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Abstract—For microgrids (MGs) optimal operation, one heated 

topic is the uncertainty management associated with renewable 

variations and electricity load forecasting errors. On the other 

hand, the networking of MGs is receiving an increasing attention 

in recent years. In this paper, an interactive energy management 

strategy is developed for high renewable-penetrated MGs. The 

control method includes two steps. In the first step, a local opti-

mization is proposed for each microgrid to minimize the operation 

cost during the whole scheduling periods. In the second step, a 

global optimization is conducted for networked microgrids. CVaR 

based risk averse measure is introduced here to provide a 

risk-hedging strategy for microgrids energy management. For-

mulated models are solved by the easily implemented and com-

putationally inexpensive mix integer linear programming (MILP) 

solver. Case studies demonstrate the feasibility of the proposed 

method by identifying optimal scheduling results.  

Index Terms—Energy Management, Networked Microgrids, 

Uncertainties, Risk aversion 

I. INTRODUCTION

NDER the pressure of fossil fuel shortage and air pollution,

countries around the world are increasingly integrating the 

renewable energy sources (RESs) into the modern power sys-

tems, primarily in the form of solar photovoltaic (PV) panels 

and wind generators. Among the resources, solar capacity is 

around 390 GW and wind capacity are over 500 GW [1] . 

Composed by distributed generators, energy storage systems, 

loads and other electric components, microgrids (MGs) are 

emerging under such situation as a promising method to inte-

grate renewable resources and meet end users’ electricity de-

mand. MGs can operate both in grid connected modes and 

islanded modes, with different operation objectives.  

To further improve system reliability and preserve the cus-

tomer privacy, various MGs can be connected to form a net-

worked system. Networked MGs possess the capability of de-

creasing the network operation cost in grid-connected modes 

and reducing load shedding amount in islanded modes. The 
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energy management system (EMS) is essential for the operation 

of MGs, with the main responsibilities being to control the 

energy consumption and power control of a MG. By incorpo-

rating energy management strategies and optimization algo-

rithms into the EMSs of networked MGs, they form the major 

components of smart distribution management systems [3]. 

Numerous studies have been conducted in the literature on the 

intelligent energy management of networked microgrids. The 

currently prevailing EMSs can be categorized into three types, 

centralized EMS [4], [5], decentralized EMS [6], and hybrid 

EMS [7].  

On the other hand, the intermittent and stochastic character-

istics of renewable energy resources bring new challenges on 

the scheduling of microgrids [8]. Therefore, uncertainty man-

agements in MGs become an active research field recently, 

which are mainly categorized into robust optimization and 

stochastic optimization. The authors in [10] presented an opti-

mal energy management strategy to satisfy the demand and 

supply of a grid-connected microgrid with RES penetration. A 

robust formulation is developed to account for the worst-case 

amount of harvested RES. In [11], the authors developed a 

scenario-based robust energy management method to accom-

modate renewable generation and load uncertainties in the 

worst case. Through optimizing the worst-case scenario, the 

MG robust energy management solution is derived based on 

Taguchi’s orthogonal array method.  

Stochastic optimization, as another well-known optimization 

tool, has been used in the planning, operation, and control of 

MGs. The authors in [12] proposed a two-stage stochastic pro-

gramming approach to reduce the operational cost. A scenario 

reduction method is conducted to get reduced scenarios in the 

optimization process. In [13], the authors employed a finite 

horizon stochastic mixed integer quadratic programming model 

to minimize the microgrid operation cost. In [14], a stochastic 

framework was proposed for optimal scheduling of microgrid 

resources over the control period. The framework addresses 

uncertainties of islanding duration, and prediction errors of 

demand and renewable generation. Stochastic optimization 

brings high computational requirements with increasing number 

of generated scenarios. In addition, it only provides probabilis-

tic guarantee for constraint satisfaction [15]. On the other hand, 

although robust optimization is immune against uncertain data 

sets, it could cause over-conservative operation scheduling 

results in MGs [15].  

