosion and dilation, and then closing is performed on a different SE, p2. These are performed 

to remove noises and/or unimportant areas. The outcome of which is shown in figure 5.60.  

 

Figure 5-60 FCM Gaussian algorithm outcome after morphological operations 

5.5.6 Label each object to make measurements of it 

Then each object is labelled as shown in figure 5.61 after applying labelled connected 

component and then applied pseudo random colour labels to the image as shown in figure 

5.62, to distinguish between them easily. 

 

Figure 5-61 FCM Gaussian algorithm outcome after labelled connected components 
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Figure 5-62 FCM Gaussian outcome after applying coloured labelled component 

5.5.7 Extract features of the detected objects 

Then save the interesting measurement results like Area and length of each of the objects in an 

excel file for all the images. Display the visual processed images in figure 5.63. 

 

Figure 5.5-64 FCM Gaussian outcome showing processed Image with flaw numbers 

Figure 5-63 FCM Gaussian outcome showing number of flaws counted 



Chapter 5 –Unsupervised Learning implementation & evaluation 

Juvaria Syeda: Doctoral Thesis    207 
 

5.5.8 Varying SE values to change flaw size detected  

For the initial phases, different combinations of ‘set of p’ value were applied to explore the 

result outcomes. This can be seen by showing a few set of visual examples as shown in figure 

5.64 and tables 5-9, to elaborate the point.  

   

Figure 5-65 FCM Gaussian outcome on B514-16 showing resultant binary image  

The sample test image consists of clear contrast good-sized two to three pits that should be 

picked after surface noise removal, where figure 5.65, a) shows the test sample Image C278-

L1 and b) shows the resultant FCM Gaussian Binary image 

Table 5-9 Gaussian on B514-L1 showing effect of variation in the cut-off size 

Image # Parameter 1 Parameter 2 # of Pits / cracks 

C278-L1 

2 3 
(First one) 15 pits + shape 

ok 

1 1 >15-30 pits 

2 4 
15 pits but shape more near 

to gt 

4 4 4 pits but shape too dilated 
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Figure 5-66 Gaussian results on C278-L1 results showing varied outcomes based on length 

5.5.9 Conclusion 

In this algorithm, the morphological operators used have not performed that well and hence 

the shape of the outcomes get distorted in that step. It is built around LoG edge with the 

watershed algorithm to generate the final segmentation results with less over segmentation. 

The mask of LoG is set as 5x5. The mask can be modified for obtaining a better segmentation 

result. The end result is to highlight edges. 

5.6 COMPARISON BASED ON FLAW MEASUREMENTS USING SAME IMAGE  

The example image taken is B919-2016 for looking into the results in detail as shown in figure 

5.66. The resolution of the image is 1280x960 pixels which has been taken at a higher 

magnification with an image size of 2x1.5mm. As discussed in chapter 4, interested flaw size 

is set as, for high mag it is any object equal or greater than 0.1mm and for low mag the value 

needs to be equal to or greater than 0.3mm. The flaw measurements are performed on all the 

above three algorithms and then comparisons were made with the labelled ground truth as 

shown in figure 5.68. The procedure mentioned in chapter 4, was followed for the ground truth 

labelling by first measuring it as shown in figure 5.67, then labelling it according to size criteria 

and in the end, object features were extracted. 
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Figure 5-67 Test image to illustrate Flaw measurement by all unsupervised learning methods  

 

Figure 5-68 Manual measurements made for labelling the test image  
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Figure 5-69 Ground Truth of the test image for evaluation of unsupervised methods 

5.6.1 Watershed based algorithm’s flaw measurements using same image 

 

Figure 5-70 Flaw measurement detected by Watershed algorithm on same image 
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Based on the Watershed based algorithm’s flaw measurements, the results outcome is 

displayed visually in figure 5.69 and is also displayed in tabular form, Table 5.10 showing 

individual lengths, area, intensity and eccentricity of each flaw, detected by the watershed 

algorithm.   

Table 5-10 Watershed results showing flaw measurements of the defects detected  

IPv1-
Flaw 

Mean Intensity Length(mm) Length(pix) Area(mm) Area(pix) Eccentricity 

1 61.34652748 1.053161512 658.225945 11.0352 6897 0.991310388 

2 81.04939852 0.172893886 108.0586787 6.2512 3907 0.8974722 

3 72.97797877 0.093258042 58.28627596 4.0688 2543 0.222829774 

4 78.38183143 0.144138324 90.08645242 6.5872 4117 0.661905168 

5 66.81519096 0.169183909 105.7399429 11.1856 6991 0.574092009 

6 71.60310137 0.182179536 113.8622099 12.4848 7803 0.629688135 

5.6.2 Morphological based algorithm’s flaw measurements using same image 

 

Figure 5-71 Flaw measurement detected by Morphological Method on same image 

Based on the Morphological based algorithm’s flaw measurements, the results outcome is 

displayed visually in figure 5.70 and is also displayed in tabular form, Table 5.11 showing 
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individual lengths, area, intensity and eccentricity of each flaw, detected by the watershed 

algorithm.   

Table 5-11 Morphological results showing flaw measurements of the defects detected 

IPv2-Flaw Mean Intensity Length(mm) Length(pix) Area(mm) Area(pix) Eccentricity 

1 90.08144 0.188316 117.6973 8.448 5280 0.863335 

2 83.27575 0.11649 72.80651 5.2048 3253 0.511668 

3 72.10783 0.189221 118.2634 8.072 5045 0.825841 

4 88.92521 0.147452 92.15748 8.6 5375 0.534466 

5 68.46525 0.17337 108.3563 11.648 7280 0.583798 

6 70.37529 0.181242 113.2763 11.5536 7221 0.685359 

5.6.3 FCM Gaussian based algorithm’s flaw measurements using same image 

 

Figure 5-72 Flaw measurement detected by Gaussian based algorithm on same image 

Based on the FCM Gaussian based algorithm’s flaw measurements, the results outcome is 

displayed visually in figure 5.71 and is also displayed in tabular form, Table 5.12 showing 

individual lengths, area, intensity and eccentricity of each flaw, detected by the watershed 

algorithm.   
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Table 5-12 Gaussian algorithm results showing flaw measurements of defects detected 

IPv3-Flaw Mean Intensity Length(mm) Length(pix) Area(mm) Area(pix) Eccentricity 

19 125 0.282 176 21 12954 0.6 

20 89 0.250 156 19 12070 0.8 

6 78 0.204 127 10 6330 0.9 

1 90 0.186 116 8 5287 0.9 

8 71 0.173 108 12 7602 0.5 

7 85 0.141 88 8 4698 0.6 

10 121 0.123 77 3 1643 0.9 

3 80 0.103 64 5 3035 0.3 

2 96 0.096 60 3 1988 0.7 

5 91 0.096 60 3 1888 0.7 

22 129 0.081 51 2 1412 0.7 

15 125 0.079 50 2 1047 0.8 

4 96 0.060 38 1 854 0.6 

16 125 0.050 31 1 569 0.7 

21 128 0.047 29 1 502 0.7 

18 122 0.040 25 1 470 0.3 

13 104 0.038 24 1 340 0.6 

17 126 0.037 23 1 385 0.4 

11 124 0.037 23 1 395 0.2 

9 124 0.036 23 1 384 0.3 

12 127 0.036 23 1 359 0.4 

14 119 0.034 21 1 340 0.3 

 

5.6.4 Ground truth’s extracted flaw measurements of same image 

 

Figure 5-73 Ground truth’s extracted flaw measurements of same test image 
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Based on the measured and marked flaw measurements, as shown in figure 5.72, of the 

ground truth of same image, the extracted outcome is displayed visually in figure 5.73 and is 

also displayed in tabular form, Table 5.13 showing individual lengths, area, intensity and 

eccentricity of each flaw, detected by the watershed algorithm. This process of extracting 

features from the labelled ground truth is done in order to compare its dimensions with the rest 

of the algorithms implemented. 

Table 5-13 Dimensions of labelled ground truth to compare with the rest of the algorithms 

Object Type Unit of Measurement ID Value Unit 

Line Length 23 0.2 mm 

Line Length 24 0.18 mm 

Line Length 25 0.09 mm 

Line Length 26 0.16 mm 

Line Length 27 0.19 mm 

Line Length 28 0.13 mm 

Line Length 29 0.05 mm 

Line Length 30 0.08 mm 

Line Length 31 0.08 mm 

 
Figure 5-74 Ground truth of same test image 
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5.6.5 Conclusion 

It can be seen from table 5.14 that the Morphological algorithm’s measurements are more 

nearer to the labelled ground truth information. Watershed’s results show an edge boundary 

problem for one of the flaws detected at the edge, otherwise it is closer to the actual values.  

Table 5-14 Comparison of all unsupervised algorithms with the ground truth  

Flaw 
Watershed 

Length (mm) 
Morphological 
Length  (mm) 

Gaussian 
Length-(mm) 

Manual 
Length (mm) 

1 1.053 0.189 0.282 0.2 

2 0.182 0.188 0.250 0.19 

3 0.173 0.181 0.204 0.18 

4 0.169 0.173 0.186 0.16 

5 0.144 0.147 0.173 0.13 

6 0.093 0.116 0.141 0.09 

7   0.123 0.08 

8   0.103 0.08 

This object at boundary problem can be solved by removing the black line at the bottom from 

the original images. When measuring for the ground truth, the Pits which have a more elliptical 

shape, are darker in colour and seem very close to 0.1mm, get selected as well, 0.8mm being 

the smallest value to be selected under such exceptions. 

5.7 EVALUATION WITH A STATE-OF-THE-ART ALGORITHM USING SAME DATASET 

Results are based on the average performance on the full dataset, with same images, for each 

algorithm implemented. Visual outcomes are shown by using same image, B919-2016, as 

shown in figure 5.74. This image is used just to show main individual steps of each algorithm. 

The metrics used are the same ones already discussed in chapter 4 in much detail that also 

include the specific image segmentation metrics such as CV, RI, VOI, BE and GCE. Each 

subsection includes a table of the performance metrics applied on full dataset consisting of 

same images. Then it plots the result using confusion matrix and also displays main individual 

steps performed by each of the algorithm.  Later, in the conclusion to this section, it shows a 

comparison table between all four of algorithm based on both, individual as well as average 

performances of these algorithms. 
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Figure 5-75 Test image & its ground truth to evaluate implemented unsupervised methods 

5.7.1 Watershed performance results using same dataset 

The performance results of watershed method on all data can be seen through a table showing 

all metrics as shown in Table 5.15 and can also be highlighted with a confusion matrix in figure 

5.75. Individual visual results of the algorithm can be seen in figure 5.76.  

Table 5-15 Watershed performance indicators results using same Dataset 

Metrics name Watershed 

True Positives ↑ 3660565 

True Negatives ↑ 132920335 

False Positives ↑ 4462115 

False Negatives ↑ 268985 

Recall/TPR ↑ 0.931548142 

TNR↑ 0.967520488 

Precision↑ 0.450659758 

Accuracy ↑ 0.966520182 

NPV↑ 0.997980431 

f1↑ 0.607450239 

RMSE↓ 0.029672852 

MCC↑ 0.635104967 

CV↑ 0.436214387 

RI↑ 0.935925086 

VOI↓ 0.394679969 

GCE↓ 0.018750518 

BE↓ 68.57215118 
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Figure 5-76 Watershed outcome of full dataset displayed by confusion matrix  
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Figure 5-77 Watershed results displaying individual steps on same image 

 

5.7.2 Morphological results displaying individual steps using same dataset 

The performance results of morphological method on all data can be seen through a table 

showing all metrics as shown in Table 5.16 and can also be highlighted with a confusion matrix 

in figure 5.77. Individual visual results of the algorithm can be seen in figure 5.78.  

Table 5-16 Morphological performance indicators results using same Dataset 

Metrics name Morphological 

True Positives ↑ 3812232 

True Negatives ↑ 130526314 

False Positives ↑ 4271651 

False Negatives ↑ 2701803 

Recall/TPR ↑ 0.634950793 

Specificity/TNR ↑ 0.968208186 

Precision↑ 0.496357341 

Accuracy↑ 0.950652075 

NPV↑ 0.979225284 

f1↑ 0.489944722 
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RMSE↓ 0.032936835 

MCC↑ 0.518695071 

CV↑ 0.349932574 

RI↑ 0.924338159 

VOI↓ 0.410286651 

GCE↓ 0.030300853 

BE↓ 121.3262869 
 

 

Figure 5-78 Morphological outcome of full dataset displayed by confusion matrix 
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Figure 5-79 Morphological results displaying individual steps on same image 

5.7.3 Gaussian based FCM clustering results using same dataset 

The performance results of gaussian method on all data can be seen through a table showing 

all metrics as shown in Table 5.17 and can also be highlighted with a confusion matrix in figure 

5.79. Individual visual results of the algorithm can be seen in figure 5.80.  

Table 5-17 FCM Gaussian performance indicators results using same Dataset 

Metrics name Gaussian 

True Positives ↑ 4952712 

True Negatives ↑ 125816440 

False Positives ↑ 8981525 

False Negatives ↑ 1561323 

Recall/TPR ↑ 0.80346251 

Specificity/TNR ↑ 0.934658029 

Precision↑ 0.43235867 

Accuracy↑ 0.925393116 

NPV↑ 0.987780845 

f1↑ 0.482997974 

RMSE↓ 0.06130606 

MCC↑ 0.508932789 

CV↑ 0.36220493 

RI↑ 0.874837156 

VOI↓ 0.58453533 

GCE↓ 0.028545977 

BE↓ 104.8260835 
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Figure 5-80 FCM Gaussian outcome of full dataset displayed by confusion matrix 
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Figure 5-81 FCM Gaussian based results displaying individual steps on same image 

 
5.7.4 State-of-the-art algorithm’s results applied on the same dataset 

The algorithm being compared [144] is a state of the art super-pixel-based fast fuzzy c-means 

clustering algorithm for colour image segmentation. The performance results of state-of-the-

art method on all data can be seen through a table showing all metrics as shown in Table 5.18 

and can also be highlighted with a confusion matrix in figure 5.81. Individual visual results of 

the algorithm can be seen in figure 5.82. 

Table 5-18 State-of-the-art performance indicators results using same Dataset 

Metrics name State-of-art 

True Positives ↑ 4965442 

True Negatives ↑ 91942454 

False Positives ↑ 42855511 

False Negatives ↑ 1548593 

Recall/TPR ↑ 0.801132191 

Specificity/TNR ↑ 0.688545564 

Precision↑ 0.249605223 

Accuracy↑ 0.685772588 

NPV↑ 0.985846752 

f1↑ 0.287644805 

RMSE↓ 0.296502208 

MCC↑ 0.295525069 

CV↑ 0.203155907 

RI↑ 0.662093678 

VOI↓ 1.028561891 

GCE↓ 0.051816341 

BE↓ 121.0335617 
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Figure 5-82 State-of-the-art outcome of full dataset displayed by confusion matrix 
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Chapter 5 –Unsupervised Learning implementation & evaluation 

Juvaria Syeda: Doctoral Thesis    226 
 

   

Figure 5-83 State-of-the-art algorithm results displaying individual steps on same image 

5.7.5 Conclusion 

To compare the three different algorithms applied for this research plus the state-of the art 

fourth algorithm, multiple metrics are used. Five of the specific segmentation indicators were 

also applied to evaluate the performance in depth. All the values, shown in table 5.20, are the 

average performance of each algorithm based on the performances of all individual images. 

But before that, performance of an individual, Image B919-2016 is shown in table 5.19. It is 

the same image used to show all the steps earlier in this section. 

 

Table 5-19  Performance evaluation results of all four algorithms on same image  

B919-2016 Metrics Better Watershed Morphological Gaussian SOTA 

1 TP  higher 29812 31068 34609 28956 

2 TN higher 1190002 1190062 1162505 915125 

3 FP lower 2446 2386 29943 277323 

4 FN lower 6540 5284 1743 7396 

5 TPR higher 0.820 0.855 0.952 0.797 

6 TNR higher 0.998 0.998 0.975 0.767 

7 PPV higher 0.924 0.929 0.536 0.095 

8 Acc higher 0.993 0.994 0.974 0.768 

9 NPV higher 0.995 0.996 0.999 0.992 

10 FPR lower 0.002 0.002 0.025 0.233 

11 FDR lower 0.076 0.071 0.464 0.905 

12 FNR lower 0.180 0.145 0.048 0.203 

13 f1 higher 0.869 0.890 0.686 0.169 
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14 RMSE lower 0.003 0.002 0.023 0.220 

15 MCC higher 0.867 0.888 0.704 0.221 

16 CV higher 0.768 0.802 0.522 0.092 

17 RI higher 0.986 0.988 0.951 0.645 

18 VOI lower 0.109 0.097 0.287 1.014 

19 GCE lower 0.010 0.009 0.011 0.046 

20 BE lower 62.283 27.424 44.364 91.958 

21 Time(sec) lower 12.793 28.836 29.354 16.018 

 

 
Table 5-20 Performance evaluation results of all four algorithms on same dataset 

Metrics# Metrics name Watershed Morphological Gaussian  State-of-art 

1 TP↑ 31831 33150 43067 43178 

2 TN↑ 1155829 1135011 1094056 799500 

3 FP↑ 38801 37145 78100 372657 

4 FN↑ 2339 23494 13577 13466 

5 Recall↑ 0.932 0.635 0.803 0.801 

6 TNR↑ 0.968 0.968 0.935 0.689 

7 Precision↑ 0.451 0.496 0.432 0.250 

8 Accuracy↑ 0.967 0.951 0.925 0.686 

9 NPV↑ 0.998 0.979 0.988 0.986 

10 FPR↓ 0.032 0.032 0.065 0.311 

11 FDR↓ 0.549 0.504 0.568 0.750 

12 FNR↓ 0.068 0.365 0.197 0.199 

13 f1↑ 0.607 0.490 0.483 0.288 

14 RMSE↓ 0.030 0.033 0.061 0.297 

15 MCC↑ 0.635 0.519 0.509 0.296 

16 CV↑ 0.436 0.350 0.362 0.203 

17 RI↑ 0.936 0.924 0.875 0.662 

18 VOI↓ 0.395 0.410 0.585 1.029 

19 GCE↓ 0.019 0.030 0.029 0.052 
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20 BE↓ 68.572 121.326 104.826 121.034 

21 Time(sec)↓ 20.71 32.84 22.28 16.00 

 

Watershed based algorithm showing best of the performances based on 8 of the metrics, 

which is highest number of best performing metrics. If just the 5 major metrics specifically used 

for image segmentation evaluations are considered, then also it can be seen that it gives 

similar results as above. Out of five metrics applied; Watershed produces best results for two 

of them and one same as Gaussian. Morphological shows best results for two of the indicators 

as well and matches watershed while Gaussian shows best for one of them and matching one. 

