

OPTPLATFORM: METAHEURISTIC

OPTIMISATION FRAMEWORK FOR SOLVING

COMPLEX REAL-WORLD PROBLEMS

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY

IVARS DZALBS

DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERING

BRUNEL UNIVERSITY LONDON

JANUARY 2021

DECLARATION OF AUTHORSHIP

I, Ivars Dzalbs, declare that the work in the dissertation was carried out in accordance

with the requirements of the University’s Regulations and Code of Practice for

Research Degree Programmes and that it has not been submitted for any other

academic award. Except where indicated by specific references in the text, the work

is the candidate’s own work. The work done in collaboration with, or with the

assistance of, others, is indicated as such. Any views expressed in the dissertation

are those of the author.

Signature: ________________________ Date: ____________________________

31/05/2021

i

ABSTRACT

We optimise daily, whether that is planning a round trip that visits the most

attractions within a given holiday budget or just taking a train instead of driving a car

in a rush hour. Many problems, just like these, are solved by individuals as part of our

daily schedule, and they are effortless and straightforward. If we now scale that to

many individuals with many different schedules, like a school timetable, we get to a

point where it is just not feasible or practical to solve by hand. In such instances,

optimisation methods are used to obtain an optimal solution.

In this thesis, a practical approach to optimisation has been taken by developing an

optimisation platform with all the necessary tools to be used by practitioners who are

not necessarily familiar with the subject of optimisation.

First, a high-performance metaheuristic optimisation framework (MOF) called

OptPlatform is implemented, and the versatility and performance are evaluated across

multiple benchmarks and real-world optimisation problems. Results show that,

compared to competing MOFs, the OptPlatform outperforms in both the solution

quality and computation time.

Second, the most suitable hardware platform for OptPlatform is determined by an

in-depth analysis of Ant Colony Optimisation scaling across CPU, GPU and enterprise

Xeon Phi. Contrary to the common benchmark problems used in the literature, the

supply chain problem solved could not scale on GPUs.

Third, a variety of metaheuristics are implemented into OptPlatform. Including, a

new metaheuristic based on Imperialist Competitive Algorithm (ICA), called ICA with

Independence and Constrained Assimilation (ICAwICA) is proposed. The ICAwICA

was compared against two different types of benchmark problems, and results show

the versatile application of the algorithm, matching and in some cases

outperforming the custom-tuned approaches.

Finally, essential MOF features like automatic algorithm selection and tuning,

lacking on existing frameworks, are implemented in OptPlatform. Two novel

approaches are proposed and compared to existing methods. Results indicate the

superiority of the implemented tuning algorithms within constrained tuning

budget environment.

ii

ACKNOWLEDGMENTS

Firstly, I would acknowledge my family and their unconditional support throughout

my studies.

I would like to also thank my supervisory team, principal supervisor Dr. Tatiana

Kalganova for providing me with the opportunity of pursuing PhD; and second

supervisor Dr. Hongying Meng for the moral support.

Final thanks go to Tony Grichnik for providing endless interesting real-world

problems to solve.

iii

CONTENTS

Abstract .. i
Acknowledgments.. ii
Contents ... iii
List of Tables ... vi
List of Figures ... ix
List of Abbreviations ... xiv

1. Introduction .. 1

1.1. Motivation ... 2

1.2. Thesis Contributions ... 2

1.3. List of publications .. 4

1.4. Thesis contents .. 4

2. Literature review .. 7
2.1. Optimization methods ... 7

2.1.1. Heuristics ... 9

2.1.2. Metaheuristics .. 10

2.2. Metaheuristic Optimization Frameworks (MOFs) 25

2.2.1. MOF trends and limitations .. 33

2.3. Optimization Problems.. 35

2.3.1. Benchmark problems ... 35

2.3.2. Real-world problems .. 39

2.4. Summary .. 49

3. Optimization platform (OptPlatform) .. 50
3.1. Target users and requirements ... 50

3.2. Technologies used ... 53

3.3. Fundamental concepts ... 54

3.4. Architecture .. 55

3.5. User workflow ... 56

3.6. Search cores module .. 62

3.6.1. Ant Colony Optimization (ACO) ... 64

3.6.2. Evolutionary Strategy (ES) ... 67

3.6.3. Imperialist Competitive Algorithm (ICA) ... 68

3.7. Visualisation tools ... 72

iv

3.8. Solution transition optimisation ... 75

3.8.1. Numerical examples ... 77

3.9. MOF comparisons .. 78

3.10. Summary .. 81

4. The Imperialist Competitive Algorithm with Independence and Constrained
Assimilation (ICAwICA) ... 83

4.1. Motivation and related work .. 83

4.2. Methods and implementation .. 85

4.2.1. Classic ICA .. 85

4.2.2. ICAwICA .. 86

4.2.3. Constrained assimilation .. 86

4.2.4. ICAwICA solution encoding for MKP and MDVRP 89

4.3. Experiments .. 90

4.3.1. Benchmark instances ... 90

4.3.2. Experimental setup .. 91

4.3.3. Comparison to classic ICA ... 92

4.3.4. Sensitivity analysis of independence rate 93

4.3.5. Comparison to the state-of-the-art metaheuristics for MKP 94

4.3.6. Comparison to the state-of-the-art metaheuristics for MDVRP 96

4.4. Summary .. 97

5. Accelerating supply chains with Ant Colony Optimization across a range of
hardware solutions .. 99

5.1. Motivation and related work .. 99

5.1.1. Parallel Ant Colony Optimization .. 101

5.1.2. CPU ... 103

5.1.3. Xeon Phi .. 104

5.1.4. GPUs ... 104

5.1.5. Comparing hardware performances ... 105

5.2. Background .. 106

5.2.1. Parallel processing with OpenMP .. 106

5.2.2. CUDA programming model .. 106

5.2.3. Xeon Phi Knights Landing architecture .. 107

5.3. Methods and implementation .. 108

5.4. Experiments .. 112

5.4.1. Benchmarks ... 113

v

5.4.2. Speed performance .. 115

5.4.3. Hardware Comparison and speed of convergence 119

5.4.4. Comparisons using the Travelling Salesman Problem 121

5.5. Summary .. 122

6. Simple generate-evaluate strategy for tight-budget parameter tuning
problems ... 125

6.1. Motivation ... 125

6.1.1. Parameter tuning problem .. 127

6.2. Related work ... 128

6.3. Proposed methods ... 130

6.3.1. Elitist Tuner - eTuner .. 131

6.3.2. Elitist tuning with pre algorithm selection – eTunerAlgo 132

6.4. Experiments .. 134

6.4.1. Experimental setup .. 134

6.4.2. Experimental results ... 136

6.5. Summary .. 141

7. Conclusions and Future Work .. 143
7.1. Conclusions .. 143

7.2. Future work ... 144

8. References ... 146
9. Appendix .. 165

vi

LIST OF TABLES

Table 1. Summary of the most popular metaheuristic optimization frameworks sorted

by creation year. ... 27

Table 2. MOF supported features. ... 35

Table 3. Solution transition plan for MKP gk01 with maximizing profit as objective 𝑓𝑆𝑇.

NSL represents the number of element-order pairs that differ from the final solution.

 ... 77

Table 4. Solution transition plan for Transcom scheduling and routing problem with

minimizing total cost (in million $) as objective 𝑓𝑆𝑇. NSL represents the number of

element-order pairs that differ from the final solution. .. 78

Table 5. Parameters used for an experiment on a various algorithm on different MOFs

 ... 79

Table 6. Metaheuristic Optimization Framework comparisons. Best and average

expressed as error per cent from an optimal solution, colour coded from the best error

(in green) to the worse (in red). Google OR-tools is added for reference only and is not

considered a MOF. ... 80

Table 7. Comparison of best and average scores between Classic ICA and ICAwICA

across six test problem instances. Average and best out of 10 runs with standard

deviation (std), BKS – Best Known Solution. .. 92

Table 8. Sensitivity analysis of Independence rate as an average error per cent gap

for six test problem instances. With 0 representing ICA with no independence operator,

𝑡𝑎𝑣𝑔𝑠 representing the average time in seconds to converge to the best solution, BKS

– Best Known Solution ... 93

Table 9. Algorithm comparison across large Glover and Kochenberger (GK) knapsack

instances. Results are expressed as average error percentage gap % against best-

known profit. Colour coded from the best gap (green) to worst gap (red) for any given

dataset. With dash (-) representing results that are not available. BKS – Best Known

Solution, Std – Standard Deviation of the absolute value... 95

vii

Table 10. Best solution obtained by ICAwICA compared to other algorithms in the

literature across Cordeau’s MDVRP benchmark instances and the best-known

solution (BKS). The best scores represented in bold, N representing the number of

customers, M – the number of depots. Average error percentage calculated using BKS

as a reference, 𝑡𝑎𝑣𝑔(𝑚) – average time to converge to a solution, in minutes, Std –

Standard Deviation ... 97

Table 11. ACO architecture and hardware configurations explored. LAC - Longest

Common Subsequence Problem, MKP - Multidimensional Knapsack Problem, TSP -

Travelling Salesman problem. IAC – Independent Ant Colonies, IntAC – Interactive

Ant Colonies, PA – Parallel Ants. ... 102

Table 12. Meta-data required during solution creation based on problem type 102

Table 13. Comparison of Independent Ant Colonies (IAC), Parallel Ants (PA) and

parallel Ants with Vectorisation (PAwV) architectures. ... 111

Table 14. Ant Colony System set of parameters for all configurations and architectures

 ... 112

Table 15. Parallel Ants fitness value baseline for different configurations of the number

of parallel instances and the number of iterations. Each Parallel Instance data point is

an average of 10 individual runs (table derived from 11*10 =110 runs). Expressed as

a percentage of the proximity of the best-known solution (2,701,367.58). Colour-coded

from worse – in red, to the best – in green. .. 114

Table 16. The number of iterations required to reach a specific solution quality. Each

data point in the table is an average of 10 individual runs. Empty fields (-) represent

instances where ACO did not obtain specified solution quality in 768k solutions

explored. The solution quality is expressed as a percentage of the proximity of the

best-know solution (2,701,367.58). .. 115

Table 17. Hardware A wall-clock time per iteration, in seconds. KMP config is

environment variable set as part of KMP_PLACE_THREADS, for all instances

KMP_AFFINITY=scatter, optimisation level /O3, favour speed /Ot. 117

Table 18. Hardware B wall-clock time per iteration, in seconds. KMP config is

environment variable set as part of KM_PLACE_THREADS, for all instances

KMP_AFFINITY=scatter, optimisation level /O3, favour speed /Ot. 118

viii

Table 19. Hardware C wall-clock time per iteration, in seconds. The total number of

parallel instances are adjusted for the thread-block dimensions. Compiled with CUDA

9.0. 1x, 2x and 4x correspond to the number of devices used to compute. 119

Table 20. Estimated time (in seconds) required to converge to specific solution quality.

Calculated by multiplying the number of iterations by the time taken for iteration for

individual best performing hardware configuration. Solution quality is expressed as a

percentage of the proximity of the best-know solution (2,701,367.58). 120

Table 21. The algorithms and hyperparameters used for tuning. Each of the

parameters has a discrete set of values that can be used for the candidate. The total

number of candidate configurations for Ant Colony Optimization is 12,000, for

Evolutionary Strategy – 1000 and Imperialist Competitive Algorithm – 5760. Thus, the

total number of candidate configurations is 18,760. ... 135

ix

LIST OF FIGURES

Figure 1. Connections between the thesis chapters. ... 5

Figure 2. Taxonomy of optimization methods .. 9

Figure 3. Ant behaviour (inspired by [105]) .. 21

Figure 4. Evolution cycle of Evolution Strategy ... 22

Figure 5. Convergence representation of ICA [123]. With stars representing empires

and circles – their colonies. .. 24

Figure 6. Example of an MDVRP with ten customers (as circles) and two depots (A

and B as rectangles) .. 37

Figure 7. Graphical representation of simplified Aerial Surveying Problem. Each

rectangle (A, B, C) represent a base station and each of the circles (1-9) pose a

task/location that needs to be visited. In this example, there are four different routes,

route A-1-8-4-A in black, route A-7-B-3-A in blue, route A-C-5-9-6 in red and finally

route A-2-C in yellow. ... 40

Figure 8. Graphical representation of the outbound supply chain. Each warehouse i

is connected to one or many origin ports p. The shipping lane between origin port p

and destination port j is a combination of courier c, service level s, delivery time t and

transportation mode m. .. 42

Figure 9. Pseudocode for calculating order transportation cost 43

Figure 10. Simplified Transcom supply chain example.. 46

Figure 11. A high-level overview of modules in OptPlatform. Optimization platform

uses two languages – C++ for low-level high-performance search and C# for user

interfacing and other accessory tools. Split into user domain, where only problem

details are specified and the abstracted backend - platform. 56

Figure 12. User workflow for implementing an optimization problem. Icons represent

the modules used (in Figure 11) during the process, some of them can be optional.

 ... 56

x

Figure 13. Search space representation and solution element encoding. Constructed

as a 2D matrix with sizes 𝐸𝑚𝑎𝑥 and 𝑂𝑚𝑎𝑥. Search algorithm selects one or multiple

cells to be added to the final solution. .. 57

Figure 14. Simple bin packing problem encoding and decoding with five identical bins

(represented as orders) and eight items (elements). .. 58

Figure 15. The interface between the search algorithms in the Search Core module

and user-defined problem in Opt Problem. Flowchart on the left is a generic model that

all search algorithms in the Search Cores follow. Methods isBetterPerformance and

userSyncAfterIteration are optional and therefore greyed out. 60

Figure 16. Two example encodings for Travelling Salesman Problem (TSP). In

Sequence encoding, only the selected element sequence in the solution is needed for

encoding. Graph encoding represents nodes as a 2D graph, where the nodes

themselves are represented as orders and the inter-connections as elements.

Therefore, cells 𝑜0𝑒0 and 𝑜1𝑒1 would be invalid in TSP as it is a connection to itself.

 ... 62

Figure 17. Memory allocation and parallelism in Search Cores architecture. Areas of

the process, where problem-specific methods are called, are in orange. Iterations are

executed in sequence, however, in each iteration, multiple solutions are constructed

and evaluated up to the maximum number of parallel instances - 𝑃𝐼𝑚𝑎𝑥. 63

Figure 18. High-level pseudo code for Ant Colony Optimization algorithm in

OptPlatform. ... 66

Figure 19. High-level pseudo-code for Evolutionary Strategy algorithm in OptPlatform

 ... 67

Figure 20. Example of the mutation process of Evolutionary Strategy in OptPlatform.

PossibleElement pairs with red are removed and replaced with PossibleElement pairs

in blue. .. 68

Figure 21. High-level pseudo code for Imperialist Competitive Algorithm in

OptPlatform .. 69

Figure 22. Example of Imperialist Competitive Algorithm assimilation process in

OptPlatform. PossibleElements in red indicating the cells that are merged to create a

new country. ... 70

xi

Figure 23. The output of the global pheromone visualization tool. Each pixel

represents a pheromone change for given element across multiple iterations. With red

pixels indicating when evaporation happens, green – pheromone deposit, white – no

pheromone left for the specific element and in black – no change between the

iterations. .. 72

Figure 24. OptPlatform’s search visualization tool. .. 73

Figure 25. Simulation summary graphical interface. .. 74

Figure 26. Automatically generated solution animation of Transcom problem using

Google Earth. ... 75

Figure 27. A high-level overview of transition optimisation, where two solutions (sub-

optimal and optimized) are used as inputs to generate a transition plan based on the

provided goal. In this example, seven stages are generated starting from the sub-

optimal solution at Stage 0 to optimized solution at Stage 7. 76

Figure 28. Flowchart of classic ICA [124] (to the left) and the proposed ICAwICA (on

the right), with red indicating the changes. ... 87

Figure 29. The pseudocode for new assimilation and local search method for

ICAwICA ... 88

Figure 30. Imperialist and colony constrained assimilation process with solution repair.

With integer values corresponding to solution entries (item indices in MKP case or

depo indices in MDVRP case). ... 89

Figure 31. Customer assignment to depots in MDVRP using ICAwICA assimilation.

Where C1-C10 are customer indices and the encoded integers are depot indices that

are assigned to a given customer, with bold representing assimilated changes. 90

Figure 32. Comparison between Classic ICA [124] and ICAwICA for six test problem

instances. Expressed as average error percentage to the best know solution. The

graph demonstrates ICAwICA achieves average error of 0.62% while Classic ICA

achieves 1.3%, relative improvement of over two times. .. 93

Figure 33. The average error of the mean profit across all WEISH (1-30) instances.

Average of 30 independent runs. ... 94

Figure 34. Knights Landing tile with a larger processor die [282] 108

xii

Figure 35. High-level pseudocode for Independent Ant Colonies (IAC) search

algorithm .. 109

Figure 36. High-level pseudocode Parallel Ants (PA) search algorithm 110

Figure 37. High-level pseudocode for Parallel Ants with Vectorization (PAwV) search

algorithm. Expanding on Figure 36’ lines 3-7. .. 111

Figure 38. Parallel Ants best estimated computation time per solution quality for

supply chain problem to converge to specific solution quality. Solution quality is

expressed as a percentage of the proximity of the best-know solution (2,701,367.58).

 ... 121

Figure 39. Parallel Ants computation time per solution quality for lin318 TSP to

converge to specific solution quality. Solution quality is expressed as a percentage of

the proximity of the best-know solution (a distance of 42029). 122

Figure 40. Comparison between typical user workflow and automated workflow.

Yellow boxes are indicating areas where user expertise is necessary for optimal

results. In the automated workflow, algorithm selection and tuning are performed

automatically. ... 126

Figure 41. A high-level overview of the process flow. The underlying problem is

optimised by one or several metaheuristic algorithms. The metaheuristic algorithm(s)’

parameters are optimised by the hyperparameter tuner... 128

Figure 42. Graphical representation of the allocation of configuration evaluations by

variations of Elitism Rate and a brute force method for reference. All approaches are

allowed to perform the same number of total experiments (100-hour tuning budget,

with 60 second compute time for each configuration); thus, all three figures cover the

same surface area.. 132

Figure 43. Pseudocode of the proposed Etilist Tuner - eTuner algorithm.............. 132

Figure 44. Example of new candidate configuration generation for metaheuristic

algorithm selection. Where given three parameters P, one “average” configuration is

generated and six other candidate configurations. ... 133

Figure 45. The baseline for Aerial Surveying Problem (ASP) with a simple exhaustive

search (brute force) approach, where each evaluation represents a single run for each

of the 18,760 configurations. Error bars represent the minimum and maximum values

xiii

achieved during 10 simulations—average total cost, in a million dollars (minimisation

problem, lower costs are better). .. 136

Figure 46. Comparison of eTuner and eTunerAlgo approaches for Aerial Surveying

Problem. Error bars represent the minimum and maximum values achieved during 10

simulations—average total cost, in a million dollars (minimisation problem, lower costs

are better). .. 138

Figure 47. Tuning algorithm comparison for Aerial Surveying Problem. Error bars

represent the minimum and maximum values achieved during 10 simulations—

average total cost, in a million dollars (minimisation problem, lower costs are better).

eTuner and eTunerAlgo are the proposed methods, Iterative F-Race is the

implementation of [301]. ... 139

Figure 48. Tuning algorithm comparison for Aerial Surveying Problem. Average total

cost in a million dollars of 10 simulations (minimisation problem, lower costs are

better). eTuner and eTunerAlgo are the proposed methods, Iterative F-Race is the

implementation of [301]. ... 140

Figure 49. Tuner performance comparison for MKP-gk10 instance. Error bars

represent the minimum and maximum values achieved during 10 simulations—

average profit (maximisation problem, higher profits are better). eTunerAlgo is the

proposed method, Iterative F-Race is the implementation of [301]. 141

Figure 50. Scenario A – Simplified Transcom supply chain example 166

Figure 51. Scenario B pallet flow between military bases and Commercial Partners

(CPs). ... 167

Figure 52. Scenario B: Realistic Transcom supply chain example 168

Figure 53. Transcom Scenario B timeline .. 169

xiv

LIST OF ABBREVIATIONS

ABC Artificial Bee Colony

ACO Ant Colony Optimization

ACS Ant Colony System

AS Any System

BAT Bat Algorithm

CoEA Coevolutionary Algorithm

CSA Cuckoo Search Algorithm

CPU Central Processing Unit

DE Differential Evolution

DVRP Dynamic Vehicle Routing Problem

EA Evolutionary Algorithm

EC Evolutionary Computing

ES Evolutionary Strategy

FA Firefly Algorithm

GA Genetic Algorithm

GP Genetic Programming

GPU Graphics Processing Unit

GRASP Greedy Randomized Adaptive Search Procedure

GUI Graphical User Interface

GWO Grey Wolf Optimizer

HPC High Performance Computing

ICA Imperialist Competitive Algorithm

ILS Iterated Local Search

JSS Job Shop Scheduling

KP Knapsack Problem

LS Local Search

MFO Moth-flame Optimization

MKP Multidimensional Knapsack Problem

MOF Metaheuristic Optimization Framework

mQAP Multi-objective Quadratic Assignment Problem

xv

MVO Multi-Verse Optimizer

OOP Object Oriented Programming

PRNG Pseudo Random Number Generator

PFSP Permutation Flow shop Problem

PSO Particle Swarm Optimization

QAP Quadratic Assignment Problem

SA Simulated Annealing

SAT Boolean Satisfiability Problem

SDK Software Development Kit

SI Swarm Intelligence

TS Tabu Search

TSP Travelling Salesman Problem

VNS Variable Neighbourhood Search

VRP Vehicle Routing Problem

WOA Whale Optimization Algorithm

1

1. INTRODUCTION

An optimisation is part of our daily schedule. A school timetable is an excellent

example of a scheduling problem that could still be performed by hand, though it would

be impractical. Once the timetable gets more involved with many students, classrooms

and teachers, the naïve exhaustive search becomes infeasible in polynomial time. We

refer to these kinds of problems as NP-complete or NP-hard. These NP-hard problems

can be found in scheduling, timetabling, routing, logistics, supply chain management,

finance and engineering.

Finding a global optimum in a complex optimisation problem is not trivial. In some

cases, the search space's size is so big that even combined computation power of the

whole world would struggle to solve the problem exhaustively in our lifetimes. In these

instances, approximate solutions might be a reasonable trade-off if the solution found

is near-optimal, and the computation time and resources are acceptable. Heuristic

approaches offer this trade-off as a practical method for solving real-world problems,

where the near-optimal solution may be enough. In a real-world optimization model,

not all parameters are known or are recorded correctly and are usually approximated.

Therefore, even if the exact optimization method is used, it is still likely to find a non-

optimal solution while requiring more compute time and resources.

Metaheuristics, or generic heuristics, are optimisation algorithms that offer more

generalisation than heuristic algorithms and are not problem limited. The generic

nature allows the same algorithm to be applied to a wide variety of problems. However,

the no-free-lunch theorem [1] suggests that no single algorithm would be the best for

all possible problems; thus, multiple different metaheuristics exist. The ability to apply

metaheuristics to various problems, or rather, solving the same problem with multiple

metaheuristics, has been an inspiration of many Metaheuristic Optimisation

Frameworks (MOFs) in the last two decades. MOFs are standardised frameworks that

utilises metaheuristic methods for optimisation. This thesis implements such MOF for

real-world optimisation problems.

2

1.1. Motivation

As the world gets more interconnected, companies and governments try to optimise

their processes and lower the cost. The ever-growing data availability and increase in

computing power is the perfect storm for global, intercontinental optimisation.

Unexpected events such as the Covid-19 outbreak have made many companies re-

plan their businesses, especially their supply chains. A more resilient or faster-

adapting business is an edge against competition and competition drives more

efficient use of limited resources.

Gaining an edge against competition involves robust and scalable optimisation

frameworks. These platforms are required to not only be able to produce useful

solutions in a reasonable time frame but also have all the essential supporting tools to

implement the results to generate the most impact. Existing MOFs are mostly made

for academia for research and new algorithms development. They are limited in

applicability to real-world and expect some expert knowledge in metaheuristics.

1.2. Thesis Contributions

The work presented in chapters 3, 4, 5 and 6 discuss the proposed methods of

efficient metaheuristics optimization platform aimed for complex real-world

optimization problems. These methods have been accepted and published in two

journal papers and two conference papers. The original contributions of this thesis can

be summarized as follows:

1. OptPlatform: high-performance metaheuristic optimization platform aimed at

solving a class of complex real-world optimisation problems. The developed

software system incorporates necessary toolset for efficient optimization problem

implementation and analysis. It comprises of three metaheuristic algorithms – Ant

Colony Optimization (ACO), Evolutionary Strategy (ES) and Imperialist

Competitive Algorithm (ICA). The developed OptPlatform can derive optimal

solutions quicker than comparable existing metaheuristic optimization frameworks

and introduces tools that are not available on other platforms, such as automatic

algorithm selection and tuning. The superior efficiency of the OptPlatform has

been considered for several optimisation problems, both benchmark and real-life

models. The OptPlatform architecture is inspired based on previously published

work in [2].

3

2. Imperialist Competitive Algorithm with Independence and Constrained

Assimilation (ICAwICA): an improved metaheuristic algorithm based on classical

Imperialist Competitive Algorithm (ICA). The proposed algorithm introduces the

concept of colony independence – a free will to choose between classic ICA

assimilation to the empire’s imperialist or any other imperialist in the population.

Furthermore, a constrained assimilation process is introduced that replaces

classical ICA assimilation and revolution operators. ICAwICA shows definite

improvement over classical ICA and outperforms most of the competition across a

variety of optimization problems. The proposed algorithm was published in [3].

3. A study of parallel Ant Colony Optimization: an in-depth analysis of parallel Ant

Colony Optimization architecture scaling across numerous hardware solutions –

high-end workstation CPU, Intel Xeon Phi architecture and General Processing

Units (GPUs). Although previous research indicates that GPUs are the most

suitable for benchmark routing problems, this study empirically demonstrates how

the scaling dynamics do not translate to a real-world optimisation problem due to

memory access patterns necessary. The contradictory findings with the supporting

dataset were published in [4].

4. eTuner and eTunerAlgo hyperparameter tuning algorithms: two simple

generate-evaluate algorithms are developed for automated metaheuristic and their

hyperparameter selection. A benchmark dataset, containing three metaheuristics

and their performance for set of hyperparameters (18,760 configurations), is

generated and published in [5]. Later, this benchmark dataset is used to evaluate

and compare the different methods with the current state-of-the-art. Results show

that the presented approach is more suited for low tuning budgets than the

competition. Methods used and the results are published in [6].

4

1.3. List of publications

The following lists the work that has been publicised as part of this research:

• I. Dzalbs and T. Kalganova, “Simple generate-evaluate strategy for tight-budget

parameter tuning problems,” in IEEE Symposium Series on Computational

Intelligence (SSCI), 2020, doi 10.1109/SSCI47803.2020.9308348.

• I. Dzalbs, T. Kalganova and I. Dear, “Imperialist Competitive Algorithm with

Independence and Constrained Assimilation,” in 2020 International Congress on

Human-Computer Interaction, Optimization and Robotic Applications (HORA),

2020, pp. 1–11, doi: 10.1109/HORA49412.2020.9152916.

• I. Dzalbs and T. Kalganova, “Accelerating supply chains with Ant Colony

Optimization across a range of hardware solutions,” Comput. Ind. Eng., vol. 147,

p. 106610, Sep. 2020, doi: 10.1016/j.cie.2020.106610.

• I. Dzalbs and T. Kalganova, “Forecasting Price Movements in Betting Exchanges

Using Cartesian Genetic Programming and ANN,” Big Data Res., vol. 14, pp. 112–

120, 2018, doi: 10.1016/j.bdr.2018.10.001.

1.4. Thesis contents

This thesis consists of seven chapters. The first chapter familiarises the reader with

a brief background, motivation, and significance of this research.

Chapter 2 covers an in-depth literature review of optimization methods, with a focus

on metaheuristics. Furthermore, Chapter 2 also presents and analyzes various

existing metaheuristic optimization frameworks in the literature. Finally, Chapter 2

introduces multiple optimization problems that will be solved throughout the further

chapters. Figure 1 summarises the connections between different optimization

problems across chapters.

5

Figure 1. Connections between the thesis chapters.

Chapter 3 introduces the optimization platform – OptPlatform. It starts by defining

the target users and software requirements as well as justifies the technologies used.

Furthermore, Chapter 3 describes the software architecture and gives user workflow

examples. The three implemented metaheuristic algorithms are described in detail,

including supporting modules such as Search Visualizer, Transition Opt and Global

Grid. Search visualizer module creates a graphical report of the statistical metrics

about the search, while Transition Opt module creates a step by step transition plan

of implementing the resulting optimized solution. Global Grid animates the

geographical paths in the map for more straightforward analysis and solution

understanding. A real-world Transcom scheduling and routing problem is solved as a

case study, to demonstrate the platform and its modules. Finally, the developed

6

OptPlatform is compared to existing metaheuristic optimization frameworks using the

Multiple Knapsack Problem.

In Chapter 4, a new algorithm based on the Imperialist Competitive Algorithm is

developed – Imperialist Competitive Algorithm with Independence and Constrained

Assimilation (ICAwICA). ICAwICA improves on existing implementations by replacing

traditional assimilation and revolution operators with constrained assimilation.

Furthermore, independence operator is used for local search. The algorithm's

performance is evaluated on two benchmark problems – Multi Depot Vehicle Routing

Problem (MDVRP) and Multiple Knapsack Problem (MKP). The experimental results

demonstrate the superiority over classic ICA and universality of the local search.

Chapter 5 presents a detailed exploration of parallel Ant Colony Optimization (ACO)

algorithm and its scaling dynamics on various hardware types. Academic literature

indicates that Graphical Processing Units (GPUs) can speed-up the search process

for benchmark problems by 172 times. Chapter 5 investigates if the same ACO

architectures can be applied for a real-world supply chain optimization problem.

Results indicate that although suitable for simple benchmark problems, GPU ACO

architectures cannot scale for more complex supply chain problems.

In Chapter 6, two simple generate-evaluate hyperparameter tuners are introduced

for automated metaheuristic algorithm selection and evaluation. A benchmark dataset

is generated based on all three metaheuristics – ACO, ICA, and Evolutionary Strategy

(ES) and used to evaluate the performance. Two optimization problems were used for

the underlying optimization – Aerial Surveying problem (a real-world problem adapted

as a benchmark) and MKP. Results demonstrate the superiority over existing

parameter tuning algorithms.

Finally, Chapter 7 concludes the thesis and lists potential future research directions.

7

2. LITERATURE REVIEW

Although the main research area is in Metaheuristic Optimization Frameworks

(MOFs), the first section of this paragraph introduces the background of optimisation

methods and introduces the reader to various metaheuristics found in the literature. In

particular, section 2.1 highlights an overview of the current state of the art optimization

methods with a focus on metaheuristics (section 2.1.2). Section 2.2 reviews and

analyzes the current state of the art MOFs, where research gaps are established

(section 2.2.1). The chapter continues by introducing various optimization problems

that are solved throughout the consecutive paragraphs in section 2.3. Finally, the

chapter is summarized in section 2.4.

2.1. Optimization methods

Optimization is the process of finding the best solution among a pool of possible

solutions. Optimization is applied to a wide range of engineering, economic and even

social systems to minimize cost or maximize profits. There is no single optimization

technique that can be efficiently applied across all optimization problems. Hence

several optimization methods have been developed for different kinds of optimization

problems [7]. The optimum pursuing behaviour is also referred to as mathematical

programming in operations research. Operations research is a branch of mathematics

focusing on applying scientific methods and techniques for the decision-making

process. The research area's roots can be traced down to World War II, where the

British military faced the problem of allocating constrained resources, such as

aeroplanes, radars, and submarines to different destinations. At the time, there were

no systematic methods for resource allocation, and hence a group of mathematicians

was called for assistance. The mathematical methods developed were instrumental in

the winning of the Air Battle by Britain. Techniques, such as linear programming, were

created as part of military research operations and therefore came to be known as

operations research [7].

The optimization problem needs to be modelled first before it can be solved. To

develop the mathematical model of an optimization problem, the following components

should be fully characterized [8]:

8

1) The set of optimization variables 𝑥1, 𝑥2, . . . , 𝑥𝑛.

2) The objective function 𝑓(𝑥) that applies to the optimization variables and

returns a real value. The objective function can be either minimized or

maximized.

3) A set of constraints that should hold on the optimization variables.

4) The domain sets 𝐷1, 𝐷2, … , 𝐷𝑛 as the domains of the optimization variables

𝑥1, 𝑥2, . . . , 𝑥𝑛.

However, some optimization problems can be described without constraints;

similarly, optimization variables’ domain set can be the entire space [7].

The optimal or near-optimal solution can then be found by either exact (or

deterministic, classical) or approximate (or random, modern) methods, hierarchy

shown in Figure 2. Exact methods offer a mathematically provable optimal solution;

however, because large proportion of real-world optimization problems are NP-hard,

deterministic methods are not always suitable due to computation expense. NP-hard

refers to problems that are impossible to predict whether an optimal solution can be

computed in less than exponential time [9]. Furthermore, it is not always possible to

define an exact technique for every optimization problem. In contrast, approximate

methods offer short-time solving of NP-hard problems while finding optimal or near-

optimal solutions [10]. Due to the shortcomings of the exact techniques and ever-

increasing complexity of problems being solved, approximate methods have gained

traction in the last few decades. These methods cannot guarantee the optimality of the

final solution; however, offer a near-optimal solution with reasonable computation time.

9

Figure 2. Taxonomy of optimization methods

2.1.1. Heuristics

Even though a theoretically provable optimal solution is desirable, it is not always

possible or practical. Due to runtime complexity, most exact methods are not

applicable to high dimensionality real-world problems. In these instances,

approximate solutions might be a reasonable trade-off if the solution found is near-

optimal, and the computation time and resources are acceptable. Heuristic

approaches offer this trade-off as a practical method for solving real-world problems,

where the near-optimal solution may be enough. In a real-world optimization model,

not all parameters are known or are recorded correctly and are usually approximated.

Therefore, even if the exact optimization method is used, it is still likely to find a non-

optimal solution while requiring more compute time and resources. Furthermore, in

real-time systems, a good enough solution is necessary in a matter of seconds.

Heuristic approaches offer practical implementation of hard to solve optimization

problems based on knowledge gained from experience. Examples of this method

include using a rule of thumb, an educated guess, an intuitive judgement, or common

sense [10]. Constructive heuristics are usually the fastest to implement, and they

10

construct a solution from scratch by iteratively adding solution sub-components till a

complete solution is obtained. Determining constructive heuristic is easy in most

combinatorial problems; however, the resulting solution quality strongly depends on

the level of the expertise used to design the implementation.

In the last three decades, the interest of more generic heuristics has been growing

exponentially [11]. These general heuristics, called metaheuristics, combine the basic

heuristics with a higher-level search framework for efficient exploration of the search

space and are entirely independent of the application domain.

2.1.2. Metaheuristics

In the 70ies, a new paradigm was introduced that promised to combine basic

heuristic methods at a higher level to explore search space more effectively – called

modern heuristics [12]. These days more commonly referred to as metaheuristics.

Metaheuristics include simulated annealing, evolutionary strategy, tabu search, ant

colony optimization and many more. The specific implementation of metaheuristics

varies from one another; however, they all implement two operators – diversification

and intensification [13]. Diversification refers to the exploration of the search space,

while intensification – exploitation of the knowledge about the search space. All

metaheuristics need to balance the exploration and exploitation – too high

intensification and search may get stuck into local optima (sub-optimal solution); too

high diversification and global optima may never be found or convergence takes too

long [13]. Fundamental characteristics of metaheuristics are summarized based on

[13] and [14]:

• Metaheuristics are usually approximate and non-deterministic.

• Metaheuristics are not problem-specific.

• Metaheuristics explore the search space to find “good enough” solutions.

• Metaheuristics may incorporate domain-specific knowledge in the form of

heuristics.

• Metaheuristics can be described by an abstraction level.

• Metaheuristics may use various strategies to avoid premature convergence.

• Metaheuristics usually allow highly parallel implementation.

• Metaheuristics may use search experience as a form of memory to guide the

search.

11

There are many ways that metaheuristics can be classified, and some of the

groupings are subjective and depend on the author’s viewpoint. Some of the

algorithms may fit into one or two taxonomies and sometimes overlap [10].

For example, some metaheuristic algorithms can be classified as nature-inspired,

like ant colony optimization and genetic algorithm, while others as non-nature inspired

– tabu search and iterated local search. Work in [15] performed extensive taxonomy

on nature and bio-inspired metaheuristics by comparing 300 papers over different

years. Furthermore, authors in [15] also categorized nature-inspired algorithms as

follows: Breeding-based Evolution, Swarm Intelligence, Physics and Chemistry based,

Social Human Behaviour algorithms, plant-based and other miscellaneous.

Furthermore, metaheuristic algorithms can also be divided into trajectory-based

(sometimes referred to as single-point) and population-based search [16]. This division

specifies how many solutions are created at any given iteration. Trajectory-based

methods include most local search approaches such as iterated local search, tabu

search and simulated annealing, where the current best solution is replaced by a new

one. On the other hand, population-based algorithms maintain many solutions

(population) in the search space (in evolutionary methods), or they perform search

processes that alter the distribution probability over the search space (ant colony

optimization for example) [12]. Usually, population-based algorithms start with a

random population that is enhanced throughout the search. Trajectory-based

algorithms tend to favour exploitation, while population-based are more exploration

oriented. Often additional methods are implemented for local search when using

population-based algorithms and a global search for trajectory-based.

Authors in [14] used taxonomy of metaphor-based and non-metaphor based

metaheuristics. The former are algorithms that simulate natural phenomena, human

behaviour or mathematics, the latter, metaheuristics that do not use any form of

simulation for determining their search strategy.

Metaheuristics can also be with or without memory. Majority of population-based

algorithms are with-memory as they use previous search history to guide and assist

the search processes. In contrary, memory-less algorithms only use current state to

determine the next action, i.e. follow the Markov process.

Although numerous metaheuristic algorithms exist in the literature [17],[14],[11], the

following section aims to provide an overview of the most common metaheuristic

algorithms, with the focus on Ant Colony Optimization, Evolutionary Strategy and

12

Imperialist Competitive Algorithm, all three used as optimization algorithms in section

3.6.

2.1.2.1. Trajectory-based

The main characteristics of trajectory-based metaheuristics are that they start from

a single solution and iteratively move away from it, describing a search space

trajectory. These techniques aim to improve local search in a more intelligent way.

Trajectory methods consist of the Simulated Annealing (SA) method, the Greedy

Randomized Adaptive Search Procedure (GRASP) method, the tabu search, and

many local search variations.

• Simulated Annealing (SA)

The algorithm is inspired by the annealing process of metal or glass, where the

material's temperature is slowly reduced till low energy state is reached. First proposed

by [18] and then adopted by [19] for optimization problems. The fundamental idea is

to use temperature as an explicit strategy to guide the search. The algorithm starts by

generating a random or heuristic-based initial solution. In the beginning, when the

temperature is still high, the algorithm prefers exploration and accepts good and bad

solutions. But as the temperature is reduced, the requirements for improving existing

solution becomes stricter and stricter. The strengths of SA is the ability to avoid getting

stuck in local minima which is directly linked to the cooling schedule [20]. The cooling

schedule determines the functional form of the change in the temperature needed in

SA. SA has been applied to multiple discrete and continuous optimization problems

[21], though rarely on combinatorial problems as a standalone algorithm [17]. Most

commonly, SA is used as a form of local search in hybridization with other algorithms.

Variations of SA such as Microcanonic Annealing [22], Threshold accepting method

[23] and Noising method [24] aim to improve the generic form of SA.

• Greedy Randomized Adaptive Search Procedure (GRASP)

The GRASP algorithm [25],[26] is a multi-start or iterative metaheuristic with two

phases in each iteration: solution construction and local search. The construction

phase uses a Greedy Randomized Adaptive algorithm to build a solution. If the

solution is not valid, a repair procedure is applied. The solution is then improved by

local search. The improved solution is the final result of the search. In the greedy part

13

of the heuristic, a solution is built iteratively by adding partial solutions. It means that

list of partial solution entries needs to be created beforehand. In each iteration the list

is sorted based on a greedy function. Each of the partial solutions are selected

randomly from the set of restricted candidates (RCL) [17]. A comprehensive summary

of common approaches of GRASP and problem domains are provided by the survey

in [27] and a more recent survey of [28]. Most commonly GRASP is combined with

other local search techniques, such as simulated annealing, variable neighbourhood

search and iterated local search [29], [30].

• Tabu Search (TS)

The Tabu search (TS) first introduced in 1986 by [31]. Its main characteristic is

based on the use of mechanisms inspired by human memory [17]. Improvement on

the Local Search which can avoid local minima by use of memory methods in three

schemes: 1) use of flexible memory structures to search and evaluate information

based on previous moves; 2) control the actions to be applied on the time of search

process; 3) use of memory functions of long term and short term memory to diversify

and intensify the search [32]. The main idea of the TS is the restrictions of already

visited areas of the search – tabu list. The length of the tabu list controls the memory

dynamics of the search process. Small list leads to concentration on small areas –

intensification, while long list encourages exploration of larger regions – diversification.

A detailed description of the TS with its variations can be found in [33]. Although

attempts to apply tabu search for continuous problems exist [34], most of the TS

research focuses on discrete combinatorial optimization [33].

• Iterated Local Search (ILS)

The Iterative local search (ILS) [35] iteratively applies the local search algorithm to

the candidate solutions. Each move is only performed if the new solution is better than

the current one based on the acceptance criterion. The algorithm selects the starting

point in the search space either randomly or based on domain-knowledge. The

acceptance criterion alongside perturbation mechanism allows altering the dynamics

of search intensification and diversification [17]. Because the algorithm lacks the ability

to detect or escape local minima, it is generally not used in its standard form. Variations

of iterative local search are described in [36], which typically implements more

sophisticated termination criteria.

14

2.1.2.2. Swarm Intelligence

The Swarm Intelligence (SI) is a population-based paradigm for solving optimization

problems and has been inspired by the collective behaviour of a group of insect

colonies or other animal societies. Many such organisations can be observed in

nature, such as ant foraging behaviour, fish schooling, animal herding, bird flocking,

and many more. Although there is usually no central entity dictating how the swarm

individuals should behave, the interaction between the agent and the environment

often leads to the emergence of global and self-organizing behaviour [17]. For

example, individual ants do not exhibit sophisticated behaviour; however, many ants

in an ant colony working together can achieve more complex tasks [37]. In recent

times, swarm intelligence has seen growth in popularity for solving NP-hard problems

where finding global optima becomes increasingly hard in real-time scenarios [38].

Most common problems include the travelling salesman problem (TSP), feature

selection, robot swarm learning, clustering and scheduling [39].

Although other emerging SI algorithms based on the behaviour of glow-worms,

lions, wolfs, bats and monkeys exist [38], [40], this section focuses on the most

common SI algorithms. Ant Colony Optimization (ACO) is discussed separately in

section 2.1.2.4.

• Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) was first introduced in 1995 by [41] as global

optimization algorithm; however, the concepts of autonomous agents (particles) can

be traced back to 1983 [38], where the idea of many individuals working together for

creating a fuzzy graphical object was used in early animation [42]. PSO is inspired by

the flocking behaviour of birds or fish schooling. The technique is often compared to

that of an evolutionary optimization, where the population is randomly sampled and

evaluated to determine the best solution, and the process is repeated over many

iterations. However, unlike evolutionary algorithms, each particle also has a velocity

and memory assigned to it [14]. Individuals in the population – particles, move around

in a search space. During movement, each particle adjusts their position according to

that of their own experience or the whole population's experience. Therefore, PSO

combines the local search (through self-experience) with global search methods

15

(through neighbouring experience), balancing the intensification and diversification of

the search [43].