Dongxiao Wang, Runji Wu, Chun Sing Lai, Xuecong Li, Xueqing Wu, Jinxiao Wei, Yi Xu, Loi Lei 

Lai 

Interactive Energy Management for  

Networked Microgrids with Risk Aversion 

U 



Detailed review of previous research points out some open-

ing issues in the energy management of microgrids. Some re-

search investigates the uncertainty management in a single 

microgrid, without considering about the emergence of net-

worked microgrids. Some research solves the coordinated en-

ergy management of networked microgrids, without consider-

ing system uncertainties. To the best of authors’ knowledge, 

few previous works consider about the risk management in the 

scheduling of networked microgrids. Given the uncertainties in 

the system, the risk value should be well considered into system 

optimization. Compared with the existing works, the novelty 

contributions and the salient features of the work are twofold: 

1) Considering uncertainties in the system, a risk component

is proposed to quantify system adequacy and security on a 

probabilistic basis. Based on the conditional value-at-risk 

(CVaR) concept, the risk value after risk aversion is proposed to 

represent the potential loss above the mean value;  

2) A networked microgrids mechanism is employed by tak-

ing a variety of system uncertainties into account; a microgrid 

can sell/buy surplus/shortage power directly from other mi-

crogrids. Uncertainties in this work include load uncertainty and 

renewable generation uncertainty. 

The remaining paper is organized as follows. Section II 

presents the components and configuration of networked mi-

crogrids, and introduces risk aversion definitions. Section III 

introduces the components modelling. Section IV presents the 

detailed risk-averse microgrids control model. Section V pre-

sents the numerical simulations to demonstrate the effectiveness 

of the proposed approach. Section VI concludes the paper.  

II. PROBLEM DESCRIPTION

A. Configuration of Networked Microgrids

A typical microgrid consists of renewable generation sources,

controllable distributed generators (CDGs), loads (including 

non-controllable load and controllable load), and battery energy 

storage systems (BESSs). Renewable generation resources are 

able to provide clean and sustainable electricity in the system, 

which is an important source of electricity generation. Con-

trollable distributed generators, such as micro turbines, can 

provide stable electricity to the appliances in the microgrid. 

Battery energy storage systems are acting as an energy buffer, 

which can shift energy usage via its charging/discharging be-

havior. Controllable load can help maintaining electricity usage 

balance through demand response strategies. The general ob-

jective of a microgrid is to minimize its operation cost in grid 

connected mode, and to provide reliable electricity supply in 

islanded modes.  

From Fig. 1, the necessary components are given in each 

microgrid, together with the local power flow. In this frame-

work, each microgrid first runs a local optimization to deter-

mine the components scheduling results. Power trading among 

microgrids is conducted here after generating local results, so 

that microgrids can purchase surplus power or sell extra power 

generation directly with each other with lower cost. The mi-

crogrids are also able to trade with utility grid, in case of not 

obtaining enough power from internal components or other 

microgrids. By employing a networked microgrids control 

mechanism, optimal operation results are obtained from the 

whole system point of view.  
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Fig. 1 Structure of networked microgrids 

B. Risk Aversion

Risk is a consequence of action taken in spite of uncertainty

in the system [16]. It is assumed that  ,f x y  is a loss repre-

sentation where x refers to the decision variable and y refers to 

the uncertain variable. By incorporating risk measurement into 

the objective function, the aim is to find an optimum compro-

mise between minimum operation cost and resilience of net-

worked microgrids system. Value at risk (VAR) is a typical 

method to measure and manage risk. However, it is 

non-coherent risk measure with non-convexity, 

non-smoothness, etc., which makes it difficult to be included in 

optimization modelling. To avoid this problem, CVaR, also 

known as average value at risk, is employed in this work as an 

alternative risk measure. CVaR is defined as: 

 
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1
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Where  is the value at risk,  is the confidence level, and P is 

the number of scenarios. Equation (1) indicates the expected 

conditional value of the cost function, whose value is greater 

than  -percentile. For linear cost function problems, mini-

mizing CVaR is able to be formulated as a linear programming 

problem, which is quite attractive in practical applications.  

III. MODELLING OF MICROGRIDS COMPONENTS

In this section, the various components of microgrids are 

explicitly given. This includes the modelling and constraints. 

Uncertainty modelling of renewable resources and daily load 

are given as well.  

A. CDGs

Conventional distributed generators in a microgrid system

can have many different forms, such as fuel cells, diesel gen-

erators, and micro turbines. In this work, the modelling of micro 

turbines is introduced, whose fuel cost is formulated as a linear 

function:  
CG CG CG CG

t tC a b P      (2) 



where, CG
tC refers to the CDG operation cost at time t; 

CGa /

CGb are CDG cost coefficients; CG
tP is the CDG power output.  