But state-of-the-art is still behind in producing as good results for this data set application.  

 

5.8 Chapter Summary 

Three versions of image segmentation have been implemented in this chapter, which are 

watershed-based, Gaussian-based FCM clustering and morphological-based filtering, to 

investigate and make comparisons between them. Implementation of all algorithms, except 

the initial trials, follow three major steps which include; pre-processing, segmentation and 

feature extraction. The outcomes consist of the resultant segmented image along with two 

excel files. One has the flaw measurements such as flaw length and area and the other has 

the performance measures such as accuracy, recall and precision etc.  

The confusion matrix of all four methods are shown side by side in Table 5.21. The overall 

performance, using same dataset, of all four methods is illustrated in figure 5.83 using a bar 

chart. It is the visual representation of the tabular results of table 5.20. It can be seen by the 

bar chart that both the watershed and morphological algorithm give better results. They show 

best results based on almost all indicators such as recall, accuracy, TNR, NPV, f1, R1, MCC, 

CV, VOI, GCE and RMSE. 

Table 5-21 Confusion matrix of all four methods side-by-side performed on all data 
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Figure 5-84 Evaluation of all unsupervised methods implemented shown by bar chart 
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Based on the flaw measurements, Morphological algorithm’s measurements are more nearer 

to the labelled ground truth information. Watershed’s results show an edge boundary problem 

for the flaws detected at the edge, otherwise it is closer to the actual values. 

Based on the performance metrics illustrated in figure 5.83, it can be seen that the watershed 

gives better results in comparison to the rest of the algorithms implemented. Watershed-based 

algorithm is a simple yet effective method, which shows high performances such as 95.2% 

accuracy, 55% precision, f1 score 56%, high probabilistic rand Index (PRI) 91.7%, CV is 

42.8% and VOI as low as 41.08%, Global consistency error (GCE) as low as 2.6%. The other 

segmentation method, Morphological-based algorithm shows performance comparable to 

above such as 95.1% accuracy, 49.6% precision, f1 score 49%, high probabilistic rand Index 

(PRI) 92.4%, CV is 35% and VOI as low as 41%, Global consistency error (GCE) as low as 

3%. Both of them have very similar performance results.  

Comparing to the state of the art method used by [144], it can be seen that the results 

produced in this research, work more accurately for this application data set. Image 

segmentation has been able to work on both kinds of defects, pits and cracks. For 

classification purposes, machine learning and deep learning has been implemented, which is 

discussed in the next chapters in detail. 
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6    Chapter 6

 Supervised Machine Learning 

implementation, comparison & evaluation  
 

 

This chapter provides an overview of the design steps that were necessary to 

set up supervised classification and begin training for traditional machine 

learning. This includes discussion of classifier algorithms, spatial and textural 

feature extractions such as local binary patterns, gradients and other 

parameter that were applied for the implementation of machine learning 

models. It then discusses experimental results based on the metrics for 

comparing and analysing different classifier’s performance  
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6.1 INTRODUCTION 

This chapter discusses supervised learning methods based on traditional machine learning. It 

lays the foundation to the third main contribution to this research combined with the next 

chapter on deep learning methods. After implementing unsupervised methods in the previous 

chapter, next main task is to explore the possibility of implementing an intelligent system on 

the same data. Especially for the project objective of classifying pits and cracks. Machine 

Learning (ML) are typically used in problems that maybe couched in terms of classification or 

forecasting. It teaches machines tasks that are easy for humans to perform but hard for them 

to formalise how it was performed such as the project problem of classification. This chapter 

consists of the following: 

• Starts with discussing some of the key factors to be considered for applying machine 

learning (section 6.2) 

• Then it shows machine learning initial trials based on the basic RGB feature extraction 

(section 6.3) 

• Discusses three different settings for training the traditional machine learning models. 

For each of the settings, it explains the feature extracted such as local binary pattern 

and gradients, then the results of the implementation (section 6.4- 6.6) 

• In the end, summary of all the machine learning method’s results is concluded with 

visual illustration (section 6.7) 

As researched in chapter 2, machine learning allows machines to learn from experience by 

finding natural patterns as opposed to being explicitly programmed [145]. These natural trends 

in the data produces insight and helps to make better decisions and predictions. So, as the 

number of samples available for learning increases, the algorithms adapt to improve their 

performance. It is ideal for situations when there is no existing equation or formula, for a 

complex scenario which deals with massive amount of data and loads of variables. 

There are two kinds of machine learning techniques that are used, one is unsupervised 

learning and the other is supervised learning. Unsupervised is considered useful when the 

data needs to be explored but doesn’t have a specific goal so no output data is available. The 

advantage of using this technique is that new things can be learnt when they are not known 

in advance. They can also be used as a pre-processing step for supervised learning. For 

example, apply clustering to get some features and then use them as an added feature input 

for the supervised learning model. Most unsupervised learning techniques are a form of cluster 

analysis where, based on some similarity or shared characteristic, data is partitioned into 
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groups. Some of the commonly used algorithms that are based on clustering include k-means, 

hierarchical clustering, Gaussian mixture models, hidden Markov models, self-organizing 

maps, fuzzy c-means clustering, and subtractive clustering. 

On the other hand, supervised learning takes a known set of inputs and their outputs (known 

purpose) to train a model that can make predictions. It is to develop a predictive model based 

on evidence in the presence of uncertainty to generate reasonable predictions for the 

response to new data. The foremost difference between them being that the supervised 

learning has a known purpose and requires output data. All supervised learning techniques 

are a form of classification or regression. Regression predicts continuous responses while 

classification is used to predict discrete responses like classifying data into categories. As in 

the case of the project, the purpose is known hence supervised classification has been 

considered for further evaluation and implementations. Some of the commonly used 

supervised classification algorithms include support vector machine (SVM), boosted and 

bagged decision trees, k-nearest neighbour, Naive Bayes, discriminant analysis, logistic 

regression, and neural networks. 

There is no best method, because different case situations demand different algorithms to be 

considered. Hence, finding the right algorithm is a core part of the implementation which is 

partly based on trial and error. It’s a trade-off between certain factors like speed of training, 

memory usage and predictive accuracy on new data. After choosing the model, the next step 

is to extract different useful features and then evaluate the performance measures of the 

combination of such implementations.  

6.2 IMPLEMENTATION CONSIDERATIONS FOR MACHINE LEARNING 

In general there are two steps in building a classifier: first is the training and second is the 

testing (or classification). These steps can be further broken down into sub-steps. 

For Training: 1. Pre-processing: Process the data so it is in a suitable form, 2. Feature 

extraction: Reduce the amount of data by extracting relevant information, usually results in a 

vector of scalar values. 3. Model Estimation: From the finite set of feature vectors, need to 

estimate a model (usually statistical) for each class of the training data. 

For Testing: 1. Pre-processing: 2. Feature extraction: (both steps are same as above) 3. 

Classification: Compare feature vectors to the various models and find the closest match. One 

can match the feature vectors obtained in training set. 

A typical machine learning involves the following steps to be performed for classification:  
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• A matrix of observations and features relevant to the problem at hand.  

• Preparing the dataset for processing.  

• Splitting the dataset into training and testing sets.  

• Selecting and training the classifier using the training set.  

• Test the prediction accuracy of the trained classifier using the testing set.  

• Evaluate the accuracy of the classifier by using will defined metrics.  

 

Table 6-1 Refers to all the key terms that have been used for classification implementation 
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Table 6.1 refers to all the short key terms used in this chapter for ease of labelling different 

experimental setups. The performance of each image, with each pixel accounted for is stored. 

The table 6.2 shows individual performance results of five test images by applying important 

metrics. Then the average of all measures for all images are taken, for comparison with the 

other classifiers. So the average values of set s1tm1ml1 with s1tm1ml2 are considered, to 

compare two machine learning classifier performance. Similarly, set s1tm1ml1 with s1tm2ml1 

values are compared to show the performance difference, with an additional feature extracted 

for training with same classifiers. In the next sections, only the average values will be 

discussed unless mentioned otherwise.   

Table 6-2 Individual performance results of five test images by applying important metrics 

Filename Better 
A186 - 
2017 

A190 - 
2017 

A788 - 
2017 

A825 - 
2017 

B919 - 
2016 

TP higher 2997 5797 10214 19915 1391 

TN higher 1129374 1058494 1074802 938913 1166646 

FP lower 64129 85219 64740 102140 25802 

FN lower 32300 79290 79044 167832 34961 

TPR/Recall/Sensitivity higher 0.085 0.068 0.114 0.106 0.038 

TNR/Specificity higher 0.946 0.925 0.943 0.902 0.978 

PPV/Precision higher 0.045 0.064 0.136 0.163 0.051 

Acc/Accuracy higher 0.922 0.866 0.883 0.780 0.951 

NPV higher 0.972 0.93 0.931 0.848 0.971 

FPR/Fallout/(1-TNR) lower 0.054 0.075 0.057 0.098 0.022 

FDR lower 0.955 0.936 0.864 0.837 0.949 

FNR/Miss-rate lower 0.915 0.932 0.886 0.894 0.962 

f1 higher 0.059 0.066 0.124 0.129 0.044 

RMSE lower 0.026 0.005 0.012 0.053 0.007 

MCC higher 0.023 0.006 0.062 0.010 0.019 

CV higher 0.03 0.034 0.066 0.069 0.022 

RI higher 0.852 0.761 0.790 0.640 0.905 

VOI lower 1.136 1.665 1.454 2.515 0.624 

GCE lower 0.054 0.126 0.118 0.188 0.044 

BE lower 94.809 94.652 55.954 50.924 89.916 

Time(sec) lower 0.892 0.958 1.070 1.071 1.575 

6.2.1 Reason to compare Classifiers  

It is difficult to get to the right model, as each model has its own strengths and weaknesses in 

a given scenario. There is no straight forward way of determining which model should be used 

without grossly overgeneralising the considerations. Choosing a data classification model 

involves to have a solid understanding of what needs to be accomplished keeping the 

perspective case study in mind. For example, questions like how much data is present, is it 
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continuous, how much storage is required etc. Once all this is known, then the strengths of 

various models can be looked into. There are a few generic rules of thumb that can help 

choose the best classification model, but these might just be helpful for initial research. Mostly 

trial and error is required to attain the right kind of balance among complexity, performance, 

and accuracy, especially when dealing with large amount of data as a small variance in either 

performance or accuracy can have a large impact. At the same time, it is important to avoid 

overfitting a model. The reason being that if the model is super tightly fit with the training data, 

then when the algorithm faces new set of data, it is not able to cope and produces large errors.  

6.2.2 Methods implemented to avoid overfitting  

The best way to avoid overfitting is to have a large diverse training set capturing as many 

learning scenarios as possible. Regularisation method can be tried on the data to correct it. It 

helps the model from depending too heavily on individual data inputs and becoming too rigid. 

The lambda value in the objective function determines the strength of overfitting. It can take 

some time to find the best value of lambda. If it is zero then it means it is not correcting itself 

for overfitting at all but if the lambda value is too large then it will more likely be a training set 

fit. 

Cross-validation method is generally used to prevent over-fitting because it does not use all 

the data to train a model. It is a model assessment technique, used to evaluate a machine 

learning algorithm's performance, when making predictions on new datasets it has not been 

trained on. This is done by partitioning a dataset and using a subset to train the algorithm and 

the remaining data for testing. Common techniques of cross validation include k-fold, holdout, 

and re-substitution. 

6.2.3 Choose between Binary vs Multi-class problem 

Another point to consider is whether the specific problem has a solution in terms of binary or 

multi-class. Multi-class classification is generally more challenging than binary as it needs a 

more complicated model. There are some algorithms which perform more efficiently for binary 

classification problems like logistic regression. Hence, it is important to know whether it can 

be solved by simple binary classification to avoid using complex models and computations.  

6.2.4 Classifier Models implemented 

A useful tool provided by MATLAB is the statistics and Machine Learning Toolbox, which 

includes classification learner app. It makes it easy to compare between the different models 

especially for the initial research stage. These classifiers can primarily be divided into seven 
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categories; Naive Bayes Classification, Discriminant Analysis, Ensembles, Decision Trees, 

Nearest Neighbours, Support Vector Machines (SVM) and Neural Networks. The following 

sections describe some of the most common classifier models.  

6.2.5 Features extracted for machine learning classifiers 

Each column in the input training set that is fed into a model, represents a feature extracted 

from an image. The features that were extracted for the implementations are discussed in their 

respective experimental settings. The new added feature is explained in the section where it 

is added for the first time. 

6.2.6 Datasets 

As discussed earlier, supervised algorithms require response data i.e. manually-annotated 

ground truth to be fed into the classifier models. This is the challenging part as it requires 

massive amounts of correctly labelled data. For this research, flaw images were collected as 

discussed in chapter 4. Total of around 3000 images were collected but many of them had to 

be discarded due to the bad quality of the images, which includes blurriness and bad lighting. 

As mentioned before, the data collection process was gradually improved during the course 

which has helped to gather better quality images later on.  

The pit set ‘p1’ consists of 115 images that have pit flaw/s. This p1 data set has been used 

throughout the classification for comparison purposes, implemented IP, ML and DL 

techniques. Since this is pixel-wise labelled hence the size of observations as input are, 115 

times the image size. The resolution size of the images collected is 1280 times 960 which 

gives 1,228,800 pixels per image. So in total this means 141,312,000 many training & testing 

data into the classifier. This is a lot of data that requires a lot of computer processing and 

storage hence it had a lot of computational and hardware challenges to start with.  

For the machine learning purposes, pixel-wise classification has been performed. The data is 

divided into Training and Test sets if Holdout is used, otherwise images are cross-validated. 

Algorithms like Tree and k-nearest neighbours have been applied to evaluate but some took 

a lot of time and could not be used. Later on, comparisons are made to evaluate their 

performance by using confusion matrix and other such measures. 

6.3 INITIAL TRIALS FOR MACHINE LEARNING 

These initial experiments were performed by using Classification learner provided by 

MATLAB’s Statistics and Machine Learning Toolbox. It is able to apply common machine 

learning classifiers. Tools like Image labeller have been introduced last year which helps to 
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label the data in an easier way. It also has an ‘Image Data Store’ function that can be used to 

import data from image collections that are too large to fit in memory.  

6.3.1 Features extracted - RGB Colour space values 

There are various features based around texture, intensity or colour descriptors. Images have 

different colour spaces such as RGB, LAB, HSV and different texture variations can be 

extracted like LBP and gradients. Initially, RGB colours of the original image have been used 

as the starting three features (Tm1) for training the model.  

Colour space is an arrangement of a three-dimensional coordinate system and a subspace of 

this system, where a single point represents each colour. One of the widely used colour space 

models is RGB which stands for its red, green and blue colour channels. For humans an image 

is formed, when these three primary colours combine [90].  

 

Figure 6-1 Illustration of RGB colour space showing three component images   

It can be viewed as three separate images, including a red scale image, a green scale image 

and a blue scale image, piled up together. In MATLAB, it can be denoted by an array MxNx3 

of colour pixel, where M and N stand for the number of columns and rows or it could also be 

referred as the axis positions. Each colour pixel is associated with three values which 

correspond to red, blue and green colour component of RGB image at a specified spatial 

location. The colour of any pixel can be determined by combining the red, green, and blue 

intensities stored in each colour plane at the pixel’s location. Pixel of an RGB image formed 

from corresponding pixel of the 3 component images [146] can be seen in figure 6.1. Hence, 

the colour of a pixel can be easily calculated. PixelA has (255, 0, 255) value and PixelB has 

(127, 255, 0) value, which were determined by the combination of intensities stored in the red 

colour plane, green colour plane and blue colour plane respectively, for both the images. 

6.3.2 Implementation of trials 
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For initial evaluation, the simple model consists of the following parameters; number of 

neighbours are = 100, the distance metric = Euclidean, distance weight= equal, with total 

number of observations for a single image = 1228800. Since it is based on the RGB colour 

space values (Tm1) it has 3 features which are Red, Green and Blue meaning 3 columns 

added for training data. 

It was started by training, all 23 algorithms with a single image so that classifiers with higher 

accuracy and lower run time, can be selected for further experiments. Based on the image 

segmentation outcomes, it is expected that the KNN might show higher performance. 

6.3.3 Results 

Training was performed on 23 classifiers by using a single image, such that there are 1228800 

number of observations to be trained with 5-fold cross validation applied. From the outcome 

list produced shown in figure 6.3, it can be seen that many algorithm produced similar results 

to the KNN-course algorithm with accuracy ranging between 98.1% -98.3% except a few 

exceptions. Such as SVM models which did not do well with an accuracy of 73% - 90%, allso 

KNN-Fine algorithm had an accuracy of 96.4% and Ensemble boosted Tress gave an 

accuracy of 97.1%.  

However, taking in account another criteria to choose a model, a few were slower than the 

others in terms of time taken for training and/or testing such as SVM and KNN-Coarse. Tree-

based models were relatively faster in comparison to the others.  