A detailed description of PSO types and a survey of its hybrids are available in [44].

Because PSO is population-based, meaning, each of the agents can build solution

independently at any given iteration, many parallel implementations have been

explored. For example, [45] summarizes all parallel PSO implementation, including

the usage of graphical processing units (GPUs). The PSO is popular across a range

of research areas; thus, many surveys have been carried out. For instance, authors in

[46] summarize recent advances of PSO in the solar energy domain. Furthermore,

[47] carried out a PSO survey in filter-based classification and [48] focused on PSO

for feature selection.

• Artificial Bee Colony (ABC)

There are multiple bee-inspired optimization algorithms like Bee Colony

Optimization (BCO) [49], Virtual Bee Algorithm (VBA) [50], beehive algorithm [51],

Discrete Bee Dance Algorithm (DBCA) [52] and other variations. This section focuses

on the most popular honeybee inspired algorithm – Artificial Bee Colony (ABC) [53].

Just like honeybee colonies in nature, the ABC algorithm divides all the bees into three

categories based on their purpose in the colony. A colony is composed of Employed

Bees (EB), Onlooker Bees (OB) and Scout Bees (SB). The employed bees are

responsible for searching for new food sources and providing feedback to the bees in

the hive (onlooker bees). Based on the provided information by waggle dance,

onlooker bees start exploiting these food sources. As the nectar amount of a food

source increase, the probability of visiting the source by onlooker bees rises. Once the

food source is exhausted (due to intensification), scout bee is responsible for finding

a new food source. The bees iteratively look for new food sources while improving

solution till termination criteria is reached [54].

A comprehensive summary of the latest advances in ABC algorithms is provided in

[54]. ABC algorithm has been applied to many NP-hard problems, both in benchmarks

such as travelling salesman problem (TSP) and real-life applications like image

segmentation [55], well placement [56], solving sudoku, job shop scheduling and many

others [57]. Furthermore, a survey in [58] summarizes ABC's many application areas

in a wide range of engineering domains.

16

• Cuckoo Search Algorithm (CSA)

Cuckoo search algorithm (CSA), created by [59] in 2009, is a novel population-

based algorithm that mimics the obligate brood parasitism behaviour of a bird called

the cuckoo. Some cuckoos have involved a way that allows their parasitic females to

imitate the eggs of few chosen host species. This phenomenon reduces the probability

of the host birds detecting the parasitic egg. If the host birds discover alien egg, they

either dispose of the intruder egg or abandon their nest altogether [60]. The CSA

combines this obligate brood parasitic behaviour with Lévy flight, a type of random

walk with step-lengths calculated according to heavy-tailed probability distribution [61].

The CS algorithm is based on three simplified and idealized rules: a) each cuckoo lays

one egg at a time and dumps it in a randomly chosen nest; b) the best nests with high

quality of eggs (solutions) will carry over to the next generations; c) the number of

available host nests is fixed, and a host can discover an alien egg with probability

following a normal distribution. In the last case, the host bird can either throw away the

egg or abandon it to build a new nest in different locations [59].

Even though CSA is one of the newer SI family algorithms, numerous

implementations and applications are found in the literature [62]. For instance, [63]

explores standard CSA modifications, commonly used parameter settings and

different hybrids in detail. Furthermore, [61] investigates the broad area of real-world

CSA applications, such as medical applications, clustering and data mining, image

processing, energy and economic load dispatch problems, to name a few.

• Firefly Algorithm (FA)

Firefly Algorithm (FA) proposed by [64] in 2008 is another recent metaheuristic

optimization algorithm. It is based on how fireflies attract mating partners or warn

potential predators by their flashing light, produced by the biochemical process –

bioluminescence. In the FA implementation, all fireflies are assumed to be unisexual

so that any individual firefly is attracted to all other fireflies. The attractiveness is

proportional to the brightness of the flash, and they both decrease as distance

increases. Thus, for any two flashing fireflies, the less bright individual will move

towards the brighter one. If the brightness of both fireflies is the same, the fireflies will

move randomly. The landscape of the objective function determines the brightness of

a firefly.

17

Compared to other metaheuristics, FA can solve both continuous [65] and discrete

[66] optimization problems. Multiple variations of the algorithms where explored and

compared in the study conducted in [67]. Application areas include various

optimization, classification and wide range of engineering applications, all summarized

in [68] and [69]. Recently, FA has been explored as viable option in combination with

neural networks [70].

2.1.2.3. Evolutionary algorithms

Evolutionary Computation (EC) is a category of population-based metaheuristics

inspired by the Darwinian principles of evolution of living beings. The beginnings of

applying Darwinian principles to solve computing problems can be traced back to

sixties, where three different implementations of the idea developed separately for

many years [71]. In the USA Fogel introduced the evolutionary programming [72],

while Holland referred to his as genetic algorithm [72]. Furthermore, in Europe,

Rechenberg [73] and Schwefel [74] called theirs – Evolution strategies. Only in the

early nineties, these different representatives of one technology were labelled under

one name – evolutionary computing. After a while, concepts of genetic programming

[75] were also introduced [71].

These days there are numerous variations and adaptions of the classical

evolutionary algorithms (surveys in [76], [77] and [76] describe them in detail);

however, they all follow principles of natural selection (survival of the fittest individual)

in a population. Evolutionary algorithms can therefore be structured based on [78] as

follows: a) one or more individuals are competing for constrained resources; b)

population changes dynamically due to the cycle of death and birth of individuals; c) a

notion of fitness, which reflects the ability of individual to survive and reproduce; d)

offspring closely resembles their parents, but are not identical.

The following section briefly describes the most common evolutionary algorithms.

Evolution Strategy algorithm (ES) and Imperialist Competitive Algorithm (ICA) are

discussed separately in section 2.1.2.5 and section 2.1.2.6, respectively.

• Genetic Algorithm (GA)

The Genetic Algorithm (GA) is one of the most well-known and most applied

algorithms out of evolutionary computation family. Developed by John Holland in the

early 1970s [72], it has gained interest in various research communities. The genetic

18

algorithm starts with a set of solutions called population. Each solution is represented

by a chromosome, that encodes a set of genes. The simplistic implementation of GA

is very generic and is usually adapted based on the problem solved: representation of

the chromosome, selection strategy, crossover and mutation operators.

Chromosomes are evaluated based on their fitness – ability to survive and reproduce,

over iterative process called generations. In each generation, individuals are selected

for reproduction by exchanging some of their parts – crossover. After crossover,

individuals are subjected to a mutation operator, based on mutation rate. Mutation

operator introduces some randomness in the search. This process continues till a

termination criterion is met.

There are multiple GA selection schemes, for instance, roulette-wheel selection,

tournament selection, ranking selection and others. A comprehensive comparison of

the selection methods used is described in [79]. Furthermore, the crossover is another

important GA operator with many different implementations, single point and n-point

crossover being the most common. However, more sophisticated implementations like

uniform, three-parent, arithmetic, partially mapped crossovers have also been

proposed. Both [80] and [81] provides detailed descriptions of different crossover

methods. There are also multiple mutation strategies; the GA survey in [82] describes

them in detail.

The popularity of GA has resulted in numerous variants of the algorithm and its

application to a wide range of optimization problems. Overviews of recent advances

tend to be surveyed in specific research fields, such as genetic algorithms applied in

operation management [83], supply chain management [84], lens design [85],

composite structure design [86], scheduling [87] amongst others. Moreover, parallel

implementations of GA were explored in [88].

• Coevolutionary Algorithms (CoEAs)

Coevolution is the mechanism by which two or more species evolve in tandem by

interacting with each other. Examples of coevolutionary processes include hosts and

parasites, predators and prey, insects pollinating the flower and other cooperative or

symbiotic relationships. Biological coevolution occurs in many natural processes and

has been the inspiration for Coevolutionary Algorithms (CoEAs). Compared to single

population evolutionary algorithms, CoEA consists of two or more populations of

species that continuously interact and co-evolve simultaneously [17]. Although there

19

are many variants of CoEAs, the most common categories are competitive coevolution

and cooperative coevolution. As names suggest, in competitive coevolution

populations compete during optimization and individuals are rewarded at the expense

of those they interact with. Conversely, in cooperative coevolution, individuals are

rewarded when working with other individuals and punished when they perform poorly

together [89].

In the cooperative coevolution, the different species live together for a mutual

benefit – symbiosis. The first cooperative coevolution algorithm was proposed in 1994

by Potter and De Jong [90]. The idea was to divide a complex problem into sub-

problems, where each of the sub-problems is assigned to a population. These

populations evolve independently and only interact to obtain fitness. Cooperative

CoEAs are often integrated into other metaheuristics like cooperative PSO ([91],[92])

and cooperate ABC [93].

Competitive coevolution, however, simulates competing forces in nature like

predators and prey, where prey evolve to defend themselves better, while predators

develop better attack strategies. It was first introduced by Hillis [94] for sorting

networks, where one population was assigned a set of sorting networks (the hosts),

and another population was assigned the test cases (the parasites). Fitness was given

to each of the sorting network based on the ability to solve the test case. Furthermore,

each test case was assigned fitness based on the number of times the networks

incorrectly sorted it. This process allowed both populations to evolve simultaneously

while interacting only through fitness function evaluations [89]. Moreover, competitive

coevolutionary models are well suited for models where it is difficult or impossible to

formulate an objective fitness function explicitly [16].

Summaries of recent advances of coevolutionary algorithms are discussed in [95].

Furthermore, CoEAs applications to multi-objective optimization problems reviewed in

[89].

• Genetic Programming (GP)

Genetic Programming (GP) was first introduced in by Koza [75]. Although based on

a similar strategy as a GA, the GP offers a more high-level automated approach for

creating a computer program based on the goal of the problem [17]. GP still uses the

same genetic operators as selection, crossover and mutation; however, the solutions

are based on the decision rules (variables or terminals) and arithmetic operations –

20

functions and not fixed-length string like in a GA. GP solutions are usually expressed

as a tree, where the tree leaves are the terminals, and the arithmetic operators are the

internal nodes. Like in a GA, the initial population of computer programs (individuals)

is usually generated randomly and evolved over many generations to improve the

fitness value. In every generation, each program is evaluated based on the fitness

function, which determined the program's ability to survive and reproduce [96].

There are many types of GP algorithms, and authors in [97] classified them in eight

major types: Tree-based GP, Stack-based GP, Linear GP, Extended Compact GP and

Grammatical Evolution GP. Applications of GPs range from biological and genome

structure optimization [98] to image processing [99], scheduling [96], forecasting [100]

and many more. Summary of all types of GPs and their application areas is structured

in a recent survey in [97].

2.1.2.4. Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) takes inspiration from ant cooperative behaviour of

finding a food source. The origins of the phenomena can be traced to the double bridge

experiment by Deneubourg et al. in [101]. A controlled experimented of ants’

movement was conducted by constructing two variable-sized bridges between the

food source and the ant nest. At the start, ants moved randomly in all experiments but

eventually converged to the single shortest path. In experiments where both bridges

were equal size, ants converged towards using one of the two bridges. When the

experiment was repeated multiple times, each of the two bridges was used an equal

number of times. It was concluded, that because ants lay down pheromone, their

behaviour is influenced by the pheromone's concentration on the chosen path, i.e.

higher concentration – more likely ant will choose the given path. Furthermore,

naturally, pheromone scent evaporates on the longer, no more used paths, giving a

higher probability of re-deposit of pheromone on shorter, more appealing paths [102].

This behaviour is modelled in Figure 3, where initially ants move randomly, before

converging to the single shortest path at the final stage of the search.

This ant behaviour was a base for the development of Ant System (AS) algorithm

by Dorigo [103]. The initial work in [104] looked at three different AS – ant-density, ant-

quantity and ant-cycle, and solved small TSP instances. A pheromone is deposited on

the graph's edges in the ant-density approach if ant moves between two connected

nodes. Furthermore, in ant-quantity, the pheromone is deposited over the distance of

21

the edge between two connected nodes. Finally, ant-cycle only deposited pheromone

when ant completes the full tour. It was concluded that ant-cycle approach offers the

best results [104].

Figure 3. Ant behaviour (inspired by [105])

Although AS could solve small TSP instances, it was not competitive to other state-

of-the-art algorithms at the time for solving TSP. One of the first improvements was

the introduction of elitist ant in the Elitist Ant System [104], where the best performing

ant (elitist) in the iteration has more pheromone weight compared to other ants. Since

then, many other improvements for the original AS have been explored [102], with Ant

Colony System (ACS) being one of the most adopted by researchers.

The ACS was first introduced by Dorigo et al. [106] for effectively solving TSP

instances as an improvement to the original AS. The improvements were as follows:

first, the ant state transition rule included a direct way of controlling the balance

exploitation and exploration, by the introduction of the pseudo-random-proportion rule.

Second, the global pheromone updating rule is only applied on the edges of the best

performing tour in the iteration. Finally, a local pheromone update rule is applied while

ants are construction solutions. Therefore, as in AS, ants build their solution based on

the greedy state-transition rule and local pheromone. Once all ants have completed

their tours, the pheromone is updated again based on the global pheromone update

rule. Furthermore, just like in AS, ants are guided by heuristic information (preference

for shorter routes) and pheromone information (routes with more pheromone are more

22

desirable). The pheromone update rules are designed such that pheromone is

deposited on the trails that should be visited by future ants [106].

Ant Colony Optimization (ACO) has a long history for solving TSP instances [105];

however, it can also be applied to other NP-hard optimization problems, like vehicle

routing [107], various types of assignment problems [108], scheduling [109], subset

selection [110] and even machine learning [111] and bioinformatics [112]. This

metaheuristic algorithm's versatility and its recent application areas are detailed in

both [113] and [105]. Moreover, the parallel implementations of ant colony optimization

surveyed in [114].

2.1.2.5. Evolution Strategy (ES)

Just like genetic algorithm, Evolution Strategies (ES) was inspired by the principles

of natural evolution. Initially created as a technique for automated experimental design

optimization by Rechengerb [73] and later adopted by Schwefel [74]. The first

implementation of ES was a simple algorithm that used only mutation and selection,

called two membered ES. In the two membered ES, each parent produces a single

child by means of mutation. Furthermore, the selection process determines the fittest

individual to become the parent of the next generation. This scheme is also referred

to as (1+1)-ES as it contains a population of one parent individual and one descendant

[115]. The basic flow diagram is shown in Figure 4.

Figure 4. Evolution cycle of Evolution Strategy

The (1+1)-ES got extended to a population-based ES, referred to as multimember

ES. In multimember ES, multiple parents (µ > 1) can participate in the creation of the

offspring individual, therefore denoted as (µ+1)-ES. As there are multiple parents,

additional recombination operators are possible – two of the µ parents are selected

23

randomly to create the child. The selection undergoes “survival of the fittest” evolution,

by eliminating the worst offspring while keeping population size constant. The rise of

parallel computers was the motivation of the extensions of (µ+1)-ES, such as (µ+λ)-

ES and (µ,λ)-ES [115]. In the (µ+λ)-ES, multiple parents µ are able to produce multiple

children λ by means of mutation and recombination, worst performing individuals are

discarded to maintain the population size constant. Moreover, in the (µ,λ)-ES the

parents µ, that are creating the next generation λ, are discarded unconditionally of

their fitness values [116].

In contrast to GA, where most of the research focuses on the recombination and

crossover operators, ES mutation is the dominating operator for the search [117]. The

mutation is usually implemented as a normal (Gaussian) distribution with a step size

σ. The most straightforward implementation keeps mutation step constant, while more

sophisticated implementations adopt σ dynamically. Dynamic mutation step

approaches include 1/5 success rule [73], the σ-self-adaption [73], the meta-ES [118]

and others [119].

Variations of ES are commonly applied to machine learning [120], constrained

optimization [121], finance [122], among others. Detailed theoretical investigation of

evolution strategy algorithm search performance is available in [123] and [119].

2.1.2.6. Imperialist Competitive Algorithm (ICA)

Imperialism is a policy to extend an empires or nation's rule or jurisdiction over other

nations or establish and retain colonies and dependencies. In modern colonialism,

more developed countries are attempting to dominate less developed countries to

extend their power by political-military alterations. The drive for influence motivates

imperialist competition, which consequently creates a race of political, military and

economic development amongst the imperialist countries. Once the country has been

colonized, its empire attempts to spread its cultural values, by building schools,

libraries, railroads and other public infrastructure. An excellent example of such

influence on culture is British colonization of India, where English was taught

extensively in schools and gradually became India's second language [124].

24

Figure 5. Convergence representation of ICA [124]. With stars representing empires and
circles – their colonies.

Imperialist Competitive Algorithm (ICA) is a subset of metaheuristic algorithms

modelled based on geopolitical behaviour. It can also be classified as a social

Darwinism that follows evolutionary computing principles. Atashpaz-Gargari and

Lucas first proposed the ICA in [125] for solving continuous cost functions and since

has generated interest amongst many researchers. Like many other population

algorithms, ICA starts its search by generating a random initial population where each

individual of the population represents a country. Countries within ICA can be thought

of as chromosomes in a genetic algorithm. The initial population is separated into

multiple groups (so-called empires). Strongest countries become imperialist within the

empire, while weakest - their colonies. Each colony within empire moves closer to

their imperialist in the form of assimilation operator. In order to provide diversity

amongst countries, a revolution operator (mutation in GA) is implemented. If a colony

becomes stronger than its imperialist at any point, then the two countries are swapped,

such that imperialist is the strongest country in the empire. The search follows an

iterative process. After each iteration, the weakest colony within the most powerless

empire is assigned to one of the stronger empires – following the imperialist

competition process. An empire is eliminated once it contains no more colonies. The

search usually continues until the termination criteria are met. Ideally, the search is

terminated once all empires are eliminated and only one, the best, empire remaining.

This convergence process is shown in Figure 5, where a star represents an empire

25

and circles – their colonies. As the search process progresses, the number of empires

shrink, while the remaining empires gain power. At the final stage, only a single empire

remains.

Although initial ICA was created for continuous problems, researchers have

extended the algorithm to solve various NP-hard discrete problems. According to the

survey performed in [124], ICA is most commonly applied for industrial engineering

problems, scheduling in particular. Though most recently applications such as

prediction [126][127], clustering [128] and encryption [129] have emerged,

demonstrating the versatility and wide application areas of the algorithm.

2.2. Metaheuristic Optimization Frameworks (MOFs)

One of the characteristics of metaheuristics described in the previous section –

problem non-specificity, has inspired many metaheuristic optimization frameworks

(MOFs) in the last two decades. These frameworks aim to provide simplified and

standardised techniques for solving a wide range of optimization problems using pre-

implemented metaheuristics. Furthermore, the user can take advantage of already

implemented and debugged high-performance algorithms with little additional effort.

All the supporting tools, like monitoring, reporting, parallel and distributed computing,

are already integrated, and therefore the user can focus the efforts only on the problem

on hand.

However, generic optimizers are argued as impossible [130]. Similarly, The No Free

Lunch (NFL) theorem [1] states that no single strategy or algorithm always performs

better than another for all possible problems. And the ideology behind MOFs follows

this logic – there is no single metaheuristic algorithm that will solve all problems to an

optimal solution; therefore a wide range of metaheuristics are available to be matched

to the specific problem. The saying “Jack of all trades, master of none, oftentimes

better than a master of one” is applicable when referred to MOFs. By definition,

metaheuristics cannot guarantee optimal solutions but offer close to optimal solutions

for wide range of problems. Furthermore, MOFs facilitate re-use and comparisons of

metaheuristics, therefore allowing user to focus only on the algorithms that perform

the best for the problem.

Numerous frameworks for problem-solving using metaheuristics are found in the

literature with similar features and usage scenarios. Authors in [131] identified three

26

main MOF usage scenarios: industrial application, research and teaching. In the

industrial application scenario, the MOFs reduce the implementation burden. For

practitioners, optimal search performance and the ease of use are the most valuable

features. Furthermore, when the frameworks are used for research on metaheuristics

and optimization problems, the monitoring and analysis tools are preferred. Finally,

graphical representations of the solutions, reports and the ease of use are likely valued

for MOFs used in teaching. Moreover, a recent study in [132] focused on comparing

and analysing different MOFs, especially multi-agent structures and the hybridization

of metaheuristics.

Both [131] and [132] list numerous MOFs found in the literature, the sixteen of the

most relevant MOFs are summarized in Table 1, sorted by the year of inception.

Furthermore, technology such as programming language and platform used is also

listed. The table also shows the available metaheuristic algorithms and the benchmark

discrete combinatorial problems solved. If the framework has had a software update

or any research contributions in the past year, it is labelled as active.

The next section briefly introduces each of the MOF, while overall comparisons and

limitations are discussed in section 2.2.1.

• MALLBA

The MALLBA project was started in 2000 by [133] and is based on the concept of

skeletons in C++. The aim is to create a library of skeletons for combinatorial

optimization (including exact, heuristic and hybrid methods) for easy and efficient

parallelism. It is targeted to sequential computers and LAN or WAN clusters. The

skeletons refer to classes that are required to be implemented for any given algorithm.

Although the framework offers multiple population-based algorithms like GA, ES, ACO

and PSO, it lacks documentation and examples. The latest version of this framework1

was presented in [134] and since has been abandoned.

1 MALLBA project website at http://neo.lcc.uma.es/mallba/easy-mallba/

http://neo.lcc.uma.es/mallba/easy-mallba/

27

Table 1. Summary of the most popular metaheuristic optimization frameworks sorted by
creation year.

Framework Year Active Technology Algorithms

Discrete
combinatorial

examples
MALLBA

[133]
2002 No C++ GA, SA, ES, ACO, PSO -

ParadisEO
[135]

2004 No C++ PSO, GA, EA TSP, DVRP

HeuristicLab
[136]

2004 Yes C#
ES, GA, PSO, TS, VNS,

GP
JSS, KP, QAP,

TSP, VRP
BEAGLE

[137]
2006 No C++ GA, ES, GP KP, TSP

JCLEC
[138]

2008 No Java GA, GP KP, TSP

JCOP
[139]

2009 No Java GA, SA
JSS, KP, SAT,

TSP
OptFrame

[140]
2010 Yes C++ EA, SA, TS, LS VRP, TSP, KP

EvA2
[141]

2010 No Java ES, GA, DE, PSO, SA KP

jMetal
[142]

2011 Yes Java GA, PSO, ES, DE mQAP

Opt4j
[143]

2011 No Java EA, DE, PSO, SA KP, TSP

ECJ
[144]

2012 Yes Java
ES, SA, AS, ACO, PSO,

DE, GP
KP, SAT, TSP

HyperSpark
[145]

2015 No
Scala,

Apache Spark
GA, SA, TS, ACO PFSP

JAMES
[146]

2016 No Java TS, LS KP, TSP

EvoloPy
[147]

2016 Yes Python
MFO, MVO, BAT, FA,

CSA, GWO, WOA, PSO
-

jMetalSP
[148]

2018 Yes
Java,

Apache Spark
GA, PSO, ES, DE mQAP

jMetalPy
[149]

2019 Yes
Python,

Apache Spark
GA, PSO, ES, DE mQAP

OptPlatform
(this work)

2020 Yes C#, C++ ES, ICA, ACO
MKP, MDVRP,

TSP, ASP

• ParadisEO

ParadisEO (Parallel and Distributed Evolving Objects) is a white-box C++

framework that offers parallel and distributed metaheuristics. Created in 2004 by [135]

and has evolved to support multiple modules: EO provides a set of classes for the

development of population-based metaheuristics (ES, GA, PSO); MO provides tools

for trajectory-based metaheuristics; MOEO provides tools for implementation of

evolutionary techniques for multi-objective optimization; PEO provides classes for

parallel and distributed applications and finally MO-GPU for GPU implementation

[150]. The GPU implementation is one of this framework's unique features; however,

the authors concluded that the application areas for speedup might be limited. The

28

platform2 is well documented, however, appears to be no longer supported, with the

last update in 2012.

• HeuristicLab

HeuristicLab is another MOF that has been in constant development since 2002.

Heuristic and Evolutionary Algorithm Laboratory (HEAL) first presented the framework

in [136]. The long development has allowed HeuristicLab to be one of the leading and

most feature-rich frameworks available today. It integrates population-based

metaheuristics like GA, ES and PSO and multiple trajectory-based algorithms like LS,

TS, VNS. Although initially developed for heuristic optimization, the software has

evolved and integrated aspects of machine learning using genetic programming and

classification techniques. Amongst many other features, HeuristicLab offers well

established GUI, SDK and extension called HeuristicLab Grid for support of grid

computing. Both [151] and [152] offer comprehensive reviews of the framework's

features and limitations. One of the main limitations is the use of C#, therefore

supported natively only on Windows. Furthermore, authors in [152] state the lack of

documentation as another drawback on such a feature-rich framework, although many

problem examples and tutorials exist. Latest version 3.3.163 was released in 2019 and

therefore is still in active development.

• Beagle

Beagle is an open-source Evolutionary Computing (EC) framework proposed in

2006 [137]. The framework explicitly focuses on traditional EC, i.e. Genetic Algorithm

(GA), Evolutionary Strategy (ES) and Genetic Programming (GP). It also introduces

six basic configurable principles for creating new EC algorithms: representation of

chromosome, fitness, operators, evolutionary model, parameter management and

configurable output. Furthermore, the framework uses C++ implementation with XML

structures for data management. The project directory4 suggests that no advances or

updates have been introduced since 2017. Examples include various GP benchmarks

and Knapsack (KP) and Travelling Salesman Problems (TSP). The framework

appears to be strictly limited to EC development and does not support non-EC

metaheuristics.

2 ParadisEO project website at http://paradiseo.gforge.inria.fr/index.php
3 HeuristicLab project website at https://dev.heuristiclab.com/
4 Beagle project directory available at https://github.com/chgagne/beagle

http://paradiseo.gforge.inria.fr/index.php
https://dev.heuristiclab.com/
https://github.com/chgagne/beagle

29

• JCLEC

In [137], the authors presented a Java-based framework for JCLEC (Java Class

Library for Evolutionary Computing). The software is split into three modules: JCLEC

core that specifies the data types and functionality; JCLEC experiments runner that is

responsible for the algorithm execution and finally the GenLab – a graphical interface

for rapid prototyping. Just like many other frameworks, it explicitly focuses on

evolutionary algorithms. A case study of the Knapsack problem was performed in

[138]; however, no comparisons or results were presented. Currently, the framework's

development has been abandoned, with the last version of JCLEC 4.0.05 released in

2014.

• JCOP

JCOP (Java Combinatorial Optimization Platform) was developed as part of Ondřej

Skalička's master thesis in 2009 [139]. One of the project's main aims was to develop

a platform in which any of the implemented problems can be solved by any of the

available algorithms without the need for customization per algorithm. Author of JCOP

implies that the platform was not designed to be fast but rather a tool to choose the

best amongst multiple algorithms. The framework implements basic GA and SA.

Furthermore, the platform is well documented and includes numerous combinatorial

problem examples. Project GitHub page6 suggests that the project has not been

updated since 2014.

• OptFrame

OptFrame [140] aims to provide a simple C++ interface for standard components of

trajectory and population-based metaheuristics. Authors claim to deliver a smarter

version of traditional methods to consider problem-specific characteristics. The

software is structured based on two container classes – Solution and Evolution.

Evaluator class allows the implementation of both single and multi-objective functions.

Furthermore, the framework also supports parallelism with shared and distributed

memory, and basic GA and TS algorithms. The project is well documented with

multiple examples, and the latest OptFrame v4.07 integrates C++20 features.

5 JCLEC project website at http://jclec.sourceforge.net/index.php
6 JCOP project website at http://jcop.sourceforge.net/en/index.html
7 OptFrame project website at https://github.com/optframe/optframe

http://jclec.sourceforge.net/index.php
http://jcop.sourceforge.net/en/index.html
https://github.com/optframe/optframe

30

• EvA2

EvA2 (an Evolutionary Algorithms framework, revised version 2) is a heuristic

optimization framework with an emphasis on EA implemented in Java. It is an

improved version of previous JavaEvA optimization toolbox. EvA2 is being used as a

teaching aid in lecture tutorials and is aimed to two groups of users: non-expert user

that wants to apply EA for solving application problem and scientist that want to use

the platform for algorithm development or performance comparisons. EvA2

implements various population-based algorithms, like ES, GA, DE, PSO and

trajectory-based techniques like SA. Furthermore, the framework also offers a simple

GUI and integration with MATLAB. Based on the project page8, the latest version of

2.2 was published in 2015 and is no longer in active development.

• jMetal

jMetal is another framework with a long history of development, dating back to the

introduction in 2010 by [142]. jMetal stands for Metaheuristic Algorithms in Java and

follows object-oriented principles. Although some implementations of single-objective

optimization problems exist, the framework mostly focuses on multi-objective

problems. Based on evolutionary algorithms, it follows the structure of an Algorithm

that solves a Problem using one or more SolutionSet and a list of Operator objects.

Both SolutionSet and Solution classes allow the representation population and

individuals in population-based metaheuristics. The framework incorporates multiple

multi-objective tools, such as Pareto convergence quality indicators, statistical tests,

and GUI due to the multi-objective problem focus. Just like the majority of other

frameworks, jMetal implements GA, ES and PSO. The platform offers detailed

instructions and documentation9. More recently jMetal migrated to Maven and version

6 is in active development.

• Opt4j

Another evolutionary computing framework based on Java was presented in [143],

called Opt4j. It uses modular in design and uses the genotype-phenotype principles

for the solution encoding. Compared to other similar frameworks, Opt4j explicitly

implements functions that translate genotype into phenotype and vice versa. It also

8 EvA2 project website at http://www.ra.cs.uni-tuebingen.de/software/EvA2/
9 jMetal project website at https://jmetal.github.io/jMetal/

http://www.ra.cs.uni-tuebingen.de/software/EvA2/
https://jmetal.github.io/jMetal/

31

implements a graphical interface where users can view and analyse the performed

tests and perform optimization without code. Unfortunately, the framework10 has not

been updated since 2015 and is limited to EA class algorithms.

• ECJ

ECJ is a research Evolutionary Computing system written in Java [144]. The ECJ

framework is one of the most established metaheuristic frameworks with extensive

documentation. It is developed by dozens of research contributors and has covered

many features such as GUI with charting and support for parallelism and distributed

computing. The GUI allows loading and executing algorithms based on checkpoint

and parameter files, editing parameters and charting statistics. Although metaheuristic

algorithms like AS and PSO are supported, the framework mainly focused on EC and

GP for continuous optimization problems. Work in [153] summarizes the recent

advances of the ECJ and concludes that support for combinatorial optimization is

lacking. Furthermore, out of the 23 available benchmark examples, only three – KP,

SAT, TSP – are for discrete combinatorial optimization. The framework is in active

development, and the latest version (27th iteration) is available on their website11.

• HyperSpark

HyperSpark is a cloud computing oriented metaheuristic framework first introduced

in 2015 as part of Master thesis [145]. The framework focuses on the area of Big Data

processing with the use of Scala and Apache Spark. It supports population-based

algorithms like GA and ACO, as well as a trajectory-based search like SA and TS.

More recently, the authors refined HyperSpark to solve the Permutation Flow-Shop

Problem (PFSP) [154]. The work in [154] shows that HyperSpark is struggling to scale

across the cluster due to the overheads.

Furthermore, when compared to other MOFs, HyperSpark lacks in the ability to

produce good quality solutions. Moreover, the framework is implemented in a less-

used programming language (Scala), leading to slower adoption. Similarly, the

software lacks documentation and working examples. The framework was last

updated in 2016 and is available on the project GitHub page12.

10 Opt4j project website at http://opt4j.sourceforge.net/index.html
11 ECJ project website at https://cs.gmu.edu/~eclab/projects/ecj/
12 HyperSpark project website at https://github.com/deib-polimi/hyperspark

http://opt4j.sourceforge.net/index.html
https://cs.gmu.edu/~eclab/projects/ecj/
https://github.com/deib-polimi/hyperspark

32

• JAMES

JAMES (Java Metaheuristic Search)13 was developed to solve discrete optimization

problems using local search algorithms [155]. The software emphasises the

separation of a problem specification and the search algorithm. Although limited to

forms of iterative local search, the platform is well documented and has multiple

examples. Unfortunately, since the introduction in 2016, the development on the

framework has stopped.

• EvoloPy

EvoloPy is a relatively new nature-inspired optimization framework in Python [147].

It focusses on the implementation of the most recent metaheuristic algorithms such as

Grey Wolf Optimizer (GWO), Multi-Verse Optimizer (MVO), Moth-flame Optimization

(MFO), Whale Optimization Algorithm (WOA), Bat algorithm (BAT), Cuckoo Search

Algorithm (CSA) and Firefly algorithm (FA). As it is a new framework, documentation

is limited, and currently, only 23 benchmarks based on math equation optimization are

made available. However, activity on the project GitHub14 suggest that the project is

in active development.

• jMetalSP

jMetalSP [148] is another extension of jMetal that offers parallel computing features

based on apache Spark. Mainly aimed for dynamic multi-objective Big Data

optimization problems. The case study of 100 city TSP showed the advantages and

limitations of the system. More recently, authors in [156] adopted the framework to

integrate various streaming services for dynamic multi-objective optimization. The

framework15 is still in active development.

• jMetalPy

Just recently, a Python implementation of jMetal was proposed in [149]. The

framework implements most features from jMetal while leveraging Python’s

visualization and statistical tools for easier analysis. The framework16 is very recent

and still in active development.

13 JAMES project website at http://www.jamesframework.org/
14 EvoloPy project website at https://github.com/7ossam81/EvoloPy
15 jMetalSP project website at https://github.com/jMetal/jMetalSP
16 jMetalPy project website at https://github.com/jMetal/jMetalPy

http://www.jamesframework.org/
https://github.com/7ossam81/EvoloPy
https://github.com/jMetal/jMetalSP
https://github.com/jMetal/jMetalPy

33

2.2.1. MOF trends and limitations

Analysing the MOFs discussed above leads to conclude that generally these

frameworks are created for academic research – in which algorithm dynamics and

comparisons are performed on benchmark datasets, but rarely adopted by

practitioners for solving real-world problems. This leads most (9 out of 16 MOFs

discussed here) platforms to be abandoned after the research project is complete. On

the other hand, the platforms that have gained traction in research community like

jMetal have multiple adaptions to other languages and architectures – jMetalSP and

jMetalPy. The active development in jMetal’s github indicate multiple researchers

participating in the project. Moreover, some MOFs like HeuristicLab has a long-

established history with good documentation and support forums that leads to ever-

increasing adoption in the research community. However, only a few references of

real-world usage by practitioners can be found in the literature.

The lack of supporting tools for deploying the final solution in real-life, limits the

practical applications. For example, automatic parameter tuning is beneficial for users

that are not specialists in metaheuristic algorithms; however, none of the above

frameworks supports automatic algorithm selection or tuning. Furthermore, only a

couple of MOFs, like HeuristicLab and jMetal, support the results' statistical analysis.

Another consideration for adaption is the ease of use, and only a handful of MOFs

(ECJ, EvA2, HeuristicLab, JCLEC and Opt4j) support graphical interface. Similarly,

solution visualisation is limited and supported only on a few platforms. None of them

implements tools to guide the user on implementing the proposed solution most

effectively.

Moreover, as multi-core CPU architectures become mainstream, these computing

resources must be utilised efficiently. Optimisation algorithms are compute-intense,

and thus, any MOF should implement parallelism to speed-up the search process.

Unfortunately, not all existing frameworks even support basic parallelism, and even

fewer do it effectively. The efficiency of parallelism implementation varies and may

sometimes can be lost at the cost of higher-level generalisation. However, at least in

three MOFs, namely, HyperSpark, jMetalSP and jMetalPy, distributed computing is in

the framework's core. Other frameworks, such as HeuristicLab and ParadiseEO,

implement parallel computing as separate modules that are generally loosely coupled

with the base framework and may not be as efficient. Furthermore, BEAGLE and

34

JAMES frameworks only support parallelism partially. It is worth noting that recently

MOFs based on Apache Spark has become popular, with three out of five MOFs

reviewed using the technology in the past five years.

Examining the supported metaheuristic algorithms by each of the frameworks,

indicate the overwhelming majority is only supporting solution representation that is

well suited for Evolutionary Computing algorithms and their variations – GA, ES, DE

and GP. This encoding is also suitable for algorithms like PSO and trajectory-based

searches like AS, SA, LS and TS. Only a few platforms, namely MALLABA, ECJ and

EvoloPy, are generic enough to implement metaheuristics that do not follow

Evolutionary Computing (EC-style) encoding, like the ACO. In particular, EvoloPy is

the only MOF that covers a comprehensive and diverse set of metaheuristic

algorithms. Even when platform supports multiple metaheuristic algorithms, not all of

them can be applied successfully. For example, some frameworks, namely

HeuristicLab, limit the usage of metaheuristic algorithm depending on the solution

encoding. This is the main limitation of most existing metaheuristic frameworks, as

they are not generic enough to accommodate a wide range of metaheuristic algorithms

for any problem.

Table 2 summarizes the available features for all sixteen platforms. From this table,

only a few features are covered by all evaluated frameworks. None of them covers all

of them – which presents a research opportunity in this area – for example, none of

the analysed MOFs supports automatic algorithm selection and parameter tuning.

Automatic algorithm selection and tuning accelerates the development process and

reduces the expert knowledge required to use metaheuristics effectively.

35

Table 2. MOF supported features.

Framework

Characteristics

Statistical
analysis

Graphical
interface

Automatic
algorithm and

parameter
selection Parallelism

Support
for non-

EC
solution
encoding

MALLBA No No No Yes Yes

ParadisEO No No No Yes No

HeuristicLab Yes Yes No Yes No

BEAGLE No No No Yes, limited No

JCLEC No No No No No

JCOP No No No No No

OptFrame No Yes No Yes No

EvA2 No No No Yes No

jMetal Yes Yes No Yes No

Opt4j No No No Yes No

ECJ No Yes No Yes Yes

HyperSpark No No No Yes Yes

JAMES No No No Yes, limited No

EvoloPy No Yes No No Yes

jMetalSP Yes Yes No Yes No

jMetalPy Yes Yes No Yes No

OptPlatform
(this work)

Yes Yes Yes Yes Yes

2.3. Optimization Problems

This section introduces the optimization problems solved throughout the thesis. It

is divided by benchmark problems – problems available in academic literature and

more theoretical nature. The second part is real-world optimisation problems –

optimisation models based on physical geographical locations and distribution

networks.

2.3.1. Benchmark problems

2.3.1.1. Multiple Knapsack Problem (MKP)

The Multidimensional Knapsack Problem (MKP) is a well-known constrained

optimisation problem, that has multiple real-world engineering applications, such as

cutting stock [157], distributed computing resource allocation [158], cargo loading

[159], satellite management [160], project selection [161] and capital budgeting [162].

The MKP is an extension of the 0-1 knapsack problem, where items have weight

36

vectors in multiple dimensions. The goal is to maximise the total profit by putting items

into knapsacks while satisfying weight capacity constraints across all dimensions.

MKP is formulated in (1) [163].

max: ∑(𝑝𝑟𝑜𝑓𝑖𝑡𝑖 × 𝑠𝑒𝑙𝑖)

𝑛

𝑖=1

subject to: ∑(𝑤𝑒𝑖𝑔ℎ𝑡𝑗𝑖 × 𝑠𝑒𝑙𝑖) ≤ 𝑊𝑗

𝑛

𝑖=1

 ∀𝑗 ∈ {1, … , 𝑚} (1)

 𝑠𝑒𝑙𝑖 ∈ {0,1} ∀𝑖 ∈ {1, … , 𝑛}

where every item 𝑖 in the list of 𝑛 items (𝑦 = 1 … 𝑛) has a profit 𝑝𝑟𝑜𝑓𝑖𝑡𝑖 and weight

𝑤𝑒𝑖𝑔ℎ𝑡𝑗𝑖 associated with an 𝑚-dimensional weight vector (𝑗 = 1 … 𝑚), that tries to

satisfy a weight capacity constraint 𝑊𝑗 in that dimension. Variable 𝑠𝑒𝑙𝑖 indicates

whether the item is selected and included in the solution. Capacities, weights and

profits are assumed to be positive.

Being an NP-hard problem with practical applications, many different approaches

have been proposed for solving MKP, which can be divided into two groups – exact,

deterministic, single-solution based algorithms and stochastic population/meta-

heuristic based algorithms, with this thesis focusing on the latter approach.

2.3.1.2. Multi Depot Vehicle Routing (MDVRP)

The Vehicle Routing Problem (VRP), first described in 1959 [164], is an extension

of the Traveling Salesman Problem (TSP) [165]. Compared to TSP, where an agent

has only to visit all cities once, VRP introduces demands for each customer or stop.

Demands need to be satisfied by routing vehicles such that they start and finish their

paths at the same depot. Many real-life problems can be modelled as a form of VRP,

for example, picking up and delivering mail, packages or any other goods or services.

Due to the wide range of practical applications, many variations of VRP have since

been explored. For instance, capacitated VRP introduces capacity constraints on the

vehicles; VRP with Time Windows (VRPTW) requires delivery to happen within a

specific time window; VRP with maximum vehicle distance constraints (DVRP) and

many others [166].

A common VRP derivation is the Multi-Depot Vehicle Routing Problem (MDVRP).

MDVRP is an extension of classical VRP by the introduction of multiple depots.

Vehicles in the MDVRP are subject to capacity constraints (how much cargo can be

37

carried on board) and the route's maximum duration before the vehicle needs to return

to the original depot. The MDVRP resembles a lot of everyday transportation, logistics

and distribution problems and, therefore, has been a common research area [167].

Furthermore, the MDVRP is also an NP-hard combinatorial optimisation problem; thus,

optimal solutions are hard to find [168]. Although exact algorithms for solving these

problems exist, they are limited to small problem instances [169]. A wide range of

metaheuristics and population-based algorithms have been used [167] to solve larger

instances of the MDVRP.

The main aim of the MDVRP is to route a fleet of vehicles from multiple depots to

multiple customers requiring goods or services. Figure 6 shows an example of a

simple MDVRP solution with ten customers (as circles) and two depots (as

rectangles). Although multi-objective approaches exist for solving MDVRP [170], the

most common goal is to minimise the total cost.

Figure 6. Example of an MDVRP with ten customers (as circles) and two depots (A and B as
rectangles)

The MDVRP can be formalised in a mathematical model based on [171] and [172].

Given a direct graph 𝐺 = (𝐴, B) where 𝐴 = 𝐻 ∪ 𝐷 is a set of customers 𝐻 =

 {𝐻1, 𝐻2, … , 𝐻𝑁} and depots 𝐼 = {𝐼 1, 𝐼 2, … , 𝐼 𝑀} and 𝐵 is a set of edges between all the

nodes in the graph. In a fully connected graph, every edge 𝐵𝑖𝑗 between nodes 𝐴𝑖 and

𝐴𝑗 (𝑖 ≠ 𝑗) has associated positive cost 𝑐𝑜𝑠𝑡𝑖𝑗 - distance or time, for example. Each

customer has a positive demand 𝑑𝑖 (𝑖 ∈ H). Furthermore, there is also a fleet of 𝐾

identical vehicles available at each depot 𝐼 𝑘 𝜖 𝐼 (that are not allowed to exceed

38

capacity 𝑄𝑚𝑎𝑥 and duration 𝑅𝑚𝑎𝑥). The goal is to minimise the total cost across all

vehicles (2).

𝑚𝑖𝑛 ∑ ∑ (𝑐𝑜𝑠𝑡𝑖𝑗 × 𝑡𝑟𝑎𝑣𝑖𝑗)

𝑗 ∈ 𝐴𝑖 ∈ 𝐴

(2)

where 𝑡𝑟𝑎𝑣𝑖𝑗 equals to 1 if 𝑖 comes after 𝑗 in the customer sequence on any route

of all vehicles and 0 otherwise. The problem is subject to the following constraints a)

each vehicle route starts and ends at the same depot; b) the total demand on each

route does not exceed vehicle capacity 𝑄𝑚𝑎𝑥; c) the maximum route duration 𝑅𝑚𝑎𝑥 is

not exceeded; e) each customer is served by exactly one vehicle.