Ramp rate limits and power constraints should be satisfied 

for the stable operation of micro turbines, denoted as below:  

CG CG CGP P P    (3) 
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where, 
CGP /

CGP denote CDG lower/upper limits of power 

output; 
Up
CGRamp /

Down
CGRamp  are CDG ramping up/down limits; 

SU
t /

SD
t are CDG startup/shutdown indicator, where 1 rep-

resents CDG is in operation and 0 represents it is not. Power 

constraints are explained in Eq. (3). Ramp rate limits are given 

in Eq. (4). Equation (5) demonstrates that micro turbines are not 

allowed to startup and shutdown simultaneously.  

B. BESSs

BESSs operation cost are considered in this part, which

mainly refers to the maintenance cost [17]. A linear function in 

(6) can be used to denote the operation cost:
ES ES ES ES ES L
t t tC P t E t       (6) 

where, 
ES
tC is BESS operation cost; 

ES
tP is the charg-

ing/discharging power of BESS; t is the time duration when 

power and energy are mutually converted; 
ES is lifetime de-

pression coefficient of BESS; 
L is leakage loss factor of 

BESS. 

The following constraints should be met during BESS oper-

ation:  

1
ES ES ES ES C ES L
t t t t tE E P t P t E t         (7) 
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where, 
ES
tE is BESS energy at time t; 

C is charg-

ing/discharging loss factor of BESS; tSOC represents battery 

state of charge (SOC) at time t, SOC / SOC are SOC low-

er/upper limits; 
,ES Dis

t /
,ES Chr

t are BESS discharg-

ing/charging indicator; 
,ES Dis

tP /
,ES Chr

tP are the upper limits of 

BESS discharging/charging power. 

BESS capacity change is given in Eqs. (7), (8), including net 

energy injection, energy losses during charging/discharging 

process, and leakage loss. BESS SOC constraints representation 

is given in Eq. (9). Equation (10) denotes BESS charg-

ing/discharging power is limited within lower/upper bounds. 

Equation (11) refers to BESS which is not allowed to be 

charged/discharged simultaneously.  

C. Incentive-based Demand Response Model

This paper mainly considers about incentive-based demand

response, such as direct load control, interruptible service, and 

emergency demand response program. Incentives will be paid 

to customers who are willing to increase or reduce their energy 

consumption when requested. The controllable load cost is 

represented by a linear function as [18]:  

1 2
CL CL
t tC l l P       (12) 

where, 
CLC is the controllable load cost; 1l / 2l are the intercept

and slope respectively; CLP is the controllable load amount.  

The maximum ratio of controllable load is constrained by: 
CL

L

P

P
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where,  is the controllable load maximum ratio; 
LP is the 

electricity load; CLP
/ CLP

represent load decrement/increment; 

Max

CLP represents the upper bound of controllable load. 

D. Uncertain Sets of RESs and Load

RESs generation (i.e. wind power and solar power) and

electricity load are regarded as uncertainties in microgrid sys-

tem. Correlated scenarios are generated based on historical data, 

which allows the correlated probability distributions to be es-

timated based on the statistical correlations in the uncertainties. 

Based on the probability density functions (PDFs) of uncer-

tainties, Monte Carlo simulations are employed to randomly 

generate scenarios. Wind power and solar power forecast errors 

can be modelled by the Beta distribution:  

    2
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where, 
RESP refers to output forecast error of renewable out-

put; 1 2,  represent the shape parameters of Beta distribution; 

N refers to the normalization error. 

Load forecast errors can be modelled by the Gaussian dis-

tribution: 

 
 

2

2

22

1
; , exp

22

x
x x

xx

x
f x


 



  
   
 
 

(16) 

where, x refers to load forecast error; 
2,x x  represent mean 

and standard deviation. 

IV. RISK-AVERSE ENERGY MANAGEMENT MODEL

This section describes the mathematical formulation of pro-

posed risk-averse energy management model. In step 1, local 

optimization is carried out by individual microgrid EMS. In step 

2, a global optimization is conducted to minimize the overall 



operation cost of networked microgrids. A 24-hour scheduling 

horizon is chosen in the formulation of proposed model, with 

one-hour uniform interval of time.  

A. Single Microgrid EMS

The objective of the optimization model is to minimize the

operation cost of each MG in the distribution network with 

system constraints satisfied, as shown below. The objective 

function contains CDG cost (i.e. its generation cost, and 

startup/shutdown cost), BESS maintenance cost, controllable 

load cost, the exchanged power cost (i.e. price of buying and 

price of selling).  