Table 6-3 Initial Trials using Classification Learner showing accuracy performance 

Classifiers Method Accuracy Features 

1.1 Tree: Complex Tree  98.3% 3/3 

1.2 Tree: Medium Tree  98.3% 3/3 

1.3 Tree: Simple Tree 98.2% 3/3 

1.4 Linear Discriminant 98.2% 3/3 

1.5 Quadratic Discriminant 98.2% 3/3 

1.6 Logistic Regression 98.1% 3/3 

1.7 SVM: Linear SVM 90.7% 3/3 

1.8 SVM: Quadratic SVM 86.6% 3/3 

1.9 SVM: Cubic SVM 73.0% 3/3 
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1.10 SVM: Fine Gaussian SVM 98.3% 3/3 

1.11 SVM: Medium Gaussian SVM 98.3% 3/3 

1.12 SVM: Coarse Gaussian SVM 98.3% 3/3 

1.13 KNN: Fine KNN 96.4% 3/3 

1.14 KNN: Medium KNN 98.2% 3/3 

1.15 KNN: Coarse KNN 98.3% 3/3 

1.16 KNN: Cosine KNN 98.1% 3/3 

1.17 KNN: Cubic KNN 98.2% 3/3 

1.18 KNN: Weightd KNN 98.1% 3/3 

1.19 Ensemble: Boosted Trees 98.3% 3/3 

1.20 Ensemble: Bagged Trees 98.2% 3/3 

1.21 Ensemble: Subspace Discriminant 98.2% 3/3 

1.22 Ensemble: Subspace KNN 97.6% 3/3 

1.23 Ensemble: RUSBoosted Trees 97.1% 3/3 

 

6.4 LEARNER APP MODELS BASED ON 5-IMAGES- SETTING 1 

In the trials, a single image was used to train a model which is incorrect so for this model 5 

images were used to train the model classifiers using 5-fold cross validation. With 5-images, 

there are 1228800*5 pixels = 6144000 inputs into the classifier.  

6.4.1 Features Extracted - Intensity and Local Binary Pattern 

Additional to the RGB values, two other features were also used for modelling such as 

Intensity vector and an important Local Binary Pattern feature.  

6.4.1.1 Intensity vector 

In feature extraction, it becomes much simpler and reduces computational requirements if the 

image is compressed to a 2-D matrix, as sometimes handling the third dimension can be 

complex and redundant that could increase the amount of training data required to achieve 

good performance [147].  
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This can be performed by either converting image to grayscale value or binaries it. Applying 

conversion to grayscale value is richer than to just plainly binarising pixels into 0s and 1s. 

Possibly, a simple conversion to greyscale is intensity which is the mean of the RGB channels: 

 

 

Figure 6-2 Visual display of grayscale intensities [148] 

Luminance is designed to match human brightness perception by using a weighted 

combination of the RGB channels: 

 

Luminance does not try to match the logarithmic nature of human brightness perception, but 

this is achieved to an extent with subsequent gamma correction. It is implemented by 

MATLAB’s ‘rgb2gray’ function, which is frequently used in computer vision [149] 

 

Luma [147] is also sometimes used which is similarly a gamma corrected form of intensity  

6.4.1.2 Local binary Pattern (LBP) 

It has emerged as one of the popular texture features [48] with new variants continually being 

proposed. It is a very simple and efficient operator that is used to extract features to apply 

classification in computer vision. Its biggest strength lies in its overall computational simplicity 

tolerance against illumination variations and ease of implementation.  

The main idea of this method is demonstrated in figure 6.3 which can be used to characterise 

a local texture [84]. Consider a 3 × 3 neighbourhood around each pixel, then compare every 
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pixel to each of its 8 neighbours following in a clockwise, assign value ‘1’ wherever the central 

pixel value is greater than the neighbour’s value otherwise assign ‘0’ value, then read the eight 

binary numbers associated with the eight neighbours sequentially in the clockwise direction to 

form a binary number and the finally assign this binary number or its decimal equivalent to the 

central pixel. The pixels around the central pixel (a) are given value 1, if they are brighter than 

the central pixel and value 0 otherwise (b) Shows these values (c) If we read these values 

sequentially in the clockwise direction [84] as shown in figure 6.3. 

 

Figure 6-3 Local Binary Pattern (LBP) calculation of central pixel [84] 

This seems similar to assign weights to the eight neighbouring pixels according to their relative 

position with respect to the central pixel. These weights are from 1 to 27, with the first assigned 

to the neighbour which contributes the most significant digit, the second assigned to the 

neighbour which contributes the second most significant digit, and so on. This representation 

makes it sensitive to rotation as some neighbours are given more importance than the others. 

This means that it is sensitive as to which neighbour is considered to be the first. Also it might 

not be suitable for macro-structures as it captures only the very local structure of the texture. 

This makes it very suitable for this research as microscopic images are being dealt with.   

6.4.2 Implementation of Setting1 

In the trials, a single image was used to train a model which is incorrect so for this model 5 

images were used to train the model classifiers using 5-fold cross validation. With 5-images, 

there are 1228800*5 pixels = 6144000 inputs into the classifier. Since it is based on the RGB 

colour space values (Tm1) it has 3 features which are Red, Green and Blue, intensity vector 

(Tm2) and Local Binary Pattern (Tm3), meaning it has 5 columns for training data. 

Just 5 images were used as it was restricted due to MATLAB learner. Classification learner 

crashed if too much data overloaded, didn’t work for more than seven images, so it was 

switched from learner to manual script for the next setting. The five images, of the same size, 

were used for training are shown in figure 6.4, to compare the algorithms with each other on 

the basis of these five images.  
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Instead of choosing 23 classifiers this time, 6 models have been used such as Tree-Fine 

(Fast), Linear discriminant (different), Regression (different), KNN-fine (to test again for 

comparison with coarse), KNN-Coarse (as it produced best result in the initial trials), and 

Ensemble Tress. 

   

    

Figure 6-4 Five Test images used for machine learning with setting 1 

Hence it was important to select such images which could cover majority of the different 

variations in the images like lighting, intensity, blurriness, number of flaws, density of the flaws, 

magnifications etc.  

Each model produced was saved and then was run on the rest of the 110 images. These were 

then compared with the ground truth and performance measurements were made on the basis 

of all the general metrics discussed earlier. This setting was restrictive and limited as this was 

through the classification learner tool. It was needed to run all the data and apply cross 

validation for the model which the tool did not allow. The RGB colours of the original image 

have been used as the starting three features (Tm1) for training the model, same as in the 

initial trials. The training accuracy for the five models are presented in table 6.4. 

Table 6-4 Training performance results of setting1 by using Classification Learner 

Classifiers Method Accuracy Features 

1 Tree: Fine Tree 97.2% 3/3 

2 Linear Discriminant; Linear Discriminant 96.6% 3/3 
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3 Logistic Regression: Logistic Regression 97.1% 3/3 

4 KNN: Fine KNN 96.7% 3/3 

5 KNN: Coarse KNN 97.0% 3/3 

6 Ensemble: Boosted Trees 97.2% 3/3 

 

6.4.3 Results for setting 1 

sItm1: These results are a list of multiple metrics to judge the performance of the model as 

shown in table 6.5. It uses the classification learner (s1), with RGB features (tm1), with 5-fold 

cross validation on 5 training images for 5 classifiers (mls). 

Table 6-5 Machine Learning Results for setting 1 with RGB feature  

 

s1tm2: In this set, intensity feature was added which is not that significant. It showed a very 

slight improvements in a few measures as shown in table 6.6. Comparison across the 

classifiers show that more data and features need to be added to make better decision on 

choosing a classifier. 

s1tm3: In this set, added to the previous two features extracted, another feature was added 

called the Local Binary Pattern (LBP). It showed a very slight improvements in a few measures 

as shown in table 6.7. Comparison across the classifiers show that more data and features 

need to be added to make better decision on choosing a classifier. 

S1-tm1 Better ML1-tree ML2-discriminant ML3-regression ML4-fineknn ML5-courseKnn ML6-ensemble

TP higher 1211 3528 4133 1964 5497 1489

TN higher 1156346 1118891 1108133 1141101 940047 1152357

FP lower 15021 52476 63234 30267 231320 19010

FN lower 56222 53905 53299 55468 51936 55944

TPR higher 0.012 0.047 0.057 0.026 0.192 0.016

TNR higher 0.987 0.954 0.945 0.974 0.807 0.983

PPV higher 0.048 0.048 0.048 0.047 0.047 0.049

Acc higher 0.942 0.913 0.905 0.930 0.769 0.939

NPV higher 0.953 0.953 0.953 0.953 0.947 0.953

FPR lower 0.013 0.046 0.055 0.026 0.193 0.017

FDR lower 0.952 0.952 0.952 0.953 0.953 0.951

FNR lower 0.988 0.953 0.943 0.974 0.808 0.984

f1 higher 0.015 0.038 0.043 0.027 0.029 0.019

RMSE lower 0.037 0.033 0.033 0.033 0.199 0.035

MCC higher 0.000 0.001 0.001 0.000 0.000 0.000

CV higher 0.008 0.020 0.022 0.014 0.015 0.010

RI higher 0.894 0.846 0.832 0.873 0.884 0.889

VOI lower 0.564 1.051 1.191 0.847 0.707 0.628

GCE lower 0.022 0.055 0.064 0.039 0.033 0.027

BE lower 155 144 144 137 170 154

Time(sec) lower 1.062 0.999 1.214 35.702 44.263 11.572
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Table 6-6 Machine Learning Results for setting 1 with RGB & Intensity feature 

 

 

Table 6-7 Machine Learning Results for setting 1 with RGB, Intensity & LBP feature 

 

S1-tm2 Better ML1-tree ML2-discriminant ML3-regression ML4-fineknn ML5-courseKnn ML6-ensemble

TP higher 1042 3455 4026 1926 1981 1282

TN higher 1159197 1120279 1110149 1142245 1142586 1155739

FP lower 12959 51877 62007 29911 29570 16417

FN lower 55602 53189 52618 54718 54663 55362

TPR higher 0.011 0.047 0.056 0.026 0.026 0.014

TNR higher 0.989 0.955 0.946 0.974 0.974 0.986

PPV higher 0.048 0.048 0.047 0.046 0.047 0.048

Acc higher 0.944 0.914 0.907 0.931 0.931 0.942

NPV higher 0.954 0.954 0.954 0.954 0.954 0.954

FPR lower 0.011 0.045 0.054 0.026 0.026 0.014

FDR lower 0.952 0.952 0.953 0.954 0.953 0.952

FNR lower 0.989 0.953 0.944 0.974 0.974 0.986

f1 higher 0.013 0.038 0.042 0.027 0.026 0.016

RMSE lower 0.037 0.033 0.032 0.032 0.033 0.036

MCC higher 0.001 0.001 0.002 0.000 0.000 0.000

CV higher 0.007 0.020 0.022 0.014 0.013 0.008

RI higher 0.898 0.847 0.834 0.874 0.875 0.893

VOI lower 0.528 1.040 1.172 0.837 0.809 0.576

GCE lower 0.020 0.054 0.063 0.039 0.037 0.024

BE lower 167 144 145 137 144 161

Time(sec) lower 14.266 2.119 0.778 45.560 64.105 10.949

S1-tm3 Better ML1-tree ML2-discriminant ML3-regression ML4-fineknn ML5-courseKnn ML6-ensemble

TP higher 1541 3493 4007 4196 1766 1847

TN higher 1151586 1120077 1110510 1099262 1148490 1147182

FP lower 20570 52079 61647 72894 23666 24975

FN lower 55103 53151 52637 52448 54878 54797

TPR higher 0.018 0.047 0.056 0.064 0.021 0.022

TNR higher 0.982 0.955 0.947 0.937 0.979 0.978

PPV higher 0.048 0.048 0.047 0.046 0.048 0.048

Acc higher 0.938 0.914 0.907 0.898 0.936 0.935

NPV higher 0.954 0.954 0.954 0.954 0.954 0.954

FPR lower 0.018 0.045 0.053 0.063 0.021 0.022

FDR lower 0.952 0.952 0.953 0.954 0.952 0.952

FNR lower 0.982 0.953 0.944 0.936 0.979 0.978

f1 higher 0.019 0.038 0.042 0.044 0.023 0.023

RMSE lower 0.035 0.033 0.032 0.037 0.033 0.033

MCC higher 0.000 0.001 0.001 0.001 0.001 0.001

CV higher 0.010 0.020 0.022 0.023 0.012 0.012

RI higher 0.888 0.847 0.835 0.818 0.884 0.882

VOI lower 0.638 1.044 1.173 1.535 0.700 0.712

GCE lower 0.028 0.055 0.063 0.066 0.032 0.033

BE lower 158.832 143.897 144.120 136.381 150.679 154.431

Time(sec) lower 3.882 1.285 2.120 16.770 61.803 12.763
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6.5 CLASSIFICATION MODELS IMPLEMENTED ON FEW IMAGES - SETTING 2  

This setting depicts that the classification learner has not been used, that is own algorithm has 

been implemented. Only the first setting uses classification toolbox, the rest are self-

implemented algorithm settings. Similar to setting1, this setting also uses 5-fold cross 

validation with the same 5 images that were used in setting1, to be able to compare 

performance of self-code algorithm with learner.  

6.5.1 Features Extracted - Gradient-based 

Digital images, with the first derivative, has the ability to enhance the shift of grayscale values. 

Hence these derivative values can be regarded as the corresponding output of boundaries. 

Thresholds can be set to extract the boundaries. First order derivative based techniques 

depend on computing the gradient several directions and combining the result of each 

gradient. The value of the gradient magnitude and orientation is estimated using Horizontal 

and Vertical convolution masks  

Gradient is a vector whose components measure how rapid pixel value are changing with 

distance in the x and y direction [64]. It is a two-dimensional equivalent of the first derivative, 

by which edge points can be judged. It can be is defined as a metric for every individual pixel, 

containing the pixel colour changes in both x-axis and y-axis. This definition is aligned with the 

gradient of a continuous multi-variable function, which is a vector of partial derivatives of all 

the variables. Suppose f(x, y) records the colour of the pixel at location (x, y), the gradient 

vector of the pixel (x, y) is defined as follows: 

 

There are two important attributes of an image gradient, the magnitude which is the L2-norm 

of the vector, and the direction which is the arctangent of the ratio between the partial 

derivatives on two directions. 
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Figure 6-5 Computation of the gradient vector of a target pixel at location (x, y) 

 

To compute the gradient vector of a target pixel at location (x, y), the colours of its four 

neighbours (or eight surrounding pixels depending on the kernel) need to be known as shown 

in figure 6.5. The gradient vector of the example is: 

 

Thus, the magnitude is 

√502 + (−50)2 = 70.71 

And the direction is,  

arctan(−50
50⁄ ) = −45𝑜 

It is too slow if the gradient computation process is repeated for every pixel iteratively. Instead, 

it can be well translated into applying a convolution operator on the entire image matrix, 

labelled as using one of the specially designed convolutional kernels. Let’s start with the x-

direction of the example in figure 6.5 using the kernel [−1,0,1] sliding over the x-axis; ‘∗’ is the 

convolution operator so  

𝐺𝑥 = [−1 0 1] × [105 255 55] = −105 + 0 + 55 = −50 

Similarly, on the y-direction, we adopt the kernel [1 0 −1]𝑇 

𝐺𝑦 = [1 0 −1]𝑇 × [90 255 40] = 90 + 0 − 40 = 50 
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There are other common first derivative operators which have similar principles and 

performance such as Robert, Sobel, Prewitt and Kirsch operators [150]. Different kernels are 

created for different goals, such as edge detection, blurring, sharpening and many more. For 

the Prewitt operator, rather than only relying on four directly adjacent neighbours, the Prewitt 

operator utilises eight surrounding pixels for smoother results. For example,  

𝐺𝑥 = [−1 −1 −1    0 0 0    1 1 1] × 𝐴 

𝐺𝑦 = [10 −1 10   −1 10 −1] × 𝐴 

While the Sobel operator get assigned higher weights to emphasize the impact of directly 

adjacent pixels more. As an example,  

𝐺𝑥 = [−1 −2 −1    0 0 0    1 2 1] × 𝐴 

𝐺𝑦 = [10 −1 20   −2 10 −1] × 𝐴 

6.5.2 Implementation of Setting 2 

This setting depicts that the classification learner has not been used, that is own algorithm has 

been implemented. Only the first setting uses classification toolbox, the rest are self-

implemented algorithm settings. Similar to setting1, this setting also uses 5-fold cross 

validation with the same 5 images that were used in setting1, to be able to compare 

performance of self-code algorithm with learner.  

Based on the RGB colour space values (Tm1) it has 3 features which are Red, Green and 

Blue, intensity vector (Tm2) and Local Binary Pattern (Tm3) plus the Gradient magnitude, 

Gradient Direction, Gradient Gx and Gradient Gy values forming Tm4, consisting of total 5+4, 

9 feature columns for training data. 

6.5.3 Results for setting 2 

s2tm3: There is not much difference in the number of TN values but there is a big increase in 

the TP values. Along with this, as it can be seen that the FP also decreases. Both these 

numbers effect on all the rest of the formulas of performance. Hence, regardless of the 

classifier chosen, between S1 and S2, it is clear from table 6.8 that the self-coded algorithm 

S2, produces better results than S1.  
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Table 6-8 Machine Learning Results for setting 2 with RGB, Intensity & LBP feature 

S1 vs S2 Better S1ML1 S1ML6 S2ML1 S2ML6 Method 

TP higher 1541 1847 15803 17443 S2ML6 

TN higher 1151586 1147182 1163790 1162359 S2ML1 

FP lower 20570 24975 8366 9797 S2ML1 

FN lower 55103 54797 40841 39201 S2ML6 

TPR higher 0.018 0.022 0.303 0.332 S2ML6 

TNR higher 0.982 0.978 0.993 0.992 S2ML1 

PPV higher 0.048 0.048 0.647 0.628 S2ML1 

Accuracy higher 0.938 0.935 0.960 0.960 S2ML1/6 

NPV higher 0.954 0.954 0.966 0.967 S2ML6 

FPR lower 0.018 0.022 0.007 0.008 S2ML1 

FDR lower 0.952 0.952 0.353 0.372 S2ML6 

FNR lower 0.982 0.978 0.697 0.668 S2ML1 

f1 higher 0.019 0.023 0.322 0.349 S2ML6 

RMSE lower 0.035 0.033 0.034 0.032 same 

MCC higher 0.000 0.001 0.366 0.387 S2ML6 

CV higher 0.010 0.012 0.216 0.234 S2ML6 

RI higher 0.888 0.882 0.925 0.926 S2ML6 

VOI lower 0.638 0.712 0.392 0.411 S2ML1 

GCE lower 0.028 0.033 0.018 0.021 S2ML1 

BE lower 158.832 154.431 70.359 70.112 S2ML6 

Time(sec) lower 3.882 12.763 63.200 110.043 S1ML1 

 

s2tm4: In general, comparison between S1 and S2, shows a massive increase in the 

performance measures of the classifiers in S2 except the time taken as shown in table 6.9. 

