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Abstract—Methods of teaching path finding algorithms, based
purely on programming, provide an additional challenge to stu-
dents. Indeed many courses use graphs and other visualisations
to aid students in grasping concepts quickly. Globally we are
rapidly altering our teaching tools to suit the current blended
or remote learning style due to the global COVID-19 pandemic.
We propose a method that provides instant feedback showing
how their programmed path finding algorithm works based upon
games. The tool will provide feedback to the student about their
code quality. Along with an element of gamification we aim to
improve both initial understanding and further exploration into
the algorithms taught. This tool aims to provide useful feedback
to students in the absence of immediate laboratory support and
gives students the flexibility to conduct laboratory worksheets
outside of scheduled laboratory slots.

Position: Software tools and teaching assistants heavily assist
undergraduate students in learning how to program. In develop-
ing enhanced software tools, we can provide immediate feedback
to learners. Thus, allowing them to gain an initial understanding
of the algorithm before facilitated sessions. This further enriches
their experience and learning during contact hours with teaching
assistants.

Index Terms—teaching, algorithms, gaming

I. INTRODUCTION

Teaching algorithms effectively proves to be a tricky task
for those involved in both teaching and learning. Currently
students gain support in learning through formal activities such
as lectures, lab sessions and discussion boards. Students gain
informal support by means of using online resources including
but not limited to StackOverFlow1, YouTube2 and Massive
Open Online Courses (MOOCs). In addition to this they are
able to discuss issues with their peers. Over the years we have
seen an evolution of the traditional classroom/lab sessions to
include blended learning [1]–[3] and flipped classrooms [4]–
[6]. With issues in running laboratory sessions effectively due
to the global COVID-19 pandemic students are not able to
gain the same learning experience. In this paper we propose
a tool to provide immediate visual and text based feedback
to students irrespective of where they are studying. The visual
feedback elements are visualisation of the algorithms steps and
of the generated output path. The text based feedback provides
suggestions to students on their code.

1https://stackoverflow.com/
2https://www.youtube.com/

At Brunel University London (BUL) undergraduate students
are currently taught a module called ‘Algorithms and their
Applications’ in the second year of their Computer Science
degree. This module teaches students about data abstractions
and algorithms including sorting and routing algorithms. The
module employs the use of lectures and laboratory sessions as
the means of teaching. Historically the module was assessed
using laboratory worksheets in a VIVA form alongside an
examination. In recent years, the assessment was replaced
with CodeRunner3. CodeRunner is a Moodle4 plug-in that
allows tutors to set questions where the students answers take
the form of programming code [7]. Using our proposed tool,
students will be able to develop, test and submit their program
code using an integrated development environment. Students
will then be able to receive immediate feedback on their
code and resubmit/correct their code under a specific penalty
regime. In 2018/2019 we had 191 students and in 2019/2020
we had 279 students enrolled on the course.

We describe a tool that provides students with instantaneous
visual and text based feedback while employing some gami-
fication techniques. Students will be able to implement path-
finding algorithms and test these against real-world gaming
scenarios. Grid based games such as Atari’s Pacman offer a
platform which provides students with an opportunity to make
examples of algorithms in game-like situations. The Ghosts
in Pacman as an example use various forms of path-finding
algorithms to simulate different behaviours. Path-finding algo-
rithms such as A* [8] and Djikstra’s [9] are popular algorithms
for explaining and visualizing heuristics to students. Enabling
visual feedback of student-written algorithms aims to increase
student interest and satisfaction in Computer Science. We
aim to assess the tool using a combination of qualitative and
quantitative methods by exploring how well they perform in
the module, the quality of their code, and their opinions of the
tool itself.

The remainder of this paper is organised as follows: Section
II outlines the background literature. Section III describes the
concept and details our research questions. Section IV dis-
cusses how we will evaluate the concept. Section V provides
our concluding remarks and directions for future work.

3https://coderunner.org.nz/
4Moodle is an open source learning platform - https://moodle.org/



II. BACKGROUND

Teaching students is a practice that has evolved over the
years. There are many lessons learned and innovations within
the landscape. In Section II-A we explore teaching styles,
Section II-B explores gamification and Section II-C algorithm
visualisation tools.