Since the first formulation in [164], many exact and heuristic algorithms have been

explored for vehicle routing problems. Most notably, [173] proposed a heuristic

approach based on the cost savings algorithm that has since been used in some form

in many other algorithms [174]. Another popular heuristics approach was introduced

in [175] that allowed problems divided into sub-problems based on vehicles and then

solved separately, combining results into a single solution afterwards. Although

heuristic approaches such as integer programming [176] and variable neighbourhood

search [177] have the potential to find optimal solutions every time, they generally do

not scale well with the problem size and are limited to smaller MDVRP instances or

are very time-consuming [169].

Meta-heuristic algorithms offer a stochastic approach for solving highly complex

combinatorial problems with near-optimal or optimal solutions. They have been a

growing interest in many areas [11], and MDVRP is no exception. A recent survey of

metaheuristic algorithms [167] suggests that two of the most common algorithms used

for solving MDVRP are Ant Colony Optimization (ACO) and Genetic Algorithm (GA).

However, other algorithms like Particle Swarm Optimization (PSO) [178] and Ant Lion

Optimization (ALO) [179] have also been successfully applied. GA is a nature-inspired

algorithm that is based on the natural selection process. A comprehensive summary

of methods and approaches used for solving MDVRP with GA is presented in [166].

ACO is another popular approach for solving VRP class problems as it mimics ants

travelling and searching for food while creating paths for other ants to follow. Many

ACO implementations for MDVRP exist in the literature; the most recent work includes

[180] who applied the ACO algorithm for fresh seafood delivery routing problems.

39

2.3.2. Real-world problems

2.3.2.1. Aerial Surveying Problem (ASP)

Aerial surveys also referred to as drone surveys, Unmanned Aerial System (UAS)

surveys or Unmanned Aerial Vehicle (UAV) surveys are becoming popular for

surveying from the air. This inspection method offers a faster, safer and more cost-

effective way to scan infrastructure objects, such as bridges, roads, wind turbines and

rooftops. Furthermore, inspection from the air allows access to remote locations for

forestry and agriculture plantations, and fast response for disaster management, such

as oil spills, forest fires and earthquakes.

A recent survey in [181] looked at more than 200 articles related to aerial drones

used for civil (non-military) applications. In particular, the survey focused on research

that formulates an optimisation problem within the UAV domain. One of the most

significant areas covered by previous research is UAV routing for a set of locations –

these include applications such as surveillance [182] and deliveries [183], in the

context of agriculture, infrastructure, transport and disaster management [181]. These

aerial surveying problems can be modelled based on simpler routing problems such

as the Travelling Salesman Problem or Vehicle Routing Problem.

This section takes a look at one such Aerial Surveying Problem (ASP), that can be

modelled as multiple depots, mixed vehicle routing problem with multiple trips, where

each of the vehicles can start and return to a different depot, or use a depot for

refuelling/charging. A simplified example is provided in Figure 7, where each of the

rectangles (A-C) represent a base station (depot), each of the circles (1-9) pose a

task/location that needs to be surveyed (visited) once. Furthermore, the routes are

colour coded for each of the aircraft.

40

Figure 7. Graphical representation of simplified Aerial Surveying Problem. Each rectangle (A,
B, C) represent a base station and each of the circles (1-9) pose a task/location that needs to
be visited. In this example, there are four different routes, route A-1-8-4-A in black, route A-7-
B-3-A in blue, route A-C-5-9-6 in red and finally route A-2-C in yellow.

Path in red in Figure 7 shows an aircraft that fly from base A to C, refuels and

proceeds to visit tasks 5, 9 and 6 before returning to base C. The ASP's goal is to

survey each of the tasks with the available fleet of aircraft while occurring the least

amount of cost. The cost of an aircraft 𝑎 is a function of the flight time and hourly rate.

The total flight time for a path 𝑖 between two edges is calculated as total distance over

the cruise speed of the aircraft 𝑎. Therefore, the total cost is a sum of all path flown

𝑃𝐹 for each aircraft 𝑎, calculated in (2).

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ ∑(
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑐𝑟𝑢𝑖𝑠𝑒𝑆𝑝𝑒𝑒𝑑𝑎
× 𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐻𝑜𝑢𝑟𝑎)

𝑃𝐹

𝑖=1

𝑇𝐴

𝑎=1

(3)

where 𝑇𝐴 is the total number of aircraft used.

Like the vehicle routing problem, each aircraft is subject to the maximum range

before it needs to refuel/recharge. Moreover, due to the aircraft's size or type, not all

base stations can safely support all aircraft types, so additional aircraft type constraints

are applied for each base station. The ASP dataset (made available in [184]) consists

of 11 base stations, 10 types of aircraft and 12 locations that need to be surveyed,

based on real-world locations and aircraft. This problem is an adopted version of a

real-world Intelligence Surveillance and Reconnaissance (ISR) problem as part of

Multi-Domain Operations (MDO) challenge [185].

41

2.3.2.2. Outbound supply chain problem

Supply chain optimisation has become an integral part of any global company with

a complex manufacturing and distribution network. For many companies, inefficient

distribution plan can make a significant difference to the bottom line. Modelling a

complete distribution network from the initial materials to the customer's delivery is

very computationally intensive. With increasing supply chain modelling complexity in

ever-changing global geo-political environment, fast adaptability is an edge. A

company can model the impact of currency exchange rate changes, import tax policy

reforms, oil price fluctuations and political events such as Brexit, Covid-19 before they

happen.

This section looks at a real-world dataset of an outbound logistics network is

provided by a global microchip producer. The company provided demand data for

9,216 orders that need to be routed via their outbound supply chain network of 15

warehouses, 11 origin ports and one destination port (see Figure 8). Warehouses are

limited to a specific set of products that they stock, furthermore, some warehouses are

dedicated for supporting only a particular set of customers. Moreover, warehouses are

limited by the number of orders that can be processed in a single day. A customer

making an order decides what sort of service level they require – DTD (Door to Door),

DTP (Door to Port) or CRF (Customer Referred Freight). In the case of CRF, the

customer arranges the freight and company only incur the warehouse cost. In most

instances, an order can be shipped via one of 9 couriers offering different rates for

different weight bands and service levels. Although most of the shipments are made

via air transport, some orders are shipped via ground – by trucks. The majority of

couriers offer discounted rates as the total shipping weight increases based on

different weight bands. However, a minimum charge for shipment still applies.

Furthermore, faster shipping tends to be more expensive, but offer better customer

satisfaction. Customer service level is out of the scope of this research.

42

Figure 8. Graphical representation of the outbound supply chain. Each warehouse i is
connected to one or many origin ports p. The shipping lane between origin port p and
destination port j is a combination of courier c, service level s, delivery time t and transportation
mode m.

Figure 8 shows a simplified example case of the supply chain model. Warehouses

𝑖1 and 𝑖2 can be supplied by either origin ports 𝑝1 or 𝑝2. In contrast, warehouse 𝑖3 can

only be supplied via origin port 𝑝3 and warehouse 𝑖15 can be only supplied by origin

port 𝑝11. In the example shipping lane 𝑝1𝑗1𝑐1𝑠1𝑡1𝑚1 is chosen between 𝑝1 and

destination port 𝑗1 with courier 𝑐1, service level 𝑠1, delivery time 𝑡1 and transportation

mode 𝑚1.

Dataset [186] is divided into seven tables, one table for all orders that need to be

assigned a route – OrderList table, and six additional files specifying the problem and

restrictions. For instance, the FreightRates table describes all available couriers, the

weight gaps for each lane and rates associated. The shipping lane refers to courier-

transportation mode-service level combination between two shipping ports. The

PlantPorts table describes the allowed links between the warehouses and shipping

ports in the real world. Furthermore, the ProductsPerPlant table lists all supported

warehouse-product combinations. The VmiCustomers contains all edge cases, where

the warehouse is only allowed to support specific customer, while any other non-listed

warehouse can supply any customer. Moreover, the WhCapacities lists warehouse

capacities measured in the number of orders per day and the WhCosts specifies the

43

cost associated in storing the products in a given warehouse measured in dollars per

unit.

The optimisation's main goal is to find a set of warehouses, shipping lanes, and

couriers to use for the most cost-effective supply chain. Therefore the fitness function

is derived from two incurred costs – warehouse cost 𝑊𝐶𝑘𝑖 and transportation cost

𝑇𝐶𝑘𝑝𝑗 in equation (4). The totalling cost is then calculated across all orders 𝑜 in the

dataset.

𝑚𝑖𝑛 ∑(𝑊𝐶𝑘𝑖 + 𝑇𝐶kpj)

𝑇𝑂

𝑘=1

 (4)

Where 𝑊𝐶𝑘𝑖 is warehouse cost for order k at warehouse 𝑖 and 𝑇𝐶𝑘𝑝𝑗 is

transportation cost for order 𝑘 between warehouse port 𝑝 and customer port 𝑗; the total

number of orders 𝑇𝑂.

𝑊𝐶𝑘𝑖 = 𝑔𝑘 × 𝑃𝑖 (5)

Where warehouse cost 𝑊𝐶𝑘𝑖 for order k at warehouse 𝑖 is calculated in (5), by the

number of units in order 𝑔𝑘 multiplied by the warehouse storage rate 𝑃𝑖 (WhCosts

table).

Furthermore, transportation cost 𝑇𝐶𝑘𝑝𝑗 for a given order k and chosen line between

origin port 𝑝 and destination port 𝑗 is calculated by the algorithm in Figure 9:

Transportation cost (𝑻𝑪𝒌𝒑𝒋)

1. if 𝑠𝑘 = 𝐶𝑅𝐹

2. 𝑇𝐶𝑘𝑝𝑗 = 0

3. else

4. if 𝑚 = 𝐺𝑅𝑂𝑈𝑁𝐷

5. 𝑇𝐶𝑘𝑝𝑗 =
𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒𝑝𝑗𝑐𝑠𝑡𝑚

∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚 𝑇𝑂
𝑘=1

× 𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚

6. else

7. 𝑇𝐶𝑘𝑝𝑗 = 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒𝑝𝑗𝑐𝑠𝑡𝑚 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚

8. if 𝑇𝐶𝑘𝑝𝑗 < 𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑝𝑗𝑐𝑠𝑡𝑚

9. 𝑇𝐶𝑘𝑝𝑗 = 𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑝𝑗𝑐𝑠𝑡𝑚

10. end if

11. end if

12. end if

Figure 9. Pseudocode for calculating order transportation cost

44

where 𝑠𝑘 is the service level for order 𝑘, 𝑝 – origin port, 𝑗 – destination port, 𝑐 –

courier, 𝑠 – service level, 𝑡 – delivery time, 𝑚 – transportation mode. Furthermore,

𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑝𝑗𝑐𝑠𝑡𝑚 is the minimum charge for given line 𝑝𝑗𝑐𝑠𝑡𝑚, 𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚 is the

weight in kilograms for order 𝑘, TO – total number of orders; 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒𝑝𝑗𝑐𝑠𝑡𝑚 is the

freight rate (dollars per kilogram) for given weight gap based on the total weight for the

line 𝑝𝑗𝑐𝑠𝑡𝑚 (FreightRates table).

The transportation cost logic in Figure 9 first checks what kind of service level the

order requires; if the service level 𝑠𝑘 is equal to CRF (Customer Referred Freight) –

transportation cost is 0. Furthermore, if order transportation mode 𝑚 is equal to

GROUND (order transported via truck), order transportation cost is proportional to the

weight consumed by the order (𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚) in respect of the total weight for given

line 𝑝𝑗𝑐𝑠𝑡𝑚 and the rate charged by a courier for full track 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒𝑝𝑗𝑐𝑠𝑡𝑚. In all

other cases, the transportation cost is calculated based on order weight 𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚

and the freight rate 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒𝑝𝑗𝑐𝑠𝑡𝑚. The freight rate is determined based on total

weight on any given line 𝑝𝑗𝑐𝑠𝑡𝑚 and the corresponding weight band in the freight rate

table. Furthermore, a minimum charge 𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑝𝑗𝑐𝑠𝑡𝑚 is applied in cases where the

air transportation cost is less than the minimum charge.

The problem being solved complies with the following constraints:

∑ 𝑜𝑘𝑖 ≤ 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑖

𝑇𝑂

𝑘=1

 (6)

where 𝑜𝑘𝑖 = 1 if order 𝑘 was shipped from warehouse 𝑖 and 0 otherwise. 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑖

is the order limit per day for warehouse 𝑖 (WhCapacities table).

∑ 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚

𝑇𝑂

𝑘=1

 ≤ max{𝑍𝑝𝑗𝑐𝑠𝑡𝑚} (7)

where 𝑤𝑘𝑝𝑗𝑐𝑠𝑡 is the weight in kilograms for order 𝑘 shipped from warehouse port 𝑝

to customer port 𝑗 via courier 𝑐 using service level 𝑠, delivery time 𝑡 and transportation

mode 𝑚. 𝑍𝑝𝑗𝑐𝑠𝑡𝑚 is the upper weight gap limit for line 𝑝𝑗𝑐𝑠𝑡𝑚 (FreightRates table).

𝑘𝑧 ∈ 𝑖𝑧 (8)

where product 𝑧 for order 𝑘 belongs to supported products at warehouse 𝑖

(ProductsPerPlant table). Warehouses can only support given customer in the

VmiCustomers table, while all other warehouses that are not in the table can supply

45

any customer. Moreover, the warehouse can only ship orders via supported origin port,

defined in PlantPorts table.

The outbound supply chain problem discussed above represents a real-world

model, where the products need to be routed from various warehouses to the

customers via different modes of transport. However, the problem only considers the

flow and distribution of goods and omits the logistics of scheduling and managing the

courier vehicle fleet. The Transcom scheduling and routing problem (discussed in the

next section) models even more complex supply chains. Not only are goods delivered

to their destinations, but vehicle availability, scheduling, and refiling are also

considered.

2.3.2.3. Transcom scheduling and routing problem

These days we rely on complicated global supply chains for everyday shopping

from the pasta imported from Italy and distributed across UK grocery stores; to the car

we drive, whose components were sourced across multiple countries and continents.

This section presents a cross-continent supply chain in the US air force called

Transcom. The supply chain is modelled based on the distribution of quotidian goods

– food, medicine, and other consumables – across multiple base stations located

around the world.

Transcom problem considers a complex logistics network that includes multiple

base stations that can both request and supply number of goods, usually on pallets.

The demand can be satisfied either directly by the organisation or by outsourcing it to

a third party – commercial partners. The cargo can either be supplied by a different

kind of aircraft or by ground via trucks – each with different speed and carrying

capacities. Furthermore, both aircraft and trucks require personal to be scheduled and

supporting personnel for loading and unloading cargo. This creates a multi-

dimensional optimisation problem, where both the best routes between the edges

need to be found, as well as the best route sequence for delivering the cargo. A

simplified example is given in Figure 10. A more realistic model with a numeric

examples are provided in the Appendix.

46

Figure 10. Simplified Transcom supply chain example.

There are two main objectives to optimize for in Transcom scheduling and routing

problem:

• Least time solution

Total time required to fly a path 𝑖 between two edges with given aircraft type 𝑎 is

calculated based on path distance and aircraft cruise speed. Furthermore, in cases

where aircraft 𝑎 has in-air refuel capability, additional time is added based on the

number of in-air refuels executed (𝑁𝑅).

𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒𝑖𝑎 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑐𝑟𝑢𝑖𝑠𝑒𝑆𝑝𝑒𝑒𝑑𝑎
+ 𝑁𝑅 ∗ 𝑖𝑛𝐴𝑖𝑟𝑅𝑒𝑓𝑢𝑒𝑙𝑇𝑖𝑚𝑒𝑎 (9)

In addition to a flight time, the cargo pallets of material need to be loaded and

offloaded of the plane or truck. This model assumes that each pallet takes 10 minutes

to be loaded and 10 minutes to be unloaded. Therefore, an aircraft with a capacity of

36 pallets takes 6 hours to be fully loaded and an additional 6 hours to be fully

offloaded. Furthermore, for aeroplanes that do not support in-air refuel, refuel time is

done on the ground and it takes a duration specified in the Aircraft data table. It is

assumed that all aeroplanes are fully fuelled at Time zero, partial refuels (fuelling up

half the tank) are not allowed in this model. Therefore, the total time for a solution is

the timespan required to satisfy all demand and land military aircraft back to military

bases.

47

• Lowest cost solution

Similarly, the lowest cost objective tries to minimize the total cost occurred while

satisfying the demand. Transcom problem consists of three transportation types of

transportation for supplying the goods, each with its cost calculation:

- Military Aircraft (MA)

Total cost for given aircraft type 𝑎 is calculated as a sum of all paths flown (𝑃𝐹)

and the total number of aircraft (𝑇𝐴) of such type used on path 𝑖.

𝐶𝑜𝑠𝑡(𝑀𝐴)𝑎 = ∑(𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒𝑖𝑎 × 𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐻𝑜𝑢𝑟𝑎 × 𝑇𝐴)

𝑃𝐹

𝑖=1

 (10)

- Commercial Aircraft (CA)

Total cost for given aircraft type 𝑎 is calculated as a sum of all paths flown (𝑃𝑁)

and the total number of pallets shipped through the path 𝑖.

𝐶𝑜𝑠𝑡(𝐶𝐴)𝑎 = ∑(𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑎𝑙𝑙𝑒𝑡𝑖 × 𝑛𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝑖)

𝑃𝑁

𝑖=1

 (11)

- Commercial truck (CT)

Total cost for commercial truck is calculated as a sum of all paths driven (𝑃𝑁) and

the total number of trucks used on the path 𝑖.

𝐶𝑜𝑠𝑡(𝐶𝑇) = ∑(𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑇𝑟𝑢𝑐𝑘𝑖 × 𝑛𝑇𝑟𝑢𝑐𝑘𝑠𝑖)

𝑃𝑁

𝑖=1

 (12)

Total cost for the solution is a sum of total military aircraft cost, total commercial

aircraft cost and total commercial truck cost. Expressed in the equation below, where

𝑁𝑀𝐴 is the total number of types of military aircraft, 𝑁𝐶𝐴 is the total number of types of

commercial aircraft.

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ 𝐶𝑜𝑠𝑡(𝑀𝐴)𝑎

 𝑁𝑀𝐴

𝑎=1

+ ∑ 𝐶𝑜𝑠𝑡(𝐶𝐴)𝑎

 𝑁𝐶𝐴

𝑎=1

+ 𝐶𝑜𝑠𝑡(𝐶𝑇)

(13)

The two above objectives are subject to the following constraints:

1. The total number of cargo pallets shipped 𝑛𝑃𝑎𝑙𝑙𝑒𝑡𝑠 on aircraft 𝑎 cannot exceed

the maximum carry capacity of the aircraft 𝑚𝑎𝑥𝑃𝑎𝑙𝑙𝑒𝑡𝑠.

𝑛𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝑎 ≤ 𝑚𝑎𝑥𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝑎 (14)

48

2. For any in-flight refuelling incapable aircraft 𝑎, aircraft can only fly to paths 𝑖 that

are in 𝑟𝑎𝑛𝑔𝑒 on one full fuel tank.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 ≤ 𝑟𝑎𝑛𝑔𝑒𝑎 (15)

3. Furthermore, no ground refuels are allowed at Humanitarian destinations. And

all military aeroplanes need to terminate their route at one of the military bases.

4. All commercial trucks 𝑡 also need to comply with maximum carry capacity

𝑚𝑎𝑥𝑃𝑎𝑙𝑙𝑒𝑡𝑠 of the truck.

𝑛𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝑡 ≤ 𝑚𝑎𝑥𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝑡 (16)

5. Moreover, one can only transfer as many pallets as available at

base/commercial partner location 𝑏 at any given time.

𝑝𝑎𝑙𝑙𝑒𝑡𝑠𝑆ℎ𝑖𝑝𝑝𝑒𝑑𝑏 ≤ 𝑝𝑎𝑙𝑙𝑒𝑡𝑠𝑏 (17)

6. Demand at destination 𝑑𝑒𝑠𝑡 can be supplied from multiple sources/routes;

however, the total quantity of pallets shipped to the destination must be equal

to 𝑑𝑒𝑚𝑎𝑛𝑑 once the search is terminated.

𝑝𝑎𝑙𝑙𝑒𝑡𝑠𝑑𝑒𝑠𝑡 = 𝑑𝑒𝑚𝑎𝑛𝑑𝑑𝑒𝑠𝑡 (18)

7. Total number of aircraft 𝑎(𝑑) departing from base 𝑏 must be less or equal to the

total number of available aircraft of such type in base/commercial partner

location 𝑏.

𝑎(𝑑)𝑏 ≤ ∑ 𝑎
𝑏
 (19)

In this model, there is no such constraint on the commercial trucks leaving any of

the bases. Furthermore, not all aircraft are supported on all bases; the dependencies

are defined in Aircraft Compatibility table. Also, deadhead17 links between commercial

partner locations (CPs) and military bases are allowed only in the direction from an

army base to CP using commercial aircraft. Aircraft flying to the humanitarian

destination must always carry onboard less or equal quantity of pallets than the

demand at said destination.

The Transcom problem must both, route the cargo from source to destination and

schedule the aircrafts such that they are positioned in the right locations before the

cargo is delivered to the base. Furthermore, as the base can be both the supplier and

the demand, some of the routes are re-used recursively, further increasing the model's

17 Deadhead - One leg of a move without a paying cargo load.

49

complexity. The Transcom problem is the most complex model implemented and

optimized in this thesis.

2.4. Summary

This chapter presented a general description of the most common metaheuristics

and metaheuristic optimization frameworks (MOFs). In particular, this chapter

focussed on Ant Colony Optimisation, Evolutionary Strategy and Imperialist

Competitive Algorithm. Next, two benchmark and three real-world problems were

introduced and formalised. Finally, sixteen MOFs were analysed and limitations of

each compared. The following section will briefly explain how this thesis addresses

the limitations of current MOFs.

Under a more fundamental level, most MOFs are limited to evolutionary computing

type of algorithms and their encodings, where a solution is built on top of an existing

solution; however, only few MOFs support algorithms building solutions from scratch

in the ACO algorithm. Thus, a more generic optimization platform called OptPlatform

is presented in Chapter 3. Furthermore, a new, improved algorithm based on ICA is

developed in Chapter 4 within the platform.

With the majority of computers supporting multi-core processing, parallelism is

another vital aspect of MOF development. As discussed, current MOFs are mainly

developed for academic research and for solving benchmark problems. The

parallelism dynamics of these benchmark problems does not necessarily apply to

more complex real-life problems. Thus, Chapter 5 is an in-depth investigation of ACO

scaling across different hardware types using the developed OptPlatform.

Another limitation discussed is the lack of supporting tools needed for these

frameworks to be effectively used outside academia. In particular, tools such as

automatic algorithm and hyperparameter selection are essential for adaption and the

ease of use. Chapter 6 proposes and analyses algorithms to solve this problem.

Furthermore, the solution visualization and recommender systems are implemented

as part of OptPlatform in Chapter 3, which helps users to implement the theoretical

solution into a real-life solution in the most optimum way.

50

3. OPTIMIZATION PLATFORM

(OPTPLATFORM)

The current chapter describes the design and implementation of a metaheuristic

optimization framework, called OptPlatform, which overcomes most of the current

MOFs' limitations, analysed in the previous chapter. First, the motivation and

requirements are formulated in section 3.1. Next, the OptPlatform’s architecture and

technology stack is explained in sections 3.2-3.4. Furthermore, section 3.5 lays out

step by step process for implementing optimization problems in OptPlatform.

Metaheuristic algorithm implementations and parallelism is described in section 3.6. A

brief overview of supported visualization tools is provided in section 3.7, while an in-

depth explanation of solution transition optimisation in section 3.8. Finally, multiple

existing optimization platforms are compared against OptPlatform in section 3.9 and

chapter summarized in section 3.10.

3.1. Target users and requirements

Creating a generic software that accommodates all possible users is difficult if not

impossible task. It is especially true when complex systems such as metaheuristics

are involved, where hundreds of optimization methods can be applied to infinite

variations of application domains. Furthermore, the users also range in their skillset

and demands – some users have little to no knowledge of the heuristic optimization,

while others might have years of experience. Therefore, it is essential to understand

the target user requirements.

Both [131] and [151] classified possible metaheuristic optimization software users

into three overlapping categories: practitioners that are using the software for real-

world applications; researchers - heuristic optimization experts analyse, hybridize and

develop new algorithms and finally, students that are just starting out and still learning

about heuristics and optimization. This work focuses on the arguably largest and most

impactful group – practitioners, though most of the features and requirements also

apply to researchers, less so to students' teaching.

51

Practitioners are people with a challenging optimization problem to solve (usually

NP-hard), that have a problem domain knowledge but are not necessarily experts in

optimization methods. Almost all domains such as engineering, medicine, economics,

logistics and computer science have such challenging optimization problems, that

would not be feasible to solve by hand, without automated strategies. This presents

an infinite amount of problems to solve; therefore, the optimization software must be

generic enough to accommodate all of them. Furthermore, most practitioners work in

a domain unrelated to heuristic optimization or even software engineering in general.

However, they have a deep understanding of the problem itself, its domain, restrictions

and objectives and therefore, the optimization tools are purely black-box solvers to

obtain the solution.

Moreover, in business, time is money, and a quick near-optimal solution is often

valued versus an optimal solution that takes ten times as long to compute. Thus, every

second spent in a sub-optimal state in an ever-changing environment is an

unnecessary cost that can be avoided. Fast turnaround to solution also allows more

sophisticated modelling of what-if scenarios essential in business planning. As the

world gets more and more connected, the responsiveness to the ever-changing

geopolitical environment is an edge, examples of such events include Brexit and

Covid-19.

Efficient use of computing resources is another aspect valued by practitioners, as

company computing resources are usually shared and in high demand. Computing

resources that are not utilized are a lousy return on investment. Furthermore, it is

expected that more computing power should either improve the results, solve larger

problems, or consider more what-if scenarios.

Another essential factor of any software is the ease of use. Rarely if ever black-box

optimization is used as a standalone tool, more commonly it needs to be integrated

into existing systems and IT infrastructure. Consequently, the optimization software

needs to be modular and portable, with clearly defined inputs and outputs. Similarly,

the practitioners should only be focusing on the problem and not require an

understanding of the internal algorithms or their parameters. Moreover, examples are

usually an excellent starting point for any software system and therefore, a variety of

easy to understand optimization problem examples are essential.

Therefore, optimization platform requirements for the practitioners can be

summarized by the following (in alphabetic order, based on [131] and [151]):

52

◼ Applicability – the output of the software should be easy to understand and

applicable to the real world. The platform should produce detailed suggestions on

how a user can implement the new solution with the least distruptions to the

existing real-world solution.

◼ Genericity – platform needs to be able to support a variety of optimization

problems, their constraints and application domains. It should not be limited to any

specific metaheuristic algorithm or solution representation.

◼ Interoperability – the software should be modular and easily integrable into

existing systems and IT infrastructure. A generic communication protocol is

required for supplying the software with new data and getting the resulting

solution.

◼ Multi-algorithm support – it should be possible to use already implemented

metaheuristic algorithms seamlessly and switch between them, while requiring no

prior user knowledge.

◼ Learning effort – users should start using the platform for their optimization

problems quickly with little programming or software development knowledge. The

interface and user workflow, therefore, should be intuitive and easy to understand.

The problem domain should be clearly decoupled and abstracted away from the

underlying algorithms.

◼ Parallelism – the platform should be scalable and efficient at utilizing computing

resources. Additionally, parallelism and scaling should be effortless, without the

user's need to understand how the underlying parallelism is implemented. The

user should control the computing resource utilization through parallelism level

(number of workers/threads).

◼ Parameter Management – metaheuristic algorithms are subject to multiple

parameters that influence their performance for a given problem. Furthermore, as

metaheuristics are probabilistic and can produce different results for the same

data inputs, tuning and evaluation tools are necessary. The parameter selection

should be either automatic or guided by the user.

◼ Performance – most real-world problems are computationally intensive, and in

time-critical applications, the turnaround to a solution is essential. Thus, the

optimization platform should offer computationally efficient implementations of the

underlying algorithms.

53

◼ Problem examples – examples of optimization problems are essential to guide

and familiarize the user with the platform. They can also be used as building blocks

for custom optimization problems.

3.2. Technologies used

When designing any software system, programming languages, tools, and target

platforms need to be considered. Each programming language has its advantages and

disadvantages, some claim to improve on existing languages, but lack the developer

mind share. There are two main strategies used for existing metaheuristic frameworks

– C++ for performance-oriented MOFs ([137], [133], [140], [135]) and Java for user-

focused, interface-driven MOFs ([144], [141], [146], [138], [139], [142], [143]).

Use of low-level C/C++ has been associated with high-performance computing, as

the computing resources can be accessed at a much lower level than any of the high-

level interpreter languages. However, things such as interfacing, and GUIs are not

trivial in C++ and usually a high-level language such as Java, C# or Python is

preferred. Java is a modern programming language, as it is cross-platform and easy

to learn. Furthermore, open-source nature and rich-set of APIs attracts a lot of

researchers and practitioners to Java. Although modern Java implementations and

compilation offers highly efficient code, low-level C/C++ code is preferred for high-

performance applications. Thus, practitioners selecting existing MOFs must

compromise between performance or ease of use/integration.

This work tries to bridge the gap between high-performance metaheuristics and

their accessibility, the ease of use. For low-level search algorithms - C arrays and

pointers are used for memory management, while C++ is abstracted for problem

definition. Search algorithms are designed to be parallel (via OpenMP18) ground up

and not as an after-the-fact. Moreover, this high-performance part of the platform is

compiled as a dynamic link library (DLL) to be accessed by any high-level interface.

Although in theory, the majority of programming languages can invoke and use the

compiled DLL, OptPlatform uses C# for its high-level interfaces.

Compared to Java, C# is mainly focused on .NET framework or more recently, .NET

Core and is targeted to Windows, though cross-platform adaptations such as Mono19

18 OpenMP parallel API website. https://www.openmp.org/
19 Mono project. https://www.mono-project.com/

https://www.openmp.org/
https://www.mono-project.com/

54

exists. This, however, is not an issue for the user-focused platform as more than 76%20

of desktop computer users use Windows as their operating system. Just like Java, C#

has a rich set of existing libraries, APIs and tools. Additionally, both C++ and C# can

be compiled, debugged and run under the same toolchain in Visual Studio IDE, making

development more straightforward.

3.3. Fundamental concepts

The following section introduces the concepts of optimization problems and intends

to explain the building blocks of the OptPlatform implementation.

• Problem – user defined inputs and supporting logic that clearly defines

parameters and constraints for problem to be solved. The implementation is

structured based on the concepts of Orders and Elements. An Order has a

demand that needs to be satisfied with one or multiple Elements.

• Solution – a solution to a problem is defined as a vector of soliton pairs

(SolutionPair). Solution pair is derived from both the order index and the element

index. Additionally, the pair can also contain a quantity of the satisfied demand by

choosing the SolutionPair. In most cases, the solution needs to be decoded back

into problem-specific data before further processing.

• Search space – solution space, candidate set or feasible region - is a set of

possible element and order indices (PossibleElement) that satisfies given problem

constraints. Only valid solutions that meet all problem constraints are evaluated

for performance score. Additionally, PossibleElement can also contain heuristic

information about the element.

• Algorithm – search algorithm, search core - a methodological approach or

procedure that solves a challenging problem. It is usually resource-intensive and

has its own set of parameters and memory, independent of the problem.

• Seed – a seed is usually an integer value used as a starting point for Pseudo-

Random Number Generator (PRNG). As OptPlatform focuses on probabilistic

metaheuristic algorithms, some form of randomness is needed. PRNGs are good

for this purpose as it offers both pre-defined randomness and reproducible results.

20 Desktop Operating System Market Share Worldwide Desktop Operating System Market Share

Worldwide - April 2020. Accessible https://gs.statcounter.com/os-market-share/desktop/worldwide

https://gs.statcounter.com/os-market-share/desktop/worldwide

55

• Config – is a set of parameters that defines a configuration of the search algorithm

and the problem. Search parameters such as termination criteria, logging level

and computation resource utilization are common across all search algorithms.

• Fitness – a solution score (such as cost, time or profit), that is assigned to a full

valid solution. Fitness scores are compared to obtain the best out of two or more

solutions.

3.4. Architecture

Like many other existing MOFs, in OptPlatform problem-specific logic is separated

from problem independent logic – such as search algorithms and supporting tools.

Majority of existing MOFs focuses on the ease of new algorithm development and

hybridization, aimed at researchers with expert knowledge. OptPlatform main aim is

to target the practitioners with little to no understanding of metaheuristics and allow a

more black-box approach for solving their industry problems. Although prior

knowledge of underlying algorithms is beneficial, it is not necessary.

The high-level architecture of OptPlatform is demonstrated in Figure 11. It contains

a User domain and a Platform, that is abstracted away from the user. Moreover,

architecture is structured as a form of building blocks – modules. Modules are

implemented in either C++ or C#. As the OptPlatform uses both C++ and C#, the data

sharing and transfer between modules can be both via P-invoke of DLL or via the flat

file system. C++ and C# communication is also abstracted away from the user in the

Search Wrapper module.

User starts by specifying the problem-specific data structures in Problem Manager

and implementing problem-specific functions (such as restrictions and fitness

evolution) in Opt Problem module (section 3.5). Problem specific logic is then compiled

with the search cores (ACO, ES or ICA) into a DLL (section 3.6). From Problem

Manager, user can analyse the search process such as iteration performance and/or

algorithmic specific data in Search Visualizer module (section 3.7). Similarly, the user

can choose to auto-select and tune the search algorithms config for the implemented

problem (Chapter 5). For real-world problems, where the transition between current

existing state and the newly optimized state is unclear, Transition Opt module can help

generate a step-by-step report (section 3.8). Finally, for optimization problems

represented as geographical locations and/or links, the Global Grid module can both

56

generate paths between any two points in the map and create animated visualization

(section 3.7).

Figure 11. A high-level overview of modules in OptPlatform. Optimization platform uses two
languages – C++ for low-level high-performance search and C# for user interfacing and other
accessory tools. Split into user domain, where only problem details are specified and the
abstracted backend - platform.

3.5. User workflow

This section covers the user workflow for implementing a new optimization problem.

The high-level overview is shown in Figure 12. The icons next to each of the steps

represent the OptPlatform module used in the corresponding action, based on Figure

11. User is only required to interact with two modules – Problem Manager and Opt

Problem; all other modules are optional and/or abstracted away from the user.

Figure 12. User workflow for implementing an optimization problem. Icons represent the
modules used (in Figure 11) during the process, some of them can be optional.

57

• Step 1: Solution encoding

The first step of implementation is to structure the problem such that it can be used

within the platform – the search space definition. User needs to list all possible solution

elements of size 𝐸𝑚𝑎𝑥 for any given order 𝑜 in the list of orders of size 𝑂𝑚𝑎𝑥. This is

then encoded as a two-dimensional matrix, with each of the cells corresponding to the

possible element-order combination that can be added to the final solution. The user

needs to map the problems search space to the two-dimensional order-solution matrix.

There need to be at least two elements for each order and at least one order in total.

Furthermore, each of the orders has an integer value of demand, that needs to be

satisfied during the solution creation. Figure 13 shows a search space representation

with how the solution is mapped from the 2D encoded matrix. For each corresponding

order, some elements are selected to create a SolutionPair, in the example of Figure

13, order 𝑜0 get assigned two elements - 𝑒2 and 𝑒6, thus generating two solution pairs

– (𝑜0, 𝑒2) and (𝑜0, 𝑒6). Similarly, order 𝑜1 gets assigned element 𝑒5, generating a

SolutionPair (𝑜1, 𝑒5). The combination of all solution pairs creates the final encoded

solution - (𝑜0, 𝑒2); (𝑜0, 𝑒6); (𝑜1, 𝑒5).

Figure 13. Search space representation and solution element encoding. Constructed as a 2D
matrix with sizes 𝐸𝑚𝑎𝑥 and 𝑂𝑚𝑎𝑥. Search algorithm selects one or multiple cells to be added
to the final solution.

To illustrate the flexible mapping process between encoded solution and real-life

model, two simple example problems are considered in both Figure 14 and Figure

16. In Figure 14, a simple bin packing problem is considered, where the goal is to fit

all the items in the bins without exceeding their capacity. The encoded solution is

presented as an array of order-element pairs. Suppose one considers each of the bins

as order and each of the items as elements. In that case, the solution can be easily

58

decoded by grouping all elements per order and mapping them to their corresponding

bins.

Figure 14. Simple bin packing problem encoding and decoding with five identical bins
(represented as orders) and eight items (elements).

• Step 2: Data type definition and assignment

The next step in the process is to define any problem-specific data required for the

problem. The problem-specific data is represented as a list of ProblemAttribute, where

each ProblemAttribute represents the data with the corresponding name, data type

and size. Problem-specific data, such as item weights and profits in Knapsack

problem, travel distances between two cities in TSP, can either be read-only or

dynamic. As the name suggests, read-only data are static data expected to not change

during the search process. In contrast, dynamic data can be read and written during

the search process. In Knapsack, for example, item profits are static and can be

thought as read-only; however, the total weight usage in knapsack is changing as

items get added and therefore – dynamic. At the start of each iteration, all dynamic

data is reset to the initially defined value. The list of ProblemAttribute is then used and

compiled as part of the search and problem logic definition.

• Step 3: Generation of Opt Problem template

Based on Step 2, all pre-defined problem-specific data types are used to compile a

C++ template project for implementing the problem logic (the Opt Problem module).

The problem-specific data access is abstracted and simplified using C++ definitions.

The automatically created project has two files – OptProblem.h and OptProblem.cpp

with all the necessary headers and pre-defined function implementations, and

59

examples of the problem-specific data access. Furthermore, the VS++ project is pre-

configured with all the other modules in OptPlatform automatically.

• Step 4: Problem logic implementation

Based on the automatically generated project in the previous step, a user needs to

implement at least three of the pre-defined logic methods based on the problem

domain:

• canElementBeAdded(Element, data) – a required method that returns either

true or false for the provided method. If the method returns true, the element

will be added as part of the solution and not, if false. The user is expected to

use only static data.

• addElementToSolution(Element, data) – a required method that returns the

quantity of demand satisfied by adding this element to the solution.

Furthermore, before the element gets added to the solution, the user can

update any of the constraints and problem-specific data. The user is expected

to write to dynamic data, if applicable.

• getSolutionPerformance(Solution, data) – a required method that evaluates

the provided solution quality and returns a performance value. The solution is

provided as a list of SolutionPair, built from the previously added elements.

Therefore, the solution is expected to be within constraints, does not require

additional checks, nor a penalty cost.

• isBetterPerformance(double, double) – an optional method that returns true

if the first provided double is a better performance value that the second double.

By default, all problems in OptPlatform are minimization problems, and

therefore, it returns true if the first double is lower than the second double.

• userSyncAfterIteration(data) – an optional method that returns true if the

search needs to be terminated and false otherwise (for problem-specific

termination criteria). In this method, a lot of problem-specific data is exposed to

the user after each iteration and allows for further customization. Customization

such as problem-specific local search, statistical analysis between iterations

and other, are possible.

All implemented search algorithms as part of Search Cores module follow the

iterative process of solution construction and evaluation. The interface between the

user and the platform can be seen in Figure 15.

60

Figure 15. The interface between the search algorithms in the Search Core module and user-
defined problem in Opt Problem. Flowchart on the left is a generic model that all search
algorithms in the Search Cores follow. Methods isBetterPerformance and
userSyncAfterIteration are optional and therefore greyed out.

• Step 5: Search algorithm selection

At this step, all problem-specific definitions and logic are already implemented, and

the user just needs to pick one of the algorithms available in Search Cores module,

such ACO, ES or ICA and define the search configuration. Some of the configurations

are shared across all search algorithms, such as the termination criteria, the seed,

degree of parallelism, number of parallel instances in the search and logging

information. Furthermore, some problem-specific configurations, like the maximum

number of solution pairs in the solution and whether incomplete solutions should be

accepted for evaluation, can also be defined. Alternatively, user can run algorithmic

parameter tuning in Hyper Tuner module to obtain the best configuration automatically.

61

• Step 6: Run the search and analyse the solution performance

Once the optimization algorithm is selected and configured, a search process can

be started, and the performance evaluated. To make this process simpler and more

user-friendly, a GUI interface allows users to start, pause and stop the search and

adjust the level of parallelism dynamically during the search process. Furthermore,

analysis tools are implemented in the GUI that allows to perform simple statistical

analysis and graphically plot the convergence of the search across multiple

experiments.

• Step 7: Decode and implement the solution

Once the search process is finished and the final solution exported, the user needs

to decode the encoded solution back to a real-life representation. A simple Travelling

Salesman Problem with five cities (A-E) is considered in Figure 16. There are two

ways that TSP can be represented as part of the solution, either as a sequence of

cities visited (Sequence encoding) or as a graph where the 2D order-element matrix,

where the nodes (cities) are represented as orders and their interconnections (links)

as elements (Graph encoding). In sequence encoding, it is assumed that there is just

a single order; the sequence that elements are added to the solution to determine the

chronology of the visited cities. In contrast, in the graph encoding, each city is an order,

and the corresponding element is the next city to be visited. Thus, SolutionPair with

order index 0 and element index 2, moves from city A to city C.

For problems that represent geographical locations, the Global Grid module can be

used to animate the links in the map across the globe graphically. Furthermore,

Transition Opt module is designed for models representing a real-life system with long-

term contracts, facilities, and employees and cannot migrate to the new optimized

solution overnight. The Transition Opt generates a step by step suggestions on

transitioning from any given existing model to the newly optimized model with the least

distruptions.

62

Figure 16. Two example encodings for Travelling Salesman Problem (TSP). In Sequence
encoding, only the selected element sequence in the solution is needed for encoding. Graph
encoding represents nodes as a 2D graph, where the nodes themselves are represented as
orders and the inter-connections as elements. Therefore, cells 𝑜0𝑒0 and 𝑜1𝑒1 would be invalid
in TSP as it is a connection to itself.

3.6. Search cores module

As discussed in the requirement analysis in section 3.1, the underlying algorithms

in any MOF have to be very generic to accommodate a wide range of problems. Users

must be able to implement their problem-specific logic without the need of previous

knowledge of metaheuristics. Moreover, with ever-increasing computation power,

many of the problems that were infeasible to be solved just a decade ago are now in

the reach of practitioners. Most of the advances in computing have been derived from

multi-core processor architectures, and thus any MOF must utilise these resources

effectively. In fact, optimization software systems should be designed with parallelism

and concurrent computing in mind. Compared to other optimization frameworks that

offer parallelism as a plugin and an afterthought, OptPlatform is designed for

performance ground up. All metaheuristic algorithms in OptPlatform follows the

parallel master-slave model, where the master process manages the global

information across iterations, while each of the slave processes builds and evaluates

solution, as demonstrated in Figure 17.

63

Figure 17. Memory allocation and parallelism in Search Cores architecture. Areas of the
process, where problem-specific methods are called, are in orange. Iterations are executed in
sequence, however, in each iteration, multiple solutions are constructed and evaluated up to
the maximum number of parallel instances - 𝑃𝐼𝑚𝑎𝑥.

In Figure 17, each of the OptPlatform search algorithms starts by allocating

memory for 𝑃𝐼𝑚𝑎𝑥 Parallel Instances. Then, the master process starts every iteration

by launching several slave processes (OpenMP threads, pre-defined in search config).