This setting was used only to make a direct comparison between classification learner and 

self-code algorithm by using similar classifier and similar dataset. The next task is to increase 

the training dataset, as setting S2 doesn’t put a restriction on the number of observations. So 

setting 3 uses same 5-fold cross validation on 115 images instead of just 5 images. 

Using set s2tm4ml6, a few visual results of the predicted image are shown in figure 6.6 and 

figure 6.7, along with their respected original image and ground truth. It also shows results, 

when a post-processing step is applied. The test samples used are Image A186 and A188. 

The figures show the original, its ground truth, predicted image by Ensemble Classification 

(S2tm4) implemented on test image, and then post-processing applied after classification. 
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Table 6-9 Comparison between s2tm3 vs s2tm4 where tm4 has Gradient feature added  

Tm3 vs Tm4 Better Tm3ML1 Tm3ML6 Tm4ML1 Tm4ML6 

TP higher 15803 17443 17659 17618 

TN higher 1163790 1162359 1157001 1156975 

FP lower 8366 9797 15155 15182 

FN lower 40841 39201 38985 39026 

TPR higher 0.303 0.332 0.333 0.333 

TNR higher 0.993 0.992 0.987 0.987 

PPV higher 0.647 0.628 0.541 0.542 

Accuracy higher 0.960 0.960 0.956 0.956 

NPV higher 0.966 0.967 0.967 0.967 

FPR lower 0.007 0.008 0.013 0.013 

FDR lower 0.353 0.372 0.459 0.458 

FNR lower 0.697 0.668 0.667 0.667 

f1 higher 0.322 0.349 0.340 0.344 

RMSE lower 0.034 0.032 0.032 0.032 

MCC higher 0.366 0.387 0.365 0.368 

CV higher 0.216 0.234 0.222 0.224 

RI higher 0.925 0.926 0.918 0.918 

VOI lower 0.392 0.411 0.486 0.488 

GCE lower 0.018 0.021 0.026 0.027 

BE lower 70.359 70.112 83.480 82.538 

Time(sec) lower 63.200 110.043 57.913 120.511 

 

  

  
Figure 6-6 Ensemble Classification (S2tm4) implemented on Image A186  
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Figure 6-7 Ensemble Classification (S2tm4) implemented on Image A188 

 

6.6 CLASSIFICATION MODELS IMPLEMENTED BASED ON FULL DATA- SETTING 3 

This setting of the algorithm applies 5-fold cross validation by using the whole set of 115 

images. As it was not restricted by the learner input issues, finally the whole set of images 

could be used. This is then compared to the previous setting, by evaluating performance of 5-

images based trained model with 115-images trained model. This will show the positive effect 

of increasing data for training. 

6.6.1 Features Extracted - L*a*b and HSV colour spaces 

6.6.1.1 L*a*b colour space 

Colour spaces CIE 1931 (Commission Internationale de l’Elcairage) were introduced to be 

able to quantitatively express links between distributions of wavelengths in the EM 

(ElectroMagnetic) visible spectrum along with the physiological perceived colours in human 

eye sight [151]. The mathematical relationships between these colour spaces serve as 

fundamental tools for colour management.  

Another model that shares similar property to HSV is L∗a∗b∗  where L stands for lightness, ’a’ 

stands for colour component green-red and ’b’ for blue-yellow. Research [152] shows results 
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that proves that L*a*b model is able to efficiently distinguish luminance information from colour 

information, even in presence of saturation, hence offers luminance separation for 

segmentation tasks. This colour model also offers ‘perceptually linear’ as another important 

property. It is often used as an interchange format when the task deals with different devices, 

as it is device independent. 

 

Figure 6-8 Illustration of LAB Colour Space [153] 

It is worthwhile using these models, in cases which require luminance invariance. The RGB to 

L∗a∗b∗ transformation involves two transformations. First RGB colours are transformed into 

XYZ, and then XYZ to L∗a∗b∗ transformation. The XYZ space was formed on the mathematical 

limit of human vision as far as colour is concerned. These X, Y and Z are channels 

extrapolated from the R, G and B channels to prevent the occurrence of negative values. Y 

represents luminance, Z represents a channel close to blue channel and X represents a mix 

of cone response curves chosen to be orthogonal to luminance and non-negative. The RGB-

to-XYZ transformation is a function of the viewing conditions such as intensity and colour of 

the lighting.  

 

The XYZ to L∗a∗b∗ transformation is given below,  
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Where, Xn, Yn, Zn are the X, Y, and Z values of the reference, while R = G = B = 1.0. [152].  

6.6.1.2 HSV colour space 

The RGB values, despite being the more popular colour space, has its downside. One of which 

is that they get highly affected by illumination [154]. For such cases where illumination value 

might be a crucial feature, other colour systems such as HSV can be used instead. When 

humans see colours, they perceive it in a certain way which was taken in account when this 

model was developed [151]. HSV stands for hue, saturation and value, where the colour hue 

is described in terms of saturation dealing with shade and value reflecting brightness.  

 

Figure 6-9 Illustration of the HSV Colour Space [155] 

The RGB to HSV transformations are fairly standard where R, G, B, H, S,V are the values of 

the red channel, green channel, blue channel, hue channel, saturation channel and the value 

channel respectively. [152] 

6.6.2 Implementation of Setting 3 

This setting of the algorithm applies 5-fold cross validation by using the whole set of 115 

images. As it was not restricted by the learner input issues, finally the whole set of images 

could be used. This is then compared to the previous setting, by evaluating performance of 5-

images based trained model with 115-images trained model. This will show the positive effect 

of increasing data for training. 

For ML6 (Ensemble), used bag setting hence applied Random Forest (RF) model in this 

setting. Based on the RGB colour space values (Tm1) it has 3 features which are Red, Green 

and Blue, intensity vector (Tm2) and Local Binary Pattern (Tm3), Gradient magnitude, 

Gradient Direction, Gradient Gx and Gradient Gy values (Tm4), plus added L*a*b and HSV 

(Tm5) consisting of total 9+6 = 15 feature columns for training data. 

6.6.3 Results for setting3 
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s3tm4: In general, comparison between S2 and S3, shows slight increase in the performance 

measures of the classifiers in S3 except the massive increase time taken. There is not much 

difference in the number of TP and TN values plus it can be seen that the FP decreases. Both 

these numbers improve on all the rest of the formulas of performance. Hence, regardless of 

the classifier chosen, between S2 and S3, it is clear from table 6.10 that the S3 based on 115 

cross-validated images, produces better results than S2, which is based on just 5 training 

images. 

Table 6-10 Comparison of ML models between setting 2 and setting 3  

S2 vs S3 Better S2ML1 S2ML6 S3ML1 S3ML6 Better 

TP higher 17659 17618 16933 17829 S3ML6 

TN higher 1157001 1156975 1163467 1162919 S3ML1/6 

FP lower 15155 15182 8689 9237 S3ML1/6 

FN lower 38985 39026 39710 38815 S3ML6 

TPR higher 0.333 0.333 0.325 0.325 S2 

TNR higher 0.987 0.987 0.993 0.992 S3ML1/6 

PPV higher 0.541 0.542 0.645 0.676 S3ML6 

Acc higher 0.956 0.956 0.961 0.961 S3ML1/6 

NPV higher 0.967 0.967 0.967 0.968 S3ML6 

FPR lower 0.013 0.013 0.007 0.008 S3ML1/6 

FDR lower 0.459 0.458 0.355 0.324 S3ML6 

FNR lower 0.667 0.667 0.675 0.675 S3ML1/6 

f1 higher 0.340 0.344 0.340 0.409 S3ML6 

RMSE lower 0.032 0.032 0.033 0.026 S3ML6 

MCC higher 0.365 0.368 0.382 0.435 S3ML6 

Time(sec) lower 57.913 120.511 8082 3536 S2 

 

Table 6.11 shows that the best classifier to choose based on the performance measures is 

the ML5, coarse k-nearest neighbour model.  

Table 6-11 Machine Learning Results for setting 3 of Tree,Knn,Ensemble classifiers 

S3tm4mls Better ML1-tree ML5-coarseKnn ML6-ensemble Better 

TP higher 16933 18639 17829 ML5 

TN higher 1163467 1164185 1162919 ML1 

FP lower 8689 7972 9237 ML5 

FN lower 39710 38004 38815 ML5 

TPR higher 0.325 0.342 0.325 ML5 

TNR higher 0.993 0.993 0.992 ML1/5 

PPV higher 0.645 0.704 0.676 ML5 

Acc higher 0.961 0.963 0.961 ML5 

NPV higher 0.967 0.968 0.968 ML5/6 

FPR lower 0.007 0.007 0.008 ML1/5 

FDR lower 0.355 0.296 0.324 ML5 
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FNR lower 0.675 0.658 0.675 ML5 

f1 higher 0.340 0.438 0.409 ML5 

RMSE lower 0.033 0.025 0.026 ML5 

MCC higher 0.382 0.462 0.435 ML5 

Time(sec) lower 8082 32119 3536 ML6 
 

s3tm5: Adding more features increases the performance of the model which can be seen in 

table 6.12 Tree Model (ML1) was used as an example implementation as it is quick with 

producing the results in comparison to other classifiers. 

Table 6-12 Comparison between s3tm4 vs s3tm5 where L*a*b and HSV features added  

Tm4 vs Tm5 Better Tm4-ML1 Tm5-ML1 Better 

TP higher 16933 17108 Tm5  

TN higher 1163467 1164270 Tm5 

FP lower 8689 7886 Tm5 

FN lower 39710 39536 Tm5  

TPR higher 0.325 0.342  Tm5 

TNR higher 0.993 0.993 Same 

PPV higher 0.645 0.694 Tm5 

Acc higher 0.961 0.961 Same 

NPV higher 0.967 0.967 Same 

FPR lower 0.007 0.007 Same 

FDR lower 0.355 0.306 Tm5 

FNR lower 0.675 0.692 Same   

f1 higher 0.340 0.400 Tm5 

RMSE lower 0.033 0.026 Tm5 

MCC higher 0.382 0.430 Tm5 

 

6.7 CHAPTER SUMMARY 

This chapter provided implementation of multiple traditional machine learning algorithms for 

classification of the microscopic images such as Decision tree, Ensemble Random forest, 

Ensemble Adaboost and KNN. It then discussed different potential spatial and textural features 

that are used as an input to the classifiers. Features including local binary pattern (LBP), 

gradient magnitude & direction, RGB values are extracted from the images to train the model. 

In the end, variations in the results obtained from these different classifiers with different model 

settings were discussed. 

Classifiers performed differently on the basis of their architecture model and parameters. 

Overall, as the data size increased and more features were added, the performance of the 

classifiers showed improvement. S3 with more data images is better than S2. Tm4 is better 
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than Tm1 with added features such as Local Binary Pattern and Gradients in comparison to 

just the RGB base values of Tm1. It is interesting to see the effect of more task-suitable 

classifiers, as seen in table 6.13 that ML5 (Coarse KNN) with less features Tm4, gives better 

output than ML1 with Tm5 features. But the time taken to run the model by KNN is much longer 

than a simple tree or even ensemble classifiers so it has its computational restrictions, as it 

also requires more memory to run. 

Table 6-13 Illustrating significance of task-suitable classifiers using Tm4ML5 vs Tm5ML1 

S3 Better Tm4-ML1-tree Tm5-ML1 Tm4-ML5-KNN Tm4-ML6-ensemble Better 

TP higher 16933 17108 18639 17829 ML5 

TN higher 1163467 1164270 1164185 1162919 ML1 

FP lower 8689 7886 7972 9237 ML5 

FN lower 39710 39536 38004 38815 ML5 

TPR higher 0.325 0.342 0.342 0.325 ML5 

TNR higher 0.993 0.993 0.993 0.992 ML1/5 

PPV higher 0.645 0.694 0.704 0.676 ML5 

Acc higher 0.961 0.961 0.963 0.961 ML5 

NPV higher 0.967 0.967 0.968 0.968 ML5/6 

FPR lower 0.007 0.007 0.007 0.008 ML1/5 

FDR lower 0.355 0.306 0.296 0.324 ML5 

FNR lower 0.675 0.692 0.658 0.675 ML5 

f1 higher 0.340 0.4 0.438 0.409 ML5 

RMSE lower 0.033 0.026 0.025 0.026 ML5 

MCC higher 0.382 0.43 0.462 0.435 ML5 

 

Looking purely from the basis of the four major performance metrics, it can be seen from table 

6.14, below that with same data and same features extracted, ML5-Coarse KNN classifier 

gives better results than ML1-Tree and ML6-Ensemble classifier. Taking ML1-tree classifier, 

for comparison, it can be seen that S3ML1 is better than S1Ml1 with more data populated, 

plus S3Tm5 is better than S3Tm4 with added extracted features.  

Table 6-14 Evaluation and comparison in order to select the best classifier suitable  

 

Hence, it can be concluded that the outcomes are dependent on a combination of three major 

criteria; added data, added relevant features extracted and more task-suitable classifier 

Better S1Tm3-ML1 S3Tm4-ML1 S3Tm5-ML1 S3Tm4-ML5 S3Tm4-ML6 Better

TP higher 1541 16933 17108 18639 17829 S3Tm4-ML5

TN higher 1151586 1163467 1164270 1164185 1162919 S3Tm5-ML1

FP lower 20570 8689 7886 7972 9237 S3Tm5-ML1

FN lower 55103 39710 39536 38004 38815 S3Tm4-ML5
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models. A confusion matrix of the KNN Course model is shown in figure 6.10 where it can be 

seen that it is good at classifying the background class at 99.3% but not for the flaw class.  

 

 

Figure 6-10 Machine learning results of KNN model using Confusion matrix 

 

 

Figure 6-11 Evaluation of implemented supervised machine learning methods by bar chart 

 

Many models were applied including KNN, Tree and ensemble (Random forest) with cross-

validation and extracted features such as LBP and gradients. The bar chart in figure 6.11 

shows performance of these three classifiers based on 12 evaluation metrics methods such 

as recall, TNR, PPV, Accuracy, NPV, f1, RMSE, CV, RI, VOI and GCE. After conducting the 
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evaluation based on the performance indicators, it can be seen from the figure that the true 

positive rate is very low as not many impactful features were extracted. They gave similar 

results with KNN-course slightly better. The bar chart highlights the fact that even though the 

accuracy is quite high around 96% but the recall of the ML methods is not adequate. The 

reason might be that more suitable features need to be extracted. So, the next step was to dig 

deeper, so started researching deep learning. This is where applying deep learning will be 

useful as it has the ability to automatically extract suitable features particularly dealing with 

complex and varied images, as researched in the literature review, chapter 2.  

The biggest challenge with traditional ML models is the feature extraction process. It will be 

useful if right features can automatically be extracted. Capability of learning to focus on the 

right features by themselves, requiring little guidance makes DL an extremely powerful tool for 

modern machine learning. DL methods are gaining on traditional ML approaches especially 

for heavily complicated use cases like image recognition. This is discussed in the next chapter 

in detail including implementation and evaluation. 
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7   Chapter 7 

Supervised Deep learning methods 

implementation, comparison & evaluation  
 

 

This chapter provides an overview of the design steps that were necessary to set 

up the network and begin training for deep learning methods. It discusses three 

main supervised deep learning models implemented for this research such as 

Image-wise classification model, Pixel-wise UNet model and a novel model which 

is a combination of UNet_VGG16. For each of them it discusses their detailed 

architecture, implementation, hyper parameters such as learning rate, batch size, 

then displays visual results and conclusions 
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7.1 INTRODUCTION 

This chapter discusses supervised learning methods based on deep learning. It is the third 

main contribution to this research combined with the previous chapter. After implementing and 

evaluating machine learning models, next main task is to implement intelligent techniques 

such as CNNs on the same data. The trained model will be able to classify the flaw type 

(image-wise) and highlight the classified structural flaw location (pixel-wise) as shown in figure 

7.1, in the test images. This chapter consists of the following: 

• Reasons as to why deep learning is considered for the project task (section 7.2) 

• Explains some key implementation considerations for deep learning (section 7.3) 

• Experiments of initial trials for deep learning is discussed in detail (section 7.4) 

• Next, it discusses the three main deep learning models implemented for this research 

which are Image-wise classification model AlexNet, Pixel-wise UNet model and a novel 

model which is a combination of UNet_VGG16. For each of them, it discusses their 

detailed architecture design, implementation, hyper parameters such as learning rate, 

batch size, then displays visual results and conclusions (section 7.5 – section 7.7) 

• In the end, evaluation of all the supervised learning methods is concluded with visual 

illustration (section 7.8) 

 

Figure 7-1 Predictions of image-wise & pixel-wise models for classification and localisation  

 

7.2 REASONS AS TO WHY DEEP LEARNING IS CONSIDERED FOR PROJECT TASK  

At present, deep learning is the state-of-the-art approach to machine learning and the 

significant aspect of deep learning algorithms lies in neural networks. They are now being 
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used for complex datasets where traditional techniques have been unable to provide 

satisfactory or reliable classifications.  The major reasons as to why deep learning model has 

been used for this project research are as follows: 

• Extract suitable features: Capability of learning to focus on the right features by 

themselves, requiring little guidance, makes deep learning an extremely powerful tool 

for modern machine learning. This is one of the main reasons that deep learning (DL) 

methods are gaining popularity over traditional machine learning methods. As in the 

case of the research, it has been extremely challenging to determine in advance which 

features should be used for the project problem. All successive steps can become futile 

with a poor choice of features as illustrated by experiments in previous chapter. 

• Easier to implement for uncertain data: They are able to improve their performance by 

considering previous examples, and do not require any programming specific to the 

task they are learning about. They are particularly useful in domains where knowledge 

and decision processes are poorly understood, or the data is subject to uncertainty. 

 

• Detect complex trends: They have a proven ability by which they can derive meaning 

from complicated or imprecise data, they can be used to extract patterns and detect 

trends that are too complex to be noticed by either humans or other computer 

techniques. They can be thought of as an "expert" in the category of information it has 

been given to analyse. Then they can be used to provide projections given new 

situations of interest. 