A. Teaching Styles

The standard teaching style within the Department of
Computer Science at BUL typically revolves around lec-
tures followed by laboratory sessions where the student can
practice the module’s theoretical aspects (taught in lectures).
For example, the Algorithms and their Applications module,
discussed previously, puts the information learnt in lectures
into practise using programming exercises. It uses interactive
development environments such as CodeRunner to allow the
students to write and test code in an online environment
and receive grades based on the code’s performance and
functionality. CodeRunner is a popular tool being used by
several universities when it comes to teaching and assessing
students programming ability [7], [10], [11]. Other teaching
styles in higher education include active, blended and flipped
learning.

The active learning model establishes engagement between
the student and the teacher through discussion and activities.
The objective of the active learning model is to emphasise
higher-level cognitive thought in smaller groups. A review of
active learning in 2004 by Prince [12] showed mixed results
compared to traditional teaching styles before the teaching
method’s popularity increased. A 2014 literature study by
Freeman et al. [13] conducted on 225 studies examined
a notable reduction in failure rate compared to traditional
classroom teaching.

The blended learning model combines face-to-face commu-
nication with an emphasis on instructional education through
an electronic medium. With recent developments associated
with the rise of the COVID-19 pandemic, the staff at BUL
have adapted to more blended learning based teaching by
providing lectures and practical programming sessions through
virtual platforms. The concept of using blended learning in
computer science has grown in interest recently, supported by
publications such as Hadjerrouit [1], Hoic-Bozic et al [2] and
Alonao et al. [3].

The flipped classroom model’s premise is to provide stu-
dents access to digital learning materials outside of classrooms
to enable students to use in-classroom time for practical and
active learning styles [4]. Research by Maher et al. [6] studying
the effects of blended learning in computer science found
high ratings from the feedback of 213 students. A systematic
literature review on 32 flipped classroom studies by Giannakos
et al. [5] found high engagement and student satisfaction.

Each of the proposed teaching styles has its advantages
regarding student satisfaction and engagement. The increased
collaboration proposed by active, blended and flipped learning
has shown facilitation for more high-level discussion. Despite
this, the aspect of independence and the vast difference from

traditional teaching styles, in general, has shown decreased at-
tendance. Furthermore, the cost and time required for complex
course changes can be disadvantageous.

B. Gamification

Educational platforms can entice and engage student sat-
isfaction through game-based elements such as points, re-
wards, and leaderboards known as gamification. Alhammad
and Moreno [14] report that these gamification strategies
are among some of the most studied concepts. MOOCs
provide platforms for learning skills such as programming.
Khan Academy5, Codecademy6, and HackerRank7 are such
examples. Learning materials produced by MOOCs focus on
the core properties of modern programming components such
as variables, loops, and methods. MOOCs provide incentives
to users in the form of badges to display their skills on account
profiles or possibly curriculum vitae in some instances.

C. Algorithm Visualisation (AV) Tools

Algorithm Visualisation (AV) Tools are not new; in fact
they have been around for a number of years. We can find
examples of these tools both within academic literature e.g.
DAVE, an AV tool [15], GreedyEx, a greedy algorithm AV
tool [16], GAVEL, a genetic algorithm AV tool [17] and
publicly available and free to use e.g. VisualGo8, Xueqiao Xu’s
visualier9 and Clement Mihailescu’s Path finding visualiser10.

Grissom et al. [18] report that AV aided students in learning
material. Velazquez-Iturbide et al. [16] develop an active
learning AV tool which focuses on the learning of greedy
algorithms. Vrachnos and Jimoyiannis [15] present an AV
tool, DAVE. DAVE is a web-based tool designed to support
secondary education students’ learning about basic algorithms.
The use of DAVE promoted student engagement and helped
students overcome learning barriers, such as understanding
sorting algorithms. Hart and Ross [17] report that their tools
allow for easy visualisation of important features of the
evolution and allows for visual and graphical analysis of the
performance.