Each of the slave process ƥ resets memory to their pre-set default values, builds and

evaluates solution, as shown in Figure 15. After each iteration, the master process

saves the best solution across all slaves and performs logging, as well as performs

checks for search termination. The process is repeated iteratively till termination

criteria is reached, at which point all the allocated memory is freed. This architecture

minimizes memory allocation, as no new memory is allocated during the search, only

once - at the start. Furthermore, to reduce the thread overhead, all OpenMP threads

are re-used across iterations.

Furthermore, MOF needs to support a wide variety of metaheuristics that can be

applied to the same user problem without adaptations or customizations. Although

there are dozens of different kinds of metaheuristics, as shown in section 2.1.2, three

64

were selected to be implemented in OptPlatform. Ant Colony Optimization algorithm

(in section 2.1.2.4) was chosen due to a long history of efficiency for solving routing

and scheduling problems. Furthermore, the Evolutionary Strategy algorithm (in

2.1.2.5) was selected as it is the simplest algorithm from Evolutionary algorithm family.

Finally, a more recent metaheuristic called Imperialist Competitive Algorithm was

chosen for its promising performance for broad application areas, as examined in

section 2.1.2.6). All three algorithm definitions and formulations are presented in more

detail in the following subsections.

3.6.1. Ant Colony Optimization (ACO)

Ant Colony System was initially implemented for solving graph routing problem,

where pheromone is deposited on the links between two nodes [106]. In OptPlatform,

ACS nodes can be considered as Orders and the routes between the nodes –

Elements. Graph encoding in Figure 16 demonstrates the relationship. Furthermore,

ACS differs from the other two metaheuristic algorithms because it relies on heuristic

information for efficient search. Heuristic information is problem-specific data

associated with each Element. For example, in TSP case, the distance between two

nodes can be considered heuristic, allowing ACS to prioritize shorter routes between

two nodes. OptPlatform’s ACO implementation (Figure 18) differs from standard ACS

[104]. First, it is designed to be parallel. Therefore, in each iteration, multiple ants are

constructing and evaluating the solution in parallel. Secondly, ACO within OptPlatform

introduces the concept of heuristic priority. The purpose of heuristic priority is to

prioritize orders that have the highest impact if they were to be solved first. The

process has been implemented as follows and is calculated at runtime:

1) All elements associated with an order are sorted based on numeric heuristic

information, ascending.

2) The difference between the best and second-best heuristic across all order’s

elements is evaluated for each order.

3) Orders with the highest heuristic gap (largest difference) are given priority over

other orders.

And finally, OptPlatform’s ACO also implements the idea of cunning ants, based on

[187]. In cunning ant ACO, each ant generates a solution by borrowing part of a

solution from the best solution in the previous iteration, instead of building a solution

65

based on the pheromone. This approach has proven to increase the efficiency and

convergence speed of the search.

Furthermore, the solution creation, evaluation and pheromone update is

implemented based on the standard ACS formulated in [106]:

• The state transition rule is used to drive the search of the ants

• The global pheromone update rule is used to focus the search on the solution

space's most promising areas.

• The local pheromone update rule is used to force ants to explore a more

extensive solution space area.

In short, in every iteration, a colony creates a number of sub-colonies for each of

the Parallel Instances (𝑃𝐼𝑚𝑎𝑥), where each of the sub-colonies releases several Local

Ants (𝐿𝐴𝑚𝑎𝑥). Each ant ɐ builds a complete solution, if feasible. The ants are guided

in the search by both the pheromone and heuristic information at each Element cell.

The use of pheromone helps ants to choose lucrative routes (Elements). With the use

of state transition rule, the ant can either exploit the best-known route or explore a new

route by random.

Furthermore, the local pheromone update ensures that ants do not keep visiting the

same routes repeatedly. Once all ants within the sub-colony have finished creating the

search, each sub-colony's best solution is compared against all other sub-colonies.

The best solution in the iteration is then used to update the global pheromone. The

process continues till the termination condition is met.

From the probability distribution given in equation (20) [106], the state transition rule

𝑠𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡 is:

𝑠𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡 =

 {

arg max
𝑢∈𝐽𝑘(𝑒)

{[𝜏(𝑒, o)]α ∙ [𝜂(𝑒, o)]𝛽} 𝑖𝑓 𝑞 ≤ 𝑞0

 𝑆 𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛

,
(20)

where 𝑞 is a random number uniformly distributed in [0…1], 𝑞0 is a parameter

(0 ≤ 𝑞0 ≤ 1) indicating the relative weighting of exploitation versus exploration, and

𝑆 is a random variable selected according to the probability distribution given in

equation (20).

66

Figure 18. High-level pseudo code for Ant Colony Optimization algorithm in OptPlatform.

Only the ant with the best solution across all parallel instances ƥ deposits global

pheromone. Let 𝐹(ɐ) be a measure of ant ɐ's solution performance based on the

objective function. Let 𝜌 be the pheromone decay parameter in the range: 0 < 𝜌 < 1.

Given the best solution found so far 𝐹∗, the global pheromone updating rule is defined

as follow [106]:

 𝜏(𝑒, 𝑜) = (1 − 𝜌) ∙ 𝜏(𝑒, 𝑜) + 𝜌 ∙ Δ𝜏(𝑒, 𝑜), (21)

where 𝛥𝜏ɐ(𝑒, 𝑜) is defined as [106]:

 𝛥𝜏ɐ(𝑒, 𝑜) = {
𝐹(ɐ) 𝑖𝑓 (𝑒, 𝑜) ∈ 𝐹∗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (22)

As the ant constructs the tour, the pheromone level on visited PossibleElements is

changed by applying the local pheromone updating rule [106]:

 𝜏(𝑒, 𝑜) = (1 − 𝜌) ∙ 𝜏(𝑒, 𝑜) + 𝜌 ∙ 𝜏0, (23)

where 𝜌 is the pheromone decay parameter in the range: 0 < 𝜌 < 1 and 𝜏0 is the

initial pheromone level. The local pheromone update rule is designed to decrease the

pheromone level on the visited PossibleElements such that they become less

desirable for the next local ant. The effect of the local update is to decrease the

pheromone level on visited edges which make them less desirable to subsequent ants.

initialize ACO parameters
calculate heuristic priority
allocate memory for PImax instances
do
 for ƥ= 0 to PImax parallel do
 local pheromone = global pheromone
 for ɐ= 0 to 𝐿𝐴𝑚𝑎𝑥 do
 construct solution
 evaluate solution
 local pheromone update
 end for
 end for
 keep best solution
 update global pheromone based on the best solution
while stopping condition not met
de-allocate memory
return solution

67

This subsequently allows ants to explore more search space within the same iteration

[106].

3.6.2. Evolutionary Strategy (ES)

Evolutionary Strategy (ES) is one of the simplest metaheuristics in terms of

implementation, as it relies only on selection and mutation, as discussed in section

2.1.2.5. OptPlatform implements a simple (µ+1)-ES, where the parents µ is equal to

the number of parallel instances 𝑃𝐼𝑚𝑎𝑥. Furthermore, compared to standard (µ+1)-ES,

ES in OptPlatform also implements a local search, where the mutation and evaluation

is repeated for 𝐿𝐼𝑚𝑎𝑥 local iterations. The high-level pseudo-code is presented in

Figure 19.

Figure 19. High-level pseudo-code for Evolutionary Strategy algorithm in OptPlatform

 The algorithm starts by creating a random population of size 𝑃𝐼𝑚𝑎𝑥, by selecting an

Order and associated Element at random, while satisfying the problem constraints.

Next, the random population's best solution is chosen as a starting point for the search

process. Each of the chromosome in the population is mutated and evaluated

iteratively. In OptPlatform, a chromosome is represented as an encoded solution (see

example in Figure 20). The mutation is performed by first removing order-element

pairs from the solution, then adding new ones.

initialize ES parameters
allocate memory for PImax instances

for ƥ = 0 to PImax parallel do
 create a random solution
 evaluate solution
end for
keep best
do
 for ƥ = 0 to PImax parallel do

 for ɾ = 0 to LImax do
mutate

 evaluate solution
keep best

 end for
 end for
 keep best
while stopping condition not met
de-allocate memory
return solution

68

Figure 20. Example of the mutation process of Evolutionary Strategy in OptPlatform.
PossibleElement pairs with red are removed and replaced with PossibleElement pairs in blue.

The number of elements to be removed is derived from mutation rate ʍ, expressed

as a percentage. In the example of Figure 20, mutation rate ʍ is 0.25 or 25%;

therefore, out of the 12 cells, three are removed. In the next step, the mutation process

iterates over all PossibleElement pairs and adds the feasible ones to the solution. It is

worth noting that the parent and child chromosome sizes can differ, depending on the

problem constraints. In knapsack example, once some of the heavier items get

removed, more smaller items can fit and vice versa.

The best chromosome in the iteration is kept as a parent for the next iteration. This

process continues till a termination condition is reached. The variable size

chromosome representation allows accommodating multiple problem encodings while

maintaining the dynamics of the mutation. However, one of the drawbacks of this

approach is that the mutation rate is dependent on the encoding. For example,

problem encodings with small chromosome sizes (below 100 elements) would need

proportionally larger mutation rate than the encoding with 1000 elements, to be able

to maintain diversity in the population.

3.6.3. Imperialist Competitive Algorithm (ICA)

Although initially Imperialist Competitive Algorithm was introduced for continuous

optimization problems, as discussed previously in section 2.1.2.6, in OptPlatform ICA

is implemented for discrete optimization problems. Just like ES, ICA starts with the

creation of a random population of size 𝑃𝐼𝑚𝑎𝑥. Once the population is created, it

proceeds with an empire initialization. Empire is a group of imperialist and at least one

colony. In contrast to classic ICA, ICA in OptPlatform also implements a local search,

where the solution creation via assimilation operator is repeated 𝐿𝑆𝑚𝑎𝑥 times. If at any

point any of the colonies have a better cost than its imperialist, the imperialist and

colony positions are swapped. Finally, iteration concludes with empire competition,

69

where the weakest empires are eliminated, while the strongest gain more power. The

high-level process is shown in Figure 21. The following section formalises the ICA

based on [124].

Figure 21. High-level pseudo code for Imperialist Competitive Algorithm in OptPlatform

• Empire initialization

The ICA algorithm in OptPlatform starts by creating a random population and

dividing them into colonies and imperialists based on the country's cost function.

Furthermore, a country's cost is calculated in the same way as the provided solution's

objective function. Therefore,

 𝐶𝑜𝑠𝑡 = 𝑓(𝑐𝑜𝑢𝑛𝑡𝑟𝑦) = 𝑓(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) (24)

At country initialisation, a random population of size 𝑁𝑝𝑜𝑝 is created and evaluated.

The best countries of size 𝑁𝑖𝑚𝑝 are selected from the population and set as

imperialists. Rest of the countries are set to be colonies 𝑁𝑐𝑜𝑙. In OptPlatform, ICA

population 𝑁𝑝𝑜𝑝 is equal to the number of parallel instances 𝑃𝐼𝑚𝑎𝑥.

 𝑁𝑐𝑜𝑙 = 𝑁𝑝𝑜𝑝 − 𝑁𝑖𝑚𝑝 = 𝑃𝐼𝑚𝑎𝑥 − 𝑁𝑖𝑚𝑝 (25)

Next, colonies are split amongst imperialists countries according to the power of the

imperialists. The normalized cost of each imperialist country is determined by,

 𝐶𝑛 = max
𝑖

{𝑐𝑖} − 𝑐𝑜𝑠𝑡𝑛 (26)

initialize ICA parameters
allocate memory for PImax instances
for ƥ = 0 to PImax parallel do
 create a random solution
 evaluate solution
end for
empire initialization
do
 for ƥ = 0 to PImax parallel do
 for Ỽ = 0 to LSmax do
 assimilate
 evaluate solution
 keep best
 end for
 end for
 keep best
 empire competition
while stopping condition not met
de-allocate memory
return solution

70

where, 𝑐𝑜𝑠𝑡𝑛 is the 𝑛th imperialist’s cost, 𝐶𝑛 is the normalized cost of 𝑛th imperialist.

Weaker imperialist country (i.e. imperialist with higher cost) has a smaller normalized

cost. Thus, the power of 𝑛th imperialist 𝑃𝑂𝑛 is calculated based on the normalized

cost:

 𝑃𝑂𝑛 = |
𝑐𝑜𝑠𝑡𝑛

∑ 𝑐𝑜𝑠𝑡𝑖
𝑖=1
𝑁𝑖𝑚𝑝

| (27)

The normalized power of 𝑛th imperialist is the number of colonies that are

possessed by that imperialist, calculated by:

 𝑁𝐶𝑛 = 𝑟𝑜𝑢𝑛𝑑(𝑃𝑂𝑛 ∙ 𝑁𝑐𝑜𝑙) (28)

where 𝑁𝐶𝑛 is the number of initial colonies possessed by 𝑛th imperialist and 𝑟𝑜𝑢𝑛𝑑

is a function that gives the nearest integer of a fractional number.

• Assimilation

The classic ICA assimilation process is modified to accommodate discrete

problems in OptPlatform. Each colony builds a new solution (country) by assimilating

closer to its imperialist, based on assimilation rate θ (0 ≤ θ ≤ 1). Assimilation rate

determines how many entries in the solution is modified (assimilated) to create the

new country. In the example of Figure 22, θ is set to 0.25, therefore 25% of all colony’s

solution is replaced by the imperialist’s.

Figure 22. Example of Imperialist Competitive Algorithm assimilation process in OptPlatform.
PossibleElements in red indicating the cells that are merged to create a new country.

In the example, three cells out of twelve are replaced (marked in red) to create a

new country that combines both colony and the imperialist, like combination operator

in GA. The newly generated country must satisfy all problem constraints.

71

• Empire competition

Once each colony has finished building and evaluating solutions, empires compete

amongst themselves to colonize each other’s colonies. The empire competition is

based on probabilistic empire power, where the strongest empires have the highest

likelihood of possessing the weakest colonies. Total power of an empire is computed

based on its imperialist power and a proportion of the power of its colonies [124].

𝑇𝐶𝑛 = 𝐶𝑜𝑠𝑡(𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡) + 𝜁

∙ 𝑚𝑒𝑎𝑛(𝐶𝑜𝑠𝑡(𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑜𝑓 𝑒𝑚𝑝𝑖𝑟𝑒𝑛))
(29)

where 𝑇𝐶𝑛 is the total cost of 𝑛th empire, 𝜁 is an empire influence coefficient (0 ≤

 𝜁 ≤ 1). Smaller values of 𝜁 indicate a larger influence of the imperialist cost versus

the mean of empire cost.

During the empire competition, weaker empires gradually collapse as they are left

with no single colony. This means that the weaker imperialists lose their colonies and

therefore the power to more powerful empires and consequently, increasing the power

of the strongest imperialists. The competition process is modelled by computing the

normalized cost of 𝑛th empire 𝑁𝑇𝐶𝑛 [124]:

 𝑁𝑇𝐶𝑛 = max
𝑖

{𝑇𝐶𝑖} − 𝑇𝐶𝑛 (30)

Then, the probability to possess a colony is computed by [124],

 𝑝𝑛 = | 𝑁𝑇𝐶𝑛

∑ 𝑁𝑇𝐶𝑖
𝑖=1
𝑁𝑖𝑚𝑝

|, where ∑ 𝑝𝑖
𝑁𝑖𝑚𝑝

𝑖=1
= 1 (31)

Let vector 𝑃 of size 𝑁𝑖𝑚𝑝 contain the possession probabilities of a colony by empires

as follows:

 𝑃 = [𝑝1, 𝑝2, … , 𝑝𝑁𝑖𝑚𝑝
] (32)

Then, vector R with the same size is generated based on uniform distribution

between 0 and 1.

 𝑅 = [𝑟1, 𝑟2, … , 𝑟𝑁𝑖𝑚𝑝
], where 𝑟𝑖 ~ 𝑈(0,1) (33)

Next, vector 𝐾 is calculated by subtracting 𝑃 from 𝑅.

𝐾 = 𝑃 − 𝑅 = [𝐾1, 𝐾2, … , 𝐾𝑁𝑖𝑚𝑝

]

= [𝑝1 − 𝑟1, 𝑝2 − 𝑟2, … , 𝑝𝑁𝑖𝑚𝑝
− 𝑟𝑁𝑖𝑚𝑝

]
(34)

Once the vector K is calculated, the weakest colony is assigned to the empire with

the largest index.

72

3.7. Visualisation tools

Visualization tools are very important for understanding the produced outputs of the

black-box optimizers. Thus, multiple visualization tools are developed in OptPlatform

that help the users understand how the search process progresses and how to

implement the produced output into an existing real-life system. This section gives a

brief description of the tools and gives some examples.

• Metaheuristic inner-state visualization

A large proportion of metaheuristic algorithms have memory, that is being used to

guide the search. To easier debug and understand how the search works, it is

beneficial to look at the inner states of the memory and how it progresses.

Figure 23. The output of the global pheromone visualization tool. Each pixel represents a
pheromone change for given element across multiple iterations. With red pixels indicating
when evaporation happens, green – pheromone deposit, white – no pheromone left for the
specific element and in black – no change between the iterations.

Figure 23 gives an example of ant colony global pheromone matrix and how it

evolves during the search process – in this case, MKP gk01 instance. On the

horizontal axis are all the different possible elements (items) that are in the search

73

space plotted as transitions between iterations. In this case, each pixel represents a

pheromone deposit or evaporation (green and red respectably). Once the pheromone

is fully evaporated, it is coloured in white, while if there is no change between the

iterations – pixel is coloured in black.

An inner-state visualization is a useful tool as it may quickly highlight problems with

the search, such as insufficient diversification in the population or over intensification

that leads to being stuck to a local optimum.

• Search convergence and statistics

Another essential property for any MOF is the ability to visualize and analyse

different algorithm search performances quickly. For that reason, little utility is

developed that allows user to import any simulation results and then compare the

convergence graphs and averages across multiple strategies. As metaheuristics are

non-deterministic, usually several runs with the same configuration but different seed

are performed, also referred as simulation. Figure 24 gives the GUI example, where

various methods of ES are compared.

Figure 24. OptPlatform’s search visualization tool.

Similarly, the user may want to investigate a specific result, and thus, double-

clicking on any simulation opens a simulation summary, where minimum, maximum

and average fitness across iterations are charted and additional statistical data

provided about the simulation (GUI example in Figure 25).

74

Figure 25. Simulation summary graphical interface.

• Global grid

Any routing optimization problem modelled based on real locations in the map

requires a visualization tool to understand how the locations are linked and interact

with each other. For that reason, Global grid has been developed, where a simple

animation is generated automatically with the provided edge coordinates. If applicable,

animation considers how fast the given route is executed and assigns an icon for the

mode of transport – a truck, plane, or a ship.

Output visualization example of the Transcom problem (section 2.3.2.3) is shown

in Figure 26.

75

Figure 26. Automatically generated solution animation of Transcom problem using Google
Earth.

3.8. Solution transition optimisation

In many complex real-world optimisation models, getting optimum or close to the

optimum solution is only part of the problem. It is often impossible to adopt the optimum

solution overnight, as it would cause too much distribution and negate any savings. A

good example of such dilemma is often seen in the global supply chain, where the

contracts are signed for months and years in advance and just changing the courier

might add additional costs, such as penalties and legal costs. Similarly, in

manufacturing plant, migrating to entirely different equipment or workflow all at once

may cause a disruption in itself. For that reason, a more gradual transition from the

sub-optimal current state to the optimized state is required. The question then

becomes which changes take priority over the others; they might be specified by

expert knowledge, or by an automated greedy search. This section looks at transition

optimisation problem – how to transition from the current sub-optimal solution to the

optimal solution, within a limited number of steps (Stages).

76

Figure 27. A high-level overview of transition optimisation, where two solutions (sub-optimal
and optimized) are used as inputs to generate a transition plan based on the provided goal.
In this example, seven stages are generated starting from the sub-optimal solution at Stage 0
to optimized solution at Stage 7.

The transition optimisation problem can be structured as a combinatorial problem,

where the goal is to minimize the sum of solution scores (fitness’s) 𝑓 across all stages

𝑆𝑇𝑖 ,where 𝑆𝑇𝑚𝑎𝑥 is the target number of stages:

𝑚𝑖𝑛 ∑ 𝑓

𝑆𝑇𝑚𝑎𝑥

𝑖=1

(𝑆𝑇𝑖) (35)

Each stage represents a valid solution with fitness 𝑓(𝑆𝑇) that is a combination of

the two inputs – the current suboptimal solution and the optimized solution. A high-

level overview is shown in Figure 27, where the current sub-optimal solution is

represented in orange and optimized solution in blue.

In order to construct transition optimisation as a combinatorial problem, the in-

between stage solutions need to be created, such that they both are valid and

encompass the required number of stages 𝑆𝑇𝑚𝑎𝑥. For this, a simple state generation

algorithm is implemented. The algorithm starts by first, calculating the total number of

non-overlapping element-order pairs 𝑁𝑆𝐿. Each order-element pair that differ between

the two solutions are put on the swap list, with the size of 𝑁𝑆𝐿. The swap list represents

the differences between the two solutions. Next, the target number of swaps per stage

𝑇𝑁 is calculated as:

𝑇𝑁 =
𝑁𝑆𝐿

𝑆𝑇𝑚𝑎𝑥 − 1
 (36)

Then an exhaustive bucket 𝑆𝑆𝑇 containing all potential swaps of the size 𝑇𝑁 is

generated. This set is used as an input for the optimization algorithm.

77

Optimization algorithm uses the exhaustive bucket 𝑆𝑆𝑇 to select entries one by one

to assemble a transition plan, where each addition to the solution represents a Stage

in the transition plan. If the order-element pair already exists in the previous Stage, it

is not added again. If there is no feasible transition that can be achieved by single

addition, two or more additions are used per Stage. This is now structured as a

combinatorial problem, where elements from a set are selected to assemble the

solution – the final transition plan. Furthermore, OptPlatform’s search cores are re-

used for the optimization of large models (with 𝑁𝑆𝐿 above 50), though for smaller

models search is done exhaustively. Moreover, the algorithm also reuses the

optimisation problem constraints and fitness calculation specified by the user; thus,

only the current state (sub-optimal) solution is needed as the input to generate

suggestive transition plan automatically.

3.8.1. Numerical examples

To demonstrate this technique, first the transition optimization is applied to simple

benchmark MKP gk01 [188] instance with 100 items, see section 2.3.1.1 for problem

definition. Each selected item in the MKP represents an element in the solution. An

exhaustive search was used for optimisation, and the summary of the best transition

plan with five stages between the sub-optimal solution of 3553 to the optimal solution

of 3766 is shown in Table 3.

Table 3. Solution transition plan for MKP gk01 with maximizing profit as objective 𝑓(𝑆𝑇).
𝑁𝑆𝐿 represents the number of element-order pairs that differ from the final solution.

Stage 𝒇(𝑺𝑻) 𝑵𝑺𝑳
0 3553 43
1 3636 32
2 3712 21
3 3752 8
4 3766 0

The initial sub-optimal solution at Stage 0 differ by 43 items in the knapsack; thus,

the target number of swaps 𝑇𝑁 is 11. It is worth noting that it was impossible to

transition between Stage 2 and Stage 3 by using exactly 11 swaps; thus, constraints

were relaxed up until 13 swaps, when feasible solution state for the Stage 3 was

generated with state fitness of 3752.

78

Next, practical, real-world model based on Transcom optimisation problem (section

2.3.2.3) was used to optimize the transition plan for the lowest total cost objective. The

network's current state costs $2543 million in total, while the optimized network costs

only $929 million (reduction of 63%). Similar to above MKP example, transition plan

targets five stages with four transitions. Initial Stage differs by 66 swap pairs from the

final Stage (𝑁𝑆𝐿 = 66), thus the target number of swaps 𝑇𝑁 is 17. As this is a large

model, three metaheuristics were used as optimization algorithms for the transition

plan generation, the best results are summarized and compared in Table 4.

Table 4. Solution transition plan for Transcom scheduling and routing problem with minimizing
total cost (in million $) as objective 𝑓(𝑆𝑇). 𝑁𝑆𝐿 represents the number of element-order pairs
that differ from the final solution.

 𝒇(𝑺𝑻), cost in million $ 𝑵𝑺𝑳
Stage ACO ES ICA ACO ES ICA

0 2543 2543 2543 66 66 66
1 1796 1732 1774 49 49 49
2 1421 1618 1355 32 30 31
3 1032 1132 1012 15 13 10
4 929 929 929 0 0 0

Total 7721 7954 7613

Out of the three transition plans in Table 4, the most cost-effective solution is the

transition plan generated by ICA, where the total fitness across all stages 𝑓 is lower

than both ACO and ES. Furthermore, if we assume each stage represents a calendar

month, ICA proposed transition plan costs more than ES ($1774 million vs $1732

million) in the first month. It still offers significant cost reduction in the second and third

month before the final optimum solution is reached in the fourth month. These

examples clearly illustrate the importance of transition planning problem and the

corresponding optimisation for cost savings.

3.9. MOF comparisons

This section compares the implemented OptPlatform discussed in this chapter with

other metaheuristic optimization frameworks available in the literature (discussed in

section 2.2).

Nine out of sixteen frameworks containing knapsack problem example code were

considered for comparison with OptPlatform, however, due to the combination of lack

of documentation, missing source code or broken dependencies, only three MOFs

79

could be compiled and run successfully. The provided example code of knapsack

problem was extended to Multiple Knapsack Problem (MKP, specified in section

2.3.1.1) for three MOFs - HeuristicLab, JAMES and JCOP. Furthermore, commercial

tools based on Google OR-tools library21 are included for reference.

All platforms considered were using default parameters available in the knapsack

examples provided and the number of iterations for each run closely matched to similar

algorithms. For example, all GA instances were run with 25,000 generations; similarly,

ES generations were set to 50,000. The algorithm was terminated either by reaching

the optimum solution, the maximum number of iterations or maximum computation

time of 180 seconds. The configurations used are summarized in Table 5.

Table 5. Parameters used for an experiment on a various algorithm on different MOFs

Platform Algorithm Comment

Google
OR-tools

B&B Branch and Bound solver, termination set to 180 seconds

CBC Integer Programming Solver CBC

HeuristicLab
GA MultiBinaryVectorCrossover, 25,000 iterations, 5% mutation rate

ES SomePositionsBitflipManipulator, 50,000 iterations, 5% mutation rate

JAMES
RD Random Descent, termination set to 180 seconds

PT Parallel Tempering, 64 nReplicas, termination set to 180 seconds

JCOP GA 25,000 iterations, 5% mutation, termination set to 180 seconds

OptPlatform
(this work)

ACO 10,000 iterations

ES 50,000 iterations, 5% mutation rate

ICA Termination set to 20 stagnant iterations

One small MKP instance from OR benchmark library (OR5x100-0.25_01) [189] and

three medium-hard MKP instances of GK benchmark library (gk01, gk02 and gk03)

[188] were selected for the comparison. Each algorithm was run ten times to establish

best and average error percentage from the optimum solution, as well as standard

deviation and average computation time, in seconds. Where applicable, parallelism

was enabled in the MOF. Results are summarized in Table 6. All experiments were

conducted on Windows 10 pro workstation with AMD Ryzen Threadripper 3970X 32c-

64t processor and 64GB of RAM.

It is worth noting that PSO failed to run on HeuristicLab using the MKP – indicating

the shortcomings of the platform's generalizability. Furthermore, JAMES

documentation claim to support tabu search, however, could not be applied to MKP.

Similarly, JCOP failed to run OR-100 example, even though had no problems with

more complex MKP instances, demonstrating some stability issues with the platform.

21 Google OR-tools library: https://developers.google.com/optimization

https://developers.google.com/optimization

80

Table 6. Metaheuristic Optimization Framework comparisons. Best and average expressed
as error per cent from an optimal solution, colour coded from the best error (in green) to the
worse (in red). Google OR-tools is added for reference only and is not considered a MOF.

Results in Table 6 demonstrate the wide range of performance of optimization

methods. On the one hand, you have a simple Branch and Bound (B&B) algorithm

that cannot find even adequate solution within 180 seconds. On the other hand, you

have a linear solver (CBC) that is guaranteed to find an optimal solution, but on

complex MKP instances take exponentially more time. For example, gk03 took on

average 9777 seconds or 2.7 hours to produce a solution. In comparison, most

metaheuristic algorithms were completed within three minutes, with few reaching near-

optimal solutions before that.

It is hard to draw impartial comparisons between structurally different MOFs and

their corresponding algorithms. However, when MOFs are compared to similar family

algorithms, like ES, GA and ICA, it can be clearly seen that OptPlatform

implementations outperform all other MOFs in terms of solution quality and

computation time. Out of the four compared MOFs, ICA on OptPlatform performed

the best, followed by PT on JAMES. Furthermore, a third-place shared by ACO/ES on

OptPlatform and GA on JCOP.

Results demonstrate that OptPlatform is generic and supports a wide range of

metaheuristic implementations. It also benefits from the hybrid C++/C# architecture,

where the high-performance low-level search cores produce a good quality solution in

a fraction of the time compared to competing MOFs.

 Best error Average error Standard deviation Computation time (s)

 OR-100 gk01 gk02 gk03 OR-100 gk01 gk02 gk03 OR-100 gk01 gk02 gk03 OR-100 gk01 gk02 gk03

Google

OR-tools

B&B 29.10% 44.40% 51.69% 66.99% 29.10% 44.40% 51.69% 66.99% 0.0 0.0 0.0 0.0 180.0 180.0 180.0 180.0

CBC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.0 0.0 0.0 0.0 1.1 8.5 74.3 9777.3

HeuristicLab GA 1.40% 1.78% 1.89% 1.93% 2.75% 2.37% 2.24% 2.52% 236.0 16.3 10.1 21.1 107.7 111.6 113.6 114.0

ES 7.51% 1.96% 2.12% 2.32% 8.45% 2.22% 2.13% 2.37% 326.2 4.9 1.2 2.8 118.6 128.3 133.4 138.8

JAMES RD 13.10% 5.76% 1.82% 5.50% 10.03% 6.57% 3.96% 5.52% 534.4 32.9 42.4 1.2 180.0 180.0 180.0 180.0

PT 0.00% 0.19% 0.03% 0.28% 0.00% 0.20% 0.11% 0.40% 0.0 0.5 2.2 3.4 51.2 180.0 180.0 180.0

JCOP GA - 0.29% 0.25% 0.34% - 0.35% 0.36% 0.38% - 2.5 2.7 1.9 - 180.0 180.0 180.0

OptPlatform

(this work)

ACO 0.00% 0.00% 0.18% 0.25% 0.22% 0.41% 0.36% 0.43% 48.3 8.6 3.5 8.0 20.0 50.6 66.3 144.2

ES 0.00% 0.19% 0.08% 0.32% 0.16% 0.36% 0.31% 0.46% 34.8 4.0 5.2 6.4 36.4 52.2 54.2 90.4

ICA 0.00% 0.00% 0.03% 0.11% 0.00% 0.00% 0.04% 0.11% 0.0 0.0 0.9 0.9 4.6 12.5 56.0 106.1

Optimum 24381 3766 3958 5656

81

3.10. Summary

In this chapter, the requirements, essential for adaptation of MOFs by practitioners

in the industry, have been set out and fulfilled. Furthermore, the chapter lays out the

reasoning and implementation of the architecture in OptPlatform. This section

summarises how the OptPlatform satisfies and improves on all the requirements laid

out in section 3.1.

In terms of applicability, the optimization problem implementation is well

documented with examples. Furthermore, to further assist the user, program code

templates are automatically generated, such that the problem constraints and fitness

metrics can be easily implemented without prior knowledge of the underlying

metaheuristics. Finally, the solution transition optimisation automatically generates a

step by step guide on applying the optimal solution in real-world.

Another critical requirement was the platform's genericity, which OptPlatform

achieves by separating the problem-specific user domain from the underlying

platform’s search algorithms. The solution encoding is generic so that multiple different

kinds of problems can be implemented and successfully optimized for. The

OptPlatform is capable enough to optimize five problems with different complexity and

application domains, discussed as part of section 2.3. The three benchmark problems

can also be used as problem code examples to familiarize the user with the platform.

An interoperability is essential for the platform to be integrated into the existing

infrastructure. OptPlatform deploys hybrid C++/C# architecture, where the low-level

high-performance search cores are compiled as C++ DLL library and thus can be used

by any existing software. A higher-level language such as C# allows the whole

platform to be interfaced with existing APIs, databases or data streams easily without

losing the performance.

The OptPlatform was designed with parallelism as its core feature. The

concurrency is abstracted away from the user with efficient use of static and dynamic

memory in the problem definitions. This leads to very efficient and high-performance

search algorithm implementations, that allows for reasonable quality solutions to be

generated quickly. OptPlatform shows better and faster results than competing MOFs,

as shown in section 3.9. Furthermore, as the platform is intended mainly for industry,

the parallelism dynamics of real-world problems are studied in detail in Chapter 5.

82

Parameter management that allows an unsophisticated user to get most of the

metaheuristics algorithms is one of the major improvements of OptPlatform that are

missing on the existing MOFs. Thus, this feature is covered separately in Chapter 6.

Furthermore, OptPlatform improves on most existing MOFs, which can only support

evolutionary algorithm-like encoding, where a solution is built on top of an existing

solution. In OptPlatform, there is no such limitation, and metaheuristic algorithms that

build the solution from scratch (like ant colony optimization) are also supported. Thus,

OptPlatform supports multiple algorithms and even a new metaheuristic algorithm

design. Moreover, the separation between the problem domain and the search domain

allows a carefree implementation of the user problem. This, in return, lowers the

learning effort required to start using the software.

Although the OptPlatform is not designed for new metaheuristic algorithm research,

it can be successfully used also for that purpose, as shown in the next chapter,

Chapter 4. The framework is flexible enough that new metaheuristic algorithms can be

developed independently while maintaining existing operational models and

algorithms intact.

83

4. THE IMPERIALIST COMPETITIVE

ALGORITHM WITH INDEPENDENCE AND

CONSTRAINED ASSIMILATION (ICAWICA)

This chapter is based on the results published in [3].

Any metaheuristic optimisation framework search results are limited to the

underlying metaheuristic algorithms. Although metaheuristics are not problem-

specific, some are better at solving the problem at hand than others. As discussed in

section 3.6, the Imperialist Competitive Algorithm was chosen for OptPlatform due to

the wide range of applications and improved search convergence compared to the

genetic algorithm.

This chapter develops methods to improve existing ICA for combinatorial problems,

called ICA with Independence and Constrained Assimilation (ICAwICA). The proposed

algorithm introduces the concept of colony independence – a free will to choose

between classic ICA assimilation to the empire’s imperialist or any other imperialist in

the population. Furthermore, a constrained assimilation process has been

implemented that combines classical ICA assimilation and revolution operators, while

maintaining population diversity. In order to evaluate the performance and

generalisation aspects of the proposed approach, two different kinds of combinatorial

benchmark problems were selected – subset selection and routing, Multiple Knapsack

Problem (section 2.3.1.1) and Multiple Depot Vehicle Routing Problem (section

2.3.1.2), respectively. The performance is evaluated against competing metaheuristics

in the literature using the implementation within OptPlatform (described in Chapter 3).

4.1. Motivation and related work

Imperialist Competitive Algorithm (ICA), described in detail in both sections 2.1.2.6

and 3.6.3, was first developed for solving continuous math equations. Since then,

there have been various attempts on improving the standard ICA search performance.

For example, authors in [190] proposed an adaptive ICA (AICA) that uses a

84

probabilistic model based on colony positions to escape local optimum. Similarly, [191]

improved the convergence speed of the algorithm by adding additional value to an

unfeasible solution, based on its distance from the relative imperialist. Both [192] and

[193] enhanced ICA by implementing an attraction and repulsion concept during the

search for better solutions. The less researched area is the use of local search in ICA.

Local search has been used to improve convergence on other metaheuristics, such

as in Ant Colony System [106] by local pheromone update rules, or small swarm

division in PSO [194]. The standard ICA does not implement any form of local search

and therefore, may get stuck in local optima before converging to the global best

solution [195]. Only a few approaches for solving this problem have been proposed in

the literature, such as simulated annealing-like processes in [196], where the local

search process is applied for machine-selection part and the operation-sequence part

in Flexible Job-Shop Problem (FJSP). The 2-opt is another popular local-search

operator for routing problems, such as Travelling Salesman Problem (TSP). For

example, work in [197] uses 2-opt with ICA to improve the imperialists. For continuous

optimization problems, local search operator such as random line search has been

explored in [198], where authors applied the problem-specific local search for the

imperialist solutions.

However, many of these local search implementations rely on problem-specific

operators or assimilation. These operators exploit the underlying problem dynamics

and are an effective way to improve the convergence. Although some can be

transferrable across similar class problems, they are rarely generic enough to be

applied for a wide range of problems. For example, a 2-opt local search would be of

no use for a knapsack problem. In attempt to overcome this issue, this chapter

proposes a modified ICA, where the local search process is performed in terms of both

an Independence operator and a Constrained Assimilation (ICAwICA). Compared to

existing ICA local search approaches, ICAwICA proposes a more generic

implementation that does not require problem-specific operators.

Thus, in this chapter, a more generic algorithm with a local search is presented. It

expands on the classic ICA, with the use of novel Independence operator and

Constrained Assimilation, called ICAwICA. The contributions can be summarized into

the following to aspects:

85

• A novel generic ICA is proposed, where the standard assimilation and

revolution process is replaced with constrained assimilation and the novel

independence operator used for local search.

• The performance of the ICAwICA algorithm is comprehensively evaluated via

well-known Multiple Knapsack Problem (MKP) and Multi Depot Vehicle Routing

Problem (MDVRP) benchmark instances. The experimental results

demonstrate the superiority over classic ICA and universality of the local

search.

4.2. Methods and implementation

The following section introduces the classic ICA and the novel ICA with

Independence and Constrained Assimilation (ICAwICA) algorithm. It discusses the

changes and advantages of constrained assimilation. Finally, ICAwICA application to

two different example problems is considered.

4.2.1. Classic ICA

Like many other population algorithms, ICA starts its search by generating a random

initial population where each individual of the population represents a country.

Countries within ICA can be thought of as chromosomes in a genetic algorithm. The

initial population is separated into multiple groups (so-called empires). Most influential

countries become imperialist within the empire and weakest - their colonies. Each

colony within empire moves closer to their imperialist in the form of assimilation

operator. In order to provide diversity amongst countries, a revolution operator

(mutation in GA) is implemented. If at any point a colony becomes stronger than its

imperialist, then the two countries are swapped, such that imperialist is the strongest

country in the empire. The search follows an iterative process, where after each

iteration, the weakest colony within the weakest empire is assigned to one of the

stronger empires – following the imperialist competition process. An empire is

eliminated once it contains no more colonies. The search usually continues until the

termination criteria are met. Ideally, the search is terminated once all empires are

eliminated and only one, the best, empire remaining.

86

4.2.2. ICAwICA

The proposed ICAwICA follows the classic ICA [125] principles for both empire

initialisation and empire competition; however, assimilation and revolution operators

are replaced with a constrained assimilation and repair mechanism. Furthermore, in

the classic ICA, each colony within an empire is moving closer to the imperialist within

that empire. In contrast, in ICAwICA all colonies are given a free choice to move closer

to any of the imperialists of other empires (independence), as long as it improves the

country’s well-being (associated cost). Therefore, at each iteration, a colony 𝑘 has a

probability based on a uniform distribution (𝑟𝑎𝑛𝑑) of either move closer to their own

empire’s imperialist or to move closer to any other imperialist 𝑗, determined by 𝑖𝑅𝑎𝑡𝑒

(0-1.0). Moreover, this process is repeated Ỽ times for each colony to explore more

search space around its position in the form of local search. Pseudocode of the

ICAwICA is shown in Figure 29. The flowchart for both classic ICA and ICAwICA is

shown in Figure 28, with red indicating the changes.

4.2.3. Constrained assimilation

Classic ICA was first developed for continuous math’s problem with simple

assimilation processes [125], ICA has since been applied to multiple binary problems,

such as feature selection [199][200], content-based-image retrieval (CBIR) [201] and

single-dimensional 0-1 knapsack problems [202]. However, binary assimilation

approaches cannot always be extended to other discrete, non-binary problems.

Furthermore, most ICA discrete assimilation implementations follow simple genetic-

algorithm-like crossover operations, where the chromosomes are expected to be of

equal size [203] [204]. The proposed Constrained Assimilation (CA) process does not

require equal chromosome/solution size and is extendable to other constrained

discrete problems. CA exploits the fact that two solutions cannot always be merged

without violating constraints. Therefore, CA builds a new incomplete solution from the

two donor solutions/countries (colony and imperialist) according to the assimilation

rate and finishes the solution by a repair mechanism.

87

Figure 28. Flowchart of classic ICA [125] (to the left) and the proposed ICAwICA (on the right),
with red indicating the changes.

There are multiple ways to implement the solution repair mechanism - based on

heuristics, existing solution population, sequence-based [205] etc. The most

straightforward repair mechanism is - scanning through all possible entries and trying

to add them to the solution without violating constraints (used in the OptPlatform’s ICA

implementation). Furthermore, this incomplete solution repair enables diversity without

an explicit revolution operator like classic ICA. Although more computationally

expensive than simple assimilation, this approach has potential for broad applications

and generalisation. It does not depend on two solutions having the same size or

problem-specific assimilation or repair mechanism. Furthermore, CA's generated

solutions are always within constraints and do not require any penalty cost definition

at evaluation.

88

Figure 29. The pseudocode for new assimilation and local search method for ICAwICA

A CA example is provided in Figure 30. Both colony and imperialist are assimilated,

with bold integer values corresponding to solution entries (item indices in MKP case,

or depo indices in MDVRP case) are passed to the new country, determined by

assimilation rate. In this simple example, a 50% assimilation rate of 𝑁𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 is used

to build the new country. Due to constraints, not all solution entries can be added to

the new country and hence the solution is in an incomplete state. The repair process

iterates over all possible solution entries and fills the gaps while complying with

constraints. Let us consider in detail the assimilation process shown in Figure 30. The

colony solution is shown in blue and the imperialist in yellow, with the newly generated

1. Initialize ICA parameters.
2. Create the population randomly.
3. Initialize empires:
 for 𝑖 = 1 to 𝑁𝑝𝑜𝑝

Compute the cost function 𝐶𝑖;

Sort the computed cost 𝐶𝑖 in descending order for the entire population;

Select 𝑁𝑖𝑚𝑝 out of 𝑁𝑝𝑜𝑝;

Normalize the cost of each imperialist 𝐶𝑛;

Calculate the normalized power of each imperialist 𝑃𝑂𝑛;

Assign remaining countries 𝑁𝑐𝑜𝑙 to the imperialists;
 end loop
do
 4. Assimilation and local search process for ICAwICA:

 for k = 1 to 𝑁𝑐𝑜𝑙

 for 𝑙 = 1 to Ỽ
 if 𝑟𝑎𝑛𝑑 < 𝑖𝑅𝑎𝑡𝑒

 for 𝑗 = 1 to 𝑁𝑖𝑚𝑝

 assimilate colony 𝑘 closer to 𝑗
 if cost for new position is less than original position
 keep assimilated position

 else
 discard and move back to original position

 endif
 end loop
 else
 assimilate colony 𝑘 closer to empire’s Imperialist
 endif
 end loop
 end loop
 for 𝑗 = 1 to 𝑁𝑖𝑚𝑝

if the cost of any colony is less than cost of imperialist
 exchange the position of the colony and imperialist;
endif

 end loop
 Pick the weakest colony (colonies) from the weakest empire and assign it to the
 empire with highest probability to possess it;
 5. Elimination process:
 If there is imperialist with no colonies

eliminate the imperialist;
 endif
while stopping condition not met;

89

country 𝑛𝑐, new entries (index 1 and index 3) were introduced to the solution after

repair that were not in any of the donor countries

Figure 30. Imperialist and colony constrained assimilation process with solution repair. With
integer values corresponding to solution entries (item indices in MKP case or depo indices in
MDVRP case).