 

• Self-adjusting ability: They have an ability to learn how to do tasks based on the data 

given for training or initial experience known as adaptive learning. They can modify 

their behaviour in the response to their environment. This factor, more than any other, 

is responsible for the interest they have received. When they are shown a set of inputs, 

which have specific desired output, they self-adjust to produce consistent responses. 

In short, deep learning models have been implemented for this research as the project dataset 

is too complex, deals with uncertain factors such as lighting, morphology etc and it would have 

been highly challenging to script a classification programme that could have taken all the 

complicated factors such as varied features, shapes, sizes and surface material aspects into 

account for each of the classes. Hence, for distinguishing between the flaw classes, it is much 

easier and efficient to implement image-wise classification. Multiple deep learning algorithms 

with various permutation combinations have been implemented which are discussed in length 

in the following sections. 
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7.3 IMPLEMENTATION CONSIDERATIONS FOR DEEP LEARNING 

The design steps start with the identification of available state-of-the-art network architectures, 

to provide a basis for the subsequent evaluation and then selection of the most suitable 

network architectures. Furthermore, it is necessary to identify and select the frameworks that 

are to be used for the implementation from the large number of available frameworks that can 

be used. Finally, it also provides an overview of the most important hyper-parameters to be 

evaluated.  

To start with implementation, the dataset is split into three parts, the training dataset, validation 

dataset, and test dataset. Each of the three datasets consists of a number of images and their 

corresponding ground truth, i.e. the expected pixel-wise labels. For intelligent supervised 

classification, a predictive model is produced by using training dataset. This model is then 

evaluated by using the validation dataset images as input, and then comparing the resulting 

label predictions with the expected label ground truth. The hyper-parameters of the model are 

then adapted based on the results of the validation through the evaluation metrics. The model 

that yields good performance on the validation dataset will be selected. The predictive model 

produced will take previously unused test images, as input and produce predicted pixel-wise 

labels as output to generate a final evaluation of the model. For image-wise classification, it 

will predict the flaw class such as pit or a crack. 

7.3.1 Datasets  

Using deep networks to build applications has always been complex. Firstly because they 

require detailed and colossal data for training and testing. Secondly because valid datasets 

are required for network evaluation. Though there are datasets available online but the 

problem is that different networks are built for different applications. Even when they are 

available, they might not be suitably designed with the required classes of labels. Also 

sometimes a specific industry problem needs to be solved so fresh data is required like in the 

case of this project. 

For this research, flaw images were collected as discussed in chapter 4. Total of around 3000 

images were collected but many of the images are not considerable due to the bad quality of 

the images which includes blurriness and bad lighting. As mentioned before, the data 

collection process was gradually improved during the course which has helped to gather better 

quality images later on. 

Supervised deep learning algorithms rely on manually-annotated ground truth to be fed to the 

CNN for learning. Pixel-wise labelled dataset of 115 images consisting of only pits, and 20 
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images that have only cracks was created, to apply the performance measure. This data was 

divided into four damage categories, based on two magnifications; Cracks only, Pits only, Pit-

2-crack and background/ no-damage.  

The structure of the data sets was divided for two purposes; one for image-wise classification 

and the other for pixel-wise classification. The importance of datasets structuring for image-

wise classification is explained when discussing the results later on in this chapter. 

The pixel-wise data sets were difficult to be created as they require pixel-wise labelling which 

is extremely time costing. The pixel-wise labelling is the answer to the question of ‘where’ is 

the flaw located in the image, in terms of classification. While segmentation is able to divide 

an image into several regions based on grouping similar pixels into one region but it is not 

able to achieve labelling of pixels into the categorised classes. To perform pixel-wise semantic 

grouping based on certain label classes, semantic segmentation is used. This creates 

semantically meaningful outcomes which can then be used for many applications. As an 

example, for a pit flaw, semantic pixel wise segmentation propagates through each pixel and 

assigns it a label. This means that each and every pixel in an image belongs to a label. 

The initial focus was on corrosion pits, hence the pit set ‘p1’ consists of 115 images that have 

pit flaw/s. This p1 data set has been used throughout the pixel-wise classification for 

comparison purposes, implemented IP, ML and now DL techniques. Since this is pixel-wise 

labelled hence the size of observations as input are, 115 times the image size. The resolution 

size of the images collected is 1280 times 960 which gives 1,228,800 pixels per image. So in 

total this means 141,312,000 many training & testing data into the networks. This is a lot of 

data that requires a lot of computational resources and storage hence faced many 

computational and hardware challenges. Another data set that was used is a crack set ‘c1’ 

that consists of 20 images that have a crack flaw/s. 

7.3.2 Network Architectures 

There is a large number of different neural network architectures for a variety of tasks. The 

number of nodes in the input and output layers can generally be determined by the 

dimensionality of the problem.  
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Figure 7-2 Work flow showing how to perform transfer learning [156] 

Previously trained networks can be used for classification, feature extraction and/or transfer 

learning tasks as shown in figure 7.2. They learn new patterns in the new data based on the 

knowledge transferred from a pre-trained net. Majority of the pre-trained networks are trained 

by using ImageNet database [115]. These networks have been trained on more than a million 

images and can classify images into 1000 or more object categories. Using a pre-trained 

network with transfer learning is typically much faster and easier than training a network from 

scratch. The ones implemented for deep learning are VGGNet and ResNet in initial trials, 

AlexNet for Image-wise Classification and later on UNet for Pixel-wise segmentation. Finally 

in the end, combination of Unet with VGG16 is implemented for the task of Pixel-wise 

classification. 

7.3.3 Frameworks 

Development in Machine learning field requires to deal and tackle with tremendous amounts 

of data for training, learning and testing the systems. Adding to these, when working with 

image and video datasets, memory and space requirements increase as compared to normal 

datasets. Graphical processing unit (GPU) is always required on large ML frameworks. 

Training CNNs involve lots of matrix multiplications and vector operations that can be 

parallelized in GPUs. Experiments were performed using either Tensor Flow or MATLAB, and 

ran on the same Nvidia graphics card. Keras was used at the back-end to tensor flow which 

was implemented for UNet structure. MATLAB was used for image processing, machine 

learning and deep learning, which is expected to occupy space as well. This work had to face 

delimitations of RAM and GPU. A few potential high-end experiments that might have 

benefited the research were not conducted like DenseNet and some were delayed because 

of such constraints, like implementing UNet. Frameworks that are used for implementation of 

deep learning, used in this chapter, are MATLAB, Caffe, TensorFlow,Keras using Nvidia 

CUDA graphics card. 
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7.3.4 Fine tuning Hyper parameters 

For machine learning, there are some parameters that are set before the start of the learning 

process and they are not influenced by the learning process itself, these are called the hyper-

parameters. For deep learning, the training algorithms are almost always iterative, and as such 

they require a pre-set starting points, that can be used as the basis for the iterations. If this 

initial state is set badly, the learning time can be greatly increased. It is even possible that the 

algorithm may never converge at all [92]. There are several strategies for the initial setting of 

the parameters. The search for the best hyper-parameters is a large part of building any 

suitable model [120].  

Using a pre-trained network with transfer learning is typically much faster and easier than 

training a network from scratch. In this research, pre-trained models were used hence they 

required fine-tuning of the parameters. In most researches they appeared to use the stochastic 

gradient descent (SGD) or mini-batch gradient descent (MBGD) optimization. Mini-batch size 

is often referred to as batch size and it is usually limited by the CPU or GPU memory 

requirements.  

There are many CNN hyper-parameters that need to be considered and might be tuned for 

achieving best performance. The use of the dropout technique as a regularization mechanism 

to avoid over-fitting has become a standard practice in modern CNN designs and not 

surprisingly, it is used in most of the current researches. Similarly, ReLu is now the de facto 

standard activation function of deep learning, except for one or two studies that use the 

sigmoid or tanh activation function in their hidden layers.  

7.4 INITIAL TRIALS OF DEEP LEARNING 

In general, apart from the first task, which is research oriented, the rest of the tasks will involve 

both implementation and evaluation for the initial trial phase of the research. The 

implementation part will contain the building of the machine learning pipeline, with the goal of 

allowing interchangeability of networks so a large number of architectures and hyper-

parameters can be evaluated with minimal effort, as well as the implementation of the selected 

network architectures themselves. While the evaluation part will deal with the training runs 

themselves. 

7.4.1 Datasets used for initial trials 

For the initial trial phase results, the size of the data is roughly around 125 images, but the 

data used was not good enough quality as it was taken in the initial phase of data collection. 

Plus, the labelling method used was also not that sensitive. The selected methods for data 
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collection and labelling, discussed in earlier chapters, had not been identified by that time. 

Hence the results show quite low performance in general, compared to the remaining later 

stage algorithms applied. Just by upgrading the dataset made a substantial difference in the 

performance results, which shows the importance of right data being used for learning.  

7.4.2 First Task 

For the first task, in order to select the models to be implemented for deep learning, their 

performance at image recognition and image segmentation challenges is evaluated. 

Comparing two architectures is not always achievable as they might be trained on different 

datasets, or with different hyper-parameters, for example differing splits into training and 

validation datasets. The ones that have no detailed explanation of their architecture and 

implementation have not been included. For instance, LeNet on the Pascal VOC and ILSVRC 

datasets shows no previous training so this is excluded from the comparative research. It is 

the first CNN with a relatively simple architecture that cannot cope with large images.  

The two challenge datasets used are Pascal VOC and ILSVRC. There are other challenges 

available such as the classification of human actions in an image, but the focus here is on the 

segmentation challenge. The Pascal Visual Object Classes (VOC) challenge provides a large, 

standardised dataset of images as well as their ground truth for pixel-wise segmentation. The 

main metric for the Pascal VOC challenge is the Average Precision (AP). The Image-Net Large 

Scale Visual Recognition Challenge (ILSVRC) is another popular dataset [115] available for 

image segmentation challenges. It consists of over 14 million labelled images, with bounding 

boxes for each object to be identified. 

The available data for the six selected network architectures shows that the VGGNet can 

perform the object segmentation with high performance. The GoogLeNet performs worse than 

the VGGNet architecture on the same dataset [112]. This has been verified by [57] that FCN-

VGG16 give better results in comparison to FCN-AlexNet and FCN-googleNet on the basis of 

mean IU as can be seen in table 7.1.The ResNet in its basic configuration also performs 

slightly worse than the VGGNet. 

While the identified data has some large gaps for several of the architectures, the analysis of 

available performance evaluations shows that the VGGNet can still be considered state-of-

the-art for image segmentation, as demonstrated by its high performance on the Pascal VOC 

dataset, while the ResNet performs seemingly better for classification tasks on the ILSVRC 

dataset compared to the VGGNet but in its FCN variant slightly worse on the classification 

tasks. The DenseNet is closely behind both of these in segmentation performance. 
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Table 7-1 Performance comparison on common deep learning models 

 

2No exact numbers found, but results found at https://github.com/DeepSegment/FCN-GoogLeNet indicate worse performance 

than VGG) 

 

In conclusion, for the pixel-wise classification, the selected architectures for this part of the 

work are the VGGNet and ResNet, as they show the best performance on the Pascal VOC 

image segmentation challenge and as reference implementations for both of them are publicly 

available. A typical CNN architecture, either inspired by LeNet or VGGNet, with some 

variations has been used in many researches [97]. The strategy adopted here was to find 

architectures that have been mentioned through challenge results via a research paper along 

with an implementation reference. DenseNet shows promise and is a candidate for continuing 

evaluation in further works. UNet was considered quite late in the research hence it is not 

included in the initial trials but will be discussed in the experimental testing and training stage 

in detail. It shows potential, specific to the research study because of its unique shape and 

design.  

Understanding the selected Architectures  

VGG16: The VGG network architecture was introduced by Simonyan and Zisserman in their 

2014 paper [113], where the authors explored the effect that, depth of a convolutional network, 

has on its image recognition accuracy. This network is characterized by its simplicity by using 

only 3×3 convolutional layers stacked on top of each other in increasing depth up to 19 weight 

layers. This showed a significant improvement on the previous state-of-the-art. The team won 

the first and the second places in the localization and classification tracks respectively at the 

ImageNet Challenge 2014 submission. There is a number of different network configurations 

Model Pascal VOC ILSVRC  References 

 

LeNet 

AP (%) 

- 

mean IU 

- 

top-5 error (%) 

- 

 

AlexNet - 39.8 16.4 Long et al. (2015), 

Krizhevsky et al. (2012) 

GoogLeNet ?2 42.5 6.7 Long et al. (2015), 

 Krizhevsky et al. (2012) 

VGGNet 82.1 56.0 7.3 Long et al. (2015) 

ResNet 80.7 - 3.57 Krizhevsky et al. (2012) 

DenseNet 78.3 - 8.3 Krapac and Šegvic 

    (2017) 

Table 3.1 Performance comparison on common machine learning datasets.  
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presented in [113] ranging from 11 to 19 weight layers. But due to its depth and number of 

fully-connected nodes, they weigh quite large and also it is slow to train them. 

VGG is used in many deep learning image classification problems; however, sometimes 

smaller network architectures are needed such as SqueezeNet, GoogLeNet etc. This VGGNet 

was adapted by [57], specifically the VGG-16 with 16 weight layers, as fully convolutional. Of 

the three evaluated architectures, the FCN-VGG16 performs the best. 

ResNet: The deep residual network, or Resnet in short, is a very deep neural network 

architecture, also known as network-in-network architecture. It was developed [117] with the 

deepest evaluated network having a depth of 152 layers, about 8 times deeper than the 

VGGNet architecture. It demonstrates that extremely deep networks can be trained using 

standard SGD and a reasonable initialization function, by using residual modules. ResNet is 

a form of exotic architecture that banks on micro-architecture modules unlike the traditional 

sequential network architectures such as AlexNet and VGG. The term micro-architecture 

refers to the set of “building blocks” used to construct the network. A collection of micro-

architecture building blocks, including the standard CONV, POOL, etc. layers, leads to the 

macro-architecture itself. 

7.4.3 Second task 

For the second task, different configurations of the selected architectures, VGGNet and 

ResNet are run, with identical hyper-parameters to allow a comparison between the runs. 

With the two main network architectures under evaluation selected earlier as the FCN-

VGGNet and the ResNet, there is a number of different forms of these two architectures to be 

evaluated. The FCN-VGGNet is evaluated in the FCN-VGG16 version and the FCN-VGG8 

version. These two differ only in the architecture of their final, fully-connected layer. While the 

FCN-VGG16 combines the predictions of the final convolutional and the fourth pooling layer 

to form upsampled predictions with a stride of 16, the FCN-VGG8 does so with stride 8 

upsampled predictions and combining not only the fourth pooling and last convolutional but 

also the third pooling layer together. According to [57], the FCN- VGG8 should thus provide 

increased precision compared to the other architecture. Hence both of these models have 

been applied in order to verify this claim of improved performance of the latter architecture. 

The ResNet is available in a large number of different versions. For this study, Resnet-50 with 

a total number of 50 residual layers and Resnet-101 with a total number of 101 residual layers 

were selected. This shows higher performance of the Resnet-101 when compared to the 

Resnet-50 but again this has been verified for the available dataset by running both 

architectures with identical hyper-parameter configurations. 
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Table 7-2 Deep Learning dataset split for the initial trials 

Stage Percentage Total Positive 

examples 

Negative 

examples 

Training 80 % 100 59 41 

Validation 15 % 18 11 7 

Testing 5 % 8 5 3 

This dataset is from the initial image collection. The dataset is split into a training, validation 

and test dataset as shown in Table 7.2.  

Table 7-3 Listing of runs performed in the network architecture evaluation stage 

 

The hyper-parameters are set to a comparable default that is unchanged for all four of the 

architecture evaluation runs as shown in table 7.3. The loss calculation is done by cross 

entropy for all runs, where cross entropy is defined as the arithmetic mean of the cross entropy 

of all images, and the cross entropy of a single image is calculated by combining the pixel-

wise classification loss in the image. The learning algorithm used is Adam, with a learning rate 

of 10 × 10−5. There are a total of 100000 iterations performed for each run. Due to the constant 

batch size of 1 image, this means that it will take 100 iterations to go through the entire training 

dataset once, resulting in a total of 1000 epochs for training. 
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Table 7-4 Deep Learning initial trial results of performance measure 

 

The results in table 7.4 show how important the correct selection of evaluation criteria is in 

order to measure the performance of the models: consistently for all runs, the Segmentation 

Accuracy (SA) is very high (> 99 %) compared to all other metrics. This is because the 

Segmentation Accuracy measures if each pixel has been correctly classified, and in the 

dataset used there is a large discrepancy between the number of pixels that should correctly 

be classified as negatives (24226334/24576001 = 0.9858% of all pixels in the validation 

dataset) and those that should be classified as positives. The other metrics only take into 

account segmentation performance for the positive class, and accordingly show values that 

look much worse. 

The weight loss for the Resnet trainings takes longer to approach zero than the weight loss 

for the VGGNets. As the batch size is set to 1 for all runs, the weight loss is unlikely to reach 

exactly zero as there is a different image trained each step and as such even when a model 

would already have achieved its minimum, there is always a small weight loss due to the 

difference in each image. The continuous plots of the F1 and Average Precision score show 

that after already a comparatively small amount of training steps (20000 for the VGGNets, 

30000 for the ResNets) there is little improvement in either score when calculated for the 

validation dataset. There are high fluctuations between the performances of each evaluated 

training step. This may be caused by the small batch size causing weight rebalancing in each 

step. The Resnet-50 takes the shortest time to train, with 6:45 hours, run on an Nvidia Geforce 

1080Ti GPU. The FCN-VGG8 takes a bit longer than the FCN-VGG16 with 8:47 and 8:20 

hours respectively, while the Resnet-101 takes the longest with 10:08 hours to train. 
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7.4.4 Third task 

For the third task, the better architecture is selected and the hyper-parameters are optimized 

for this architecture, with identical network architecture so as to allow a comparison between 

the runs. With the network selected as the FCN-VGG8, the next step is the hyper-parameter 

configuration of the network so as to maximise the segmentation performance, as measured 

by the main metrics described in chapter 4.10. There are a total of eight runs performed during 

this phase as shown in table 7.5. Four runs with the Adam learning algorithm and four runs 

with the stochastic gradient descent algorithm. Runs with the Adam learning algorithm use 1 

× 10−5 as the default learning rate. The learning rate is adapted to 1 × 10−6 for run B2, and 

the total number of steps increased to 200,000. SGD runs use a default learning rate of 0.01, 

with run B6 adapting this to train with a learning rate of 0.001 and 200,000 steps. Furthermore, 

each learning algorithm is trained once with the loss calculation done using cross entropy, 

once with a soft F1 score, and once with a soft IU score.  