AV and gamification can be applied to student education
to provide the student with a combination of visual and text-
based feedback. Popular 1980’s arcade games such as the Atari
Pacman offer an engaging and visually pleasing environment
with potential applications for students education and exper-
imentation. The grid-like visuals of Atari games provide a
suitable platform for students to learn different algorithms.
Gamification elements such as challenges and leaderboards
allow students to learn and optimise their solutions, providing
them with valuable workforce skills. AV and gamification
provide the core components of this paper’s concept designed
to engage students and help them learn.

5https://www.khanacademy.org/
6https://www.codecademy.com/
7https://www.hackerrank.com/
8https://visualgo.net/en/sssp
9https://qiao.github.io/PathFinding.js/visual/
10https://clementmihailescu.github.io/Pathfinding-Visualizer/



III. CONCEPT

In the following section, we aim to outline our proposed
method for advancing the teaching of path finding algorithms
to second-year undergraduate computer science students.

Current teaching methods consist of lectures covering con-
tent, laboratories and self study covering reading materials and
further practicing concepts by implementing the algorithms
taught. Currently, the feedback from student programming
is that of errors from the compiler or debug logs placed in
the code, along with the assistance of a Graduate Teaching
Assistant (GTA).

We propose a new method where the student develops
their implementations of various path finding algorithms on a
platform that provides instant visual feedback illustrating how
the students’ algorithms are assessing the paths and provide a
comparison with the target algorithm the student is trying to
write.

The concept employs two main forms of feedback. The
primary method is in the form of visual feedback. We envision
a cell-like grid where each cell illuminates as inspected from
the students’ implementation. Shown alongside the students’
visual feedback is that of the correct algorithm they’re attempt-
ing to implement, allowing the student to identify differences
in the procedure more descriptively than that of console logs
and compiler errors in the current form of teaching. Refer to
Figure 1 illustrating a draft wireframe.

Fig. 1. Draft Wireframe of Visual Interface

To test that the students’ implementation is correct, we’ve
identified two methods to explore. The first is we generate
all permutations that the current algorithm may take when
checking if cells are traversable (no obstacles) and check if
the students’ algorithm matches one of the known logs. The
second method is to identify which cells could/wouldn’t be

accessed when using a particular algorithm along with the
minimum and maximum potential checks for the algorithm
and ensuring that the students’ code matches.

The secondary method of feedback is in the form of text
based feedback. To encourage the use of “clean code” [19],
each time the student’s code runs, a static code analysis tool
checks for code complexity and comments, in turn providing
suggestions back. These suggestions being along the lines
of “Your code is looking complex, how about splitting the
functionality into named functions?”. Traditionally this feed-
back has been given by a GTA inspecting the students’ work,
though, with the recent increase in demand and complexity due
to necessity of remote teaching an automated method should
assist in providing faster feedback to students.

Various software metrics [20] will power automated feed-
back. Including, but not limited to cyclomatic [21] and cog-
nitive [22] complexity to provide feedback on the students’
code complexity, and check on variable name consistency to
provide feedback on documentation. We will evaluate other
metrics in due course to enhance the feedback that is being
provided.

Atop the basic implementations, we propose the availability
of Atari-like games such as Pacman through the platform
where students can build upon their base path finding algo-
rithms to complete the games and their scores ranked on a
leaderboard. We hope that this will inspire students further
exploration through the use of gamification and by working
with a ”real world” case, have a better understanding of how
and where path finding algorithms may be in use.

We believe this concept differs from pre-existing alternatives
such as current offerings from the available MOOCs platforms
as it provides an improved view into how a student’s algorithm
executes in a visual setting. Also including gamification pro-
vides a more open environment to explore working with the
algorithms beyond theoretical and non-applied tasking.

Researching this concept, we aim to shine further light on
the following research questions:

1) Does gamification improve students ability to develop
path finding algorithms?

2) Does the instant visual feedback improve understanding
during learning?

3) What are student perceptions of real time feedback on
code quality?

IV. EVALUATION METHODS

In this section we detail our desired evaluation methods for
the proposed concept. We intend to use an experimental study
so we can compare the results from the current teaching style
versus the proposed concept. We will employ a combination of
qualitative and quantitative methods to gather a diverse range
of data from our participants which will allow us to accurately
understand whether the proposed concept is more effective
than the current methods of teaching routing algorithms to
undergraduate computer science students.