 
1

min  

CG CG SU CG SDT
t t t t t

ES M
t t t

C SUC SDC

C C

 



  
 
   

  (17) 

The exchanged power cost in each MG is calculated as: 
M M
t t tC P       (18) 

where, t is the power price at time t; 
M

tP is the exchanged

power amount for the MG at time t. Exchange power cost is 

composed of price of buying and price of selling. Specifically, 

when 0M
tP  , t represents the selling price, and

M
tP repre-

sents the surplus power; when 0M
tP  , t represents the buy-

ing price and
M

tP represents the shortage power. 

The following constraints should be satisfied in the energy 

management process of microgrids.  

1) Load balance constraints:

For each MG, the total power generation from renewable

generators, CDGs, and BESS should be balanced with local 

demand and exchanged power with distribution network.  
CG ES RES M L CL

t t t t t tP P P P P P       (19) 

2) CDG constraints:

Equations (3)-(5) are specifying the CDG operation con-

straints. 

3) BESS constraints:

BESS operational constraints are specified in (8)-(11).

4) Controllable load constraints:

The incentive-based demand response model constraints are

given in (13), (14). 

After completing local optimization by the microgrid energy 

management system, each microgrid can determine the BESS 

charging/discharging status, CDGs startup/shutdown schedule, 

controllable load decrement/increment value, surplus/shortage 

power. The calculated values are communicated to the distri-

bution system operator for global optimization.  

B. Networked Microgrids EMS

After receiving the information about surplus, shortage

amount from each microgrid, distribution network operator 

starts to conduct a global optimization for networked mi-

crogrids. It is assumed that each microgrid has a more attractive 

electricity rate by purchasing power directly from adjunct mi-

crogrids in the distribution network. Therefore, microgrids 

firstly aim to meet each other’s electricity needs from adjunct 

microgrids, and then choose to buy power from distribution 

network when not enough power is provided by neighboring 

microgrids.  

The objective of the upper level EMS is to minimize the op-

eration cost of networked microgrids by running a global op-

timization.  

 
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1 1
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where, i represents the ith microgrid, t represents the tth time step. 

The optimization function consists of CDG cost, BESS cost, 

controllable load cost, microgrids internal power exchange cost, 

microgrids power exchange cost with distribution network. 

Specially, the definitions of 
M
itC and

,Dis M
tC are given by: 

M M
it it itC P  (21) 

, ,Dis M Dis M
t t tC P  (22) 
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where, it , t refer to the microgrid internal exchange price 

with adjunct microgrids, and external price with distribution 

network respectively; 
,Dis M

tP is the exchanged power amount 

between networked microgrids and the distribution network; I is 

the number of MGs in distribution network; 
M

itP is the sur-

plus/shortage power from microgrids, which can be calculated 

in local optimization.  

The microgrids system uncertainties are considered in global 

optimization. Therefore, Eq. (20) is formulated into a proba-

bilistic version to mitigate the risky decision making. Besides, 

the initial large set of scenarios is trimmed to a small number of 

representative scenarios in this paper to improve computational 

efficiency. An efficient backward method is employed to esti-

mate the original whole scenarios and reduce the scenarios 

number. The risk associated with the cost variability is explic-

itly captured into the model through conditional value at risk. A 

risk-averse version of Eq. (20) can be written as:  

 
,

1 1

min
( )
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it it it it it

ES CL M Dis M
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C C C C w CVaR

 

 

   
 
      

  (24) 

where, w is the weighting factor for price risk, which is chosen 

as 10 in this paper, CVaR  is conditional value at risk with 

confidence level  . 

Constraints: In each scenario k, the following denoted con-

straints should be satisfied for the stable operation of networked 

microgrids. CDG constraints in (3)-(5), BESS constraints in 

(8)-(11), and controllable load constraints in (13), (14) should 

be satisfied, which is similar to local optimization. The distin-

guished parts are given below:  

1) Network power balance constraints:

Network power balance constraints should be met, as shown

in (23). 



2) Exchanged power constraints:
,Exch Dis M Exch

tP P P        (25) 

where, 
ExchP / ExchP are the lower/upper limits of interconnec-

tion exchange between microgrids and distribution network.  

After the global optimization is conducted, the networked 

EMS model can finally present the optimal BESS charg-

ing/discharging status, CDG scheduling results, microgrids 

internal power exchange amount, and external power exchange 

amount with the distribution network.  