Table 7-5 Listing of trial runs performed in the hyper-parameter evaluation stage 

 

The cross entropy loss function increases if the predicted probability diverges more from the 

actual label. Another loss function used for training during this phase is the soft F1 which 

applies the F1 score for the loss function. The third metric that is evaluated for the loss 

calculation is the soft Intersection over Union (soft IU), which calculates the mean IU and again 

subtracts it from 1, thereby calculating a loss between 0 and 1. 

The results in table 7.6 show that the loss calculation has a minor but noticeable impact on 

the performance of the final model. The models using the cross entropy loss function 

consistently outperform the other models when measured on the precision, SA and S scores. 

However, the best recall and best average precision score is achieved in run B3 which applies 

cross entropy loss. The effects are similar for the runs applying SGD learning algorithm. 
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Table 7-6 DL trial model results performed in the hyper-parameter evaluation stage 

 

Run B1 scores the highest on all metrics when measured on the training dataset, but it beats 

the other runs only in precision, SA and S score when measured on the validation dataset. 

This shows that there is not necessarily a correlation between the performance on the training 

and on the validation dataset. 

Both runs with the learning rate decreased and the step number doubled perform worse than 

the runs with the same hyper-parameters but higher learning rate and lower step number, 

showing that 1 × 10−6 for Adam and 0.001 with SGD is too low of a learning rate to use. The 

weight loss plots of runs B2 and B5 show that the weight loss does not go down significantly 

enough even after all 200,000 steps. At the same time, the time required for training is doubled. 

Run B3 performs the best when measured on the average precision and F1 score, and is thus 

selected as the best performing model. 

7.4.5 Fourth task 

Finally in the fourth task, the best-performing architecture and hyper-parameter configuration 

is identified on the basis of the initial trials and data used. Run B3, using the FCN-VGG8 

architecture with soft F1 loss calculation, the Adam learning algorithm with a learning rate of 
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1 × 10−5 and 100,000 steps of training achieved the best performance measured both on the 

Average Precision and the F1 score. The achieved Average Precision score of 0.7804 is lower 

than the 0.821 score that [57] achieved when training on the Pascal VOC dataset, however 

this may be in larger part due to the much smaller dataset size (126 images compared to 

almost 9,993) and could be improved by training on a larger dataset. Evaluating the run B3 on 

the test dataset, which consists of 8 images that have so far been completely disregarded, 

gives an Average Precision performance of 0.7756, very similar to the score achieved on the 

validation dataset, showing the ability of the trained model to generalize to previously unknown 

data. 

7.4.6 Conclusion 

The experiments started with the design phase, where available state of the art network 

architectures were identified. This provided a basis for first task of the research which was to 

perform subsequent evaluation in order to select comparatively better models. Later on, for 

the second task, the most suitable network architectures selected, were to be compared and 

evaluated in further depth by varying the hyper-parameters. Alongside choosing network 

architectures, frameworks were also identified and selected from a large number of available 

frameworks that could be used. Experiments were performed using either Tensor Flow or 

MATLAB. They ran on the same Nvidia graphics card, allowing a direct comparison of the 

performance of all runs to each other.  
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Figure 7-3 Deep Learning pixel-wise classification results in the initial trials  

 

Although these initial trials did not produce good results because of the dataset used, but it 

laid a good foundation.  Deep learning outputs of the run B3 trained model from the initial trials 

is shown in figure 7.3. In the figure, the left side shows the original image, the middle shows 

the ground truth and the right side is the output from the trained model. Basically, all these 

experiments in the initial trials were performed so that a base line setup of the system could 

be implemented and better understanding of deep learning models could be reached, which 

was achieved. 

7.5 IMAGE-WISE CLASSIFICATION USING PRE-TRAINED ALEXNET  

It is one of the pioneer Deep Neural Net that was developed in [112]. It won the ImageNet 

challenge in 2012 by a large margin as one of the first CNNs to be used for image classification 

problems. It was initially trained to recognize 1000 different objects. It achieved a top5 error 

rate of 15.3 %, over 10 % better than the runner-up that did not apply CNNs [115]. From then 

onwards, more or less following nets are based on its architecture [157]. 
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7.5.1 Architecture 

It contains five convolutional layers from C1 to C5 plus three fully connected layers from FC6 

to FC8 with the final one being a softmax output layer as shown in figure 7.4. Additionally, it 

has three layers applying max pooling as shown in table 7.7. It uses ReLU activation function 

instead of Sigmoid or Tanh functions which makes it speed up by more than 5 times with same 

accuracy. To reduce overfitting, dropout is applied in first two fully-connected layers with a 

probability of 0.5 for each neuron. At test time, output of each neuron is multiplied by 0.5 [112].  

 

 

 

Figure 7-4 Architecture of the implemented pretrained AlexNet Deep Learning Model 

 

It is designed as a fully convolutional network in [57], however it is not able to accomplish the 

same image segmentation performance as its more complex and innovative rival, VGG 

architecture. 

7.5.2 Implementation 

Pre-trained Alex has been implemented for the data-driven application to distinguish between 

cracks and pits. The splitting of the labels is done by proportions and then each class data is 

split 0.7% for training data and 0.3% for test data.  
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Table 7-7 Architecture of implemented Image-wise Classification with full details 

 

Network weights for individual convolutional layers can be visualised as seen in figure 7.5, 7.6 

& 7.7, after scaling and re-sizing the weights. Figure 7.5 shows montage of Image-wise 

network for iw-db3-crack, weights of the first convolution layer or 3rd layer of the model 

whereas figure 7.6 and 7.7 shows fc7 and fc8. 

 

Figure 7-5 Montage of Image-wise network weights of the first convolution layer 
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Figure 7-6 Montage of Image-wise network weights of the fc7 convolution layer 

 

 

Figure 7-7 Montage of network weights of  fc8 which is last convolution layer  

7.5.3 Datasets for Image-wise classification   

The image wise data sets have been created to use them to classify between a pit and a crack 

flaw as shown in table 7.8. This is basically to answer the ‘what’ question of classification. For 

the initial stages different variations were tried and tested which are named as iw_db1, iw_db2 

and so on, where, iw=image_wise and db=database. Later on, for image-wise classification 

for deep learning two models were designed separately; Pit or not-pit model, and crack or not-

crack model.  

Table 7-8 Different datasets used for Image-wise classification using AlexNet 
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DB #             DB consists of: /Classification type No of 

images 

Classes 

iw_db1 {pit, crack and both} where Pit = Pit only, crack = 

crack only and both = images with pits and/or cracks 

+ pit2crack (p2c) images. 

272 3 

Iw_db2 crack, crackNot, where crack = crack images and 

crackNot = all the other images including 

background, corrosion, Pit2crack and pits. 

- 2 

Iw_db3 Crack Classifier Model with categories = {crackOnly, 

crackNot}, where crack = crackOnly images and 

crackNot = all the other images including 

background, corrosion and pits but not Pit2crack 

images. 

- 2 

Iw_db4  pit, NotPit,  where pit = PitOnly + pit with slight 

corrosion images and NotPit = includes background, 

crackOnly and general corrosion 

crack, crackNot where crack = crackOnly + pit2crack 

images and crackNot = includes background, very 

evident corrosion and pit only 

193 

 

162 

2 

 

2 

 

Different database structure and classes produced different outcomes from the classifier. The 

complexity of the image categories based around useful life expectancy of a component, is 

displayed in figure 7.8. It is a challenging task to categorise them into different classes. To 

make multi-class data easier to understand, it is visualised in an image. 

 

Figure 7-8 Showing project complexities of multi-class data  



Chapter 7 – Supervised Deep Learning implementation & evaluation 

Juvaria Syeda: Doctoral Thesis    279 
 

7.5.4 Results of Image-wise classification by Confusion Matrix 

First set: In the first trial, categories = {pit, crack and both} where Pit = Pit only, crack = crack 

only and both = images with pits and/or cracks + pit2crack (p2c) images. Total images used 

are 272 in total, out of which background = 8, both = 96, crack = 21, pit2crack = 4, and pit = 

155. The splitting is set to 0.7% (191 images) for training data and 0.3% (81 images) for test 

data. The results to such labelled data was not efficient giving just 78% accuracy as shown in 

figure 7.9 by using confusion matrix. This was caused by the confused image-wise labelling 

itself. The ‘both’ category labelling consisted of cracks, pits and also pit2cracks so it didn’t 

know which category to place it in. This was incorrect labelling. This is why appropriate 

labelling is crucial for deep learning systems. 

 

Figure 7-9 Deep Learning Image-wise classification results on iw_db1 by Confusion Matrix 
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Second set of the database attempted for binary classification for a Crack Classifier Model 

with categories = {crack, crackNot}, where crack = crack images and crackNot = all the other 

images including background, corrosion, Pit2crack and pits. This immediately improved the 

accuracy to 91.7% as shown in figure 7.10. 

 

Figure 7-10  Deep Learning Image-wise classification results on iw_db2 by Confusion Matrix  

 

Third set of the database (iw_db3) also based for binary classification for a Crack Classifier 

Model with categories = {crackOnly, crackNot}, where crack = crackOnly images and crackNot 

= all the other images including background, corrosion and pits but not Pit2crack images. This 

bounced the accuracy to 100% as shown in figure 7.11. But this is not an inclusive structure 

as it does not include an important category p2c, where a pit is initiating to become a crack 

hence it has both a pit and a crack within itself. This was the most difficult category to deal 

with in the research for data labelling task. 
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Figure 7-11 Deep Learning Image-wise classification results on iw_db3 by Confusion Matrix  

 

Proposed system consists of two binary classification models; a Crack Classifier Model and a 

Pit Classifier Model separately based on database (iw_db4) 

Pit model consists of categories = {pit, NotPit }, here pit = PitOnly + pit with slight corrosion 

images and NotPit = includes background, crackOnly and general corrosion images. It 

contains total 193 images with 135 for training. This accuracy for the first pit model classifier 

is 91.4% as shown in figure 7.12. 

Crack model consists of categories = {crack, crackNot}, but here crack = crackOnly + pit2crack 

images and crackNot = includes background, very evident corrosion and pit only images. It 

contains total 162 images with 113 for training. This improved the accuracy to 98% which is 

still higher in comparison to the second model, as shown in figure 7.13. 
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Figure 7-12 Deep Learning Image-wise classification results for Pit model  

 

Figure 7-13 Deep Learning Image-wise classification results for Crack model  
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7.5.5 Results of image-wise classification on test data 

Few examples of the resultant outcomes from the system can be seen in figure 7.14. The 

predicted classified classes, from being classified as a crack or not a crack, can be seen on 

the top of the test image.  

    

   

   

Figure 7-14 Deep Learning Image-wise classification results by the proposed models 
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7.5.6 Conclusion 

The image-wise classification model, pre-trained with AlexNet, is the first model to be 

implemented after the initial trails. This classifier consists of two binary sub-models, a Crack 

Classifier Model and a Pit Classifier Model. With the combination of both models, the system 

is able to classify between a crack and a pit. The crack model shows whether it is a crack or 

not, while the pit model classifies the images into pit or not. The resultant outcome displays 

the class of the image to which it belongs. If the image has a pit, then the Pit model is able to 

pick it with 91.4% accuracy, and if the image has a crack, it is picked by the Crack model with 

a high accuracy of 98% as shown in figure 7.15 using confusion matrix and visual outcomes. 

 

Figure 7-15 Test data result of Image-wise classification of both models 

 

7.6 PIXEL-WISE UNET MODEL 

UNet is convolutional network architecture for fast and precise segmentation of images. It 

performed better than sliding-window convolutional network method on the ISBI challenge for 

segmentation which shows its potential [158]. For image segmentation, the datasets consist 

of at most thousands of images in most cases because it requires manual labelling of the 

ground truth which is a very costly procedure.  UNet has a capacity of learning from relatively 

small training sets, which is why it is selected to be experimented in this research. Not much 

work has been done with this architecture apart for a few medical applications. 

7.6.1 Architecture 

The key architecture consists of a contracting path to capture context and of a symmetrically 

expanding path that enables precise localization [159] as shown in figure 7.16. 
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Figure 7-16 Architecture example of a U-NET Structure [158] 

The adjustment made in unet is that there are a large number of feature channels in the up-

sampling part. This allows the network to propagate context information to higher resolution 

layers. The expansive path is more or less symmetric to the contracting part, and yields a u-

shaped architecture (figure 7.14). This UNet architecture example is for 32x32 pixels in the 

lowest resolution. Each blue box corresponds to a multi-channel feature map. The number of 

channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the 

box. White boxes represent copied feature maps. The arrows denote the different operations. 

7.6.2 Implementation 

The main design is that the contracting path is a typical convolutional network that consists of 

repeated application of convolutions, each followed by a rectified linear unit (ReLU) and a max 

pooling operation. During the contraction, the spatial information is reduced while feature 

information is increased. The expansive pathway combines the feature and spatial information 

through a sequence of up-convolutions and concatenations with high-resolution features from 

the contracting path. This structure is shown in a more elaborate manner in table 7.9 with an 

input image size of 128x128x3 while in the original paper the size was 572x572x3. For this 

example, the main components will remain the same with changes in the sizes at various 

locations. 



Chapter 7 – Supervised Deep Learning implementation & evaluation 

Juvaria Syeda: Doctoral Thesis    286 
 

 

 
Table 7-9 Detailed implemented UNET Architecture summarised 

 

It has been implemented by using Keras with Tensorflow (backend) has been used to develop 

the model. Python 3.5 in Jupyter Notebook was used for test script in Anaconda Environment. 

The same Pixel-wise 115 Pit images dataset has been used as input. Figure 7.17 and 7.18 

show montages of the model weights of its first and last convolutional layer. 



Chapter 7 – Supervised Deep Learning implementation & evaluation 

Juvaria Syeda: Doctoral Thesis    287 
 

 

Figure 7-17 Montage of Pixel-wise UNet network weights of the first convolution layer 

 

Figure 7-18 Montage of Pixel-wise UNet network weights of the last convolution layer 
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7.6.3 Results of Pixel-wise UNet  

The section shows performance results of the pixel-wise classification using UNet model. First 

it shows a table as shown below in Table 7.10, then visual output of few test images as shown 

in figure 7.19, 7.20 and 7.21. These images illustrate the results from Deep Learning Pixel-

wise Unet model showing both original image and the resultant Predicted image by the model. 

The images selected for test sample consist of varied sample images including crack image, 

pit image and a less pitted image to show diverse result outcomes. 

Table 7-10 Deep Learning pixel-wise UNet performance results on same Dataset 

Metrics# Metrics names UNet 

1 TP↑ 43690 

2 TN↑ 1085872 

3 FP↑ 93726 

4 FN↑ 5512 

5 Recall↑ 0.914 

6 TNR↑ 0.921 

7 Precision↑ 0.336 

8 Accuracy↑ 0.919 

9 NPV↑ 0.995 

10 FPR↓ 0.079 

11 FDR↓ 0.664 

12 FNR↓ 0.086 

13 f1↑ 0.445 

14 RMSE↓ 0.072 

15 MCC↑ 0.491 

16 CV↑ 0.319 

17 RI↑ 0.862 

18 VOI↓ 0.674 

19 GCE↓ 0.031 

20 BE↓ 96.135 

21 Time(sec)↓ 0.71 
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Figure 7-19 Deep Learning UNet model showing results for a crack sample image  

      

Figure 7-20 Deep Learning UNet model showing results for pits sample image  

       

Figure 7-21 Deep Learning UNet model showing results for less pitted sample image 

7.6.4 Conclusion 

Pixel-wise UNet classification model is the second one implemented, which was selected 

because of its interesting architectural design. The model is able to produce, same size 

predicted image as the size of input image entered as shown in figure 7.22. It is able to detect 

and measure the flaws in the image with an accuracy of 89.4%. It is able to outline the shape 

of the defect with a good effect to localise the object detected.  
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Figure 7-22 Test result of UNet Pixel-wise classification model by confusion matrix 

 

7.7 PIXEL-WISE UNET WITH VGG16 IMPROVED MODEL 

This method is the proposed method for pixel-wise classification. It is a combination of two 

architectures, so this is a Unet that is fine-tuned with VGG-16 encoders, which are pre-trained 

encoders on image-net. It consists of encoder with several layers of convolution and pooling 

for down-sampling and the second half includes decoder that uses up-sampling and 

convolution layers. As it is a pre-trained model, the training starts with initial weights of the 

pre-trained model, which was designed for object classification. Though pre-trained model is 

trained on a different task than the task at hand but provides a very useful starting point 

because the features learned while training on the old task are useful for the new task.  

7.7.1 Architecture of UNet_VGG16 Pixel-wise model 

This architecture has an encoder network and a corresponding decoder network as seen in 

table 7.11. It has a total of 91 layers overall that includes a final pixel-wise classification layer 

right in the end. Based on the VGG16’s first 13 convolutional layers, this architecture also 

contains 13 convolutional layers. Each encoder performs convolution with a filter bank to 
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produce a set of feature maps. Each of the convolution layer is followed by a ReLU activation 

function, an element-wise rectified linear non-linearity max (0, x). These are then batch 

normalised. By removing the fully connected layers, the number of parameters decreases 

remarkably and this also helps in preserving higher resolution feature maps at the deepest 

encoder output.  