We propose an experimental study which will last for two
academic years in which we will compare students learning



of path finding algorithms using the current approach (in
person lab sheets) and our proposed approach (visual and
text based feedback). We will recruit our students from the
level 2 undergraduate module, this will mean two rounds of
recruitment, one at the beginning of each academic year. In
the first year of the study we will run the module as normal
using lectures and lab facilities which will be supported by
members of academic staff and GTA. In the second year of
the study the lab facilities will be adapted to employ use of
the visual tool, access to the tool will be made 24/7 so that
students can practice with the tool outside of lab worksheets.
This is to keep it consistent with current means i.e. a student
can work on and or repeat / revisit a lab worksheet outside of
the allocated laboratory sessions.

We intend on using the following quantitative measures
to aid in the evaluation of the tool; code snapshots and
module / lab worksheet results. We will create a snapshot of
a students code each time they submit, this will allow us to
understand whether the students ability to develop algorithms
have increased due to the tool (RQ1). We will be able to infer
a students ability to develop algorithms (RQ1) and whether
visual feedback aids to improve students understanding from
the grades they attain in each lab sheet and from the module
as a whole.

We intend on using the following qualitative measures to aid
in the evaluation of the tool; student perceptions and insights.
These perceptions and insights will be gained through the use
of survey instruments [23]. All participants will be requested
to complete online questionnaires at set intervals throughout
the academic year. We will invite a randomised subset of
each population to participate in a semi structured focus group
[24], to gain a richer and more detailed insight into student
experiences of using the tool. The insights we uncover during
the online questionnaires and focus groups will allow us to
understand student perceptions of real time feedback on code
quality (RQ3).

We are aware that we may have some outliers within our
sample datasets. To help us better understand potential anoma-
lous cases we will request basic demographic information from
our students e.g. about their prior programming experiences
both within and outside of the degree program. We will
provide them with a feature to report on positive, neutral and
negative experiences during usage of the tool. Finally we will
record basic usage analytics e.g. how many hours was the tool
used for and over what time frame. We hope that this data will
allow us to understand our participants well enough to explore
and explain any outliers.

V. CONCLUSION

In this paper we have highlighted the need for an interactive
teaching tool which can support students who learn through the
visual learning style at any time irrespective of the academic
teaching support at the time. Additionally, we highlighted the
need for a tool which allows students to learn effectively in
the blended and remote learning settings. We propose a tool
in which students can submit their path finding algorithms and

gain feedback visually. The students will be able to see the
results of their code on real world gaming scenarios such as
the ghosts in the Atari Pacman game. The students will gain
feedback on their code quality based upon static code metrics
which should further boost their development skills and aid
distance students who may conduct lab sheets out of taught
sessions.

This tool will be evaluated using a combination of quali-
tative and quantitative methods. Current work sees us imple-
menting the tool and evaluating it using level 2 undergraduate
students. Below we explore some future work to be conducted
once the tool is developed.

• Expand on the tools reach Once this concept tool has
been developed and tested, we look to expand on how
the tool can be used in three main ways; (a) provide
support for other algorithms e.g. sorting algorithm, (b)
provide support for other programming concepts which
could support other courses e.g. threading within network
computing and (c) provide support from students on all
levels i.e. levels 1 - 3 of a Computer Science undergrad-
uate degree in the UK.

• Generalisability Wagner et al. [25] suggest a sample
size of 400 participants to attain generalisability when
looking at practising software developers. Many courses
at BUL do not have enough students enrolled to meet
this sample size. Once we have expanded on the tools
reach we will be able to offer the teaching tool on other
courses e.g. level 1 and 2 programming courses, network
computing, etc. This will increase our sample pool aiding
us in reaching a suitable sample size. We are considering
making the tool available so that students from other
universities can use it and we will be able to evaluate how
other students find the experience against our students at
BUL.

• Accessibility Concerns Work is required to ensure that
this learning tool is fully accessible to all users. Given
that the tool predominantly focuses on visual aids, we
need to consider how best to support students who are
blind or partially sighted. Mealin and Murphy-Hill [26]
report that some developers use multi line braille displays,
however, these are typically single line. A potential
solution would be to use multi line braille displays to
mimic the visualisation sighted students take for granted.
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