4.2.4. ICAwICA solution encoding for MKP and MDVRP

The ICAwICA is generic and does not rely on any specific solution structure or

problem-specific assimilation operators and, therefore, can be applied to various kinds

of discrete optimisation problems. Two different types of combinatorial problems have

been explored – a subset selection problem in MKP and a routing problem in MDVRP.

In the MKP case, each element in the solution represents an item index that has been

added in the knapsacks. Thus, the performance of the solution is evaluated by iterating

over all entries and matching indices to the item profits.

For the MDVRP, first, customer-depot relationships are encoded as a country. Each

country is represented as a vector of the size of the number of customers, where each

customer is assigned a depot index. An example of new country creation via

assimilation for the MDVRP is shown in Figure 31, where the initial colony has

encoded the following grouping: Customer 2 and 8 will be routed from Depot 1;

Customers 1, 3 and 6 will be routed from Depot 2; Customers 5,7,9 and 10 will be

routed from Depot 3, and finally, Customer 4 will be routed from Depot 4. Each time a

new country is created as part of the ICAwICA assimilation process, capacity

constraints are considered such that the total demand for all customers assigned to

the depot does not exceed the maximum capacity available across all vehicles to the

given depot.

90

Figure 31. Customer assignment to depots in MDVRP using ICAwICA assimilation. Where
C1-C10 are customer indices and the encoded integers are depot indices that are assigned
to a given customer, with bold representing assimilated changes.

Furthermore, the example in Figure 31 also shows an assimilation process for the

colony and imperialist; considers ten customers that are grouped into four depots. Bold

type represents assimilated changes. For example, Customer 2 (C2) demand was

previously supplied by Depot 1 but now is supplied by Depot 4. Similarly, Customer 6

(C6) demand was previously supplied by Depot 2 but now is supplied by Depot 3.

Finally, solution performance is evaluated by first grouping all depot indices in the

solution, then constructing routes based on the sequence it was added to the solution

(from left to right). Thus, in the example in Figure 31, the new country solution would

be Depot 1 supplying customer 8, Depot 2 supplying customers 1 and 3, Depot 3

supplying customer sequence 5-6-7-9-10, and finally, Depot 4 supplying customers 2

and 4.

4.3. Experiments

In this section, the proposed ICAwICA algorithm performance is compared to

classic ICA. Next, the dynamics of independence operator are analysed. Finally,

extensive computational experiments on classical MKP and MDVRP benchmark

instances are conducted and compared to the current state-of-the-art algorithms.

4.3.1. Benchmark instances

Multidimensional knapsack problem instances were chosen because of their

availability, ease of implementation and the frequent use as benchmarks across the

research community. ICAwICA was tested across 41 accessible benchmark

instances, all available from the compiled library in [189].

The simplest benchmarks are derived from the WEISH dataset, containing 30

problems with the number of items ranging from 30 to 90 and with five knapsacks

91

each. Furthermore, to explore the performance of the proposed algorithm across a

range of datasets, large MKP instances, generated by Glover and Kochenberger (GK)

[188], were also selected. The GK dataset contains 11 instances with the number of

items ranging from 100 to 2500 with 15 to 100 knapsacks each and provides a broad

spectrum of complexity.

Moreover, the ICAwICA was also tested on the 23 Cordeau’s MDVRP benchmark

instances obtained from [206]. The benchmark dataset offers a wide range of

complexity, from the number of customers ranging from 50 to 360 and the number of

depots from 2 to 9; and specifies the current Best-Known Solution (BKS).

4.3.2. Experimental setup

The proposed ICAwICA algorithm was implemented in C++ using the Visual Studio

2019 (v142) compiler. The computation was performed on a workstation with AMD

Threadripper 2990WX processor (3.0 GHz, 64GB RAM), running Windows 10 Pro

operating system.

Like classic ICA, ICAwICA also has multiple algorithmic hyper-parameters that were

empirically set and are as follows for all tested instances unless specified otherwise:

MKP - total number of countries 𝑁𝑝𝑜𝑝 is set to 4096 for all instances with the number

of items 𝑛 < 500 and value of 512 for all instances with 𝑛 ≥ 500. Out of all countries,

40% are initialised as imperialists 𝑁𝑖𝑚𝑝. Local iterations Ỽ are set to 3. Assimilation

rate θ set to 0.5; the coefficient associated with an average power of the empire’s

colonies 𝜁 set to 0.05; 𝑖𝑅𝑎𝑡𝑒 set to 0.7 (70% probability of independence). Due to

constrained computing resources, limited time and a large problem set, termination

criteria of stagnation were implemented, where the search terminates if no

improvement has been made to the best solution for ε number of iterations. For

problem instances with 𝑛 < 500, ε is set to 0.1𝑛, and for MKP instances with 𝑛 ≥ 500,

𝜀 = 𝑛.

MDVRP - the total number of countries 𝑁𝑝𝑜𝑝 is set to 4096 for all instances. Out of

all countries, 40% are initialised as imperialists 𝑁𝑖𝑚𝑝. Local iterations Ỽ are set to 16.

Assimilation rate θ set to 0.05; coefficient associated with an average power of

empire’s colonies 𝜁 set to 0.05; 𝑖 set to 0.7 (70% probability of independence). Finally,

stagnation iterations ε set to 10.

92

Due to the stochastic nature of the algorithm, 30 independent runs were computed

for each problem instance. Best and average solution performance, as well as the

average time in seconds 𝑡𝑎𝑣𝑔(𝑠) (average time in minutes 𝑡𝑎𝑣𝑔(𝑚)) required to reach

such performance value, were recorded for all problem instances.

4.3.3. Comparison to classic ICA

Novel ICAwICA was first compared to classic ICA based on [125]. Three problem

instances from both MKP (gk01, gk03, gk06) and MDVRP (p01, p03, p06) were

selected for comparison, and the results are summarised in Table 7.

Table 7. Comparison of best and average scores between Classic ICA and ICAwICA across
six test problem instances. Average and best out of 10 runs with standard deviation (std), BKS
– Best Known Solution.

Dataset
 Classic ICA ICAwICA

Goal
BKS

Averag
e

Best Std
Averag

e
Best Std

MKP-gk01 Max 3766 3753.8 3766 8.11 3766.0 3766 0.00
MKP-gk03 Max 5656 5631.5 5638 5.12 5649.2 5650 0.90
MKP-gk06 Max 7680 7629.7 7639 8.16 7669.7 7671 1.19

MDVRP-p01 Min 576.87 587.20 580.70 8.92 576.87 576.87 0.00
MDVRP-p03 Min 641.19 658.10 645.16 7.55 655.29 641.19 3.25
MDVRP-p06 Min 876.5 893.80 885.84 10.83 887.71 876.50 3.93

Results show a significant improvement in the best scores obtained - ICAwICA

reaching best-known solution (BKS) in four out of six instances, while classic ICA only

once. Furthermore, average scores are consistently higher, and the standard deviation

suggests that ICAwICA results are also more consistent. It is worth noting that MKP

objective is to maximise profit, while MDVRP is to minimise the total route cost.

Therefore, the average error gap (see equation (37)) against the best-known solution

is used for easier comparisons and are summarised in Figure 32. The average error

for ICAwICA is consistently smaller than classic ICA across all six test instances.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 𝑔𝑎𝑝 (%) =
1

𝑛
∑

𝑜𝑖 − 𝑝𝑖

𝑜𝑖

𝑛

𝑖=1

∗ 100% (37)

where 𝑜𝑖 is the optimal score for the instance 𝑖, and 𝑝𝑖 – achieved best or average

score on the instance.

93

Figure 32. Comparison between Classic ICA [125] and ICAwICA for six test problem
instances. Expressed as average error percentage to the best know solution. The graph
demonstrates ICAwICA achieves average error of 0.62% while Classic ICA achieves 1.3%,
relative improvement of over two times.

4.3.4. Sensitivity analysis of independence rate

The newly implemented mechanism of colony independence was tested by altering

the 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 parameter from 0 to 1, with 0.2 increments and the average

error gap (see equation (37)) as well as execution time 𝑡𝑎𝑣𝑔(𝑠) recorded. The

experimental results are summarised in Table 8.

Table 8. Sensitivity analysis of Independence rate as an average error per cent gap for six
test problem instances. With 0 representing ICA with no independence operator, 𝑡𝑎𝑣𝑔(𝑠)

representing the average time in seconds to converge to the best solution, BKS – Best Known
Solution

Dataset

BKS
Independence rate

Goal 0 0.2 0.4 0.6 0.8 1

MKP-gk01 Max 3766 3.02% 0.00% 0.00% 0.00% 0.00% 0.00%
MKP-gk03 Max 5656 2.75% 0.13% 0.12% 0.12% 0.12% 0.12%
MKP-gk06 Max 7680 2.36% 0.34% 0.20% 0.14% 0.12% 0.13%

MDVRP-p01 Min 576.87 4.79% 0.61% 0.04% 0.00% 0.00% 0.00%
MDVRP-p03 Min 641.19 10.98% 3.07% 2.67% 2.12% 2.12% 2.17%
MDVRP-p06 Min 876.5 7.79% 2.72% 1.53% 1.25% 1.36% 1.46%

 Average error 5.28% 1.14% 0.76% 0.61% 0.62% 0.65%
 𝑡𝑎𝑣𝑔(𝑠) 40 570 836 1033 1315 1524

Results in Table 8 show a definite improvement in the introduction of the

Independence operator within ICA. Compared to ICA with no independence

(independence rate of 0) and ICA with independence rate higher than 0, the average

error across all test instances reduced by a factor of 4.6 (5.28% and 1.14%

respectively). However, there is also a time penalty associated with doing the extra

0.3% 0.4%
0.7%

1.8%

2.6%

2.0%

0.0% 0.1% 0.1% 0.0%

2.2%

1.3%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

MKP-gk01 MKP-gk03 MKP-gk06 MDVRP-p01 MDVRP-p03 MDVRP-p06

A
ve

ra
ge

 e
rr

o
r

Classic ICA vs ICAwICA

Classic ICA ICAwICA

94

work of assimilating to all imperialists compared to a single imperialist, with an average

time to reach the final solution increasing from seconds to minutes. The best average

error was achieved with the Independence rate between 0.6 and 0.8, and therefore

independence rate at 0.7 was adopted for use throughout all further experiments.

4.3.5. Comparison to the state-of-the-art metaheuristics for MKP

To evaluate the proposed ICAwICA algorithm's performance, 12 state-of-the-art

population-based/heuristic algorithms were compared across 41 common MKP

instances.

First, a comparison was performed on simple WEISH instances, where most

algorithms in the literature can achieve the optimum solution. Therefore, performance

is measured in terms of the success rate (how many times the algorithm was able to

achieve optimum) or in terms of the average error percentage error (see equation (37))

across all instances. For the comparison, the six best-performing algorithms were

selected from the literature, which includes Ant Colony Optimization with Dynamic

impact (ACOwD) described in [207], Improved Whale Optimization Algorithm (IWOA)

[208], two variations of binary differential search TE-BDS and TR-BDS proposed in

[209], and two implementations of Particle Swarm Optimization (PSO) with self-

adaptive check and repair - SACRO-CBPSOTVAC and SACRO-BPSOTVAC [210].

Figure 33. The average error of the mean profit across all WEISH (1-30) instances. Average
of 30 independent runs.

Results in Figure 33 show that all compared algorithms can reach the optimal

solution in most cases. However, only 2 of them ICAwICA and ACOwD can do it

0.007

0.005

0.023

0.07

0.002

0

0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

SACRO-BPSOTVAC

SACRO-CBPSOTVAC

TR-BDS

TE-BDS

IWOA

ACOwD

ICAwICA (this work)

Average error of mean profit on WEISH1-30 instances

95

consistently across 30 runs with 100% success rate. ICAwICA achieved the optimal

solution every time (100% success rate), at the first iteration, and on average took 1.5

seconds.

Next, large Glover and Kochenberger (GK) instances were solved and compared

to eight heuristic algorithms from the literature in terms of average error per cent (see

equation (37)) gap against best-known profit (BKS) from the literature. Compared

algorithms include ACOwD, IWOA, Two-phase tabu-evolutionary algorithm (TPTEA)

[211], harmony search based algorithm NBHS2 proposed in [212], an evolutionary

algorithm with logic gates LGEA [213], shuffled complex evolution algorithm SCEcr

[214], hyper-heuristic inspired CF-LAS [215] and BCSA – binary cuckoo search

algorithm [216].

Table 9. Algorithm comparison across large Glover and Kochenberger (GK) knapsack
instances. Results are expressed as average error percentage gap % against best-known
profit. Colour coded from the best gap (green) to worst gap (red) for any given dataset. With
dash (-) representing results that are not available. BKS – Best Known Solution, Std –
Standard Deviation of the absolute value.

Data
set

Problem
size

(n x m) BKS

ACOwD
[207]

NBHS2
[212]

IWOA
[208]

LGEA
[213]

TPTEA
[211]

SCEcr
[214]

CF-
LAS

[215]

BCSA
[216]

ICAwICA (this work)

Average Best Std 𝒕𝒂𝒗𝒈(𝒔)

gk01 100x15 3766 0.14% 0.29% 0.68% 0.66% 0.00% 0.76% 0.31% 0.23% 0.00% 0.00% 0.00 16.8
gk02 100x25 3958 0.05% 0.30% - 0.55% 0.00% 1.06% 0.36% 0.27% 0.05% 0.03% 0.99 19.4
gk03 150x25 5656 0.26% 0.55% 0.85% 0.97% 0.06% 0.91% 0.37% 0.17% 0.12% 0.11% 0.90 62.5
gk04 150x50 5767 0.17% 0.45% 0.89% 1.02% 0.01% 1.48% 0.45% 0.15% 0.07% 0.05% 0.93 84.4
gk05 200x25 7561 0.21% 0.44% 0.94% 1.32% 0.01% 0.73% 0.24% 0.18% 0.09% 0.04% 1.54 145.7
gk06 200x50 7680 0.26% 0.52% 0.77% 1.05% 0.08% 1.14% 0.46% 3.54% 0.13% 0.12% 1.19 247.7
gk07 500x25 19221 0.20% 0.26% 1.09% 1.08% 0.04% 0.46% 0.13% 0.70% 0.11% 0.07% 5.89 280.3
gk08 500x50 18806 0.22% 0.56% 0.85% - 0.06% 0.67% 0.20% 0.77% 0.12% 0.08% 2.98 357.8
gk09 1500x25 58091 0.18% 0.27% 1.54% 1.08% 0.02% 1.78% 1.77% 0.98% 0.14% 0.09% 14.61 1611.0
gk10 1500x50 57295 0.20% 0.54% 0.80% 1.01% 0.04% 0.36% 0.10% - 0.18% 0.12% 13.67 2219.1
gk11 2500x100 95238 0.32% 0.64% 1.07% 1.13% 0.07% 0.30% 0.09% - 0.31% 0.24% 61.54 7200.6

Table 9 is colour coded from red (worst average error %) to the best average error

per cent, in green, for each problem instance with dashes (-) representing scores that

were not available. Compared to 8 other algorithms in the literature, ICAwICA shows

competitive results, coming in second place for gk01-gk09 and in top three for gk10

and in fourth place for the largest gk11 instance. The best achieved error percentage

along with the average time 𝑡𝑎𝑣𝑔(𝑠) and standard deviation (Std) have been included

for reference. The proposed algorithm performs well on medium to large MKP

instances, however, struggles on very large instances (gk11). Further investigation

needs to be conducted to improve performance on the most complex benchmarks.

96

4.3.6. Comparison to the state-of-the-art metaheuristics for

MDVRP

The ICAwICA algorithm was next evaluated for the MDVRP compared to other

state-of-the-art approaches. Although many algorithms have been applied to the

MDVRP, the most recent literature techniques were selected and summarised in

Table 10. A cooperative coevolutionary algorithm called CoES [217], Improved Ant

Colony Optimization (IACO) [180], Tabu Search Heuristic (TSH) in [218], as well as

hybrid Ant Colony with simulated annealing and local search algorithm called ACO+

[172] were selected for the comparison. The ICAwICA algorithm was also compared

to the best-known solutions (BKS) in [206]; it is worth mentioning that these solutions

are outdated as better results are reported in the literature. Nevertheless, the best-

known solutions of [206] are included for reference.

Compared with other algorithms in Table 10, ICAwICA obtained the same best

score in 11 out of 23 instances and outperformed the four rival algorithms on p08

instance. On average error percentage in respect to BKS, ICAwICA fell short

compared to ACO+ (0.13% vs 0.28% error), however, outperformed other compared

approaches.

97

Table 10. Best solution obtained by ICAwICA compared to other algorithms in the literature
across Cordeau’s MDVRP benchmark instances and the best-known solution (BKS). The best
scores represented in bold, N representing the number of customers, M – the number of
depots. Average error percentage calculated using BKS as a reference, 𝑡𝑎𝑣𝑔(𝑚) – average

time to converge to a solution, in minutes, Std – Standard Deviation

Data
set N M BKS

CoES,
2016
[217]

IACO,
2017
[180]

TSH,
2019
[218]

ACO+,
2020
[172]

ICAwICA (this work)

Best Average Std 𝒕𝒂𝒗𝒈(𝒎)

p01 50 4 576.87 576.87 576.87 576.87 576.87 576.87 576.87 0.00 4.2
p02 50 4 473.53 473.87 473.53 473.53 473.53 473.53 481.24 3.00 6.2
p03 75 5 641.19 641.19 641.19 641.19 641.19 641.19 655.29 3.25 7.9
p04 100 2 1001.59 1007.40 1001.49 1008.47 1003.52 1006.66 1015.11 3.97 12.4
p05 100 2 750.03 750.11 750.26 758.87 751.90 753.40 789.15 4.39 20.3
p06 100 3 876.50 876.50 876.50 881.76 881.60 876.50 887.71 3.93 14.7
p07 100 4 885.80 888.41 885.69 896.96 884.66 895.53 916.79 8.12 11.5
p08 249 2 4420.94 4445.37 4482.44 4430.36 4428.00 4420.94 4493.66 17.87 65.2
p09 249 3 3900.22 3895.70 3912.23 3971.59 3897.33 3900.22 3975.29 23.52 67.6
p10 249 4 3663.02 3666.35 3663.00 3779.10 3657.03 3666.35 3696.71 10.88 82.2
p11 249 5 3554.18 3569.68 3648.95 3652.01 3549.99 3554.18 3604.88 22.75 71.0
p12 80 2 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 1359.49 4.88 10.0
p13 80 2 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 1320.79 0.82 8.9
p14 80 2 1360.12 1360.12 1365.68 1365.69 1360.12 1365.68 1394.01 6.71 6.7
p15 160 4 2505.42 2526.06 2505.29 2552.79 2505.42 2565.67 2644.14 6.13 25.5
p16 160 4 2572.23 2572.23 2587.87 2572.23 2572.23 2572.23 2577.66 1.6 16.0
p17 160 4 2709.09 2709.09 2708.99 2731.37 2709.09 2709.09 2742.93 5.51 12.3
p18 240 6 3702.85 3771.35 3781.04 3802.29 3710.49 3710.49 3756.70 20.83 73.2
p19 240 6 3827.06 3827.06 3827.06 3831.71 3827.06 3827.06 3857.36 5.21 42.3
p20 240 6 4058.07 4058.07 4058.07 4097.06 4091.78 4058.07 4134.88 21.06 73.6
p21 360 9 5474.84 5608.26 5474.84 5617.53 5505.39 5495.54 5564.61 24.90 81.9
p22 360 9 5702.16 5702.16 5702.06 5706.81 5702.16 5702.16 5753.71 25.14 86.0
p23 360 9 6095.46 6129.99 6095.46 6145.58 6140.53 6145.58 6205.46 24.05 83.7

Average error gap 0.33% 0.33% 0.96% 0.13% 0.28%

4.4. Summary

This chapter proposed a novel generic Imperialist Competitive Algorithm (ICA)

based algorithm for solving constrained combinatorial problems called ICA with

Independence and Constrained Assimilation (ICAwICA). The algorithm implements a

new Independence operator for ICA, where each of the colonies has a free will to

choose between assimilating to its imperialist or any other imperialist in the population.

Additionally, a generic constrained assimilation process is proposed as part of the local

search. The constrained assimilation exploits the fact that two solutions cannot be

merged without violating constraints. Furthermore, it combines the classic ICA

assimilation and revolution operators in one, in a generic manner.

To evaluate the performance and versatility of the ICAwICA algorithm, two different

kinds of combinatorial benchmark problems were selected – subset selection and

routing, Multiple Knapsack Problem (MKP) and Multiple Depot Vehicle Routing

98

Problem (MDVRP), respectively. First, the ICAwICA was compared to classic ICA, and

results showed a definite improvement in all benchmark test instances. Next, the

sensitivity of the Independence operator was (evaluated?). Analysis shows that

independence probability of greater than zero improves the results at the expense of

computing time. Finally, the ICAwICA was compared to the current state-of-the-art

population-based algorithms for both MKP and MDVRP. The proposed algorithm

outperformed the majority of the competition on both types of problems across multiple

instances, indicating the generic, universal nature of the ICAwICA within the

OptPlatform.

Generic metaheuristic support is an important aspect of any MOF, as it allows the

user to focus on the problem specifics and modelling and avoid spending time

understanding the suitability of the underlying metaheuristics algorithms. Instead, the

most suitable and efficient algorithm selection is performed in the background

automatically. An essential aspect of metaheuristic efficiency is how well they are

utilising the available computing resources. This is the focus of the next chapter,

where the efficiency of ACO is evaluated across multiple hardware platforms.

99

5. ACCELERATING SUPPLY CHAINS WITH

ANT COLONY OPTIMIZATION ACROSS A

RANGE OF HARDWARE SOLUTIONS

This chapter is based on the results published in [4].

As discussed in section 2.2.1, parallelism and scaling of metaheuristics are

important aspects of any MOF. This is especially true for large real-world models that

are computationally intensive. This chapter explores how Ant Colony Algorithm scales

within the platform for solving global supply chain (described in section 2.3.2.2) and

compares the dynamics to a simpler benchmark problem.

Ant Colony algorithm has been applied to various optimisation problems; however,

most of the previous work on scaling and parallelism focuses on Travelling Salesman

Problems (TSPs). Although useful for benchmarks and new idea comparison, the

algorithmic dynamics do not always transfer to complex real-life problems, where

additional meta-data is required during solution construction. This chapter explores

how the benchmark performance differs from real-world problems in the context of Ant

Colony Optimization (ACO) and demonstrates that in order to generalise the findings,

the algorithms have to be tested on both standard benchmarks and real-world

applications.

The chapter starts by analysis of the various hardware architectures and the related

work in the domain of ACO scaling. Next, a brief overview of the technology used is

provided in section 5.2. The two parallel ACO architectures – Independent Ant

Colonies (IAC) and Parallel Ants (PA) are described in section 5.3 and an in-depth

empirical study provided in section 5.4.

5.1. Motivation and related work

Supply chain optimisation has become an integral part of any global company with

a complex manufacturing and distribution network. For many companies, inefficient

distribution plan can make a significant difference to the bottom line. Modelling a

100

complete distribution network from the initial materials to the delivery to the customer

is very computationally intensive. With increasing supply chain modelling complexity

in ever-changing global geo-political environment, fast adaptability is an edge. A

company can model the impact of currency exchange rate changes, import tax policy

reforms, oil price fluctuations and political events such as Brexit, Covid-19 before they

happen. Such modelling requires fast optimisation algorithms.

Mixed Integer Linear Programming (MILP) tools such as Cplex are commonly used

to optimise various supply chain networks [219]. Although MILP tools can obtain an

optimum solution for many linear models, not all real-world supply chain models are

linear. Furthermore, MILP is computationally expensive and on large instances can

fail to produce an optimal solution. For that reason, many alternative algorithmic

approaches (heuristics, meta-heuristics, fuzzy methods) have been explored to solve

large-complex SC models [219]. One of these algorithms is the Ant Colony

Optimization (ACO), which can be well mapped to real-world problems such as routing

[220] and scheduling [221]. Supply Chain Optimization Problem (SCOP) includes both,

finding the best route to ship a specific order and finding the most optimal time to ship

it, such that it reaches expected customer satisfaction while minimising the total cost

occurred. Although other metaheuristics algorithms exist in the literature for solving

SCOPs, such as Genetic Algorithm (GA) [222][223] and Simulated Annealing (SA)

[224][225], ACO was chosen due to the long history of the algorithm applied to various

vehicle routing [226][227] and supply chain [228][229] problems with great solution

quality and speed. Also, a recent study in [230] concluded that compared to GA and

SA, the ACO performs the best for routing problems such as the Travelling Salesman

Problem (TSP).

Researchers in [231] compared an industrial optimisation-based tool – IBM ILOG

Cplex with their proposed ACO algorithm. It was concluded that the proposed

algorithm covered 94% of optimal solutions on small problems and 88% for large-size

problems while consuming significantly less computation time. Similarly, [232]

compared ACO and Cplex performance on multi-product and multi-period Inventory

Routing Problem. On small instances, ACO reached 95% of the optimal solution while

on large instances performed better than time-constrained Cplex solver. Furthermore,

ACO implementations of Closed-Loop Supply Chain (CLSC) have been proposed;

CLSC contains two parts of the supply chain – forward supply and reverse/return. [233]

solved CLSC models, where the ACO implementation outperformed commercial MILP

101

(Cplex) on nonlinear instances and obtained 98% optimal solution with 40% less

computation time on linear instances.

Academic literature suggests that Graphical Processing Units (GPUs) are very

suitable for solving benchmark routing problems such as Travelling Salesman Problem

(TSP), with speedups of up to 60x [234] and even 172x [235] when compared to the

sequential CPU implementation. This chapter aims to explore if the same ACO

architectures that are so well suited for TSP can be applied for a real-world supply

chain optimisation problem. Furthermore, investigate what hardware architectures are

the best suited for the supply chain problem solved.

5.1.1. Parallel Ant Colony Optimization

Since the introduction of ACO in 1992, numerous ACO algorithms have been

applied to many different problems, and many different parallel architectures have

been explored previously. [236] specifies 5 of such architectures:

• Parallel Independent Ant Colonies – each ant colony develop their solutions in

parallel without any communication in-between;

• Parallel Interacting Ant Colonies – each colony creates a solution in parallel

and some information is shared between the colonies;

• Parallel Ants – each ant builds solution independently, then all the resulting

pheromones are shared for the next iteration;

• Parallel Evaluation of Solution Elements – for problems where fitness function

calculations take considerably more time than the solution creation;

• Parallel Combination of Ants and Evaluation of Solution Elements – a

combination of any of the above.

Researchers have tried to exploit the parallelism offered from recent multi-core

CPUs [237], along with clusters of CPUs ([238][239]) and most recently GPUs [240]

and Intel’s many-core architectures such as Xeon Phi [241]. Breakdown of the

strategies and problems solved are shown in Table 11.

102

Table 11. ACO architecture and hardware configurations explored. LAC - Longest Common
Subsequence Problem, MKP - Multidimensional Knapsack Problem, TSP - Travelling
Salesman problem. IAC – Independent Ant Colonies, IntAC – Interactive Ant Colonies, PA –
Parallel Ants.

Platform
Task

parallelism,
IAC

Task
parallelism,

IntAC

Task
parallelism,

PA

Data
parallelism,

PA

CPU Scheduling
[242]

Scheduling [242] TSP [243] [244]
Scheduling [242]

Supply chain
[this work]

TSP [245]
Supply chain
[this work]

GPU n/a n/a Protein folding [246]
TSP [243]
MKP [247]
LAC [248]

TSP [245][249][250]
Edge detection [251]

Supply chain
[this work]

CPU cluster Scheduling
[252]

TSP [236] TSP [239] n/a

Xeon Phi n/a n/a Supply chain
[this work]

TSP [253] [254] [255]
Supply chain
[this work]

During the search, an Ant has to keep track of the existing state meta-data, for instance

Travelling Salesman Problem only need to keep the record of what cities have been

visited as part of problem constraint. However, real-life problems have many more

constraints and therefore require a lot of meta-data storage during solution creation.

This chapter explores such a problem in the supply chain domain. Table 12 shows the

most common problems solved by ACO and their corresponding associated

constraints / meta-data required during solution creation.

Table 12. Meta-data required during solution creation based on problem type

Problem

Meta-data
required during

solution
creation Comment

Scheduling 2 Resource and precedence constraints

TSP 1 Has the city been visited

Protein Folding 1 Has the sequence been visited

MKP 1 Total weight per knapsack

LAC 1 Tracking of the current position in a string

Edge detection 1 Has edge already been visited

Supply chain
(this work)

3
Capacity, daily order, freight weight
constraints

103

5.1.2. CPU

Parallel ACO CPU architectures have been applied to various tasks – for example,

[242] applied ACO for supply chain scheduling problem in mining domain. Authors

managed to reduce the execution time from one hour (serial) to around 7 minutes.

Both [256] and [257] used ACO for image edge detection with varying results, [256]

achieved a speedup of 3-5 times while [257] managed to reduce sequential runtime

by 30%. Most commonly, ACO has been applied to the Travelling Salesman Problem

(TSP) benchmarks. For instance, [244] proposed an ACO approach with randomly

synchronised ants; the strategy showed a faster convergence than other TSP

approaches. Moreover, authors in [245] proposed a new multi-core Single Instruction

Multiple Data (SIMD) model for solving TSPs. Similarly, both [258] and [259] tries to

solve large instances of TSP (up to 200k and 20k cities, respectively) where the

architectures are limited to the size of the pheromone matrix. [259] discusses such

limitations and proposes a new pheromone sharing for local search – effective

heuristics ACO (ESACO), which was able to compute TSP instances of 20k. In

contrast, authors in [258] eliminate the need for pheromone matrix and store only the

best solutions similar to the Population ACO. Furthermore, researchers implement a

Partial Ant, also known as the cunning ant, where ant takes an existing partial solution

and builds on top of it. Speedups of as much as 1200x are achieved compared to

sequential Population ACO.

Generally, CPU parallel architecture implementations come down to three

programming approaches - Message Passing Interface (MPI) parallelism, OpenMP

parallelism [260] and data parallelism with the vectorisation of SIMD. For instance,

[261] explored both master-slave and coarse-grained strategies for ACO

parallelisation using MPI. It was concluded that fine-grained master-slave policy

performed the best. [262] used MPI with ACO to accelerate Maximum Weight Clique

Problem (MWCP). The proposed algorithm was comparable to the ones in literature

and outperformed Cplex solver in both – time and performance. Moreover, authors in

[252] implemented parallel ACO for solving Flow shop scheduling problem with

restrictions using MPI. Compared to the sequential version of the algorithm, 93 node

cluster achieved a speedup of 16x. [263] compared ACO parallel implementation on

MPI and OpenMP on small vector estimation problem. It was found that maximum

speedup of OpenMP was 24x while MPI – 16x. Furthermore, [245] explored the multi-

104

core SIMD CPU with OpenCL and compared it to the performance of the GPU. It was

found that optimised parallel CPU-SIMD version can achieve similar solution quality

and computation time than the state of art GPU implementation solving TSP.

5.1.3. Xeon Phi

Intel’s Xeon Phi Many Integrated Core (MIC) architecture offers many cores on the

CPU (60-72 cores per node) while offering lower clock frequency. Few researchers

have had the opportunity to research ACO on the Xeon Phi architecture. For instance,

[253] showed how utilising L1 and L2 cache on Xeon Phi coprocessor allowed a

speedup of 42x solving TSP compared to sequential execution. Due to the nature of

SIMD features such as AVX-512 on Xeon Phi, researchers in both [254] and [255]

proposed a vectorisation model for roulette wheel selection in TSP. In the case of

[255], a 16.6x speedup was achieved compared to sequential execution. To the best

of the author's knowledge, Xeon Phi and ACO parallelism have not been explored to

any other problem except TSP.

5.1.4. GPUs

General Purpose GPU (GPGPU) programming is a growing field in computer

science and machine learning. Many researchers have tried exploiting latest GPU

architectures to speed optimise the convergence of ACO. ACO GPU implementation

expands to many fields, such as edge detection ([251][264]), protein folding [246],

solving Multidimensional Knapsack Problems (MKPs) [247] and Vertex colouring

problems [265]. Moreover, researchers have used GPU implementations of ACO for

classification ([266] [267]) and scheduling ([268][269]) with various speedups

compared to the sequential execution.

However, the majority of publications are solving Travelling Salesman Problems

[270], although useful for benchmarking and comparison, little characteristics transfer

to other application areas. For instance, highly optimised local memory on GPU

(Compute Unified Device Architecture - CUDA) can significantly speed up TSP's

execution. However, when applied to real-life problems where additional restrictions

and metadata is required to build a solution, most of the data needs to be stored on

much slower global memory. In [244], the authors did extensive research comparing

server, desktop and laptop hardware solving TSP instances on both CUDA and

105

OpenCL. Although there are a couple of ACO OpenCL implementations on GPU

([248][271]), the majority of studies use CUDA. For instance, [272] implemented a

GPU-based ACO and achieved a speedup of 40x compared to sequential ACS.

Similarly, a 22x speedup was obtained in [273] solving pr1002 TSP and 44x on fnl4461

TSP instance in [274]. However, there are also various hybrid approaches for solving

TSP - [275] uses parallel Cultural ACO (pCACO) (a hybrid of genetic algorithm and

ACO). Research showed that pCACO outperformed sequential and parallel ACO

implementations in terms of solution quality. Furthermore, [276] solved TSP instances

using ACO-PSO hybrid and authors in [277] explored heterogeneous computing with

multiple GPU architectures for TSP. Finally, authors in [250] explored six different min-

max ACO architectures on GPU and their TSP performance.

Although task parallelism has potential for a speedup, [278] showed how data

parallelism (vectorisation) on GPU could achieve better performance by proposed

Independent Roulette wheel (I-Roulette). Same authors then expanded the I-Roulette

implementation in [249], where SS-Roulette wheel was introduced. SS-Roulette

stands for Scan and Stencil Roulette wheel. It mimics a sequential roulette wheel while

allowing higher throughput due to parallelism. First, the Tabu list is multiplied by the

probabilities and the results stored in a choice vector (scan). A stencil pattern is then

applied to the choice vector based on a random number to select an individual

(stencil). Further, [235] implements a G-Roulette – a grouped roulette wheel selection

based on I-Roulette, where cities in TSP selection are grouped in CUDA warps22. An

impressive speedup of 172x was achieved compared to the sequential counterpart.

5.1.5. Comparing hardware performances

Fairly comparing parallel performances of different hardware architectures is by no

means trivial. Most research compares a sequential CPU ACO implementation to one

of the parallel GPUs, which is hardly fair [279]. Also, unoptimized sequential code is

compared to highly optimised GPU code. Such comparisons result in misleading and

inflated speedups [240]. Furthermore, [248] argues that the parameter settings chosen

for the sequential implementation are often biased in favour of GPU. [240] proposes

criteria to calculate the real-world efficiency of two different hardware architectures by

22 Groups of 32 threads, are known as CUDA warps. For information refer to:

https://devblogs.nvidia.com/using-cuda-warp-level-primitives/

https://devblogs.nvidia.com/using-cuda-warp-level-primitives/

106

comparing the theoretical peak performances of GPU and CPU. While the proposed

method is more appropriate, it still does not account for real-life scenarios where

memory latency/speed, cache size, compilers and operating systems all play a role of

the final execution time. Therefore, two different systems with similar theoretical

floating-point operations per second running the same executable can have

significantly different execution times.

Furthermore, in some instances, only execution time or solution quality is

compared, rarely both are considered when analysing results.

5.2. Background

This section briefly covers the tools and hardware-specific languages used in the

implementation.

5.2.1. Parallel processing with OpenMP

OpenMP23 is a set of directives to a compiler that allows a programmer to create

parallel tasks as well as vectorisation (Single Instruction Multiple Data - SIMD) to

speed up execution of a program. A program containing parallel OpenMP directives

starts as a single thread. Once directive such as #pragma omp parallel is reached, the

main thread will create a thread pool and all methods within the #pragma region will

be executed in parallel by each thread in the thread group. Moreover, once the thread

reaches the end of the region, it will wait for all other threads to finish before dissolving

the thread group and only the main thread will continue.

Furthermore, OpenMP also supports nesting, meaning a thread in a thread-group

can create its own individual thread-group and become the master thread for the newly

created thread-group. However, thread-group creation and elimination can have

significant overhead and therefore, thread-group re-use is highly recommended [280].

Both omp parallel and omp simd directives are used in this study.

5.2.2. CUDA programming model

Compute Unified Device Architecture (CUDA) is a General-purpose computing

model on GPU developed by Nvidia in 2006. Since then, this proprietary framework

23 OpenMP API website and documentation https://www.openmp.org/

https://www.openmp.org/

107

has been utilised in the high-performance computing space via multiple Artificial

Intelligence (AI) and Machine Learning (ML) interfaces and libraries/APIs. CUDA

allows writing C programs that take advantage of any recent Nvidia GPU found in

laptops, workstations and data centres.

Each GPU contains multiple Streaming Multiprocessors (SM) that are designed to

execute hundreds of threads concurrently. To achieve that, CUDA implements SIMT

(Single Instruction Multiple-Threads) architecture, where instructions are pipelined for

instruction-level parallelism. Threads are grouped in sets of 32 – called warps. Each

warp executes one instruction at a time on each thread. Furthermore, CUDA threads

can access multiple memory spaces – global memory (large size, slower), texture

memory (read only), shared memory (shared across threads in the same SM, lower

latency) and local memory (limited set of registers within each thread, fastest)24.

A batch of threads is grouped into a thread-block. Multiple thread-blocks create a

grid of thread blocks. The programmer specifies the grid dimensionality at kernel

launch time, by providing the number of thread-blocks and the number of threads per

thread-block. Kernel launch fails if the program exceeds the hardware resource

boundaries.

5.2.3. Xeon Phi Knights Landing architecture

Knights Landing is a product code name for Intel’s second-generation Intel Xeon

Phi processors. First-generation of Xeon Phi, named Knights Corner, was a PCI-e

coprocessor card based on many Intel Atom processor cores and support for Vector

Processing Units (VPUs). The main advancement over Knights Corner was the

standalone processor that can boot stock operating systems, along with improved

power efficiency and vector performance. Furthermore, it also introduced a new high

bandwidth Multi-Channel DRAM (MCDRAM) memory. Xeon phi support for standard

x86 and x86-64 instructions, allows majority CPU compiled binaries to run without any

modification. Moreover, support for 512-bit Advanced Vector Extensions (AVX-512)

allows high throughput vector manipulations.

24 CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

108

Figure 34. Knights Landing tile with a larger processor die [281]

The Knights Landing cores are divided into tiles (typically between 32 and 36 tiles

in total). Each tile contains two processor cores and each core is connected to two

vector processing units (VPUs). Utilising AVX-512 and two VPUs, each core can

deliver 32 dual-precision (DP) or 64 single-precision (SP) operations each cycle [281].

Furthermore, each core supports up to four threads of execution – hyper threads

where instructions are pipelined.

Another introduction with the Knights Landing is the cluster modes and

MCDRAM/DRAM management. The processor offers three primary cluster modes25 –

All to all mode, Quadrant mode and Sub-Numa Cluster (SNC) mode and three memory

modes – cache mode, flat mode and hybrid mode. For a detailed description of the

Knights Landing Xeon Phi architecture refer to [281].

5.3. Methods and implementation

To solve the transportation network optimisation problem, an Ant Colony System

algorithm (first proposed by [106]) has been implemented. Because ACO is an iterative

algorithm, it does require sequential execution. Therefore, the most naïve approach

for parallel ACO is running multiple Independent Ant Colonies (IAC) with a unique seed

for the pseudo-random number generator for each colony (high-level pseudocode in

25 Detailed description of Xeon Phi memory and cache modes available at:

https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-
modes-configuration-and-use-cases

https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases
https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases

109

Figure 35). Due to the stochastic nature of solution creation, it is, therefore, more

probabilistic to reach a better solution than a single colony. This approach has the

advantage of low overhead as it requires no synchronisation between the parallel

instances during the search. At the very end of the search, the best solution of all

parallel colonies is chosen as the final solution. The main disadvantage of IAC is that

if one of the colonies finds a better solution, there is no way to improve all the other

colony’s fitness values.

Independent Ant Colonies (IAC)

1. for all parallel instances m parallel do

2. for all iterations iter do

3. for all local ants a do

4. local pheromone = global pheromone

5. construct solution

6. local pheromone update

7. end for

8. update global pheromone update based on the best solution

9. end for

10. end for

11. find the best solution across parallel instances

Figure 35. High-level pseudocode for Independent Ant Colonies (IAC) search algorithm

Alternatively, the ACO search algorithm could also be letting the artificial ant

colonies synchronise after every iteration. Therefore, all parallel instances are aware

of the best solution and can share pheromones accordingly. High-level pseudocode

of such Parallel Ant (PA) implementation is shown in Figure 36. The main advantage

of this architecture is that it allows efficient pheromone sharing, therefore converging

faster. However, there is a high risk of getting stuck into local optima as all ants start

iteration with the same pheromone matrix. Furthermore, synchronisation of all parallel

instances after every iteration is costly.

110

Parallel Ants (PA)

1. for all iterations iter do

2. for all parallel instances m parallel do

3. for all local ants a do

4. local pheromone = global pheromone

5. construct solution

6. local pheromone update

7. end for

8. end for

9. find the best solution across parallel instances

10. update global pheromone update based on the best solution

11. end for

Figure 36. High-level pseudocode Parallel Ants (PA) search algorithm

Both IAC and PA implementations are exploiting task parallelism – each parallel

instance (thread) gets a set of tasks to complete. An alternative approach would be to

look at data parallelism and vectorisation. In such a strategy, each thread processes

a specific section of the data and cooperatively complete the given task. Due to the

highly sequential parts of ACO, it would not be practical to only use vectorisation alone.

A more desirable path would be to implement vectorisation in conjugate to the task

parallelism. In case of CPU, task parallelism can be done by the threads, while

vectorisation is done by Vector Processing Units (VPUs) based on Advanced Vector

Extensions 2 (AVX2) or AVX512. Moreover, in the case of GPU and CUDA – task

parallelism would be done at a thread-block level while data parallelism would exploit

WARP structures. Parallel Ants with Vectorisation (PAwV) expands on the Parallel

Ants architecture by introducing data-parallelism of solution creation and an alternative

roulette wheel implementation – SS-Roulette, first proposed in [282]. Local search in

Figure 37 expands on the implementation in Figure 36 (lines 3-7). First, the

choiceMatrix is calculated by multiplying the probability of the route to be chosen with

the tabuList – a list of still available routes (where 0 represents not available and 1 –

route still can be selected). A random number between 0 and 1 is generated to

determine if a given route will be chosen based on exploitation or exploration. In the

case of exploitation, the choiceMatrix is reduced to obtain the maximum and the

corresponding route index. Furthermore, in the case of exploration, the route is chosen

based on the SS-Roulette wheel described by [282].

111

Parallel Ants with Vectorization (PAwV)

1. for all local ants a do

2. local pheromone = global pheromone

3. for all orders o do

4. for all routes r for order do SIMD

5. choiceMatrix[r] = probability[r] * tabuList[r]

6. end for

7. if rand() <= q0 then

8. SIMD reduce max (choiceMatrix)

9. else

10. SS-Roulette wheel [282]

11. end if

12. end for

13. local pheromone update

14. end for

Figure 37. High-level pseudocode for Parallel Ants with Vectorization (PAwV) search
algorithm. Expanding on Figure 36’ lines 3-7.