Following that, max-pooling with a 2 × 2 window and stride 2 (non-overlapping window) is 

performed and the resulting output is sub-sampled by a factor of 2. While several layers of 

max-pooling and sub-sampling can achieve more robust classification. The increasingly lossy 

(boundary detail) image representation is not beneficial for segmentation where boundary 

delineation is vital. Therefore, it is necessary to capture and store boundary information in the 

encoder feature maps before sub-sampling is performed. If memory during inference is not 

constrained, then all the encoder feature maps (after subsampling) can be stored. But this is 

usually not the case in practical applications. It involves storing only the max-pooling indices, 

i.e, the locations of the maximum feature value in each pooling window is memorised for each 

encoder feature map. In principle, this can be done using 2 bits for each 2 × 2 pooling window 

and is thus much more efficient to store as compared to memorising feature map(s) in float 

precision. This lower memory storage results in a slight loss of accuracy but is still suitable for 

practical applications. 

Each encoder layer has a corresponding decoder layer and hence as expected the decoder 

network also has 13 layers. The final decoder output is fed to a multi-class soft-max classifier 

to produce class probabilities for each pixel independently. The appropriate decoder in the 

decoder network up-samples its input feature map(s) using the memorised max-pooling 

indices, from the corresponding encoder feature map(s). This step produces sparse feature 

map(s). These feature maps are then convolved with a trainable decoder filter bank to produce 

dense feature maps. A batch normalization step is then applied to each of these maps. Note 

that the decoder corresponding to the first encoder (closest to the input image) produces a 

multi-channel feature map, although its encoder input has 3 channels (RGB). This is unlike 

the other decoders in the network which produce feature maps with the same number of size 

and channels as their encoder inputs. 

The high dimensional feature representation at the output of the final decoder is fed to a 

trainable soft-max classifier. This soft-max classifies each pixel independently. The output of 

the soft-max classifier is a K channel image of probabilities where K is the number of classes. 

The predicted segmentation corresponds to the class with maximum probability at each pixel.  
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Table 7-11 Architecture of the implemented UNet-Vgg16 method with full detail 
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7.7.2 Implementation 

As discussed earlier, this architecture is a combination of two architectures, so this is a Unet 

that is fine-tuned with VGG-16 encoders, which are pre-trained encoders on image-net. It is 

similar to Unet in the sense that it has an encoder and a corresponding decoder network but 

it doesn’t use feature maps.  
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Figure 7-23 Overview of the implemented UNet+VGG16 architecture  

VGG16 contains thirteen convolutional layers, as shown in figure 7.23, each followed by a 

ReLU activation function, and five max polling operations, each reducing feature map by2. All 

convolutional layers have 3×3kernels which is the filter size. The first convolutional layer 

produces 64 channels (filters) and then, as the network deepens, the number of channels 

doubles after each max pooling operation until it reaches 512. On the following layers, the 

number of channels does not change. To construct an encoder, the fully connected layers are 

removed and they are replaced with a single convolutional layer of 512 channels.  

To construct the decoder, transposed convolutions layers are used that doubles the size of a 

feature map while reducing the number of channels by half. And the output of a transposed 

convolution is then concatenated with an output of the corresponding part of the decoder. The 

resultant feature map is treated by convolution operation to keep the number of channels the 

same as in a symmetric encoder term. This up-sampling procedure is repeated 5 times to pair 

up with 5 max-poolings. Technically fully connected layers can take an input of any size, but 

because we have 5 max-pooling layers, each down-sampling an image two times, only images 

with a side divisible by 64 can be used as an input to the current network implementation. 

7.7.3 First few versions tuning the hyper parameters 

The initial parameters were setup and then they were fine-tuned till they started working, as it 

gave errors in the first few trials because of the memory restrictions. The Optimizer which was 
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used, was the Stochastic Gradient Descent Algorithm with a learning rate of 1e-3 with a 

momentum value of 0.9. Stochastic Gradient Descent Algorithm is a bit slow as compared to 

Adam’s Optimizer Algorithm but gave more accurate results than other optimizer algorithms. 

The Loss function used was Categorical Cross-entropy, which gave the probabilities of each 

corresponding class. .  

If the GPU does not have sufficient memory, either images need to be re-sized into to smaller 

sizes or reduce the training batch size. Both were done here. Started off with mini-batch size 

(mbs) of 64 and the image as its original size of from 960x1280. This gave an error of merge 

sort that said failed to get memory buffer. With same settings, decreased the batch size to 32 

and it still gave the same error. The batch sized was again reduced from 32 to 16 but to no 

effect as it gave, out of memory error as well. After this, other changes were made like epoch 

from 30 to 8. But still it didn’t work. Lowered batch size even further down to 8, but still there 

gave the same memory error. Then at batch size 8, learning rate was changed to 0.01, and 

also the image size was decreased to 240x256 by using patch extraction and finally it worked. 

Even though it worked but the learning rate was too high for the learning process so changed 

back the learning rate to 0.001 and further decreased the batch size to 4, which also worked. 

So the images were divided into the batch-size of 4. The total number of epochs on which 

transfer learning VGG16 model ran was 8, thus performing 2208 iterations per epoch with 

maximum 17,664 iterations. A validation patience of 4 was used which gave accuracy of 

90.28% in its first iteration at 1700 epochs as it met the validation criteria. So the learning 

stopped with it as can be seen in figure 7.24. So for the next fine-tuning, the validation patience 

was kept as infinity expecting a positive effect on the result as it will be able to learn more. 

Once all the settings are selected, data is ready to be trained by the model. 
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Figure 7-24 Dataset being trained showing progress of UNet+VGG16 initial model 
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7.7.4 Final version 

Dataset: The total dataset is split into 3 sets, 60% of images are taken as training data, 20% 

of the images as validation data and the rest of the 20% are taken for testing. 

Class Balancing: Fully convolutional training can balance classes by weighting or sampling 

the loss. 

Optimisation: A sgdm optimiser has been used with a value of 0.9 momentum. The learn rate 

schedule is piece-wise with a learn rate drop factor as 0.2. The learn rate is set to be 1e-3 with 

a GPU execution environment and loss as Cross Entropy. The mini-batch size set is 4 because 

of hardware restrictions.  

Fine-tuning: Training from scratch is not feasible considering the time required to learn the 

base classification nets. Fine-tuning takes three days on a single GPU for the coarse FCN-

32s version, and about one day each to upgrade to the FCN-16s and FCN-8s versions. 

Patch sampling: Performed patch extraction on images to convert from 960x1280 to 240x256. 

Hence increasing number of observations. But this is not done by randomly sampling patches 

over a full dataset which may cause in higher variance batches that may accelerate 

convergence [57]. Instead, it is more like image training effectively batches each image into a 

regular grid of large overlapping patches.  

Iterations: Number of Iterations/Epochs is taken to be 2208. And step_per_epoch which is 

equal to test images divided by batch size taken, is used correspondingly. Same is applicable 

for validation set also. 

7.7.5 Results 
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Figure 7-25 Dataset being trained showing progress of UNet+VGG16 final model 
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Figure 7-26 Deep Learning UNet=Vgg16 performance using confusion matrix 

 

Figure 7-27 Deep Learning UNet-Vgg16 performance displaying mean IoU  
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Table 7-12 Deep learning UNet-Vgg16 performance on test dataset 

 

The model’s performance, with a validation accuracy of 95% can be seen in figure 7.25. The 

Testing result outcome of this model, can be seen in table 7.12 and figure 7.26 to 7.27, It 

shows Global accuracy of 93% with mean of Pit and NotPit classes being 91%. Mean Iou is 

63.71% with a weighted IoU being 90.4%. The mean BF Score shows that is 51.1%. 

The interesting outcome of the developed system is that the test performance results show 

higher mean accuracy and weighted IoU as shown in table 7.12,  to the state of the art 

techniques [57], as can be seen in Table 7.13 but dataset used is different, hence not much 

can be deducted from this comparison. 

Table 7-13 Comparison of UNet_vgg16 method with state-of-art indicators  [57] 

 

 

Following are some of the examples from the test data. One example is shown in a larger size 

while a few other examples will be minimised for display. The green coloured depicts false 

negatives (FN), while magenta represents false positive (FP). It is more dangerous if the green 

is more, which will mean that it was not able to detect a flaw though it was actually there. 

Hence, the criteria to look out for is, that the FNs (green) are as minimum as possible in 
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comparison to the FPs (magenta). Results are shown in multiple different ways, on same 

image from figure 7.28-7.37. They are easy to interpret due to colour-coded visual outcome. 

   

  

Figure 7-28 Deep Learning UNet-Vgg16 performance on test image 

 

Figure 7-29 Confusion matrix displaying individual image performance 
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Figure 7-30 Deep Learning pixel-wise UNet-Vgg16 performance on Image A925-17 

 

Figure 7-31 Deep Learning pixel-wise UNet performance on Image A186-17  

 

Figure 7-32 Deep Learning pixel-wise UNet performance on Image A190-17  

 

Figure 7-33 Deep Learning pixel-wise UNet performance on Image A652-17 
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Figure 7-34 Deep Learning pixel-wise UNet performance on Image A762-16 

 

Figure 7-35 Deep Learning pixel-wise UNet performance on Image A917-17 

 

Figure 7-36 Deep Learning pixel-wise UNet performance on Image A994-16  

 

Figure 7-37 Deep Learning UNet performance on Image A502 by Jaccard mean IoU  
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The result outcomes from the Unet_vgg16 model includes Jaccard mean IoU which can be 

seen in figure 7.37 for test Image A502.  An edge line can be seen on the top and bottom of 

the image, these are the false positives which can be solved by applying CRF for future work. 

As the FP doesn’t affect the detection that much, as long as it is able to identify and detect 

flaws when they are there keeping the false negatives low. Another solution is to delete the 

border line in the pre-processing step.  

A comparison between simple UNet and improved Unet can be shown in figure 7.38 by using 

image A502.which reflects the performance of both models. The figure shows the test image 

on the top left, with its ground truth on top right, then UNet predicted image in the bottom right 

and right beside it UNet+Vgg16 predicted image to show comparison. 

   

   

Figure 7-38 Deep Learning on Image A502 showing predictions from UNet & UNet+VGG16  

7.7.6 Conclusion 

With a combination of two state-of the art models, VGG16 and UNet, the third model 

implemented, shows performance with global accuracy of 93%. It is a pixel-wise classification 

model that is able to detect and measure the defects. With a validation accuracy of 95% on 

validation training dataset and testing mean accuracy of 91%. The mean accuracy is an 
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average of both the classes, Pits and Not-Pits. Mean Iou is 63.71% with a weighted IoU being 

90.4%. The mean BF Score shows that is 51.1%. An interesting outcome of the developed 

system is that the test performance results show higher mean accuracy and weighted IoU, to 

the state of the art techniques [57], with a mean accuracy of 46.1% and mean IoU of 34%. 

Table 7.14 and figure 7.39 show the validation and testing performance of the model. 

Table 7-14 Validation performance of initial and final version of UNet+Vgg16 model 

 

 

Figure 7-39 Test data result of Pixel-wise classification of UNet+VGG16 model 
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7.8  CHAPTER SUMMARY  

This chapter shows full execution of three supervised intelligent models implemented in this 

research. This was done by discussing the pre-trained model’s architecture, the 

implementation parameters and steps, and then displaying the outcomes of the system in 

tabular as well visual image formats as shown in figure 7.40.  

 

Figure 7-40 Deep Learning classification performance on test images 

There were a few initial trials performed to check working and setup of deep learning by 

varying different parameters in section 7.4 based on pixel-wise classification. It can be seen 

visually in figure 7.41, when outcome of initial trials CNN model is compared to the final deep 

learning models results, based on same test image, that the detection has vastly improved, 

as the database to the model started to improve. In figure 7.41, top images are the original 

test sample and ground truth and the bottom three images show results produced by three 

CNN models based on a) CNN model initial version b) UNet model and c) UNet+Vgg16 model.  

 

Figure 7-41 Comparison of all pixel-wise CNN models using same test image 
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The image-wise classification model, pre-trained with AlexNet, is the first model to be 

implemented after the initial trails. This classifier consists of two binary sub-models, a Crack 

Classifier Model and a Pit Classifier Model. With the combination of both models, the system 

is able to classify between a crack and a pit. The crack model shows whether it is a crack or 

not, while the pit model classifies the images into pit or not. The resultant outcome displays 

the class of the image to which it belongs as shown in figure 7.42. If the image has a pit, then 

the Pit model is able to pick it with 91.4% accuracy, and if the image has a crack, it is picked 

by the Crack model with a high accuracy of 98%. This model for crack detection shows 98% 

test accuracy while from the literature review, the object-detection research discussed in 

section 2.4.2, shows 96.5% of accuracy for detection of cracks. Both models have been 

trained on their own respective databases. 

 

Figure 7-42 Deep Learning image-wise classification test outcome of two models 

Pixel-wise UNet classification model is the second one implemented, which was selected 

because of its interesting architectural design. The model is able to produce, same size 

predicted image as the size of input image entered. It is able to outline the shape of the defect 

with a good effect to localise the object detected. It is able to detect and measure the flaws in 

the image with an accuracy of 91%. as shown in figure 7.43.  
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Figure 7-43 Deep Learning pixel-wise classification test resultant outcomes 

With a combination of two state-of the art models, VGG16 and UNet, the third model 

implemented, shows performance with global accuracy of 93%. It is a pixel-wise classification 

model that is able to detect and measure the defects. With a validation accuracy of 95% on 

validation training dataset and testing mean accuracy of 91%. The mean accuracy is an 

average of both the classes, Pits and Not-Pits. Mean Iou is 63.71% with a weighted IoU being 

90.4%. The mean BF Score shows that is 51.1%. An interesting outcome of the developed 

system is that the test performance results show higher mean accuracy and weighted IoU, to 

the state of the art techniques [57], with a mean accuracy of 46.1% and mean IoU of 34%. 

 

Figure 7-44 Illustrating performance results of supervised learning methods 

Performance of all supervised learning methods based on multiple evaluation metrics is 

illustrated in figure 7.44. It shows comparison between three pixel-wise methods which are 

KNN classifier, UNet and the combo Unet+Vgg16 models. It also shows an image-wise 
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performance with the end bar in purple outline. As it is image-wise, it doesn’t perform on the 

segmentation metrics evaluation. This graph is an overview of all the results of supervised 

learning in one plot. As can be seen, KNN performs quite well for the background class but 

has very low recall value. Unet and combo unet+vgg16 produce quite similar results and are 

higher than the machine learning results.  Image-wise Alexnet performs well based on 

accuracy, recall as well as precision and also it is easy to label for image-wise classification 

while pixel-wise takes an hour for each image.  
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8   Chapter 8

 Defect Detection System 

(DDS) and its Industrial impact  
 

 

This chapter presents the Defect Detection system (DDS) along with its 

industrial impact (RAAI). It includes explaining the automatic structural health 

inspection using microscope to improve both efficiency and accuracy.  The 

research especially focuses on the inspection for pits and cracks of rail axles 

and implementation of AI techniques for automatic inspection using both 

supervised and unsupervised methods. 
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8.1 INTRODUCTION 

This chapter discusses the overall Defect Detection system (DDS) along with its industrial 

impact (RAAI) which is the fourth main contribution to this research. It is the whole system in 

general, starting from system setup to data collection, then labelling it (both image-wise and 

pixel-wise), image analysis implementation including on-site validation and inspection. This 

chapter explains the design workflows of two systems, then compares them, selects one of 

them and then demonstrates results from the actual on-site inspection. It is implemented to 

improve both efficiency and accuracy of the automatic structural health inspection. This 

research is especially focused on the inspection for pits and cracks of rail axles using 

microscope, which include tasks like creation of database and implementation of AI techniques 

for automatic inspection using both supervised and unsupervised methods. Two designs of 

the Defect Detection System have been proposed and implemented. The preferred method 

has been implemented in the industry for on-site inspection and assessment.  This chapter 

consists of the following: 

• Design 1 of the defect detection system (DDS) and its workflow (section 8.2) 

• Design 2 of the defect detection system (DDS) and its workflow (section 8.3) 

This includes comparison of both the designs and their advantages  

• Next it discusses the selected design with an on-site demonstration of the application 

(section 8.4) 

• In the end, industrial impact of the application (section 8.5) 

As it is based on a real industry problem, this project comes from the actual needs of the 

industrial work. Based on the project aim and industrial need, an automated inspection system 

has been designed and implemented that can detect, measure and classify on-surface flaws 

such as pits and cracks. It reduces the time required to manually count the defects on the 

images and helps in distinguishing defects. It consists of two sub-systems, 

Defect Detection system (DDS) = data collection system + image analysis system 

It requires a laptop, portable microscope and an automated scanner. The laptop is attached 

to the microscope which capture flaws with up to 0.08mm size length sensitivity and saves 

data in images/video format. The microscope is mounted on the scanner, that auto-rotates the 

camera circumferential as well as in axial axes, along the structure component being 

inspected. This system has been refined by some upgrades along the way such as from hand-

held camera to automated scanner. Once the data has been collected, it is passed onto the 

defect detection system. 
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Major tasks performed for the detection and measurement are; Pre-processing and feature 

extraction of the interesting properties such as length, area, density etc. Tasks for 

classification are; label the data, then training and validation of data to produce a model 

classifier, then test the data. On the basis of all the research and the conclusions, two versions 

of the Defect Detection System are proposed.  

8.2 DEFECT DETECTION SYSTEM (DDS) - DESIGN 1 

Design1 of DDS is the preferred method that has been implemented plus also tested in the 

industrial application. This solution is more practical, ready-to-use and resource-efficient which 

is an important factor for industry-based solutions. It is based on both supervised and 

unsupervised learning methods by combining their strengths.  