V. CASE STUDIES

The proposed approach is tested on the networked microgrids 

structure shown in Fig. 1, demonstrating the internal flow and 

external flow. All MILP-based models have been simulated on 

MATLAB platform with Mosek toolbox [19].  

The controllable load maximum ratio is set as 25%, which 

means a maximum 25% of daily load can be used via incentive 

demand response model. The intercept and slope of Eq. (12) are 

set as $0.28/kWh and 0.05. The lower/upper limits of ex-

changed power with distribution network are  2000 kW. The 

parameters of conventional distributed generators in each mi-

crogrid are given in Table 1. The life-time BESS depression 

coefficient is 0.04, the lower/upper limits of SOC are 20%/80%, 

and charging/discharging coefficients are 0.95 and 0.97. Three 

microgrids are assumed to have the same capacity BESS with 

rated power at 170 kWh, maximum charging/discharging power 

at 125 kW. The renewable generation and daily load are based 

on the day-ahead forecasted data collected from Australia En-

ergy Market Operator [20], which is shown in Fig. 2. The power 

exchange price between microgrids and distribution network 

are given in Fig. 2 as well. The confidence level is set as 0.90 

here to model the risk-averse strategy. It should be noted that 

the higher the confidence level is, the more different results the 

system has as compared with risk neutral strategy. 
Table 1 Parameters of CDGs in each microgrid 

Parameters CDG1 CDG2 CDG3 

CGa , 
CGb ($/kWh) 

0.28, 0.034 0.30, 0.040 0.35, 0.042 

CGP ,
CGP (kW) 0, 220 0, 200 0, 180 

Up
CGRamp , 

Down
CGRamp

(kW/h) 

75, 75 70, 70 80, 80 

CGSUC , CGSDC ($) 0.32, 0.16 0.37, 0.24 0.31, 0.18 

Fig. 2 Renewable generation and daily load, electricity price in MGs network 

(a)Case 1 Risk neutral scenario 

(b) Case 2 Risk averse scenario

Fig. 3 Power exchange scheduling results in three microgrids under risk 

neutral and risk averse scenarios 

Two cases are compared to demonstrate the effectiveness of 

the proposed control scheme. Case 1: proposed networked 

microgrids control scheme with risk neutral scenario; Case 2: 

proposed networked microgrids control scheme with 

risk-averse scenario where confidence level is set to 0.90. The 

simulation results are analyzed below to show the different 

simulation results under two cases. 

Fig. 3 presents the power exchange results in each microgrid 

under two cases. The risk neutral scenario results are presented 

in Fig. 3(a), and the risk-averse scenario results are presented in 

Fig. 3(b). A positive value in Fig. 3 means the microgrid has 

surplus power, while a negative value means the microgrid has a 

shortfall. As observed, microgrids under risk neutral scenario 

have more surplus power, indicating a lower operation cost is 
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expected in this case. Fig. 4 presents the BESS, controllable 

load and CDG scheduling results in the two scenarios. The 

average BESS SOC, average controllable load ratio, and overall 

operation cost in the microgrids under two scenarios are com-

pared in Table 2. It can be found that risk-averse scenario has 

higher BESS SOC level, higher controllable load ratio, and 

lower operation profit as compared with risk neutral scenario.  

(a) Case 1 Risk neutral scenario

(b) Case 2 Risk averse scenario

Fig. 3 BESS, controllable load, and CDG scheduling results in three mi-

crogrids under risk neutral and risk averse scenarios 

Table 2 Comparison of BESS SOC, controllable load ratio, and operation 

cost between risk neutral and risk averse scenarios 

Scenario Average SOC Average control-

lable load ratio 

Operation 

cost ($) 

Risk neutral 0.623 0.124 -160.24 

Risk averse 0.742 0.138 -132.57 

VI. CONCLUSION

This paper proposes an interactive energy management 

strategy for networked microgrids considering renewable gen-

eration uncertainties and electricity load uncertainties. There are 

two steps in the energy management model, i.e. local microgrid 

optimization and global networked microgrids optimization. In 

each step, the control objective is to minimize the operation cost 

while satisfying equality and inequality constraints in the sys-

tem. A risk-hedging mechanism is included in the energy 

management model via conditional value at risk measure. Ac-

cording to the simulation results, the proposed methodology 

identifies an effective scheduling plan for networked microgrids 

as well as providing a risk-averse strategy.  
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