The main advantage of IAC is that it requires to synchronise between threads only

at the start of the search and at the very end of the search, therefore keeping

synchronisation overhead low. However, as there is no pheromone sharing, new better

solutions cannot be shared across the parallel instances. In contrast, both PA and

PAwV offers sharing of the best performing ants’ pheromone before the next iteration

begins. The potential drawback is that search might get stuck in local optimum as all

parallel instances share the same pheromone starting point. Furthermore, pheromone

sharing and therefore, synchronisation between threads is costly overhead, especially

if performed after each iteration. The PAwV architecture exploits the use of SIMD

instructions for further data parallelism inside the Ant’s solution construction. Table 13

summarises these architectural features.

Table 13. Comparison of Independent Ant Colonies (IAC), Parallel Ants (PA) and parallel Ants
with Vectorisation (PAwV) architectures.

 IAC PA PAwV
Synchronisation between threads during search No Yes Yes
Pheromone sharing between parallel instances No Yes Yes

Data parallelism No No Yes

112

5.4. Experiments

A sequential implementation of ACO described in [106] is adapted from [283] by

altering the heuristic information calculation for a given route – defined as a proportion

of order’s weight and the maximum weight gap (see equation (5)). Furthermore, the

ACO set of parameters were obtained from both work in [283] and empirical

experimentation. Table 14 summarises these algorithm hyperparameters. Moreover,

three different Parallel ACO architectures were implemented – Independent Ant

Colonies (IAC), Parallel Ants (PA) and Parallel Ants with Vectorisation (PAwV) in C++

and CUDA C.

Experiments were conducted on three different hardware configurations – CPU,

GPU and Xeon Phi.

Table 14. Ant Colony System set of parameters for all configurations and architectures

Parameter Value
Pheromone evaporation rate (rho) 0.1
Weight on pheromone information (α) 1
Weight on heuristic information (β) 8
Exploitation to exploration ratio (q0) 0.9

Hardware A - CPU

• CPU: AMD Ryzen™ Threadripper™ 1950X (16 cores, 32 threads), running at 3.85GHz.

• RAM: 64GB 2400MHz DDR4, 4 channels.

• OS: Windows 10 Pro, version 1703

• Toolchain: Intel C++ 18.0 toolset, Windows SDK version 8.1, x64

Hardware B - Xeon Phi

• CPU: Intel® Xeon Phi™ Processor 7250F (68 cores, 272 hyper-threads), running at

1.4GHz. Clustering mode set to Quadrant and memory mode set to Cache mode.

• RAM: 16GB on-chip MCDRAM and 96GB 2400MHz DDR4 ECC.

• OS: Windows Server 2016, version 1607

• Toolchain: Intel C++ 18.0 toolset, Windows SDK version 8.1, x64,

KMP_AFFINITY=scatter

Hardware C - GPU

• CPU/RAM/OS – see host Hardware A.

• GPUs: 4x Nvidia GTX1070, 8GB GDDR5 per GPU, 1.9GHz core, 4.1GHz memory. PCIe

with 16x/8x/16x/8x.

113

• Toolchain: Visual Studio v140 toolset, Windows SDK version 8.1, x64, CUDA 9.0,

compute_35, sm_35

Hardware architecture C shares the same host CPU as Hardware A.

5.4.1. Benchmarks

It is crucial to consider both elapsed time and solution quality when referring to

speed optimisation of optimisation algorithms. One could get superior convergence

within iteration but, take twice as long to compute. Similarly, one could claim that the

algorithm is much faster at completing a defined number of iterations but sacrifice

solution quality. Furthermore, there is little point comparing sequential execution of

one hardware platform to parallel implementation of another. A comparison should

take into consideration all platform strengths and weaknesses and set up the most

suitable configuration for a given platform.

To obtain a baseline fitness convergence rate at a various number of parallel

instances, a matrix of Iterations vs Parallel Instances are created for all architectures.

An example of such matrix for Parallel Ants is shown in Table 15. The matrix is derived

by averaging the resulting fitness obtained from 10 independent simulations with a

unique seed value for each given Parallel Instances configuration. All configurations

are run for x number of iterations, where x is based on the total number of solutions

explored and is a function of the number of Parallel Instances. The total number of

solutions explored is set to 768k. The number of Parallel Instances is varied by 2𝑛−1

with maximum n of 11, i.e. 1024 parallel instances. The best value after every 5

iterations is also recorded.

The number of iterations required to reach a specific solution quality for different

ACO architectures are computed in Table 16, expressed as proximity to the best-

known optimal solution. For the particular problem and dataset, the best solution is the

total cost of 2,701,367.58. There are six checkpoints of solution quality ranging from

99% to 99.9%. Although at first 1% gain might not seem significant, one must

remember that global supply chain costs are measured in hundreds of millions, and

even 1% savings do affect the bottom line. Empty fields (-) represent instances where

the ACO was not able to converge to given solution quality.

On all experiments, IAC was able to obtain solution quality only below 99.6%. In

contrast, PA and PA with 5 ant local search were able to achieve above 99.9% solution

114

quality with 512 and 1024 parallel instances. Furthermore, IAC did not see any

significant benefit of adding more parallel instances for 99% and 99.25% checkpoints.

Table 15. Parallel Ants fitness value baseline for different configurations of the number of
parallel instances and the number of iterations. Each Parallel Instance data point is an average
of 10 individual runs (table derived from 11*10 =110 runs). Expressed as a percentage of the
proximity of the best-known solution (2,701,367.58). Colour-coded from worse – in red, to the
best – in green.

In contrast, PA does benefit from the increase in the number of parallel instances.

For instance, PA can obtain the same solution quality in half the number of iterations

at 99% checkpoint (scaling of 2x for sequential vs 1024 parallel instances). Scaling of

633.7x in case of 99.5% checkpoint for sequential counterpart. Similarly, PA with 5 ant

sequential local search has the same dynamics, with scaling of 4x at 99% checkpoint

compared to sequential and 140x at 99.6% checkpoint compared to 2 and 1024

parallel instances. One can also note that at increased solution quality and a little

number of parallel instances, PA with 5 ant local search also offers improved efficiency

in terms of total solutions explored. For example, at the 99.5% checkpoint with 2

parallel instances, PA takes 2590 iterations, while PA with 5 ant local search only

115

requires 65 (decrease of 40x iterations or 8x total solutions explored). However, in

most instances, PA without any local search is more efficient.

Table 16. The number of iterations required to reach a specific solution quality. Each data
point in the table is an average of 10 individual runs. Empty fields (-) represent instances
where ACO did not obtain specified solution quality in 768k solutions explored. The solution
quality is expressed as a percentage of the proximity of the best-know solution (2,701,367.58).

The number of iterations required to reach specific solution quality

Architecture

Checkpoint
of optimal
solution

The number of parallel instances

1 2 4 8 16 32 64 128 256 512 1024

Independent
Ant Colonies

99.00% 30 30 35 30 30 35 30 30 25 25 25

99.25% 45 45 40 40 45 40 40 35 35 35 35

99.50% 31685 31055 29550 28895 29075 15910 10950 - - - -

99.60% - - - - - - - - - - -

99.75% - - - - - - - - - - -

99.90% - - - - - - - - - - -

Parallel Ants

99.00% 30 25 25 25 25 25 20 15 15 15 15

99.25% 45 40 40 35 35 35 35 35 30 30 30

99.50% 31685 2590 65 60 60 55 55 55 55 50 50

99.60% - - 9190 2640 195 170 230 70 70 65 65

99.75% - - - - - - - 685 310 140 135

99.90% - - - - - - - - - 800 675

Parallel Ants
with 5

sequential
ant local
search

99.00% 20 15 15 15 15 10 10 10 10 10 5

99.25% 30 30 30 30 30 25 30 25 20 25 20

99.50% 400 65 55 55 50 50 50 50 45 45 45

99.60% - 7715 160 135 90 65 60 65 60 55 55

99.75% - - - - 6630 205 150 155 130 125 125

99.90% - - - - - - - - 460 255 160

5.4.2. Speed performance

To evaluate speed performance, each given configuration and parallel architecture

were ran for 500 iterations or 10 minutes wall-clock time (whichever happens first) and

recorded the total number of iterations and wall-clock time for three independent runs.

Then, average wall-clock time per iteration was calculated. It is essential to measure

the execution time correctly, just purely comparing computation per kernel/method

may not show the real-life impact. For that reason, total time is measured from the

start of the memory allocation to the freeing of the allocated memory, however it does

not include the time required to load the dataset into memory. This allows us to

estimate, with reasonable accuracy, what is the wall-clock time needed to run a

specific architecture and configuration to converge to a given fitness quality. Although

running each given architecture and configuration 10 times would produce more

accurate convergence rate estimates, it would also require significantly more

computation time. Furthermore, all vectorised implementations went through iterative

profiling and optimisation process to obtain the fastest execution time. To the best of

116

the author’s knowledge, all vectorised implementations have been fully optimised for

the given hardware.

• CPU

ACO implementation of IAC, PA and PAwV was implemented in C++ and multiple

experiments of the configurations are shown in Table 17. Intel C++ 18.0 with OpenMP

4.0 was used to compile the implementation. KMP26 (an extension of OpenMP) config

was varied based on total hardware core and logical core count (16c,2t = 32 OpenMP

threads).

Very similar results were obtained for both IAC double precision and PA double

precision, with PA having around 5% overhead compared to IAC. In both instances,

running 32 OpenMP threads offered around 24% speed reduction compared to 16

threads. Furthermore, PAwV with double precision vectorisation using AVX2 offered

speed reduction of 26%, while scaling from 16 OpenMP threads to 32 offered almost

no scaling at 256 parallel instances upwards.

The nature of ACO pheromone sharing and probability calculations does not require

double precision and therefore can be substituted with single-precision calculations.

AVX2 offers 256-bit manipulations, therefore increasing theoretical throughput by a

factor of 2, compared to double precision. 36% decrease in execution time was

obtained, as not all parts of the code can take advantage of SIMD.

Furthermore, doing 5 ant sequential local search within each parallel instance

increases time linearly and produces little time savings in terms of solutions explored.

The overall scaling factor at 1024 parallel instances compared to sequential execution

at PAwV (single precision with AVX2 and 16c2t) is therefore 25.4x.

26 OpenMP Thread Affinity Control https://software.intel.com/en-us/articles/openmp-thread-affinity-

control

https://software.intel.com/en-us/articles/openmp-thread-affinity-control
https://software.intel.com/en-us/articles/openmp-thread-affinity-control

117

Table 17. Hardware A wall-clock time per iteration, in seconds. KMP config is environment
variable set as part of KMP_PLACE_THREADS, for all instances KMP_AFFINITY=scatter,
optimisation level /O3, favour speed /Ot.

Hardware A - CPU computation time per iteration (in seconds)
Configuration The number of Parallel Instances

 KMP config 1 2 4 8 16 32 64 128 256 512 1024

IAC, double precision
16c,1t

0.078 0.081 0.083 0.085 0.112
0.196 0.372 0.691 1.368 2.661 5.263

16c,2t 0.148 0.277 0.517 1.002 2.014 4.093

PA, double precision
16c,1t

0.082 0.084 0.085 0.090 0.115
0.205 0.383 0.705 1.411 2.743 5.483

16c,2t 0.153 0.288 0.539 1.044 2.088 4.220

PAwV, double precision, AVX2
16c,1t

0.050 0.053 0.057 0.058 0.075
0.131 0.233 0.426 0.805 1.547 3.101

16c,2t 0.107 0.189 0.351 0.749 1.536 3.095

PAwV, single precision, AVX2
16c,1t

0.049 0.050 0.052 0.055 0.066
0.111 0.206 0.367 0.699 1.355 2.664

16c,2t 0.088 0.152 0.275 0.501 1.006 1.975

PAwV, single precision, AVX2, with
5 sequential ant local search

16c,1t
0.212 0.218 0.227 0.241 0.264

0.484 0.918 1.722 3.380 6.759 13.461

16c,2t 0.347 0.645 1.222 2.369 4.659 9.704

• Xeon Phi

Similar experiments were also conducted on the Xeon Phi hardware, Table 18. Due

to the poor convergence rate and search capability, the execution time for IAC was

not measured. Xeon Phi differs from Hardware A with the ability to utilise up to 4 hyper-

threads per core and AVX512 instruction set. Although Hardware B has 68 physical

cores, for more straightforward comparison on base 2, only 64 were used in

experiments. At 1024 parallel instances on double-precision PA, having 2 threads and

4 threads per core does offer speedup of 30% and 42% respectively, compared to 1

thread per core. Moving to the vectorised implementation of 256-bit AVX2, gains

additional speedup of around 37% across all parallel instances, however, did not

benefit from 4 hyper-threads. Furthermore, exploiting the AVX512 instruction set offers

a further 24% speedup compared to AVX2. In this configuration having 4 hyper threads

per core worsens the speed performance (3.644 seconds vs 3 seconds). Like

Hardware A, PAwV was explored with single precision and offered near-perfect scaling

on 1024 parallel instances with 4 hyper-threads per core, or 40% overall speed

improvement compared to PAwV with double precision (3 seconds vs 1.804 seconds).

Alike Hardware A, having 5 sequential local ants does not provide any time savings

and time increases linearly. The overall scaling factor at 1024 parallel instances

compared to sequential execution at PAwV (single precision with AVX512 and 64c4t)

is therefore 148x.

118

Table 18. Hardware B wall-clock time per iteration, in seconds. KMP config is environment
variable set as part of KM_PLACE_THREADS, for all instances KMP_AFFINITY=scatter,
optimisation level /O3, favour speed /Ot.

Hardware B - Xeon Phi computation time per iteration (in seconds)
Configuration The number of Parallel Instances

KMP
config 1 2 4 8 16 32 64 128 256 512 1024

PA, double precision

64c,1t

0.687 0.687 0.725 0.726 0.726 0.729 0.734

1.417 2.787 5.941 11.089

64c,2t 1.014 1.974 3.845 7.669

64c,4t 1.087 1.606 3.226 6.438

PAwV, double
precision, AVX2

64c,1t

0.408 0.411 0.430 0.431 0.433 0.434 0.438

0.818 1.578 3.094 6.114

64c,2t 0.563 1.047 2.022 3.964

64c,4t 0.625 1.101 2.072 4.082

PAwV, double
precision, AVX512

64c,1t

0.304 0.309 0.326 0.326 0.327 0.332 0.335

0.608 1.152 2.242 4.404

64c,2t 0.446 0.809 1.535 3.000

64c,4t 0.494 0.982 1.913 3.644

PAwV, single
precision, AVX512

64c,1t

0.261 0.266 0.282 0.284 0.284 0.287 0.288

0.521 0.970 1.900 3.806

64c,2t 0.359 0.646 1.210 2.361

64c,4t 0.412 0.542 0.957 1.804

PAwV, single
precision, AVX512,
with 5 sequential
ant local search

64c,1t

1.105 1.123 1.195 1.200 1.205 1.205 1.215

2.342 4.601 9.136 18.844

64c,2t 1.489 2.915 5.743 11.815

64c,4t 1.553 2.225 4.428 9.054

• GPUs

A further set of experiments were also conducted for GPU, Table 19. The

implementation with no vectorisation (Blocks x1), uses 1 thread per CUDA block to

compute one solution, therefore 1024 parallel instances require 1024 blocks. Similarly,

for (Blocks x32), 32 threads are used per block, each thread computing its own solution

independently. For parallel instances of 32, only 1 block would be used with 32

threads. The implementation of no vectorisation utilises no shared memory; however,

all static problem metadata is stored as textures. A single kernel is launched, and the

best solution across all parallel instances is returned.

Vectorized version implements architecture described in [282], storing the route

choice matrix in shared memory and utilising local warp reduction for sum and max

operations. Each thread-block builds its solution, while the extra 32 threads assist with

the reduction operations, memory copies and fitness evaluation. Table 19 shows a

comparison between the two implementations. Implementation without vectorisation

performs on average two times slower compared to the vectorised version.

Furthermore, 64 threads per block (Blocks x64) performs slower than 32 threads per

block (Block x32).

Next, scaling across multiple GPUs were explored. Each device takes a proportion

of 1024 instances with unique seed values and after each iteration, the best overall

solution is reduced. In the case of 2 GPUs and 1024 parallel instances, each device

119

will compute 512 parallel instances concurrently. Scaling across 2 (2x) and 4 GPUs

(4x) did not provide any significant speedup (only 10%). This is due to the fact that

each iteration consumes at least 50 seconds and scaling across multiple GPUs adds

almost no overhead. The maximum number of parallel instances might need to be

increased to fully utilise all 4 GPUs to the point where all Streaming Multiprocessors

(SMs) are saturated and increasing block count increases the computation time

linearly.

GPU implementation is, therefore, one magnitude of order slower than that of CPU.

However, this could be explained by the nature of the problem and not be specific to

ACO architecture, as there have been a lot of success on GPUs solving simple, low

memory footprint TSP instances [273][282][284]. However, the supply chain problem

requires a lot of random global memory access to check for all restrictions such as

order limits, capacity constraints and weight limits, which are too big to be stored on

the shared memory.

Table 19. Hardware C wall-clock time per iteration, in seconds. The total number of parallel
instances are adjusted for the thread-block dimensions. Compiled with CUDA 9.0. 1x, 2x and
4x correspond to the number of devices used to compute.

Hardware C - GPU computation time per iteration (in seconds)

Configuration

The number of Parallel Instances

1 2 4 8 16 32 64 128 256 512 1024

1x GPU no vectorisation (Blocks x 1) 46.7 47.6 47.6 47.4 47.4 48.9 50.8 53.4 60.8 126.8 229.0

1x GPU no vectorisation (Blocks x 32) - - - - - 108.3 110.5 112.5 113.2 114.5 115.2

1x GPU with vectorisation (Blocks x32) - - - - - 49.8 52.4 54.1 55.4 58.8 64.5

1x GPU with vectorisation (Blocks x64) - - - - - - 57.1 58.5 59.6 61.0 65.8

2x GPU with vectorisation (Blocks x32) - - - - - - 50.0 52.6 55.4 55.5 60.8

4x GPU with vectorisation (Blocks x32) - - - - - - - 50.0 52.7 54.4 55.8

5.4.3. Hardware Comparison and speed of convergence

If both convergence rate of the architecture and the speed of the hardware is

considered, an estimate can be made on what would be the average wall-clock time

to converge to specific solution quality. The fastest configuration for both Hardware A

(Table 17) and Hardware B (Table 18) was chosen and then multiplied by the number

of iterations required to reach a specific solution quality (Table 16) to obtain an

estimate of the compute time required (Table 20). Therefore, a fairer real-life impact

can be derived.

If one only considers the best time to converge to 99% solution quality, Hardware

A can do that in 1.24 seconds on average while Hardware B would take 6.66 seconds.

120

Furthermore, if we look at 99.5% solution quality, Hardware A would take 3.33 seconds

while Hardware B - 17.01 seconds. Faster clock speed for Hardware A gives an

advantage over Hardware B at lower solution quality checkpoints. In contrast, at

99.75% and 99.9% solution quality, Hardware B outperforms. More experimentation

is required to determine if exploring more than 768k solutions at lower Parallel

Instance count affects the dynamics at the 99.75-99.9% range. In addition, best

computation time to achieve specific solution quality was also compared in Figure 38,

where the estimated best computation time required (in logarithmic) is plotted against

three tested architectures across various solution quality checkpoints. Figure 38

clearly shows that GPU results (Hardware C) were considerably slower and therefore,

author conclude that GPUs are not suitable for the supply chain problem solved.

Table 20. Estimated time (in seconds) required to converge to specific solution quality.
Calculated by multiplying the number of iterations by the time taken for iteration for individual
best performing hardware configuration. Solution quality is expressed as a percentage of the
proximity of the best-know solution (2,701,367.58).

Estimated time required (in seconds) to reach specific solution quality

Architecture
Checkpoint
of optimal
solution

The number of parallel instances

1 2 4 8 16 32 64 128 256 512 1024

Hardware A
- TR1950x

99.00% 1.46 1.24 1.30 1.39 1.64 2.19 3.04 4.13 7.52 15.10 29.63

99.25% 2.19 1.99 2.07 1.94 2.29 3.06 5.31 9.64 15.03 30.19 59.25

99.50% 1539.02 128.82 3.37 3.33 3.93 4.81 8.35 15.14 27.56 50.32 98.75

99.60% 476.40 146.33 12.78 14.88 34.92 19.27 35.07 65.42 128.38

99.75% 188.60 155.33 140.91 266.63

99.90% 805.20 1333.13

Hardware B
- Xeon Phi

7250F

99.00% 7.84 6.66 7.04 7.09 7.10 7.18 5.76 6.18 8.13 14.36 27.06

99.25% 11.76 10.65 11.27 9.92 9.94 10.05 10.08 14.42 16.26 28.71 54.12

99.50% 8282.30 689.67 18.31 17.01 17.04 15.79 15.84 22.66 29.81 47.85 90.20

99.60% 2588.73 748.49 55.39 48.80 66.26 28.84 37.94 62.21 117.26

99.75% 282.22 168.02 133.98 243.54

99.90% 765.60 1217.70

Hardware C
- GPU

99.00% 1404 1191 1190 1187 1186 1223 1001 751 791 816 838

99.25% 2106 1905 1904 1662 1661 1712 1752 1752 1581 1632 1676

99.50% 1482595 123373 3095 2850 2847 2690 2753 2753 2899 2720 2794

99.60% 437536 125398 9254 8315 11511 3504 3689 3536 3632

99.75% 16338 7617 7544

99.90% 43525 37719

121

Figure 38. Parallel Ants best estimated computation time per solution quality for supply chain
problem to converge to specific solution quality. Solution quality is expressed as a percentage
of the proximity of the best-know solution (2,701,367.58).

5.4.4. Comparisons using the Travelling Salesman Problem

In addition to the real-world supply chain problem, a single TSP instance with 318

cities (lin318) is selected for comparison. The lin318 instance is small enough such

that all experiments can be computed quickly but large enough to see measurable

differences between hardware architectures explored. Like in the supply chain

problem, solution quality checkpoints against optimal fitness value of 42029 were

recorded during the convergence process. Moreover, just like in supply chain problem,

PA outperformed IAC architecture for solving lin318. The lin318 computation time was

plotted against various hardware solutions and solution quality checkpoints in Figure

39.

1
2

3

13

141

805

6
10

16
29

134

766751
1581

2690 3504
7544

37719

1

10

100

1000

10000

100000

99.00% 99.25% 99.50% 99.60% 99.75% 99.90%

Es
ti

m
at

ed
 t

im
e

re
q

u
ir

ed
 (

in
 s

ec
o

n
d

s,
 lo

g)

Solution quality

Parallel Ants estimated best computation time per solution quality for
supply chain problem

Hardware A - TR1950x Hardware B - Xeon Phi 7250F Hardware C - GPU

122

Figure 39. Parallel Ants computation time per solution quality for lin318 TSP to converge to
specific solution quality. Solution quality is expressed as a percentage of the proximity of the
best-know solution (a distance of 42029).

When solving the lin318 TSP instance, Hardware A performs faster than Hardware

B for solution quality between 99.0% and 99.6% and slower for higher solution quality,

similar to the supply chain problem results in Figure 38. Although Hardware C - GPU

performed magnitudes slower in supply chain problem, for the TSP instance it was

able to converge faster than Hardware A and Hardware B. Therefore, author can

confirm the findings of [273][282][284], that suggest that GPUs offer speedup over

CPU counterpart when routing simple TSPs. However, author also acknowledge that

these dynamics do not apply for a more complex real-world routing problem where

GPU is magnitudes slower than CPU counterparts (Hardware A or Hardware B) due

to the additional meta-data required to be stored during solution creation.

5.5. Summary

Nature-inspired meta-heuristic algorithms such as Ant Colony Optimization (ACO)

have been successfully applied to multiple different optimisation problems. Most work

focuses on the Travelling Salesman Problem (TSP). While TSPs are a good

benchmark for new idea comparison, the dynamics of the proposed algorithms for

benchmarks do not always match real-world performance where the problem has

more constraints (more meta-data during solution creation). Furthermore, speed and

2.6

3.7

5.0

6.7

8.1
8.5

4.6
5.3 5.4

6.8 7.0
7.4

2.6

3.5 3.8 3.9 4.1
4.8

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

99.00% 99.25% 99.50% 99.60% 99.75% 99.90%

C
o

m
p

u
ta

ti
o

n
 t

im
e,

 s
ec

o
n

d
s

Solution quality

Parallel Ants computation time per solution quality for lin318 TSP instance

Hardware A - TR1950x Hardware B - Xeon Phi 7250F Hardware C - GPU

123

fitness performance comparisons are not always completely fair when compared to a

sequential implementation.

As the OptPlatform is designed for industry problem optimisation, this chapter

explored the dynamics of different ACO architectures applied to benchmark and real-

world problems. The experimental results demonstrate that the TSP benchmarks'

results cannot be generalised to real-world applications, especially in terms of

hardware performance and usage. Therefore, the findings demonstrate that in order

to achieve the generalisable conclusions, the experimental work has to be completed

on both: standard benchmarks and real-world applications.

Furthermore, the work solves a real-world outbound supply chain network

optimisation problem and compares two different ACO architectures – Independent

Ant Colonies (IAC) and Parallel Ants (PA). It was concluded that PA outperformed IAC

in all instances, as IAC failed to find any better solution than 99.5% of optimal. In

comparison, PA was able to find a near-optimal solution (99.9%) in fewer iterations

due to effective pheromone sharing across ants after each iteration. Furthermore, PA

shows that it consistently finds a better solution with the same number of iterations as

the number of parallel instances increase.

Moreover, a detailed speed performance was measured for three different

hardware architectures – 16 core 32 thread workstation CPU, 68 core server-grade

Xeon Phi and general-purpose Nvidia GPUs. Results showed that although GPUs can

scale when solving simple TSP (as confirmed by multiple other studies), those scaling

dynamics do not transfer to more complex real-world problems. The memory access

footprint required to check capacity limits and weight constraints did not fit on the small

shared memory on GPU. Thus, it performed 29 times slower than the other two

hardware solutions even when running 4 GPUs in parallel. Therefore, this finding is

considered to be a new knowledge with surprise value.

When compared to a real-life impact on the time required to reach a specific solution

quality, both CPU and Xeon Phi optimised-vectorised implementations showed

comparable speed performance; with CPU taking the lead with lower Parallel

Instances count due to the much higher clock frequency. At near-optimal solution

(99.75%+) and 1024 parallel instances, Xeon Phi was able to take full advantage of

AVX512 instruction set and outperformed CPU in terms of speed. Therefore,

compared to an equivalent sequential implementation at 1024 parallel instances, CPU

was able to scale 25.4x while Xeon Phi achieved a speedup of 148x.

124

Due to the findings of this study, OptPlatform targets mainly CPU architecture for

the metaheuristic algorithm implementation. This has multiple benefits; first – all

computers contain a CPU, though not all are guaranteed to contain a GPU.

Furthermore, Xeon Phi is specialised hardware that has now been discontinued, thus

not future proof. Next, CPU implementations are less complex and are not suspect to

specific hardware vendor (CUDA is Nvidia proprietary software, for example).

Moreover, fast and efficient optimisation algorithms on CPU have multiple

advantages. First, the limited computing cycles are utilised efficiently and not wasted;

second, faster optimization allows to compute more what-if scenarios or optimize more

networks/models. Finally, a quicker turnaround allows more agile problem modelling

with quick feedback. The rapid feedback is critical when decisions need to be made

quickly in case of disruptions, such as a global pandemic closing shipping ports and

borders. Although computing is a considerable part of the optimisation process, the

problem with implementation and metaheuristic tuning are usually the more time and

labour intensive parts of optimisation. Fortunately, at least one part of that process can

be further automated – the next chapter investigates automated ways to both select

the best metaheuristic for the problem and fine-tune it for the best performance.

125

6. SIMPLE GENERATE-EVALUATE STRATEGY

FOR TIGHT-BUDGET PARAMETER TUNING

PROBLEMS

This chapter is based on the results published in [6].

Good hyperparameter selection is essential for metaheuristic algorithm

performance. Tuning is usually a time-consuming and tedious task that requires user

expertise for the best results. Automated tuning algorithms can help speed up this

process and even lead to better parameter configurations; however, it requires vast

computing resources. This is especially true for complex real-world problems where a

single evaluation of a configuration can take minutes, hours or even days.

To overcome the problem, the eTuner and eTunerAlgo have been proposed as part

of the OptPlatform. The distinctive feature of eTunerAlgo is that both algorithm

selection and parameter tuning is performed automatically. Proposed algorithms were

evaluated using three metaheuristics introduced in section 3.6 – ACO, ES, ICA and

two NP-hard problems – Aerial Surveying Problem (ASP) and Multiple Knapsack

Problem (MKP), section 2.3.2.1 and section 2.3.1.1 respectively. Furthermore, a

metaheuristic tuning benchmark containing 18,760 configurations is generated for

efficient method evaluation and published in [5] to encourage further research in this

area.

6.1. Motivation

Most of the metaheuristics contain stochastic components and often have settings

– set of hyperparameters – that can be defined by the user to solve the problem at

hand. The metaheuristic setting (parameter setting) has a direct impact on the

performance and efficiency of the metaheuristic [285]. Although, most metaheuristic

algorithm implementations provide a default set of parameters (also referred to as

configuration), tuning the algorithm’s parameters for the problem at hand can lead to

significant performance improvement. This is due to the fact that the default settings

126

are usually tuned for a different class of problems and may not be suitable for the

problem at hand. Moreover, the process of parameter tuning up until the end of last

century was done “by hand”, i.e. typical workflow would include running multiple

experiments with a different set of parameters or using expertise knowledge [285] for

both algorithm selection and parameter tuning. The rise of ease of access and reduced

cost of computing has provided the means for a more systematic and automated

approach for parameter setting problem, see Figure 40 for a workflow comparison.

Figure 40. Comparison between typical user workflow and automated workflow. Yellow boxes
are indicating areas where user expertise is necessary for optimal results. In the automated
workflow, algorithm selection and tuning are performed automatically.

Parameter setting problems can be divided into two categories [286]: a) parameter

tuning (also referred as off-line tuning), where all parameter settings are defined before

applying an algorithm to solve problems at hand; b) parameter control (also referred

as on-line tuning); where algorithmic parameters are managed and tuned during the

execution of the algorithm. In this chapter, the focus is on the area of off-line parameter

tuning problem.

There are clear benefits of parameter tuning; however, the process can be very time

consuming and require user expertise and hence the algorithm parameter settings in

most research is still performed by hand or the default settings used. Automated tuning

methods have the advantage of not requiring users to know how parameters of the

algorithm impact the performance. Furthermore, they can offer time savings and

potentially result in better algorithm configuration than manual methods. However, for

some real-world complex optimisation problems, where one algorithm parameter

evaluation can take minutes, hours or days, a sophisticated tuning method may not be

viable due to how many evaluations of configurations are required for a good

127

performance. In such cases, to obtain a quality configuration in a constrained tuning

budget, a more straightforward method might be beneficial.

Motivated by such complex problems, a simple generate-evaluate method has been

develop for both algorithm selection and parameter tuning. The contributions can be

summarised as follows: a) a simple generate-evaluate tuning method is proposed

based on elitism strategy for problems with low compute budget; b) novel algorithm

selection method is described; c) metaheuristic benchmark of three optimisation

algorithms with combined 18,760 configurations (with 10 evaluations each) for solving

Aerial Surveying Problem (ASP) is generated and made available in [5].

6.1.1. Parameter tuning problem

In the parameter tuning problem, the main goal is to find a configuration that

maximises the performance of an algorithm over the given problem instance(s),

formally stated by [287]:

Given:

1) A parameterised algorithm 𝐴 with free parameters that affect its behaviour.

2) A configuration space (or parameter space) 𝐶, which defines possible

configurations (i.e., parameter settings).

3) A set of problem instances 𝐼.

4) A performance metric 𝑚 that measures the performance of 𝐴 across 𝐼 for a

given configuration 𝑐 (𝑐 ∈ 𝐶)

Find: A configuration 𝑐∗ ∈ 𝐶 that optimises the performance of 𝐴 on 𝐼 according to

metric 𝑚.

The following glossary is introduced to facilitate ease of reading:

• Configuration – parameter values, parameter setting, hyperparameter setting,

that are defined before applying the algorithm to solve problems at hand.

• Tuner – tuning algorithm, the automatic parameter tuning method used for finding

optimal configuration.

• Evaluation – also referred to as an algorithm run, is a single compute using a

metaheuristic algorithm with a configuration to solve the optimisation problem. The

result is a solution for the optimisation problem with a given metric.

128

• Simulation – simulation refers to the compute of the tuner to obtain the best

parameter configuration for the metaheuristic. The result is an average metric

score of the metaheuristic evaluations using the best configuration.

Figure 41. A high-level overview of the process flow. The underlying problem is optimised by
one or several metaheuristic algorithms. The metaheuristic algorithm(s)’ parameters are
optimised by the hyperparameter tuner.

The high-level overview of parameter tuning is shown in Figure 41. The

hyperparameter tuner is used for optimising the metaheuristic algorithm(s), while the

metaheuristic algorithm(s) are optimising the problem at hand.

6.2. Related work

Multiple different tuning methods have been proposed over the last two decades to

determine the best configuration of algorithms when solving the problem at hand. A

recent survey in [285] discusses the full range of tuning algorithms deployed so far in

great detail and classifies the approaches into three categories: simple generate-

evaluate methods, Iterative generate-evaluate methods and high-level generate-

evaluate methods. This section only reviews the most popular and relevant tuning

approaches found in the literature.

The simple generate-evaluate methods are noniterative tuners that first generates

a set of candidate configurations and only then evaluates them to find the best

performing configuration. Techniques such as naïve brute force method as well as F-

race algorithm fits this category. F-race is inspired from the Hoeffding race [288]

initially used for machine learning model selection, later adopted for tuning

metaheuristics in [289]. The basic idea of F-race is to sequentially evaluate candidate

configurations and eliminate bad configurations as soon as sufficient statistical

129

evidence is present. F-race uses the compute power more efficiency compared to

repeated evaluations in brute force, however, if the target algorithm has an ample

parameter space, a large number of configurations needs to be evaluated before a

good-performing result is found [290].

To overcome the drawbacks of F-race, authors in [291] proposed iterative

application of F-race, called iterated F-Race (I/F-Race). Its promise was successfully

demonstrated in tuning the MAX-MIN ant system and Simulated Annealing (SA)

algorithm. Iterative F-Race, as the name suggests, follows an iterative tuning process,

where at each iteration, a set of candidate configurations are generated based on the

probabilistic model, then standard F-Race is performed. The survived candidate

configurations are then used to update the probabilistic model for the next iteration

[292]. Iterated F-Race is one of the more popular tuning approaches to date, used for

automatic parameter tuning in [293] and [294]. One of the limitations of Iterative F-race

is that it requires a sufficient number of iterations to be performed to obtain acceptable

results. If the tuning budget is too small, the resulting configuration might be bad

performing [285].

Another attractive iterative generate-evaluate approach is ParamILS [295], which

uses a well-established stochastic local search method [296] as its core. It starts the

search by variation of the default configuration and several randomly generated

configurations. It then iteratively creates a new candidate which differs by an exactly

single parameter – only one parameter value is changed at the time. Once the local

best configuration is found, it performs stochastic local search procedure to determine

which of the two candidate configurations is better. Other variations of the tuners are

examined in ParamILS framework, most notably, tuning with the variable

neighbourhood search [297]. Although ParamILS can support both categorical and

numeric parameters, it requires for them to be discretised, such that each

neighbouring candidate can be defined. Furthermore, this approach also relies on the

default configuration to be accurately identified and be somewhat suitable for the

problem at hand for best results.

Both, the Iterative F-Race and ParamILS are proven to be good tuners for small

benchmark instances, where each configuration evaluation takes

milliseconds/seconds. For such problems, a good configuration out of hundreds of

thousands of evaluations can be found within a reasonable time frame. However,

many real-world problems are more complex and require minutes, hours or even days

130

to evaluate. In such instances, hundreds of thousands of configuration evaluations are

just not feasible, and the simpler generate-evaluate methods can help. For example,

with a computing budget of one day, a problem that takes 1 minute to optimise would

only offer 1440 evaluations within a 24h period. Although with the rise of modern

computers, many of these tasks can be parallelised on clusters, efficient ways of

parameter tuning for such large-scale problems are needed. Furthermore, with the

ever-increasing speed of information, the latency of model creation and deployment is

shrinking – thus time to market is more critical than ever. And because parameter

tuning is an important aspect of increasing efficiency of metaheuristics, the tuning time

should not be the bottleneck delaying the deployment.

6.3. Proposed methods

The purpose of a tuning algorithm is to determine both – the most suitable

metaheuristic algorithm to be used for the problem, as well as to offer insides of the

best hyperparameter configurations for the chosen metaheuristic. As discussed in the

previous section, many approaches can be deployed for parameter tuning problem.

One method is a naïve brute-force strategy, where an adequate number of

configurations are evaluated over a sufficient number of evaluations, and the best

overall average score is the final configuration. However, this approach requires some

expert knowledge to determine the right size of configurations – a too small sample

size leads to missed useful configurations. At the same time, too many configurations

lead to wasted computation time.

Furthermore, it is also up to the user to determine how many evaluations for each

configuration are necessary to cope with the stochastic nature of the metaheuristics.

These drawbacks lead brute-force strategy in rigorously evaluating both good and bad

configuration equally, further wasting computation resources. In some complex real-

world optimisation problems, brute force method for tuning hyperparameters is

prohibitively expensive as each configuration evaluation can take minutes, hours or

even days. Thus, this section describes two strategies that overcome these

drawbacks. The first approach, called eTuner tries to find good configurations across

all metaheuristic algorithm configurations. The second method, called eTunerAlgo,

starts by estimating the best metaheuristic first, and only then focus on metaheuristic

parameters within the reduced set.

131

6.3.1. Elitist Tuner - eTuner

Elitist Tuner, eTuner for short, conceptually follows the elitism strategy found in

genetic algorithms – best candidates in the population survive and reproduce. The

eTuner starts with a random sample of candidate configurations and iteratively

reduces the candidate configuration set based on the accumulated best averages

achieved. The number of configurations remaining for the next iteration is determined

by elitism rate ER. Furthermore, the number of iterations 𝑛 in the eTuner is determined

by maximising equation in (38):

max: 𝑇𝐶𝑇 = 𝑅𝑇 ∗ ∑ ⌊ʍ ∗ (
1

𝐸𝑅
)

𝑛−1

⌉

∞

𝑛=1

(38)
subject

to:

𝑇𝐶𝑇 ≤ 𝑇𝐵

𝐸𝑅 ∈ (0,1)

∀ʍ ∈ {1, … ,10}

where 𝑇𝐶𝑇 is total compute time, 𝑅𝑇 is the average time in seconds to compute a

single configuration, 𝐸𝑅 is the elitism rate, and 𝑇𝐵 is the total tuning budget, in

seconds. Finally, ʍ is an integer starting value.

Once the number of iterations 𝑛 and the integer starting value ʍ is determined, the

starting number of random candidate configurations 𝑆𝑁𝐶 is calculated by (39):

𝑆𝑁𝐶 = ʍ ∗ (
1

𝐸𝑅
)

𝑛−1

 (39)

At every iteration, first, each individual configuration performances in the

configuration set 𝐶𝑆 are averaged, and the averages sorted to determine the elitists.

Next, the candidate configuration set is reduced by eliminating the worst performing

configurations, based on the individual configuration performance so far. The number

of elitists 𝑁𝐸 are kept for the next iteration 𝑖, based on (40):

𝑁𝐸𝑖 = ʍ ∗ (
1

𝐸𝑅
)

𝑛−𝑖

 (40)

Figure 42 visualises the different ways computing resources can be allocated,

where the compute budget 𝑇𝐵 is set to 100 hours and each configuration evaluation

𝑅𝑇 is assumed to be 60 seconds, see section 6.1.1 for terminology. After maximising

equation (38) for three levels of elitism rate 𝐸𝑅, we can obtain the number of iterations

𝑛 and the integer starting value ʍ. ({𝐸𝑅=0.25, ʍ=1, 𝑛=7}; {𝐸𝑅=0.50, ʍ=5, 𝑛=10};

{𝐸𝑅=0.75, ʍ=2, 𝑛=24}). Then, the starting number of configurations 𝑆𝑁𝐶 is derived by

equation (39) and are 4096 for 𝐸𝑅=0.25, 2560 for 𝐸𝑅=0.50, 1495 for 𝐸𝑅=0.75.

132

Figure 42. Graphical representation of the allocation of configuration evaluations by variations
of Elitism Rate and a brute force method for reference. All approaches are allowed to perform
the same number of total experiments (100-hour tuning budget, with 60 second compute time
for each configuration); thus, all three figures cover the same surface area.

The above-described procedure discards weak configurations quickly while

thoroughly evaluating more promising configurations. The Elitism Rate 𝐸𝑅 controls the

trade-off between exploration of configurations against the repeated evaluations of

configurations for more reliable estimates of their behaviour, pseudocode shown in

Figure 43.

Figure 43. Pseudocode of the proposed Etilist Tuner - eTuner algorithm

6.3.2. Elitist tuning with pre algorithm selection – eTunerAlgo

One of the great features of metaheuristics is that they are generic and not problem-

specific. This attribute allows the same metaheuristic algorithm to be applied to

multiple different problem domains. Similarly, the same problem can be solved by

numerous metaheuristic algorithms. The metaheuristic selection is usually done

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19 21 23

N
u

m
b

er
 o

f
co

n
fi

gu
ra

ti
o

n
s

Number of evaluations

ER=0.75

ER=0.50

ER=0.25

BruteForce

Calculate the number of iterations 𝑛.

Calculate the number of random starting configurations 𝑆𝑁𝐶.
Generate random configuration set 𝐶𝑆 of size SNC.

for 𝑖 = 0 to 𝑛
 Evaluate each configuration in the set 𝐶𝑆 one time.

 Calculate evaluation averages for each configuration in 𝐶𝑆.
 Sort 𝐶𝑆 based on average performances.

 Keep the best 𝑁𝐸𝑖 configurations in 𝐶𝑆, discard the rest.
end for
return the best configuration in CS.

133

manually based on some prior expert knowledge. Alternatively, the algorithm selection

can be formulated as another categorical parameter and solved automatically by a

hyperparameter tuner – approach discussed in the previous section, eTuner.

However, this results in even higher parameter space to be tuned. If one of the

metaheuristic X is more suited for the problem than metaheuristic Y, it would make

sense to only focus on tuning metaheuristic X and discard the metaheuristic Y. The

following section describes a simple method used to estimate the most suitable

metaheuristic algorithm within a given set, called eTunerAlgo.

Given a set of metaheuristic algorithms A = {𝐴1, 𝐴2, … 𝐴𝑀}, every metaheuristic

algorithm has a set of hyperparameters associated with it – 𝑃 = {𝑃1, 𝑃2, … 𝑃𝐾}.

Algorithm selection is performed as follows: 1) the average point between upper and

lower bounds is calculated for each parameter in the set (required parameter to be a

numerical value) to obtain overall “average” configuration across all parameters for

given metaheuristic; 2) for each parameter in the list 𝑃, the “average” configuration is

modified with upper and lower bounds value of the parameter, to create two new

candidate configurations; 3) the “average” as well as two candidate configurations for

each parameter is evaluated once, and the scores averaged; 4) The best overall

averaged score is used to select the best metaheuristic algorithm from the list 𝐴.

Example of this procedure is demonstrated in Figure 44.

Figure 44. Example of new candidate configuration generation for metaheuristic algorithm
selection. Where given three parameters P, one “average” configuration is generated and six
other candidate configurations.

The described metaheuristic selection approach aims to quickly estimate if one

metaheuristic is better than other, on average. The downside of this approach is that

it requires all hyperparameters to be a numeric value. This approach can also be

adopted for categorical parameters with low dimensions.