Detects, measures and localises by unsupervised image segmentation so it doesn’t need to 

perform lengthy pixel-wise labelling; and classifies the flaws by using deep learning so it 

doesn’t need to hard-code complex computational values. It is simple yet efficient. The 

overview of the defect detection system (DDS) using design 1, is shown in figure 8.1, by using 

combined techniques of Unsupervised Image Segmentation and Supervised Image 

Classification 
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Figure 8-1 Overview of implemented Defect Detection System (DDS) workflow 

8.3 DEFECT DETECTION SYSTEM (DDS) - DESIGN 2 

This is the second implemented design. It has novelty in terms of the technique used, which 

is a combination of pixel-wise UNet and VGG16 that performs detection and measurement 

classification.  This is completely deep learning-based design using the latest research 

methodologies which has produced results that are comparable to the latest state-of the art 

techniques. The overview of the deep learning-based detection system is shown in figure 8.2.  
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Figure 8-2 Overview of Pixel-wise classification defect detection system (DDS2) 
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Figure 8-3 Pixel-wise classification on a test image using design-2 of DDS 

The above outcomes shown in figure 8.3 results from this design 2 that uses pixelwise deep 

learning so it classifies each pixel as a ‘Pit’ or ‘Not-Pit’. This gives both classification as well 

as localisation of the defect. It produces good results but the biggest downside is that it 

requires pixel-wise labelling which has been extremely challenging and time-consuming. It is 

more reasonable to use unsupervised image segmentation that produces similar or better 

results while doesn’t require any labelling, but that just performs localisation, and not 

classification. So, for classification, use image-wise, as labelling image-wise is easier and 

takes less time, along with very high accuracy rate. This is exactly what design 1 is based on 

and hence for practical purposes the first design was implemented for on-site use. 

8.4 ON-SITE DEMONSTRATION OF DEFECT DETECTION SYSTEM (DDS) 

Based on the performance measures of the supervised and unsupervised results which are 

shown in figure 8.4. It can be seen that image-wise (pink) supervised classification shows high 

recall, precision and accuracy rate for classification of pits and cracks and pixel-wise (blue) 

unsupervised segmentation method also shows high recall and accuracy rate. The best of the 

pixel-wise method has been selected. Hence combination of both is an ideal solution to our 

research problem. Downside of supervised is labelled data and downside of unsupervised is 

hard-core complex computational programming. Both are not required as only the strengths 

of both are picked, which is classification is best done by deep learning and flaw 

measurements doesn’t require pixel-wise labelling of data which is extremely time-consuming 

and cumbersome. 
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Figure 8-4 Resultant performance of DDS implemented using both methods 

Hence, this system detects, measures and localises by unsupervised image segmentation so 

it doesn’t need to perform lengthy pixel-wise labelling; and classifies the flaws by using deep 

learning so it doesn’t need to hard-code complex computational values. It is simple yet 

efficient. The overview of the combined defect detection system is shown in figure 8.5 

 

Figure 8-5 Overview of the combined Defect Detection System (DDS) 

This implemented DDS design has gone through trials and validations in the industry. This 

application was tested on-site as can be seen in figure 8.6 by following same data collection 

operational protocol discussed in Chapter 3, as shown in figure 8.7. This design solution is 

more practical, ready-to-use and resource-efficient which is an important factor for industry-
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based solutions. It has been implemented to improve both efficiency and accuracy of the 

automatic structural health inspection. 

 

Figure 8-6 On-site inspection results of the Defect Detection System (DDS) 

 

Figure 8-7 Data collection’s operational procedure for DDS implementation 

This system was demonstrated by going to multiple sites. Figure 8.6 indicates the flaw 

positions on the axle using a measuring tape.  The position of the flaw was marked which 

produced the results also shown in figure 8.6 in a tabular form. These results were measured 

manually which validated the results from the defect detection system (DDS) as shown in the 

table within figure 8.6. These results are then passed into a model that is used to predict the 

structure’s lifetime. The results required from the DDS are the longest crack length and 

average lengths of the flaws. Then it is also used as a tool to show visual results of flaw 

assessment. The scanner used has been upgraded to semi-automatic. It rotates axial and 

circumferentially on the structure to collect data. 

8.5 INDUSTRIAL IMPACT 

This system has been used in structural reliability assessment on rail axles as well as for 

pipelines that can potentially reduce the maintenance costs and still extend the useful life of a 

structure. Moreover, the condition of the structure health can be judged in a more objective 

way. Hence, from the above demonstration of the application in section 8.4, it can be seen as 

illustrated in figure 8.8 that this system has been able to successfully: 
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• Classify between pits and cracks 

• Localise each micro-flaw  

• Count the total number of flaws in the frame  

• Measures the length and area of each flaw (saves it as an excel file) 

• The time taken to process an individual image or predict on a test image is just a few 

seconds 

 

Figure 8-8 Successful implementation of on-site Defect detection System  

This system is at the high-end of the on-surface detection as it is effective to detect micro-

scale flaws yet it is extremely portable and cost effective. This system has attained high 

classification accuracy as well as high efficiency (comparison from manual counting to 

automation) so it saves great amount of valuable time of inspection as well as it is able to 

detect the pits and cracks at a high performance of 98% as shown in the previous chapters.  

 

 

Figure 8-9 Different classes involved in flaw assessment in respect to useful life estimation 

The application has been used for two purposes. First purpose is to create a tool that can 

provide assistance to a corrosion assessment operator, where figure 8.9 shows different flaw 
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classes involved for assessment of corrosion fatigue. This means that the output of the defect 

detection system (DDS) will display the processed image by highlighting the flaws, save the 

flaw information in a file.  This has been implemented by using unsupervised image 

segmentation such that it visually displays the location of the flaw by highlighting, along with 

the flaw count numbered, provides measurements of each of the counted flaw in an excel file. 

It is also able to distinguish between a crack and a pit flaw by using supervised deep learning 

such that it classifies the images into label classes such as pit or a crack.  

The second purpose of the system is to estimate the remaining life of the axle given the 

presence of corrosion fatigue. It does this by detecting microscopically small cracks, which 

appear originating from corrosion pits in the corrosion fatigue process. Hence it is important 

to be able to capture the initial pit to crack phase by using a microscopic device. Then the life 

is estimated from the average length of the cracks.  This has been implemented by using 

unsupervised learning methods. The outcome from the DDS system has dimensions of all the 

cracks and its average. This serves as an input value into the remaining-life software in the 

RAAI project [160] which has been validated with Polimi data. 

 

  



Chapter 9 – Conclusion & future works 

Juvaria Syeda: Doctoral Thesis    322 
 

 

 

 

 

 

 

9   Chapter 9

 Conclusion and future works  
 

 

This chapter summarises and concludes on the major points discussed 

throughout the thesis.  This list includes data collection, creation and labelling 

and then all the experimental results produced by unsupervised image 

segmentation, supervised learning with extracted features such as local binary 

pattern, and deep learning performing pixel-wise segmentation as well as 

image-wise classification. In the end, it discusses possible improvements to 

enhance performance for future research 
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9.1 CONCLUSIONS 

From this research work, an effective automated system has been developed that can detect 

and measure on-surface corrosion fatigue including classification of pits and cracks for 

microscopic visual inspection in non-destructive testing by using AI techniques, as discussed 

in the previous chapter. Figure 9.1 shows an overview of pixel-wise segmentation performance 

results of the major methods implemented, along with an image-wise in yellow at the end. 

 

Figure 9-1 Performance overview of all main implemented methods 

In order to design and implement this defect detection system (DDS), several experimental 

and research-oriented tasks were performed throughout the project. These tasks are focussed 

around four major areas: data collection and labelling (chapter 3 and 4), unsupervised image 

segmentation (chapter 5), feature extraction and machine learning (chapter 6) and deep 

learning (chapter 7). Core research tasks, experimental work and findings from these areas 

have been concluded in the following sections. 

9.1.1 Data collection conclusion 

From the data collection point of view, 

• Investigated NDT techniques and after experiments, it was concluded that the data will 

be gathered by using microscopic visual inspection NDT technique with/without MPI.  

• Designed a data collection system that included initial steps such as correct sample 

selection, thorough sample preparation, appropriate camera selection and proper 

hardware setup.  

• Images were collected from different data sources to expand the depth of the database 

being created. 
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• Some of the noticeable findings from site visits during data collection are:  degree of 

cleaning, influences the appearance as the contrast relies on oxide remaining; Using 

MPI enhances the contrast of the images especially for the purpose of crack detection; 

Cracks could start in machining lines which makes them difficult to distinguish.  

• It was deduced from discussion with the inspection operators, that the detection unit 

of 0.2-0.3mm is considered as significant damage to be looked and investigated. 

Hence, the system device was tested to check its sensitivity, which is able to see a 

flaw of 0.2mm length with low magnification and 0.08mm at higher magnification. 

Therefore, similar measurements were used for ground truth labelling, 0.3 mm at low 

and 0.08 at high mag. 

• It showed evidence that using the higher magnification gave more depth (clarity) to the 

outline of the detected flaw.  

• Image quality gets affected by dark lighting conditions and improper data handling. 

• The image processing results were validated by the Polimi data showing that the 

implemented method is able to provide a prompt outcome including highlighting, 

measuring and counting specific features, using on-site data. Thus, it reduces the skill 

level requirement of an operator, as the algorithm sets a standard for the desired 

defects to be counted in quantitative measures. However, this is only possible once 

the samples have been cleaned. 

• Created a pixel-wise labelled database of 115 microscopic pit images and 20 crack 

images were also labelled. Steps that were taken to create ground truth include setting 

flaw size criteria, calibrating flaws and then labelling each of them into classes (crack, 

pit, pit2crack and background) 

• In total, sixteen performance measurements were applied and a few added metrics for 

visual display. With this, the performance of the system could now be quantitatively 

measured such as Accuracy, Precision and Recall, based on the ground truth as the 

target image. So later on, when it is said that the system performed better, it means 

overall performance of all these measures combined. 

9.1.2 Detection system conclusion 

From the defect detection, measurement and classification point of view,  
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• Each of the three key areas, further consist of three implementations such as; 

Watershed, Morphological and FCM gaussian have been developed for unsupervised 

image segmentation; Decision Tree, KNN-Coarse and Ensemble classifiers for 

feature-based learning; Image-wise classification, Pixel-wise UNet classification and 

Pixel-wise UNet_VGG16 classification models for deep learning.  

• All of these, except the Image-wise classifier, have been tested with the same dataset 

so that comparisons can be made throughout the experiments. This assures that the 

quality of the models can be quantifiably measured for evaluations.  

• These methods work better when the images are taken at a high magnification as they 

have clear edges.  

• The assumption made in this study, verified based on the data collection findings, is 

that flaw indications are of darker colour in comparison to the background. The second 

assumption is regarding the type of flaw, if it’s a pit then it is likely to have an elliptical 

shape and if it’s a crack then it has an elongated shape.  

9.1.3 Unsupervised Image segmentation 

 

Figure 9-2 Performance overview of implemented unsupervised methods 

• Implementation of all algorithms, except the initial trials, follow three major steps which 

include; pre-processing, segmentation and feature extraction. The outcomes consist 

of the resultant segmented image along with two excel files. One has the flaw 
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measurements such as flaw length and area and the other produces the performance 

measures of the system such as Boundary Error, Covering segmentation, Global 

Consistency Error. 

• Watershed-based algorithm provides an effective tool that deals with the object’s 

boundary and finds local changes. It has been able to detect and count the number of 

flaws, for both pits and cracks, with good shape extraction especially the outline details. 

This is the easiet yet effective method that fits the requirement smartly. 

• Morphological-based algorithm attempts to apply Pit Assessment, based from some of 

the points in the industry API-579 standard. This algorithm works by extracting shapes 

from the input image, based around a selected morphological structuring element. It 

involves operations such as erosion, dilation, reconstruction, opening and closing in a 

specifically designed arrangement to get better results. The shape information is 

extremely effective for detecting flaws which do not have a high contrast with the 

background.  

 

• FCM Gaussian-based algorithm is based built around LoG edge with the watershed 

algorithm to generate results with less over segmentation to highlight edges. The mask 

of LoG is set as 5x5 which can be modified for obtaining a better segmentation result.  

• Flaw measurement: Morphological algorithm’s measurements are closer in value to 

the labelled ground truth information. Watershed’s results show an edge boundary 

problem for the flaws detected at the edge, otherwise it is closer to the actual values.  

• Performance Metrics: Watershed-based algorithm gives best performances based on 

8 of the metrics applied, which is highest number of best performing metrics, followed 

by morphological-based. It has been able to work on both kinds of defects. Watershed 

shows high performances such as 95.2% accuracy, 55% precision, f1 score 56%, high 

probabilistic rand Index (PRI) 91.7%, CV is 42.8% and VOI as low as 41.08%, Global 

consistency error (GCE) as low as 2.6. 

 

Figure 9-3 Performance of unsupervised learning by using confusion matrix 
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• This method was compared to the state of the art method used by [144], on this dataset 

and it can be seen that the results produced in this research work perform better for 

this application as it shows higher accuracy, specificity, precision values.  

9.1.4 Machine learning 

• Classifiers performed differently on the basis of their model and parameters. Overall, 

as the data size increased and more features were added, the performance of the 

classifiers showed improvement. S3 with more data images, is better than S2.  Tm4 

with added features such as Local Binary Pattern and Gradients is better than Tm1 

with just RGB base values. But it could also be because of the significance of the 

features extracted. 

• Coarse KNN classifier gives better results than Tree and Ensemble classifiers; on the 

basis of the four major performance metrics; True Positive, True Negatives, False 

positives and False Negatives, using same data and extracted same features 

• But the time taken to run the model by KNN is much longer than a simple tree or even 

ensemble classifiers and also requires more memory to run, so it has its computational 

restrictions which need to be considered. 

• It is interesting to see the effect of more task-suitable classifiers, such that Coarse KNN 

even with just nine features, gives higher MCC value in comparison to Decision Tree 

with fifteen features.  

• Taking Tree classifier for comparison, the set with 141312000 observations, performs 

better than the set with 6144000 number of input observations. This shows that as the 

number of images increases, the performance of learning also increases. 

• When significant features are extracted such as local binary patterns and gradients 

then the performance of the system increases.  

• Hence, it can be concluded by experiment that the outcomes are dependent on a 

combination of multiple factors such as; more data, more relevant and significant 

features extracted, and more task-suitable classifier models. Plus the time taken for 

training and testing the data should also be considered when choosing the best 

classifier.  

• However, the biggest challenge with traditional ML models is the feature extraction 

process. It will be useful if right features can automatically be extracted. Capability of 
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learning to focus on the right features by themselves, requiring little guidance makes 

DL an extremely powerful tool for modern machine learning. 

 

Figure 9-4 Performance overview of implemented pixel-wise supervised models 

9.1.5 Deep learning  

• The first deep learning model is an Image-wise classification model, pre-trained with 

AlexNet. This classifier consists of two binary sub-models, a Crack Classifier Model 

and a Pit Classifier Model. With the combination of both models, the system is able to 

classify between a crack and a pit. The crack model shows whether it is a crack or not, 

while the pit model classifies the images into pit or not. The resultant outcome displays 

the class of the image to which it belongs. If the image has a pit, then the Pit model is 

able to pick it with 91.4% accuracy, and if the image has a crack, it is picked by the 

Crack model with a high accuracy of 98%. 

• The second deep learning model is a Pixel-wise UNet segmentation model which was 

implemented because of its interesting U-shaped architectural design. Because of 

which the model is able to produce, same size predicted image as the size of input 

image entered. It is able to detect and measure the flaws in the image with an accuracy 

of 91%. It is able to outline the shape of the defect with a good effect to localise the 

object detected.  

• The third deep learning model is a Pixel-wise segmentation which is a combination of 

two state-of the art models, UNet with VGG16. It shows performance with global 

accuracy of 93%. With a validation accuracy of 95% on validation training dataset and 
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testing mean accuracy of 93%. The mean accuracy is an average of both the classes, 

Pits and Not_Pits. Mean IoU is 63.71% with a weighted IoU being 90.4%. The mean 

BF Score shows that is 51.1%.  

        

Figure 9-5 Performance overview of implemented deep learning methods 

• An interesting outcome of the developed system is that the test performance results 

show higher mean accuracy and weighted IoU, to the state of the art techniques [57], 

with a mean accuracy of 46.1% and mean IoU of 34%. 

9.1.6 Overall 

• If a system needs to be evaluated, it needs to have a labelled data against which the 

quality performance can be quantified.  

• Limitation of Supervised learning methods is that they require massive amount of 

labelled data while on the other hand, unsupervised learning can produce results 

without it 

 

Figure 9-6 Overall performance of the implemented DDS showing both methods 
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• For supervised methods, for image-wise classification the procedure for labelling the 

ground truth is simple yet efficient unlike Pixel-wise classification. Imagine the 

comparison of labelling such as, image-wise : Pixel_wise. = 1: image_size, as it 

requires each pixel value to be labelled and the number of input values increase with 

that rate as well which requires high computational equipment. 

• Unsupervised methods require prior hard-coded values to extract the features while 

deep learning extract features by automatic adaptive learning. Hence useful to 

implement in applications where it is difficult to define a problem such as difference 

between pits and cracks. 

9.2 FUTURE WORKS 

There are a few areas of this project that can be further extended in future work provided the 

said resources are available. If a larger pixel-wise labelled dataset becomes obtainable, 

training with this larger dataset may yield significantly better results than have been achieved 

so far. For example, the Pascal VOC segmentation dataset contains 9,993 images, compared 

to the only 115 images that were used for training in this work.  

If more powerful computing resources are provided, which would allow an increase of the 

training batch sizes, could yield a more consistent learning rate throughout each step, 

increasing the overall performance of the model. Furthermore, other architectures may be 

explored that could yield good results as well, such as the DenseNet. Post-processing 

methods such as Conditional Random Fields (CRF) could be applied to improve segmentation 

performance and could thus be an area of interest for future work as well.  

Upgrading the data collection device to 3D-format may add more accuracy to the location of 

the defects to build the 3D Defect detection system. Performance of the two cameras could 

be analysed with the 3D camera adding the third dimension of depth, which might hugely 

increase the efficiency of detecting the defects correctly. After the pit depths are known, 

Industry standard API-579 could be applied for pit assessment including classifying different 

grading levels of pitting corrosion assessment. 

Deep learning is an exciting novel method that can be applied to solve many different 

engineering and scientific problems especially for classification. With the combination of 

Image segmentation, which is a powerful tool to detect and measure interesting objects by 

feature extraction, this research may have a significant impact on automatic detection 

systems. The chief concern in many structural integrity applications is the capability of the 

closely related forms of corrosion to lead to accelerated failure of structural components by 
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damage or by acting as an initiation site for cracking, causing severe loss of functionality or 

even catastrophic failure. Hence there are many areas where this system may be applicable 

such as monitoring, grading assessment, similar applications of detection and measurements 

such as ultrasound images, 3D additive manufacturing area.
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