134

Once the metaheuristic algorithm is selected, it follows the same elitism strategy as

eTuner. The only additions are the extra configurations computed for the metaheuristic

selection (𝐴𝑆𝑇), calculated in equation (41):

𝐴𝑆𝑇 = ∑(1 + 2𝐾𝑎)

𝑀

𝑎=1

 (41)

where 𝑀 is the total number of metaheuristic algorithms in the list and 𝐾 is the total

number of parameters for the metaheuristic 𝑎.

Thus, the total number of iterations in eTunerAlgo are determined by maximising

equation (42) and following the same iterative elimination process as described in the

previous section – eTuner.

max:
𝑇𝐶𝑇 = 𝑅𝑇 ∗ (𝐴𝑆𝑇 + ∑ ⌊ʍ ∗ (

1

𝐸𝑅
)

𝑛−1

⌉

∞

𝑛=1

)

(42) subject

to:

𝑇𝐶𝑇 ≤ 𝑇𝐵

𝐸𝑅 ∈ (0,1)

∀ʍ ∈ {1, … ,10}

where 𝑇𝐶𝑇 is total compute time, 𝑅𝑇 is the average time in seconds to compute a

single configuration, 𝐸𝑅 is the elitism rate, and 𝑇𝐵 is the total tuning budget, in

seconds. Finally, ʍ is an integer starting value.

6.4. Experiments

In this study, first, a metaheuristic benchmark dataset for Aerial Surveying Problem

(ASP) (section 2.3.2.1) was created to effectively evaluate the dynamics of various

tuning approaches. Then, to validate and remove any biases, the best method is used

to tune metaheuristics for Multi Knapsack Problem (section 2.3.1.1). Both problems

are hard to solve, have practical applications and are fundamentally different from one

another.

6.4.1. Experimental setup

• Metaheuristics benchmark

Three metaheuristic algorithms were selected for solving the optimisation problems

– Ant Colony Optimization (ACO) based on the implementation in section Ant Colony

Optimization 3.6.1, Evolutionary Strategy (ES) based on (µ+1)-ES section 3.6.2 and

Imperialist Competitive Algorithm (ICA) based on section 4.2.2. All three metaheuristic

135

algorithms contain multiple numerical parameters, that can be tuned to increase the

efficiency of the search. These parameters are summarised in Table 21. Candidate

configurations are generated by dividing each parameter into discrete sets - Full

Fractional Design (FFD) approach. This creates a total of 12,000 candidate

configurations for ACO, 1000 for ES and 5,760 for ICA, a total of 18,760 across all

algorithms. Although FDD is used for benchmark creation, the proposed tuning

methods are not limited to a discrete set of parameters.

Table 21. The algorithms and hyperparameters used for tuning. Each of the parameters has
a discrete set of values that can be used for the candidate. The total number of candidate
configurations for Ant Colony Optimization is 12,000, for Evolutionary Strategy – 1000 and
Imperialist Competitive Algorithm – 5760. Thus, the total number of candidate configurations
is 18,760.

Parameter Discrete Set
Size of
the set

Ant Colony Optimisation

Parallel instances, 𝑃𝐼𝑚𝑎𝑥 {32, 128, 512, 2048, 8192} 5
Number of ants, 𝑛𝑎 {1, 5, 9, 13} 4
Relative pheromone strength, α {0, 2, 4, 8, 16} 5
Relative heuristic information strength, β {0, 2, 4, 8, 16} 5
Exploitation to exploration ration, 𝑞0 {0, 0.3, 0.6, 0.9} 4
Cunning rate, 𝐶𝑅 {0, 0.2, 0.4, 0.6, 0.8. 1} 6

Evolutionary Strategy

Population size, 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 {32, 128, 512, 2048, 8192} 5

Mutation rate, 𝑀 {0.01, 0.06, 0.11, 0.16, 0.26, 0.31, 0.36, 0.4} 8
Local iterations, 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟 {1, 3, 5, 7, 9} 5
Swap ratio, Ϩ {0.1, 0.3, 0.5, 0.7, 0.9} 5

Imperialist Competitive Algorithm

Number of countries, 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 {32, 128, 512, 2048, 8192} 5

Imperialist ratio, 𝑁𝑖𝑚𝑝 {0.1, 0.4, 0.7} 3

Local iterations, 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟 {1, 4, 7, 10} 4
Assimilation rate, θ {0.1, 0.3, 0.5, 0.7} 4
Average power of empire’s colonies, 𝜉 {0.05, 0.15, 0.25, 0.35} 4
Independence rate, 𝑖𝑅𝑎𝑡𝑒 {0, 0.2, 0.4, 0.6, 0.8, 1} 6

Considering that a single candidate configuration on Aircraft Surveying Problem

takes around one minute to complete, it would be impractical to test and efficiently

compare tuning algorithms. For that reason, a baseline was created by running all

18,760 configurations 10 times in a computer cluster, using 60 seconds elapsed

compute time per configuration as the termination condition. This allows the creation

of a benchmark dataset for all further tuning algorithm evaluations, as results can be

sampled from memory at random (following uniform distribution), instead of requiring

to be computed every time. The dataset have been made public in [5] to encourage

136

further research in this area. The dataset contains a list of all configurations with

associated finesses for individual evaluations.

• Implementation platform

All metaheuristic algorithms were implemented in C++ using the Visual Studio 2019

(v142) compiler. Tuning algorithms, as well as metaheuristic benchmark queries, were

deployed in C# using .NET framework 4.6.1. The computation was performed on a

workstation cluster containing five AMD Threadripper 2990WX processors (3.0GHz,

64GB RAM), running Windows 10 Pro operating system.

6.4.2. Experimental results

As mentioned in the previous section, it would be impractical to compare and

evaluate tuning methods efficiently on the Aerial Surveying Problem. For that reason,

a tuning benchmark was created and made available in [5]. The benchmark creation

totalled in around 130 days of computing time. After benchmark generation, a naïve

brute force approach was simulated by altering the number of evaluations to establish

a baseline for further experiments and results are shown in Figure 45. A simulation is

referred to as a complete run of the tuner algorithm that produces a single best

parameter configuration. The average cost of 10 evaluations of the best configuration

in simulation is then retrieved from the memory.

Figure 45. The baseline for Aerial Surveying Problem (ASP) with a simple exhaustive search
(brute force) approach, where each evaluation represents a single run for each of the 18,760
configurations. Error bars represent the minimum and maximum values achieved during 10
simulations—average total cost, in a million dollars (minimisation problem, lower costs are
better).

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45

BruteForce 10 evaluations

BruteForce 8 evaluations

BruteForce 6 evaluations

BruteForce 4 evaluations

BruteForce 2 evaluations

BruteForce 1 evaluation

Cost $, in millions

137

Results in Figure 45 demonstrate that it requires at least two evaluations per

configuration to achieve a reliable final configuration. Increasing evaluation count

further just incrementally improves and stabilises the final result. Unfortunately, even

two evaluations of exhaustive search across all configurations require 625 compute

hours (26 days) to complete, which is one of the reasons brute force methods are to

be avoided in large configuration space. Finding a good configuration in a reasonable

computing time budget is one of the main goals of a hyperparameter tuner. What

accounts as a reasonable computing time is very much at the discretion of the

researcher or practitioner and depends on the underlying problem, metaheuristics and

compute resources available. Seven levels of tuning budget are defined, ranging from

2 to 100 hours for the ASP.

Next, the dynamics of Elitism Rate (ER) impact on the proposed tuning algorithms

were analysed, by setting ER at three levels – 0.25, 0.5 and 0.75. Each tuner was then

simulated 10 times for seven tuning budgets to evaluate how the stochastic nature of

metaheuristics impact the tuner performance and consistency.

138

Figure 46. Comparison of eTuner and eTunerAlgo approaches for Aerial Surveying Problem.
Error bars represent the minimum and maximum values achieved during 10 simulations—
average total cost, in a million dollars (minimisation problem, lower costs are better).

Results are summarised in Figure 46, with the eTuner in blue and eTunerAlgo in

yellow. There is a definite improvement in both tuner consistency when the tuning

budget is increased from 2 hours to 5 hours; however, from 5 hours to 100 hours, the

gain is less explicit. Results also suggest that higher Elitism Rate (ER) of 0.75 is

beneficial for both tuners, however only marginally. Finally, both eTuner and

eTunerAlgo results are comparable, though eTunerAlgo on average performs better.

For the next experiment, both proposed tuners were compared to a simple random

approach, where the configurations are sampled at random and the best scores used

for final configuration; as well as popular tuning algorithm called Iterative F-Race [292].

The irace package in R [298] was used for the I/R-Race implementation, where each

metaheuristic parameter was set as a category, with conditions filtrating the

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

2h

5h

10h

25h

50h

75h

100h

Cost $, in millions

Tu
n

in
g

b
u

d
ge

t

eTuner ER=0.25 eTuner ER=0.50 eTuner ER=0.75

eTunerAlgo ER=0.25 eTunerAlgo ER=0.50 eTunerAlgo ER=0.75

139

appropriate parameters for each metaheuristic. The default settings were used, and

the compute budget enforced with the “--max-time” attribute.

Figure 47. Tuning algorithm comparison for Aerial Surveying Problem. Error bars represent
the minimum and maximum values achieved during 10 simulations—average total cost, in a
million dollars (minimisation problem, lower costs are better). eTuner and eTunerAlgo are the
proposed methods, Iterative F-Race is the implementation of [298].

Although trivial to implement, Random sampling approach alone is not suitable for

finding an acceptable metaheuristic configuration reliably, as shown from the wide

variance in found configuration scores across all time budgets in Figure 47.

Furthermore, Iterative F-Race also has a high variation between 2- and 25-hour tuning

budget, settling down to more stable solutions only from 50 hours onwards. As

suggested in [285], Iterative F-race requires a sufficient number of candidate

configurations to be sample and evaluated, otherwise if the tuning budget is too small,

resulting configuration might be weak. This can be seen in both Figure 47 and Figure

48, where with limited timing budget, Iterative F-Race does not have sufficient

statistical evidence to pick the best configurations, but becomes stable and well-

performing once at least 75-hour tuning budget is allowed. Moreover, both eTuner

methods outperform the other approaches for tuning budgets up to 50h in both

average scores and the consistency of the resulting configurations.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

2h 5h 10h 25h 50h 75h 100h

C
o

st
 $

, i
n

 m
ill

io
n

s

Tuning budget

Random Iterative F-Race eTuner ER=0.75 eTunerAlgo ER=0.75

140

Figure 48. Tuning algorithm comparison for Aerial Surveying Problem. Average total cost in
a million dollars of 10 simulations (minimisation problem, lower costs are better). eTuner and
eTunerAlgo are the proposed methods, Iterative F-Race is the implementation of [298].

To remove any potential biases created by the generated metaheuristics

benchmark for ASP, eTunerAlgo was also evaluated the for an entirely different NP-

hard problem – Multiple Knapsack Problem using a complex gk10 instance. The same

metaheuristics and parameter configuration sets in Table 21 were used. Both Iterative

F-Race and eTunerAlgo was simulated 10 times, and for every resulting configuration,

the average of 10 evaluations computed. Tuning budget was set to 2, 5, 10 and 25

hours, with each configuration evaluation limited to 60 seconds.

Results in Figure 49 show the improved configuration scores for the proposed

method compared to the popular Iterative F-Race tuning algorithm. The average

scores are not only better for eTunerAlgo, but also the resulting configurations are

more consistent across all tuning budgets. Thus, the proposed method shows a high

potential for tuning metaheuristics with a high dimensionality of parameters within a

very tight tuning budget.

1.05

1.07

1.09

1.11

1.13

1.15

1.17

1.19

1.21

1.23

2h 5h 10h 25h 50h 75h 100h

C
o

st
 $

,
in

 m
ill

io
n

s

Tuning budget

Random Iterative F-Race eTuner ER=0.75 eTunerAlgo ER=0.75

141

Figure 49. Tuner performance comparison for MKP-gk10 instance. Error bars represent the
minimum and maximum values achieved during 10 simulations—average profit (maximisation
problem, higher profits are better). eTunerAlgo is the proposed method, Iterative F-Race is
the implementation of [298].

6.5. Summary

In this chapter, two new simple generate-evaluate tuning methods based on elitism

strategy are presented. One of the methods, called eTuner uses the elitism strategy

to select the best configuration out of a pool of metaheuristic algorithm’ configurations.

Furthermore, the second strategy – eTunerAlgo, first estimates the best and most

suitable algorithm out of all available algorithms, before starting the tuning process on

the reduced set of configurations.

The novel strategy is evaluated by first, generating a metaheuristic tuning

benchmark containing three metaheuristics – ACO, ES, ICA and 18,760 configurations

for easier method evaluation and comparison. Then, the popular Iterative F-Race

strategy is used as a baseline. Results show that on a limited tuning budget, the

developed approach can find better configurations with more consistency compared

to the competition. Finally, to remove any potential biases, both eTunerAlgo and the

baseline Iterative F-Race are used for other NP-hard problem. Similarly, eTunerAlgo

outperforms the competition, indicating the superiority over the rival tuner on tight

tuning budgets.

The tight tuning budgets are significant for the targeted user base of OptPlatform,

where the real-world models take minutes to hours to compute. Therefore, both

56100

56200

56300

56400

56500

56600

56700

56800

2h 5h 10h 25h

To
ta

l p
ro

fi
t

Tuning budget

MKP-gk10 tuning

Iterative F-Race eTunerAlgo ER=0.75

142

proposed tuning methods have been implemented as part of an optional module in

OptPlatform and seamlessly integrated into user workflow, as all fitness evaluations

and problem specifics are already defined in previous steps of the optimisation.

Furthermore, tuning methods' coherent integration allows further abstraction away

from the user, thus lowering the expert knowledge required to produce close to

optimum results within the platform.

143

7. CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

This thesis's first and foremost contribution focuses on creating a new metaheuristic

optimisation framework (MOF) called OptPlatform that improves on the limitations of

existing MOFs laid out in section 2.2.1. One of the main limiting factors of existing

MOFs is the lack of genericity of the supported metaheuristics algorithms. The majority

of MOFs only support evolutionary computing based encodings and are thus limited

in their applications. The proposed and implemented architecture in Chapter 3

overcomes this, by flexible solution encoding and static-dynamic memory model.

Compared to other MOFs, OptPlatform outperforms the competition in both solution

performance and the time required to achieve the solution. Furthermore, this work also

implemented supporting tools lacking on the other MOFs, such as transition

optimisation. Transition optimisation is beneficial when the new solution integration

into real-world is not trivial and a multi-step process is necessary.

As the implemented OptPlatform mainly targets practitioners, the dynamic of

scaling Ant Colony Optimization (ACO) algorithm across various hardware solutions

was studied in-depth using a complex real-world problem, forming the contribution as

part of Chapter 5. Unlike existing literature that only focuses on simple travelling

salesman instances (TSP), this study analysed parallel ACO scaling on a real-world

supply. Results showed that although these ACO architectures can scale for small

benchmark problems such as TSP when applied to complex real-world problems with

extra meta-data, platforms such as GPUs are not suited and get outperformed by

CPUs.

The next contribution proposes a new, improved metaheuristic based on Imperialist

Competitive Algorithm (ICA) called ICA with Independence and Constrained

Assimilation (ICAwICA). The ICAwICA was implemented within OptPlatform and was

used to solve multiple benchmark problems to demonstrate the algorithm's generic

nature; this work formed Chapter 4. The Constrained Assimilation combines classical

ICA assimilation and revolution operator while independence operator works as a local

search to accelerate the convergence. Compared to other, problem-tuned algorithms

144

in the literature, the proposed ICAwICA showed very competitive results for both MKP

and MDVRP instances.

In Chapter 6, the final contribution implements automatic algorithm selection and

tuning to ease the development and improve metaheuristics performance within

OptPlatform. Automated algorithm selection and tuning are significant to OptPlatform’s

target users – practitioners, as they are not expected to have an in-depth knowledge

of metaheuristics or their hyperparameters. This feature is unique to OptPlatform, as

no other analysed MOF offered automated algorithm or parameter selection.

Furthermore, existing tuning methods are again, targeted to small benchmark

problems, where results can be obtained in fractions of the second. When these

existing tuning methods are applied to more complex real-world problems, they can

be sub-optimal. For that reason, two alternative automatic tuning methods are

proposed – eTuner and eTunerAlgo. Results show that within low tuning budget, both

eTuner and eTunerAlgo outperform the more established tuning method in the

literature.

7.2. Future work

Although the implemented OptPlatform provides multiple advancements on existing

metaheuristic optimisation frameworks, numerous improvements would be beneficial.

First, currently, OptPlatform implements only three metaheuristics. Although the

selected three algorithms are a good representation of overall metaheuristics, some

are sufficiently different and thus might be better performing for some problems.

Therefore, one of the areas of future focus would be implementing additional

metaheuristics to improve further the benefits of using OptPlatform.

Although after an in-depth analysis in Chapter 5 it was concluded that CPU is the

more suitable hardware platform for solving real-world supply chain; it would be

beneficial to offer a GPU accelerated metaheuristics alongside the CPU option in the

hyperparameter tuning module. That way, the computing hardware platform could be

automatically selected as part of automated algorithm selection and tuning. Thus,

accelerating the smaller benchmark instances on GPU, while the more complex

problems would be assigned to the CPU-based implementations.

The automated tuning methods proposed could be further improved by assigning

each parameter configuration to its own CPU in a cluster, thus clustered

145

implementation of OptPlatform is part of future research. Furthermore, the proposed

tuning methods were only compared to the most established generate-evaluate

method called iterative F-Race due to the time constraints. More throughout

comparison between the dozen other tuning methods found in literature would be

insightful and is part of future work.

Finally, the current implementation of OptPlatform is intended to be used as a stand-

alone application that integrates into a larger existing IT infrastructure. As the

OptPlatform is structured as an input-output black box, this could be further abstracted

as part of a cloud service API that can be easier integrated into any system. A simple

block diagram interface could be created for encoding and decoding of the problem.

Such a cloud service could become an independent commercial product that can be

used by multiple companies across the globe with little maintenance.

146

8. REFERENCES

[1] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE
Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997, doi: 10.1109/4235.585893.

[2] I. Dzalbs and T. Kalganova, “Forecasting Price Movements in Betting Exchanges Using
Cartesian Genetic Programming and ANN,” Big Data Res., vol. 14, pp. 112–120, 2018,
doi: 10.1016/j.bdr.2018.10.001.

[3] I. Dzalbs, T. Kalganova, and I. Dear, “Imperialist Competitive Algorithm with
Independence and Constrained Assimilation,” in 2020 International Congress on
Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2020,
pp. 1–11, doi: 10.1109/HORA49412.2020.9152916.

[4] I. Dzalbs and T. Kalganova, “Accelerating supply chains with Ant Colony Optimization
across a range of hardware solutions,” Comput. Ind. Eng., vol. 147, p. 106610, Sep.
2020, doi: 10.1016/j.cie.2020.106610.

[5] I. Dzalbs and T. Kalganova, “Metaheuristic Parameter Tuning dataset,” Figshare. 2020,
doi: 10.6084/m9.figshare.12770201.

[6] I. Dzalbs and T. Kalganova, “Simple generate-evaluate strategy for tight-budget
parameter tuning problems,” in 2020 IEEE Symposium Series on Computational
Intelligence (SSCI), 2020, pp. 783–790, doi: 10.1109/SSCI47803.2020.9308348.

[7] S. S. Rao, Engineering Optimization, 5th ed. Hoboken: John Wiley & Sons, Ltd, 2019.
[8] M. Karim and S. Hossein, “A Survey on the Combined Use of Optimization Methods and

Game Theory,” Arch. Comput. Methods Eng., vol. 27, no. 1, pp. 59–80, 2020, doi:
10.1007/s11831-018-9300-5.

[9] G. J. Woeginger, “Exact Algorithms for NP-Hard Problems: A Survey,” 2003, pp. 185–
207.

[10] S. Desale, A. Rasool, S. Andhale, and P. Rane, “Heuristic and Meta-Heuristic Algorithms
and Their Relevance to the Real World: A Survey,” Int. J. Comput. Eng. Res. Trends, vol.
351, no. 5, pp. 2349–7084, 2015.

[11] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on new generation
metaheuristic algorithms,” Comput. Ind. Eng., vol. 137, no. September, p. 106040, Nov.
2019, doi: 10.1016/j.cie.2019.106040.

[12] C. Blum, M. J. B. Aguilera, A. Roli, and M. Sampels, Eds., Hybrid Metaheuristics, vol. 114.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

[13] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization,” ACM Comput.
Surv., vol. 35, no. 3, pp. 268–308, Sep. 2003, doi: 10.1145/937503.937505.

[14] M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, Metaheuristic Algorithms: A
Comprehensive Review. Elsevier Inc., 2018.

[15] D. Molina, J. Poyatos, J. Del Ser, S. García, A. Hussain, and F. Herrera, “Comprehensive
Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic
Behavior, Critical Analysis and Recommendations,” pp. 1–76, Feb. 2020.

[16] M. Gendreau and J.-Y. Potvin, “Metaheuristics in Combinatorial Optimization,” Ann.
Oper. Res., vol. 140, no. 1, pp. 189–213, Nov. 2005, doi: 10.1007/s10479-005-3971-7.

[17] I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Inf.
Sci. (Ny)., vol. 237, pp. 82–117, Jul. 2013, doi: 10.1016/j.ins.2013.02.041.

147

[18] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation
of State Calculations by Fast Computing Machines,” J. Chem. Phys., vol. 21, no. 6, pp.
1087–1092, Jun. 1953, doi: 10.1063/1.1699114.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”
Science (80-.)., vol. 220, no. 4598, pp. 671–680, May 1983, doi:
10.1126/science.220.4598.671.

[20] B. Suman and P. Kumar, “A survey of simulated annealing as a tool for single and
multiobjective optimization,” J. Oper. Res. Soc., vol. 57, no. 10, pp. 1143–1160, Oct.
2006, doi: 10.1057/palgrave.jors.2602068.

[21] J.-P. Courat, G. Raynaud, I. Mrad, and P. Siarry, “Electronic component model
minimization based on log simulated annealing,” IEEE Trans. Circuits Syst. I Fundam.
Theory Appl., vol. 41, no. 12, pp. 790–795, 1994, doi: 10.1109/81.340841.

[22] M. Creutz, “Microcanonical Monte Carlo Simulation,” Phys. Rev. Lett., vol. 50, no. 19,
pp. 1411–1414, May 1983, doi: 10.1103/PhysRevLett.50.1411.

[23] G. Dueck and T. Scheuer, “Threshold accepting: A general purpose optimization
algorithm appearing superior to simulated annealing,” J. Comput. Phys., vol. 90, no. 1,
pp. 161–175, Sep. 1990, doi: 10.1016/0021-9991(90)90201-B.

[24] I. Charon and O. Hudry, “The noising method: a new method for combinatorial
optimization,” Oper. Res. Lett., vol. 14, no. 3, pp. 133–137, Oct. 1993, doi:
10.1016/0167-6377(93)90023-A.

[25] T. A. Feo and M. G. . Resende, “A probabilistic heuristic for a computationally difficult
set covering problem,” Oper. Res. Lett., vol. 8, no. 2, pp. 67–71, Apr. 1989, doi:
10.1016/0167-6377(89)90002-3.

[26] T. A. Feo and M. G. C. Resende, “Greedy Randomized Adaptive Search Procedures,” J.
Glob. Optim., vol. 6, no. 2, pp. 109–133, Mar. 1995, doi: 10.1007/BF01096763.

[27] M. G. C. Resende and C. C. Ribeiro, “Greedy Randomized Adaptive Search Procedures:
Advances, Hybridizations, and Applications,” in Handbook of Metaheuristics, vol. 146,
M. Gendreau and J.-Y. Potvin, Eds. Boston, MA: Springer US, 2010, pp. 283–319.

[28] M. G. C. Resende and C. C. Ribeiro, “Greedy randomized adaptive search procedures:
Advances and extensions,” Int. Ser. Oper. Res. Manag. Sci., vol. 272, pp. 169–220, 2019,
doi: 10.1007/978-3-319-91086-4_6.

[29] J. G. Villegas, C. Prins, C. Prodhon, A. L. Medaglia, and N. Velasco, “GRASP/VND and
multi-start evolutionary local search for the single truck and trailer routing problem
with satellite depots,” Eng. Appl. Artif. Intell., vol. 23, no. 5, pp. 780–794, Aug. 2010,
doi: 10.1016/j.engappai.2010.01.013.

[30] A. Salehipour, K. Sörensen, P. Goos, and O. Bräysy, “Efficient GRASP+VND and
GRASP+VNS metaheuristics for the traveling repairman problem,” 4OR, vol. 9, no. 2,
pp. 189–209, Jun. 2011, doi: 10.1007/s10288-011-0153-0.

[31] F. Glover, “Future paths for integer programming and links to artificial intelligence,”
Comput. Oper. Res., vol. 13, no. 5, pp. 533–549, Jan. 1986, doi: 10.1016/0305-
0548(86)90048-1.

[32] A. Amuthan and K. Deepa Thilak, “Survey on Tabu Search meta-heuristic optimization,”
in 2016 International Conference on Signal Processing, Communication, Power and
Embedded System (SCOPES), 2016, vol. 6, no. 2, pp. 1539–1543, doi:
10.1109/SCOPES.2016.7955697.

[33] L. Piniganti, “A Survey of Tabu Search in Combinatorial Optimization,” 2014.
[34] D. Cvijović and J. Klinowski, “Taboo Search: An Approach to the Multiple-Minima

148

Problem for Continuous Functions,” in Handbook of Global Optimization, vol. 2, 2002,
pp. 387–406.

[35] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated Local Search,” in Handbook of
Metaheuristics, Boston: Kluwer Academic Publishers, 2003, pp. 320–353.

[36] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated Local Search: Framework and
Applications,” in Handbook of Metaheuristics, vol. 146, M. Gendreau and J.-Y. Potvin,
Eds. Boston, MA: Springer US, 2010, pp. 363–397.

[37] X. Li and M. Clerc, “Swarm Intelligence,” in Swarm Intelligence, vol. II, CRC Press, 2019,
pp. 353–384.

[38] W. T. Reeves, “Particle Systems—a Technique for Modeling a Class of Fuzzy Objects,”
ACM Trans. Graph., vol. 2, no. 2, pp. 91–108, Apr. 1983, doi: 10.1145/357318.357320.

[39] S. Selvaraj and E. Choi, “Survey of swarm intelligence algorithms,” ACM Int. Conf.
Proceeding Ser., pp. 69–73, 2020, doi: 10.1145/3378936.3378977.

[40] F. Fausto, A. Reyna-Orta, E. Cuevas, Á. G. Andrade, and M. Perez-Cisneros, “From ants
to whales: metaheuristics for all tastes,” Artif. Intell. Rev., vol. 53, no. 1, pp. 753–810,
Jan. 2020, doi: 10.1007/s10462-018-09676-2.

[41] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 -
International Conference on Neural Networks, 1995, vol. 4, no. 2, pp. 1942–1948, doi:
10.1109/ICNN.1995.488968.

[42] A. Banks, J. Vincent, and C. Anyakoha, “A review of particle swarm optimization. Part I:
background and development,” Nat. Comput., vol. 6, no. 4, pp. 467–484, Oct. 2007,
doi: 10.1007/s11047-007-9049-5.

[43] H. Firpi, “Handbook of Bioinspired Algorithms and Applications,” Brief. Bioinform., vol.
8, no. 4, pp. 275–276, Mar. 2007, doi: 10.1093/bib/bbm009.

[44] S. Sengupta, S. Basak, and R. Peters, “Particle Swarm Optimization: A Survey of
Historical and Recent Developments with Hybridization Perspectives,” Mach. Learn.
Knowl. Extr., vol. 1, no. 1, pp. 157–191, Oct. 2018, doi: 10.3390/make1010010.

[45] S. Lalwani, H. Sharma, S. C. Satapathy, K. Deep, and J. C. Bansal, “A Survey on Parallel
Particle Swarm Optimization Algorithms,” Arab. J. Sci. Eng., vol. 44, no. 4, pp. 2899–
2923, Apr. 2019, doi: 10.1007/s13369-018-03713-6.

[46] M. Habib, I. Aljarah, H. Faris, and S. Mirjalili, “Multi-objective Particle Swarm
Optimization: Theory, Literature Review, and Application in Feature Selection for
Medical Diagnosis,” in International Journal of Environmental Science and Technology,
vol. 16, no. 2, Springer Berlin Heidelberg, 2020, pp. 175–201.

[47] M. Cherrington, D. Airehrour, J. Lu, F. Thabtah, Q. Xu, and S. Madanian, “Particle Swarm
Optimization for Feature Selection: A Review of Filter-based Classification to Identify
Challenges and Opportunities,” in 2019 IEEE 10th Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON), 2019, pp. 0523–0529,
doi: 10.1109/IEMCON.2019.8936185.

[48] N. Nayar, S. Ahuja, and S. Jain, “Swarm Intelligence for Feature Selection: A Review of
Literature and Reflection on Future Challenges,” in Lecture Notes in Networks and
Systems, vol. 39, 2019, pp. 211–221.

[49] P. Lučić and D. Teodorović, “Computing with Bees: Attacking Complex Transportation
Engineering Problems,” Int. J. Artif. Intell. Tools, vol. 12, no. 03, pp. 375–394, Sep. 2003,
doi: 10.1142/S0218213003001289.

[50] X.-S. Yang, “Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms,” in
Lecture Notes in Computer Science, vol. 3562, no. PART II, 2005, pp. 317–323.

149

[51] H. F. Wedde, M. Farooq, and Y. Zhang, “BeeHive: An Efficient Fault-Tolerant Routing
Algorithm Inspired by Honey Bee Behavior,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 3172 LNCS, 2004, pp. 83–94.

[52] N. Gordon, I. A. Wagner, and A. M. Bruckstein, “Discrete bee dance algorithm for
pattern formation on a grid,” in IEEE/WIC International Conference on Intelligent Agent
Technology, 2003. IAT 2003., 2003, pp. 545–549, doi: 10.1109/IAT.2003.1241141.

[53] D. Karaboga, “An Idea Based on Honey Bee Swarm for Numerical Optimization,” 2005.
[54] S. K. Agarwal and S. Yadav, “A Comprehensive Survey on Artificial Bee Colony Algorithm

as a Frontier in Swarm Intelligence,” vol. 904, no. January, Springer Singapore, 2019,
pp. 125–134.

[55] E. Hancer, “Artificial Bee Colony: Theory, Literature Review, and Application in Image
Segmentation,” 2020, pp. 47–67.

[56] E. E. Okoro, O. E. Agwu, D. Olatunji, and O. D. Orodu, “Artificial Bee Colony ABC a
Potential for Optimizing Well Placement - A Review,” in SPE Nigeria Annual
International Conference and Exhibition, 2019, doi: 10.2118/198729-MS.

[57] A. Kaur and S. Goyal, “A survey on the applications of bee colony optimization
techniques,” Int. J. Comput. Sci. Eng., vol. 3, no. 8, pp. 3037–3046, 2011.

[58] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A comprehensive survey:
artificial bee colony (ABC) algorithm and applications,” Artif. Intell. Rev., vol. 42, no. 1,
pp. 21–57, Jun. 2014, doi: 10.1007/s10462-012-9328-0.

[59] X. Yang and Suash Deb, “Cuckoo Search via Lévy flights,” in 2009 World Congress on
Nature & Biologically Inspired Computing (NaBIC), 2009, pp. 210–214, doi:
10.1109/NABIC.2009.5393690.

[60] A. S. Joshi, O. Kulkarni, G. M. Kakandikar, and V. M. Nandedkar, “Cuckoo Search
Optimization- A Review,” Mater. Today Proc., vol. 4, no. 8, pp. 7262–7269, 2017, doi:
10.1016/j.matpr.2017.07.055.

[61] M. Shehab, A. T. Khader, and M. A. Al-Betar, “A survey on applications and variants of
the cuckoo search algorithm,” Appl. Soft Comput., vol. 61, no. April 2019, pp. 1041–
1059, Dec. 2017, doi: 10.1016/j.asoc.2017.02.034.

[62] A. B. Mohamad, A. M. Zain, and N. E. Nazira Bazin, “Cuckoo Search Algorithm for
Optimization Problems—A Literature Review and its Applications,” Appl. Artif. Intell.,
vol. 28, no. 5, pp. 419–448, May 2014, doi: 10.1080/08839514.2014.904599.

[63] H. Chiroma et al., “Bio-inspired computation: Recent development on the
modifications of the cuckoo search algorithm,” Appl. Soft Comput., vol. 61, pp. 149–
173, Dec. 2017, doi: 10.1016/j.asoc.2017.07.053.

[64] X. Yang, Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2010.
[65] S. L. Tilahun, J. M. T. Ngnotchouye, and N. N. Hamadneh, “Continuous versions of firefly

algorithm: a review,” Artif. Intell. Rev., vol. 51, no. 3, pp. 445–492, Mar. 2019, doi:
10.1007/s10462-017-9568-0.

[66] S. L. Tilahun and J. M. T. Ngnotchouye, “Firefly algorithm for discrete optimization
problems: A survey,” KSCE J. Civ. Eng., vol. 21, no. 2, pp. 535–545, Feb. 2017, doi:
10.1007/s12205-017-1501-1.

[67] W. A. Khan, N. N. Hamadneh, S. L. Tilahun, and J. M. T. Ngnotchouye, “A Review and
Comparative Study of Firefly Algorithm and its Modified Versions,” in Optimization
Algorithms - Methods and Applications, InTech, 2016.

[68] I. Fister, I. Fister, X. Yang, and J. Brest, “A comprehensive review of firefly algorithms,”

150

Swarm Evol. Comput., vol. 13, pp. 34–46, Dec. 2013, doi: 10.1016/j.swevo.2013.06.001.
[69] N. Dey, J. Chaki, L. Moraru, S. Fong, and X.-S. Yang, “Firefly Algorithm and Its Variants

in Digital Image Processing: A Comprehensive Review,” 2020, pp. 1–28.
[70] J. Nayak, B. Naik, D. Pelusi, and A. V. Krishna, “A Comprehensive Review and

Performance Analysis of Firefly Algorithm for Artificial Neural Networks,” 2020, pp.
137–159.

[71] A. E. Eiben and M. Schoenauer, “Evolutionary Computing,” Nov. 2005.
[72] M. J. Fogel, L. J., Owens, A. J., & Walsh, Artificial intelligence through simulated

evolution. John Wiley & Sons, 1966.
[73] I. Rechenberg, Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des

Biologischen Evolution. Stuttgart: Fromman-Hozlboog Verlag, 1973.
[74] H.-P. Schwefel, Numerical Optimization of Computer Models. New-York: John Wiley &

Sons, 1981.
[75] J. Koza, “Genetic programming as a means for programming computers by natural

selection,” Stat. Comput., vol. 4, no. 2, Jun. 1994, doi: 10.1007/BF00175355.
[76] P. A. Vikhar, “Evolutionary algorithms: A critical review and its future prospects,” in

2016 International Conference on Global Trends in Signal Processing, Information
Computing and Communication (ICGTSPICC), 2016, pp. 261–265, doi:
10.1109/ICGTSPICC.2016.7955308.

[77] R. SARKER, J. KAMRUZZAMAN, and C. NEWTON, “EVOLUTIONARY OPTIMIZATION
(EvOpt) : A BRIEF REVIEW AND ANALYSIS,” Int. J. Comput. Intell. Appl., vol. 03, no. 04,
pp. 311–330, Dec. 2003, doi: 10.1142/S1469026803001051.

[78] C. Blum et al., “Evolutionary Optimization,” in Variants of Evolutionary Algorithms for
Real-World Applications, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1–
29.

[79] A. Shukla, H. M. Pandey, and D. Mehrotra, “Comparative review of selection techniques
in genetic algorithm,” in 2015 International Conference on Futuristic Trends on
Computational Analysis and Knowledge Management (ABLAZE), 2015, pp. 515–519,
doi: 10.1109/ABLAZE.2015.7154916.

[80] P. Kora and P. Yadlapalli, “Crossover Operators in Genetic Algorithms: A Review,” Int.
J. Comput. Appl., vol. 162, no. 10, pp. 34–36, Mar. 2017, doi: 10.5120/ijca2017913370.

[81] U. A.J. and S. P.D., “CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW,”
ICTACT J. Soft Comput., vol. 06, no. 01, pp. 1083–1092, Oct. 2015, doi:
10.21917/ijsc.2015.0150.

[82] S. Mirjalili, J. S. Dong, A. S. Sadiq, and H. Faris, Nature-Inspired Optimizers, vol. 811.
Cham: Springer International Publishing, 2020.

[83] C. K. H. Lee, “A review of applications of genetic algorithms in operations
management,” Eng. Appl. Artif. Intell., vol. 76, no. May, pp. 1–12, Nov. 2018, doi:
10.1016/j.engappai.2018.08.011.

[84] S. K. Jauhar and M. Pant, “Genetic algorithms in supply chain management: A critical
analysis of the literature,” Sādhanā, vol. 41, no. 9, pp. 993–1017, Sep. 2016, doi:
10.1007/s12046-016-0538-z.

[85] K. Höschel and V. Lakshminarayanan, “Genetic algorithms for lens design: a review,” J.
Opt., vol. 48, no. 1, pp. 134–144, Mar. 2019, doi: 10.1007/s12596-018-0497-3.

[86] Z. Wang and A. Sobey, “A comparative review between Genetic Algorithm use in
composite optimisation and the state-of-the-art in evolutionary computation,”
Compos. Struct., vol. 233, p. 111739, Feb. 2020, doi:

151

10.1016/j.compstruct.2019.111739.
[87] B. M. Varghese and R. J. S. Raj, “A survey on variants of genetic algorithm for scheduling

workflow of tasks,” in 2016 Second International Conference on Science Technology
Engineering and Management (ICONSTEM), 2016, pp. 489–492, doi:
10.1109/ICONSTEM.2016.7560870.

[88] P. Krömer, J. Platoš, and V. Snášel, “Nature-inspired meta-heuristics on modern GPUs:
State of the art and brief survey of selected algorithms,” Int. J. Parallel Program., vol.
42, no. 5, pp. 681–709, 2014, doi: 10.1007/s10766-013-0292-3.

[89] L. Miguel Antonio and C. A. Coello Coello, “Coevolutionary Multiobjective Evolutionary
Algorithms: Survey of the State-of-the-Art,” IEEE Trans. Evol. Comput., vol. 22, no. 6,
pp. 851–865, Dec. 2018, doi: 10.1109/TEVC.2017.2767023.

[90] M. A. Potter and K. A. Jong, “A cooperative coevolutionary approach to function
optimization,” 1994, pp. 249–257.

[91] F. Hsieh, F.-M. Zhan, and Y.-H. Guo, “A solution methodology for carpooling systems
based on double auctions and cooperative coevolutionary particle swarms,” Appl.
Intell., vol. 49, no. 2, pp. 741–763, Feb. 2019, doi: 10.1007/s10489-018-1288-x.

[92] Z. Li, M. N. Janardhanan, Q. Tang, and P. Nielsen, “Co-evolutionary particle swarm
optimization algorithm for two-sided robotic assembly line balancing problem,” Adv.
Mech. Eng., vol. 8, no. 9, p. 168781401666790, Sep. 2016, doi:
10.1177/1687814016667907.

[93] C. Hu, P. Zhang, and H. Liu, “Cooperative Co-evolutionary Artificial Bee Colony
Algorithm Based on Hierarchical Communication Model,” Chinese J. Electron., vol. 25,
no. 3, pp. 570–576, May 2016, doi: 10.1049/cje.2016.05.025.

[94] W. D. Hillis, “Co-evolving parasites improve simulated evolution as an optimization
procedure,” Phys. D Nonlinear Phenom., vol. 42, no. 1–3, pp. 228–234, Jun. 1990, doi:
10.1016/0167-2789(90)90076-2.

[95] X. Ma et al., “A Survey on Cooperative Co-Evolutionary Algorithms,” IEEE Trans. Evol.
Comput., vol. 23, no. 3, pp. 421–441, Jun. 2019, doi: 10.1109/TEVC.2018.2868770.

[96] S. Nguyen, Y. Mei, and M. Zhang, “Genetic programming for production scheduling: a
survey with a unified framework,” Complex Intell. Syst., vol. 3, no. 1, pp. 41–66, Mar.
2017, doi: 10.1007/s40747-017-0036-x.

[97] M. T. Ahvanooey, Q. Li, M. Wu, and S. Wang, “A Survey of Genetic Programming and
Its Applications,” KSII Trans. Internet Inf. Syst., vol. 13, no. 4, Apr. 2019, doi:
10.3837/tiis.2019.04.002.

[98] A. De Lorenzo, A. Bartoli, M. Castelli, E. Medvet, and B. Xue, “Genetic programming in
the twenty-first century: a bibliometric and content-based analysis from both sides of
the fence,” Genet. Program. Evolvable Mach., no. 0123456789, Jul. 2019, doi:
10.1007/s10710-019-09363-3.

[99] A. Khan, A. S. Qureshi, N. Wahab, M. Hussain, and M. Y. Hamza, “A Recent Survey on
the Applications of Genetic Programming in Image Processing,” pp. 1–30, Jan. 2019.

[100] I. Dzalbs and T. Kalganova, “Multi-step Ahead Forecasting Using Cartesian Genetic
Programming,” in Inspired by Nature. Emergence, Complexity and Computation, 2018,
pp. 235–246.

[101] J. L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels, “The self-organizing exploratory
pattern of the argentine ant,” J. Insect Behav., vol. 3, no. 2, pp. 159–168, Mar. 1990,
doi: 10.1007/BF01417909.

[102] M. Dorigo and T. Stützle, “Ant Colony Optimization: Overview and Recent Advances,”

152

in International Series in Operations Research and Management Science, vol. 272,
2019, pp. 311–351.

[103] M. Dorigo, V. Maniezzo, and a Colorni, “The ant system: An autocatalytic optimizing
process,” TR91-016, Politec. di Milano, pp. 1–21, 1991.

[104] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of
cooperating agents,” IEEE Trans. Syst. Man Cybern. Part B, vol. 26, no. 1, pp. 29–41,
1996, doi: 10.1109/3477.484436.

[105] A. K. Mandal and S. Dehuri, “A Survey on Ant Colony Optimization for Solving Some of
the Selected NP-Hard Problem,” 2020, pp. 85–100.

[106] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach
to the traveling salesman problem,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53–66,
Apr. 1997, doi: 10.1109/4235.585892.

[107] Y.-H. Huang, C. A. Blazquez, S.-H. Huang, G. Paredes-Belmar, and G. Latorre-Nuñez,
“Solving the Feeder Vehicle Routing Problem using ant colony optimization,” Comput.
Ind. Eng., vol. 127, pp. 520–535, Jan. 2019, doi: 10.1016/j.cie.2018.10.037.

[108] I. D. I. D. Ariyasingha and T. G. I. Fernando, “A New Multi-Objective Ant Colony
Optimisation Algorithm for Solving the Quadratic Assignment Problem,” Vidyodaya J.
Sci., vol. 22, no. 1, p. 1, Nov. 2019, doi: 10.4038/vjs.v22i1.6060.

[109] K. S. P. Deepalakshmi, “Role and Impacts of Ant Colony Optimization in Job Shop
Scheduling Problems,” in Evolutionary Computation in Scheduling, I. R. Amir H.
Gandomi, Ali Emrouznejad, Mo M. Jamshidi, Kalyanmoy Deb, Ed. John Wiley & Sons,
2020, pp. 11–34.

[110] I. Ben Mansour, I. Alaya, and M. Tagina, “A gradual weight-based ant colony approach
for solving the multiobjective multidimensional knapsack problem,” Evol. Intell., vol.
12, no. 2, pp. 253–272, 2019, doi: 10.1007/s12065-019-00222-9.

[111] F. E. B. Otero, A. A. Freitas, and C. G. Johnson, “cAnt-Miner: An Ant Colony Classification
Algorithm to Cope with Continuous Attributes,” in Ant Colony Optimization and Swarm
Intelligence, vol. 5217 LNCS, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
48–59.

[112] K. Kwarciak, M. Radom, and P. Formanowicz, “A multilevel ant colony optimization
algorithm for classical and isothermic DNA sequencing by hybridization with
multiplicity information available,” Comput. Biol. Chem., vol. 61, pp. 109–120, Apr.
2016, doi: 10.1016/j.compbiolchem.2016.01.010.

[113] A. Akhtar, “Evolution of Ant Colony Optimization Algorithm -- A Brief Literature
Review,” Aug. 2019.

[114] M. Pedemonte, S. Nesmachnow, and H. Cancela, “A survey on parallel ant colony
optimization,” Appl. Soft Comput., vol. 11, no. 8, pp. 5181–5197, Dec. 2011, doi:
10.1016/j.asoc.2011.05.042.

[115] T. Bäck, H. P. Schwefel, and F. Hoffmeister, “A survey of Evolutionary Strategies,” Proc.
Fourth Int. Conf. Genet. Algorithms, vol. 9, 1991.

[116] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – A comprehensive introduction,”
Nat. Comput., vol. 1, no. 1, pp. 3–52, 2002, doi: 10.1023/A:1015059928466.

[117] J. A. Lozano, “An Introduction to Evolutionary Algorithms,” 2002, pp. 3–25.
[118] H.-P. Schwefel and G. Rudolph, “Contemporary evolution strategies,” 1995, pp. 891–

907.
[119] N. Hansen, D. V. Arnold, and A. Auger, “Evolution Strategies,” in Springer Handbook of

Computational Intelligence, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp.

153

871–898.
[120] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as a Scalable

Alternative to Reinforcement Learning,” pp. 1–13, Mar. 2017.
[121] E. Mezura-Montes and C. A. Coello Coello, “A simple multimembered evolution

strategy to solve constrained optimization problems,” IEEE Trans. Evol. Comput., vol. 9,
no. 1, pp. 1–17, 2005, doi: 10.1109/TEVC.2004.836819.

[122] J. J. Korczak, P. Lipiński, and P. Roger, “Evolution Strategy in Portfolio Optimization,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 2310, 2002, pp. 156–167.

[123] O. M. Shir, “Niching in Derandomized Evolution Strategies and its Applications in
Quantum Control,” Leiden University, 2008.

[124] S. Hosseini and A. Al Khaled, “A survey on the Imperialist Competitive Algorithm
metaheuristic: Implementation in engineering domain and directions for future
research,” Appl. Soft Comput. J., vol. 24, pp. 1078–1094, 2014, doi:
10.1016/j.asoc.2014.08.024.

[125] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: An algorithm for
optimization inspired by imperialistic competition,” 2007 IEEE Congr. Evol. Comput.
CEC 2007, pp. 4661–4667, 2007, doi: 10.1109/CEC.2007.4425083.

[126] Q. Fang, H. Nguyen, X.-N. Bui, and T. Nguyen-Thoi, “Prediction of Blast-Induced Ground
Vibration in Open-Pit Mines Using a New Technique Based on Imperialist Competitive
Algorithm and M5Rules,” Nat. Resour. Res., vol. 29, no. 2, pp. 791–806, Apr. 2020, doi:
10.1007/s11053-019-09577-3.

[127] B. Tashayo, K. Behzadafshar, M. Soltani Tehrani, H. Afkhami Banayem, M. H. Hashemi,
and S. S. Taghavi Nezhad, “Feasibility of imperialist competitive algorithm to predict
the surface settlement induced by tunneling,” Eng. Comput., vol. 35, no. 3, pp. 917–
923, Jul. 2019, doi: 10.1007/s00366-018-0641-3.

[128] Z. Aliniya and S. A. Mirroshandel, “A novel combinatorial merge-split approach for
automatic clustering using imperialist competitive algorithm,” Expert Syst. Appl., vol.
117, pp. 243–266, 2019, doi: 10.1016/j.eswa.2018.09.050.

[129] Z. Aliniya and S. A. Mirroshandel, “A novel combinatorial merge-split approach for
automatic clustering using imperialist competitive algorithm,” Expert Syst. Appl., vol.
117, no. January 2018, pp. 243–266, Mar. 2019, doi: 10.1016/j.eswa.2018.09.050.

[130] Y. C. Ho and D. L. Pepyne, “Simple Explanation of the No-Free-Lunch Theorem and Its
Implications,” J. Optim. Theory Appl., vol. 115, no. 3, pp. 549–570, Dec. 2002, doi:
10.1023/A:1021251113462.

[131] J. A. Parejo, A. Ruiz-Cortés, S. Lozano, and P. Fernandez, “Metaheuristic optimization
frameworks: a survey and benchmarking,” Soft Comput., vol. 16, no. 3, pp. 527–561,
Mar. 2012, doi: 10.1007/s00500-011-0754-8.

[132] M. A. Lopes Silva, S. R. de Souza, M. J. Freitas Souza, and M. F. de França Filho, “Hybrid
metaheuristics and multi-agent systems for solving optimization problems: A review of
frameworks and a comparative analysis,” Appl. Soft Comput., vol. 71, pp. 433–459, Oct.
2018, doi: 10.1016/j.asoc.2018.06.050.

[133] E. Alba et al., “MALLBA: A Library of Skeletons for Combinatorial Optimisation,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 2400, 2002, pp. 927–932.

[134] E. Alba, G. Luque, J. G. Nieto, G. Ordonez, and G. Leguizamon, “MALLBA: a software
library to design efficient optimisation algorithms,” Int. J. Innov. Comput. Appl., vol. 1,

154

no. 1, p. 74, 2007, doi: 10.1504/IJICA.2007.013403.
[135] S. Cahon, N. Melab, and E.-G. Talbi, “ParadisEO: A Framework for the Reusable Design

of Parallel and Distributed Metaheuristics,” J. Heuristics, vol. 10, no. 3, pp. 357–380,
May 2004, doi: 10.1023/B:HEUR.0000026900.92269.ec.

[136] S. Wagner and M. Affenzeller, “HeuristicLab: A Generic and Extensible Optimization
Environment,” in Adaptive and Natural Computing Algorithms, Vienna: Springer-
Verlag, 2005, pp. 538–541.

[137] C. Gagné and M. Parizeau, “Genericity in evolutionary computation software tools:
Principles and case-study,” Int. J. Artif. Intell. Tools, vol. 15, no. 2, pp. 173–194, 2006,
doi: 10.1142/S021821300600262X.

[138] S. Ventura, C. Romero, A. Zafra, J. A. Delgado, and C. Hervás, “JCLEC: a Java framework
for evolutionary computation,” Soft Comput., vol. 12, no. 4, pp. 381–392, Oct. 2007,
doi: 10.1007/s00500-007-0172-0.

[139] O. Skalicka, “Java Combinatorial Optimization Platform,” 2014. [Online]. Available:
http://jcop.sourceforge.net/en/index.html.

[140] L. S. Coelho, I. M., Munhoz, P. L. A., Haddad, M. N., Coelho, V. N., Silva, M. M., Souza,
M. J. F., Ochi, “OptFrame: A computational framework for combinatorial optimization
problems,” VII ALIO/EURO Work. Appl. Comb. Optim., no. May, 2011.

[141] M. Kronfeld, H. Planatscher, and A. Zell, “The EvA2 Optimization Framework,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 6073 LNCS, 2010, pp. 247–250.

[142] J. J. Durillo and A. J. Nebro, “JMetal: A Java framework for multi-objective
optimization,” Adv. Eng. Softw., vol. 42, no. 10, pp. 760–771, 2011, doi:
10.1016/j.advengsoft.2011.05.014.

[143] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich, “Opt4J,” in Proceedings of the 13th
annual conference on Genetic and evolutionary computation - GECCO ’11, 2011, p.
1723, doi: 10.1145/2001576.2001808.

[144] D. R. White, “Software review: the ECJ toolkit,” Genet. Program. Evolvable Mach., vol.
13, no. 1, pp. 65–67, Mar. 2012, doi: 10.1007/s10710-011-9148-z.

[145] P. D. I. Milano, “HyperSpark : A Framework for Scalable Execution of Computationally-
Intensive Algorithms over Spark,” POLITECNICO DI MILANO, 2016.

[146] H. De Beukelaer, G. F. Davenport, G. De Meyer, and V. Fack, “JAMES: An object-
oriented Java framework for discrete optimization using local search metaheuristics,”
Softw. Pract. Exp., vol. 47, no. 6, pp. 921–938, Jun. 2017, doi: 10.1002/spe.2459.

[147] H. Faris, I. Aljarah, S. Mirjalili, P. A. Castillo, and J. J. Merelo, “EvoloPy: An Open-source
Nature-inspired Optimization Framework in Python,” in Proceedings of the 8th
International Joint Conference on Computational Intelligence, 2016, vol. 1, no. Ijcci, pp.
171–177, doi: 10.5220/0006048201710177.

[148] C. Barba-González et al., “jMetalSP: A framework for dynamic multi-objective big data
optimization,” Appl. Soft Comput., vol. 69, pp. 737–748, Aug. 2018, doi:
10.1016/j.asoc.2017.05.004.

[149] A. Benítez-Hidalgo, A. J. Nebro, J. García-Nieto, I. Oregi, and J. Del Ser, “jMetalPy: A
Python framework for multi-objective optimization with metaheuristics,” Swarm Evol.
Comput., vol. 51, p. 100598, Dec. 2019, doi: 10.1016/j.swevo.2019.100598.

[150] N. Melab, T. Van Luong, K. Boufaras, and E.-G. Talbi, “ParadisEO-MO-GPU: a framework
for parallel GPU-based local search metaheuristics,” in Proceeding of the fifteenth
annual conference on Genetic and evolutionary computation conference - GECCO ’13,

155

2013, p. 1189, doi: 10.1145/2463372.2465804.
[151] S. Wagner et al., “Architecture and Design of the HeuristicLab Optimization

Environment,” in 1st Australian Conference on the Applications of Systems Engineering
ACASE’12, 2014, pp. 197–261.

[152] A. Elyasaf and M. Sipper, “Software review: the HeuristicLab framework,” Genet.
Program. Evolvable Mach., vol. 15, no. 2, pp. 215–218, Jun. 2014, doi: 10.1007/s10710-
014-9214-4.

[153] S. Luke, “ECJ then and now,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion on - GECCO ’17, 2017, pp. 1223–1230, doi:
10.1145/3067695.3082467.

[154] M. Ciavotta, S. Krstic, D. A. Tamburri, and W.-J. Van Den Heuvel, “HyperSpark: A Data-
Intensive Programming Environment for Parallel Metaheuristics,” in 2019 IEEE
International Congress on Big Data (BigDataCongress), 2019, no. July, pp. 85–92, doi:
10.1109/BigDataCongress.2019.00024.

[155] H. De Beukelaer, G. F. Davenport, G. De Meyer, and V. Fack, “JAMES: An object-
oriented Java framework for discrete optimization using local search metaheuristics,”
Softw. Pract. Exp., vol. 47, no. 6, pp. 921–938, Jun. 2017, doi: 10.1002/spe.2459.

[156] C. Barba-González, A. J. Nebro, A. Benítez-Hidalgo, J. García-Nieto, and J. F. Aldana-
Montes, “On the design of a framework integrating an optimization engine with
streaming technologies,” Futur. Gener. Comput. Syst., vol. 107, pp. 538–550, 2020, doi:
10.1016/j.future.2020.02.020.

[157] P. C. Gilmore and R. E. Gomory, “The Theory and Computation of Knapsack Functions,”
Oper. Res., vol. 14, no. 6, pp. 1045–1074, Dec. 1966, doi: 10.1287/opre.14.6.1045.

[158] B. Gavish and H. Pirkul, “Allocation of databases and processors in a distributed data
processing,” in Management of Distributed Data Processing, J. Akola, Ed. Amsterdam:
North-Holland, 1982, pp. 215–231.

[159] W. Shish, “A branch & bound method for the multiconstraint zero-one knapsack
problem,” J. Oper. Res. Soc., vol. 30, pp. 369–378, 1979.

[160] M. Vasquez and J. K. Hao, “A ‘logic-constrained’ knapsack formulation and a tabu
algorithm for the daily photograph scheduling of an earth observation satellite,”
Comput. Optim. Appl., vol. 20, no. 2, pp. 137–157, 2001, doi:
10.1023/A:1011203002719.

[161] C. C. Petersen, “Computational Experience with Variants of the Balas Algorithm Applied
to the Selection of R&D Projects,” Manage. Sci., vol. 13, no. 9, pp. 609–772, 1967.

[162] H. M. Weingartner and D. N. Ness, “Methods for the Solution of the Multidimensional
0/1 Knapsack Problem,” Oper. Res., vol. 15, no. 1, pp. 83–103, Feb. 1967, doi:
10.1287/opre.15.1.83.

[163] T. Setzer and S. M. Blanc, “Empirical orthogonal constraint generation for
Multidimensional 0/1 Knapsack Problems,” Eur. J. Oper. Res., vol. 282, no. 1, pp. 58–
70, 2020, doi: 10.1016/j.ejor.2019.09.016.

[164] G. B. Dantzig and J. H. Ramser, “The Truck Dispatching Problem,” Manage. Sci., vol. 6,
no. 1, pp. 80–91, Oct. 1959, doi: 10.1287/mnsc.6.1.80.

[165] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, “Erratum: The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization,” J. Oper.
Res. Soc., vol. 37, no. 6, pp. 655–655, Jun. 1986, doi: 10.1057/jors.1986.117.

[166] S. Karakatič and V. Podgorelec, “A survey of genetic algorithms for solving multi depot
vehicle routing problem,” Appl. Soft Comput. J., vol. 27, pp. 519–532, 2015, doi:

156

10.1016/j.asoc.2014.11.005.
[167] S. Samsuddin, M. S. Othman, and L. M. Yusuf, “a Review of Single and Population-Based

Metaheuristic Algorithms Solving Multi Depot Vehicle Routing Problem,” Int. J. Softw.
Eng. Comput. Syst., vol. 4, no. 2, pp. 80–93, 2018, doi: 10.15282/ijsecs.4.2.2018.6.0050.

[168] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freem. 1979.

[169] N. Sharma and M. Monika, “A Literature Survey on Multi Depot Vehicle Routing
Problem,” IJSRD -International J. Sci. Res. Dev., vol. 3, no. 04online, pp. 2321–613, 2015.

[170] L. F. Galindres-Guancha, E. M. Toro-Ocampo, and R. A. Gallego-Rendón, “Multi-
objective MDVRP solution considering route balance and cost using the ILS
metaheuristic,” Int. J. Ind. Eng. Comput., vol. 9, no. 1, pp. 33–46, 2018, doi:
10.5267/j.ijiec.2017.5.002.

[171] J. Renaud, G. Laporte, and F. F. Boctor, “A tabu search heuristic for the multi-depot
vehicle routing problem,” Comput. Oper. Res., vol. 23, no. 3, pp. 229–235, 1996, doi:
10.1016/0305-0548(95)O0026-P.

[172] P. Stodola, “Hybrid ant colony optimization algorithm applied to the multi-depot
vehicle routing problem,” Nat. Comput., vol. 6, 2020, doi: 10.1007/s11047-020-09783-
6.

[173] G. Clarke and J. W. Wright, “Scheduling of Vehicles from a Central Depot to a Number
of Delivery Points,” Oper. Res., vol. 12, no. 4, pp. 568–581, Aug. 1964, doi:
10.1287/opre.12.4.568.

[174] P. Surekha and S. Sumathi, “Solution To Multi-Depot Vehicle Routing Problem Using
Genetic Algorithms,” World Appl. Program., no. 13, pp. 118–131, 2011.

[175] B. E. Gillett and J. G. Johnson, “Multi-terminal vehicle-dispatch algorithm,” Omega, vol.
4, no. 6, pp. 711–718, 1976, doi: 10.1016/0305-0483(76)90097-9.

[176] D. Gulczynski, B. Golden, and E. Wasil, “The multi-depot split delivery vehicle routing
problem: An integer programming-based heuristic, new test problems, and
computational results,” Comput. Ind. Eng., vol. 61, no. 3, pp. 794–804, 2011, doi:
10.1016/j.cie.2011.05.012.

[177] A. Imran, “A Variable Neighborhood Search-Based Heuristic for the Multi-Depot
Vehicle Routing Problem,” J. Tek. Ind., vol. 15, no. 2, pp. 95–102, Dec. 2013, doi:
10.9744/jti.15.2.95-102.

[178] Y. M. Shen and R. M. Chen, “Optimal multi-depot location decision using particle swarm
optimization,” Adv. Mech. Eng., vol. 9, no. 8, pp. 1–15, 2017, doi:
10.1177/1687814017717663.

[179] S. B. Sarathi Barma, J. Dutta, and A. Mukherjee, “A 2-opt guided discrete antlion
optimization algorithm for multi-depot vehicle routing problem,” Decis. Mak. Appl.
Manag. Eng., vol. 2, no. 2, pp. 112–125, 2019, doi: 10.31181/dmame1902089b.

[180] B. Yao, C. Chen, X. Song, and X. Yang, “Fresh seafood delivery routing problem using an
improved ant colony optimization,” Ann. Oper. Res., vol. 273, no. 1–2, pp. 163–186,
2019, doi: 10.1007/s10479-017-2531-2.

[181] A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch, “Optimization approaches for
civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey,”
Networks, vol. 72, no. 4, pp. 411–458, Dec. 2018, doi: 10.1002/net.21818.

[182] G. Q. Li, X. G. Zhou, J. Yin, and Q. Y. Xiao, “An UAV scheduling and planning method for
post-disaster survey,” ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol.
XL–2, no. 2, pp. 169–172, Nov. 2014, doi: 10.5194/isprsarchives-XL-2-169-2014.

157

[183] H. Zhang et al., “Scheduling methods for unmanned aerial vehicle based delivery
systems,” in 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), 2014,
pp. 6C1-1-6C1-9, doi: 10.1109/DASC.2014.6979499.

[184] I. Dzalbs and T. Kalganova, “Aerial Surveying Problem dataset,” Figshare. 2020, doi:
10.6084/m9.figshare.12770177.

[185] “Afwerx challange home page.” [Online]. Available: https://afwerxchallenge.com/.
[186] T. K. Ivars Dzalbs, “Supply Chain Logistics Problem Dataset.” [Online]. Available:

https://brunel.figshare.com/articles/Supply_Chain_Logistics_Problem_Dataset/75586
79.

[187] S. Tsutsui, “cAS: Ant Colony Optimization with Cunning Ants,” in System, 2006, pp. 162–
171.

[188] F. Glover and G. A. Kochenberger, “Critical Event Tabu Search for Multidimensional
Knapsack Problems,” in Meta-Heuristics, Boston, MA: Springer US, 1996, pp. 407–427.

[189] J. H. Drake, “Benchmark instances for the Multidimensional Knapsack Problem,” 2020.
[Online]. Available:
https://www.researchgate.net/publication/271198281_Benchmark_instances_for_th
e_Multidimensional_Knapsack_Problem.

[190] M. Abdechiri, H. Bahrami, and K. Faez, “Adaptive Imperialist Competitive Algorithm
(AICA),” Proc. 9th IEEE Int. Conf. Cogn. Informatics, ICCI 2010, pp. 940–945, 2010, doi:
10.1109/COGINF.2010.5599776.

[191] M. R. Maheri and M. Talezadeh, “An Enhanced Imperialist Competitive Algorithm for
optimum design of skeletal structures,” Swarm Evol. Comput., vol. 40, no. November,
pp. 24–36, 2018, doi: 10.1016/j.swevo.2017.12.001.

[192] L. D. Afonso, V. C. Mariani, and L. Dos Santos Coelho, “Modified imperialist competitive
algorithm based on attraction and repulsion concepts for reliability-redundancy
optimization,” Expert Syst. Appl., vol. 40, no. 9, pp. 3794–3802, 2013, doi:
10.1016/j.eswa.2012.12.093.

[193] A. Rabiee, M. Sadeghi, and J. Aghaei, “Modified imperialist competitive algorithm for
environmental constrained energy management of microgrids,” J. Clean. Prod., vol.
202, pp. 273–292, 2018, doi: 10.1016/j.jclepro.2018.08.129.

[194] J. J. Liang and P. N. Suganthan, “Dynamic Multi-Swarm Particle Swarm Optimizer with
Local Search,” in 2005 IEEE Congress on Evolutionary Computation, 2005, vol. 1, no.
May 2014, pp. 522–528, doi: 10.1109/CEC.2005.1554727.

[195] M. Li, D. Lei, and H. Xiong, “An imperialist competitive algorithm with the diversified
operators for many-objective scheduling in flexible job shop,” IEEE Access, vol. 7, pp.
29553–29562, 2019, doi: 10.1109/ACCESS.2019.2895348.

[196] S. Karimi, Z. Ardalan, B. Naderi, and M. Mohammadi, “Scheduling flexible job-shops
with transportation times: Mathematical models and a hybrid imperialist competitive
algorithm,” Appl. Math. Model., vol. 41, pp. 667–682, 2017, doi:
10.1016/j.apm.2016.09.022.

[197] Z. Ardalan, S. Karimi, O. Poursabzi, and B. Naderi, “A novel imperialist competitive
algorithm for generalized traveling salesman problems,” Appl. Soft Comput. J., vol. 26,
pp. 546–555, 2015, doi: 10.1016/j.asoc.2014.08.033.

[198] J. L. Lin, H. C. Chuan, Y. H. Tsai, and C. W. Cho, “Improving imperialist competitive
algorithm with local search for global optimization,” Proc. - Asia Model. Symp. 2013 7th
Asia Int. Conf. Math. Model. Comput. Simulation, AMS 2013, pp. 61–64, 2013, doi:
10.1109/AMS.2013.14.

158

[199] S. J.MousaviRad, F. Akhlaghian Tab, and K. Mollazade, “Application of Imperialist
Competitive Algorithm for Feature Selection: A Case Study on Bulk Rice Classification,”
Int. J. Comput. Appl., vol. 40, no. 16, pp. 41–48, 2012, doi: 10.5120/5068-7485.

[200] D. S. Huang, K. Han, and A. Hussain, “Improved Binary Imperialist Competition
Algorithm for Feature Selection from Gene Expression Data,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9773, p. V,
2016, doi: 10.1007/978-3-319-42297-8.

[201] M. Mirhosseini and H. Nezamabadi-pour, “BICA: a binary imperialist competitive
algorithm and its application in CBIR systems,” Int. J. Mach. Learn. Cybern., vol. 9, no.
12, pp. 2043–2057, 2018, doi: 10.1007/s13042-017-0686-4.

[202] S. Nozarian, H. Soltanpoor, and M. Vafaei, “A Binary Model on the Basis of Imperialist
Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0,” Proc. third Int.
Conf. Serv. Emerg. Mark. 2012, vol. 34, pp. 67–71, 2012.

[203] S. Xu, Y. Wang, and A. Huang, “Application of imperialist competitive algorithm on
solving the traveling salesman problem,” Algorithms, vol. 7, no. 2, pp. 229–242, 2014,
doi: 10.3390/a7020229.

[204] S. H. Mirhoseini, S. M. Hosseini, M. Ghanbari, and M. Ahmadi, “A new improved
adaptive imperialist competitive algorithm to solve the reconfiguration problem of
distribution systems for loss reduction and voltage profile improvement,” Int. J. Electr.
Power Energy Syst., vol. 55, pp. 128–143, 2014, doi: 10.1016/j.ijepes.2013.08.028.

[205] S. S. Ray, S. Bandyopadhyay, and S. K. Pal, “Genetic operators for combinatorial
optimization in TSP and microarray gene ordering,” Appl. Intell., vol. 26, no. 3, pp. 183–
195, 2007, doi: 10.1007/s10489-006-0018-y.

[206] “Multiple Depot VRP Instances,” University of Malaga, Spain. [Online]. Available:
http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances/.

[207] J. Skackauskas, T. Kalganova, I. Dear, and M. Janakram, “Dynamic Impact for Ant Colony
Optimization algorithm,” Feb. 2020.

[208] M. Abdel-Basset, D. El-Shahat, and A. K. Sangaiah, “A modified nature inspired meta-
heuristic whale optimization algorithm for solving 0–1 knapsack problem,” Int. J. Mach.
Learn. Cybern., vol. 10, no. 3, pp. 495–514, 2019, doi: 10.1007/s13042-017-0731-3.

[209] J. Liu, C. Wu, J. Cao, X. Wang, and K. L. Teo, “A Binary differential search algorithm for
the 0–1 multidimensional knapsack problem,” Appl. Math. Model., vol. 40, no. 23–24,
pp. 9788–9805, 2016, doi: 10.1016/j.apm.2016.06.002.

[210] M. Chih, “Self-adaptive check and repair operator-based particle swarm optimization
for the multidimensional knapsack problem,” Appl. Soft Comput. J., vol. 26, pp. 378–
389, 2015, doi: 10.1016/j.asoc.2014.10.030.

[211] X. Lai, J. K. Hao, F. Glover, and Z. Lü, “A two-phase tabu-evolutionary algorithm for the
0–1 multidimensional knapsack problem,” Inf. Sci. (Ny)., vol. 436–437, pp. 282–301,
2018, doi: 10.1016/j.ins.2018.01.026.

[212] X. Kong, L. Gao, H. Ouyang, and S. Li, “Solving large-scale multidimensional knapsack
problems with a new binary harmony search algorithm,” Comput. Oper. Res., vol. 63,
pp. 7–22, 2015, doi: 10.1016/j.cor.2015.04.018.

[213] A. A. Ferjani and N. Liouane, “Logic gate-based evolutionary algorithm for the
multidimensional knapsack problem,” 2017 Int. Conf. Control. Autom. Diagnosis, ICCAD
2017, pp. 164–168, 2017, doi: 10.1109/CADIAG.2017.8075650.

[214] M. Daniel Valadao Baroni and F. M. Varejao, “A shuffled complex evolution algorithm
for the multidimensional knapsack problem using core concept,” 2016 IEEE Congr. Evol.

159

Comput. CEC 2016, pp. 2718–2723, 2016, doi: 10.1109/CEC.2016.7744131.
[215] J. H. Drake, E. Özcan, and E. K. Burke, “A case study of controlling crossover in a

selection hyper-heuristic framework using the multidimensional Knapsack problem,”
Evol. Comput., vol. 24, no. 1, pp. 113–141, 2016, doi: 10.1162/EVCO_a_00145.

[216] K. K. Bhattacharjee and S. P. Sarmah, “Modified swarm intelligence based techniques
for the knapsack problem,” Appl. Intell., vol. 46, no. 1, pp. 158–179, 2017, doi:
10.1007/s10489-016-0822-y.

[217] F. B. De Oliveira, R. Enayatifar, H. J. Sadaei, F. G. Guimarães, and J. Y. Potvin, “A
cooperative coevolutionary algorithm for the Multi-Depot Vehicle Routing Problem,”
Expert Syst. Appl., vol. 43, pp. 117–130, 2016, doi: 10.1016/j.eswa.2015.08.030.

[218] M. E. H. Sadati, D. Aksen, and N. Aras, “The r-interdiction selective multi-depot vehicle
routing problem,” Int. Trans. Oper. Res., vol. 27, no. 2, pp. 835–866, 2020, doi:
10.1111/itor.12669.

[219] M. Esmaeilikia, B. Fahimnia, J. Sarkis, K. Govindan, A. Kumar, and J. Mo, “Tactical supply
chain planning models with inherent flexibility: definition and review,” Ann. Oper. Res.,
vol. 244, no. 2, pp. 407–427, Sep. 2016, doi: 10.1007/s10479-014-1544-3.

[220] M. Schyns, “An ant colony system for responsive dynamic vehicle routing,” Eur. J. Oper.
Res., vol. 245, no. 3, pp. 704–718, Sep. 2015, doi: 10.1016/j.ejor.2015.04.009.

[221] Z. Zhang, N. Zhang, and Z. Feng, “Multi-satellite control resource scheduling based on
ant colony optimization,” Expert Syst. Appl., vol. 41, no. 6, pp. 2816–2823, May 2014,
doi: 10.1016/j.eswa.2013.10.014.

[222] N. Azad, A. Aazami, A. Papi, and A. Jabbarzadeh, “A two-phase genetic algorithm for
incorporating environmental considerations with production, inventory and routing
decisions in supply chain networks,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion on - GECCO ’19, 2019, pp. 41–42, doi:
10.1145/3319619.3326781.

[223] W.-C. Yeh and M.-C. Chuang, “Using multi-objective genetic algorithm for partner
selection in green supply chain problems,” Expert Syst. Appl., vol. 38, no. 4, pp. 4244–
4253, Apr. 2011, doi: 10.1016/j.eswa.2010.09.091.

[224] A. M. Fathollahi-Fard, K. Govindan, M. Hajiaghaei-Keshteli, and A. Ahmadi, “A green
home health care supply chain: New modified simulated annealing algorithms,” J.
Clean. Prod., vol. 240, p. 118200, Dec. 2019, doi: 10.1016/j.jclepro.2019.118200.

[225] A. Mohammed and S. Duffuaa, “A Meta-Heuristic Algorithm Based on Simulated
Annealing for Designing Multi-Objective Supply Chain Systems,” in 2019 Industrial &
Systems Engineering Conference (ISEC), 2019, pp. 1–6, doi:
10.1109/IASEC.2019.8686517.

[226] C. B. Kalayci and C. Kaya, “An ant colony system empowered variable neighborhood
search algorithm for the vehicle routing problem with simultaneous pickup and
delivery,” Expert Syst. Appl., vol. 66, pp. 163–175, 2016, doi:
10.1016/j.eswa.2016.09.017.

[227] S. Zhang, W. Zhang, Y. Gajpal, and S. S. Appadoo, “Ant Colony Algorithm for Routing
Alternate Fuel Vehicles in Multi-depot Vehicle Routing Problem,” Springer Singapore,
2019, pp. 251–260.

[228] E. Bottani, T. Murino, M. Schiavo, and R. Akkerman, “Resilient food supply chain design:
Modelling framework and metaheuristic solution approach,” Comput. Ind. Eng., vol.
135, no. October 2018, pp. 177–198, Sep. 2019, doi: 10.1016/j.cie.2019.05.011.

[229] V. V. Panicker, M. V. Reddy, and R. Sridharan, “Development of an ant colony

160

optimisation-based heuristic for a location-routing problem in a two-stage supply
chain,” Int. J. Value Chain Manag., vol. 9, no. 1, p. 38, 2018, doi:
10.1504/IJVCM.2018.091109.

[230] F. Valdez, F. Moreno, and P. Melin, “A Comparison of ACO, GA and SA for Solving the
TSP Problem,” 2020, pp. 181–189.

[231] K.-J. Wang and C.-H. Lee, “A revised ant algorithm for solving location–allocation
problem with risky demand in a multi-echelon supply chain network,” Appl. Soft
Comput., vol. 32, pp. 311–321, Jul. 2015, doi: 10.1016/j.asoc.2015.03.046.

[232] L. Wong and N. H. Moin, “Ant Colony Optimization For Split Delivery Inventory Routing
Problem,” Malaysian J. Comput. Sci., vol. 30, no. 4, pp. 333–348, Dec. 2017, doi:
10.22452/mjcs.vol30no4.5.

[233] P. F. Vieira, S. M. Vieira, M. I. Gomes, A. P. Barbosa-Póvoa, and J. M. C. Sousa,
“Designing closed-loop supply chains with nonlinear dimensioning factors using ant
colony optimization,” Soft Comput., vol. 19, no. 8, pp. 2245–2264, Aug. 2015, doi:
10.1007/s00500-014-1405-7.

[234] P. Yelmewad, A. Kumar, and B. Talawar, “MMAS on GPU for Large TSP Instances,” in
2019 10th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), 2019, pp. 1–6, doi: 10.1109/ICCCNT45670.2019.8944770.

[235] W. Zhou, F. He, and Z. Zhang, “A GPU-based parallel MAX-MIN Ant System algorithm
with grouped roulette wheel selection,” in 2017 IEEE 21st International Conference on
Computer Supported Cooperative Work in Design (CSCWD), 2017, pp. 360–365, doi:
10.1109/CSCWD.2017.8066721.

[236] M. Randall and A. Lewis, “A Parallel Implementation of Ant Colony Optimization,” J.
Parallel Distrib. Comput., vol. 62, no. 9, pp. 1421–1432, Sep. 2002, doi:
10.1006/jpdc.2002.1854.

[237] A. Prakasam and N. Savarimuthu, “Metaheuristic algorithms and probabilistic
behaviour: a comprehensive analysis of Ant Colony Optimization and its variants,” Artif.
Intell. Rev., vol. 45, no. 1, pp. 97–130, 2016, doi: 10.1007/s10462-015-9441-y.

[238] Ş. Gülcü, M. Mahi, Ö. K. Baykan, and H. Kodaz, “A parallel cooperative hybrid method
based on ant colony optimization and 3-Opt algorithm for solving traveling salesman
problem,” Soft Comput., vol. 22, no. 5, pp. 1669–1685, Mar. 2018, doi:
10.1007/s00500-016-2432-3.

[239] G. Weidong, F. Jinqiao, W. Yazhou, Z. Hongjun, and H. Jidong, “Parallel Performance of
an Ant Colony Optimization Algorithm for TSP,” in 2015 8th International Conference
on Intelligent Computation Technology and Automation (ICICTA), 2015, pp. 625–629,
doi: 10.1109/ICICTA.2015.159.

[240] Y. Tan and K. Ding, “A Survey on GPU-Based Implementation of Swarm Intelligence
Algorithms,” IEEE Trans. Cybern., vol. 46, no. 9, pp. 2028–2041, Sep. 2016, doi:
10.1109/TCYB.2015.2460261.

[241] M. Sato, S. Tsutsui, N. Fujimoto, Y. Sato, and M. Namiki, “First results of performance
comparisons on many-core processors in solving QAP with ACO,” pp. 1477–1478, 2014,
doi: 10.1145/2598394.2602274.

[242] D. Thiruvady, A. T. Ernst, and G. Singh, “Parallel ant colony optimization for resource
constrained job scheduling,” Ann. Oper. Res., vol. 242, no. 2, pp. 355–372, Jul. 2016,
doi: 10.1007/s10479-014-1577-7.

[243] G. D. Guerrero, J. M. Cecilia, A. Llanes, J. M. García, M. Amos, and M. Ujaldón,
“Comparative evaluation of platforms for parallel Ant Colony Optimization,” J.

161

Supercomput., vol. 69, no. 1, pp. 318–329, Jul. 2014, doi: 10.1007/s11227-014-1154-5.
[244] Q. Yang, L. Fang, and X. Duan, “RMACO :a randomly matched parallel ant colony

optimization,” World Wide Web, vol. 19, no. 6, pp. 1009–1022, Nov. 2016, doi:
10.1007/s11280-015-0369-6.

[245] Y. Zhou, F. He, N. Hou, and Y. Qiu, “Parallel ant colony optimization on multi-core SIMD
CPUs,” Futur. Gener. Comput. Syst., vol. 79, pp. 473–487, 2018, doi:
10.1016/j.future.2017.09.073.

[246] A. Llanes, C. Vélez, A. M. Sánchez, H. Pérez-Sánchez, and J. M. Cecilia, “Parallel Ant
Colony Optimization for the HP Protein Folding Problem,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9656, F. Ortuño and I. Rojas, Eds. Cham: Springer International
Publishing, 2016, pp. 615–626.

[247] H. Fingler, E. N. Cáceres, H. Mongelli, and S. W. Song, “A CUDA based Solution to the
Multidimensional Knapsack Problem Using the Ant Colony Optimization,” Procedia
Comput. Sci., vol. 29, no. 30, pp. 84–94, 2014, doi: 10.1016/j.procs.2014.05.008.

[248] D. Markvica, C. Schauer, and G. R. Raidl, “CPU Versus GPU Parallelization of an Ant
Colony Optimization for the Longest Common Subsequence Problem,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 9520, R. Moreno-Díaz, F. Pichler, and A. Quesada-
Arencibia, Eds. Cham: Springer International Publishing, 2015, pp. 401–408.

[249] J. M. Cecilia, A. Llanes, J. L. Abellán, J. Gómez-Luna, L. W. Chang, and W. M. W. Hwu,
“High-throughput Ant Colony Optimization on graphics processing units,” J. Parallel
Distrib. Comput., vol. 113, pp. 261–274, 2018, doi: 10.1016/j.jpdc.2017.12.002.

[250] R. Skinderowicz, “Implementing a GPU-based parallel MAX–MIN Ant System,” Futur.
Gener. Comput. Syst., vol. 106, pp. 277–295, May 2020, doi:
10.1016/j.future.2020.01.011.

[251] L. Dawson and I. A. Stewart, “Accelerating ant colony optimization-based edge
detection on the GPU using CUDA,” in 2014 IEEE Congress on Evolutionary Computation
(CEC), 2014, pp. 1736–1743, doi: 10.1109/CEC.2014.6900638.

[252] Y. Huo and J. X. Huang, “Parallel Ant Colony Optimization for Flow Shop Scheduling
Subject to Limited Machine Availability,” in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2016, pp. 756–765, doi:
10.1109/IPDPSW.2016.151.

[253] F. Tirado, A. Urrutia, and R. J. Barrientos, “Using a coprocessor to solve the Ant Colony
Optimization algorithm,” in 2015 34th International Conference of the Chilean
Computer Science Society (SCCC), 2015, vol. 2016-Febru, pp. 1–6, doi:
10.1109/SCCC.2015.7416584.

[254] F. Tirado, R. J. Barrientos, P. González, and M. Mora, “Efficient exploitation of the Xeon
Phi architecture for the Ant Colony Optimization (ACO) metaheuristic,” J.
Supercomput., vol. 73, no. 11, pp. 5053–5070, Nov. 2017, doi: 10.1007/s11227-017-
2124-5.

[255] H. Lloyd and M. Amos, “A highly parallelized and vectorized implementation of Max-
Min Ant System on Intel® Xeon PhiTM,” 2016 IEEE Symp. Ser. Comput. Intell. SSCI 2016,
2017, doi: 10.1109/SSCI.2016.7850085.

[256] C. S, H. S. Seshadri, and V. Lokesha, “An Effective Parallelism Topology in Ant Colony
Optimization algorithm for Medical Image Edge Detection with Critical Path
Methodology (PACO-CPM),” Int. J. Recent Contrib. from Eng. Sci. IT, vol. 3, no. 4, p. 12,

162

Dec. 2015, doi: 10.3991/ijes.v3i4.5139.
[257] A. Aslam, E. Khan, and M. M. S. Beg, “Multi-threading based implementation of Ant-

Colony Optimization algorithm for image edge detection,” in 2015 Annual IEEE India
Conference (INDICON), 2015, vol. 151, no. 2005, pp. 1–6, doi:
10.1109/INDICON.2015.7443603.

[258] D. M. Chitty, “Applying ACO to Large Scale TSP Instances,” Adv. Intell. Syst. Comput.,
vol. 650, pp. 104–118, 2018, doi: 10.1007/978-3-319-66939-7_9.

[259] H. Ismkhan, “Effective heuristics for ant colony optimization to handle large-scale
problems,” Swarm Evol. Comput., vol. 32, pp. 140–149, 2017, doi:
10.1016/j.swevo.2016.06.006.

[260] A. A. Abouelfarag, W. M. Aly, and A. G. Elbialy, “Performance analysis and tuning for
parallelization of ant colony optimization by using openmp,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9339, pp. 73–
85, 2015, doi: 10.1007/978-3-319-24369-6_6.

[261] B. H. Li, M. Lu, Y. G. Shan, and H. Zhang, “Parallel ant colony optimization for the
determination of a point heat source position in a 2-D domain,” Appl. Therm. Eng., vol.
91, pp. 994–1002, 2015, doi: 10.1016/j.applthermaleng.2015.09.002.

[262] D. El Baz, M. Hifi, L. Wu, and X. Shi, “A Parallel Ant Colony Optimization for the
Maximum-Weight Clique Problem,” in 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2016, pp. 796–800, doi:
10.1109/IPDPSW.2016.111.

[263] H. H. Mehne, “Evaluation of Parallelism in Ant Colony Optimization Method for
Numerical Solution of Optimal Control Problems,” J. Electr. Eng. Control Comput. Sci.
JEEECCS, vol. 1, no. 2, pp. 15–20, 2015.

[264] L. Dawson, “Generic Techniques in General Purpose Gpu Programming With
Applications To Ant Colony and Image Processing Algorithms,” 2015.

[265] R. Murooka, Y. Ito, and K. Nakano, “Accelerating Ant Colony Optimization for the Vertex
Coloring Problem on the GPU,” in 2016 Fourth International Symposium on Computing
and Networking (CANDAR), 2016, pp. 469–475, doi: 10.1109/CANDAR.2016.0088.

[266] T. Tufteland, G. Ødesneltvedt, and M. Goodwin, “Optimizing PolyACO Training with
GPU-Based Parallelization,” in International Series in Operations Research and
Management Science, vol. 272, 2016, pp. 233–240.

[267] J. Gao, Z. Chen, L. Gao, and B. Zhang, “GPU implementation of ant colony optimization-
based band selections for hyperspectral data classification,” in 2016 8th Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS),
2016, pp. 1–4, doi: 10.1109/WHISPERS.2016.8071720.

[268] P. Wang, H. Li, and B. Zhang, “A GPU-based Parallel Ant Colony Algorithm for Scientific
Workflow Scheduling,” Int. J. Grid Distrib. Comput., vol. 8, no. 4, pp. 37–46, 2015, doi:
10.14257/ijgdc.2015.8.4.04.

[269] N. A. Kallioras, K. Kepaptsoglou, and N. D. Lagaros, “Transit stop inspection and
maintenance scheduling: A GPU accelerated metaheuristics approach,” Transp. Res.
Part C Emerg. Technol., vol. 55, pp. 246–260, 2015, doi: 10.1016/j.trc.2015.02.013.

[270] K. Khatri and V. Kumar Gupta, “Research on Solving Travelling Salesman Problem using
Rank Based Ant System on GPU,” Compusoft, vol. 4, no. 5, p. 2320, 2015.

[271] S. NSharma and V. Garg, “Multi Colony Ant System based Solution to Travelling
Salesman Problem using OpenCL,” Int. J. Comput. Appl., vol. 118, no. 23, pp. 1–3, May
2015, doi: 10.5120/20882-3637.

163

[272] A. Wagh and V. Nemade, “Query Optimization using Modified Ant Colony Algorithm,”
Int. J. Comput. Appl., vol. 167, no. 2, pp. 29–33, Jun. 2017, doi:
10.5120/ijca2017914185.

[273] A. Uchida, Y. Ito, and K. Nakano, “Accelerating ant colony optimisation for the travelling
salesman problem on the GPU,” International Journal of Parallel, Emergent and
Distributed Systems, vol. 29, no. 4. Taylor & Francis, pp. 401–420, 2014, doi:
10.1080/17445760.2013.842568.

[274] Y. Zhou, F. He, and Y. Qiu, “Dynamic strategy based parallel ant colony optimization on
GPUs for TSPs,” Sci. China Inf. Sci., vol. 60, no. 6, p. 068102, Jun. 2017, doi:
10.1007/s11432-015-0594-2.

[275] O. U. B and R. Tarnawski, Machine Learning, Optimization, and Big Data, vol. 10710.
Cham: Springer International Publishing, 2018.

[276] O. Bali, W. Elloumi, A. Abraham, and A. M. Alimi, “ACO-PSO optimization for solving
TSP problem with GPU acceleration,” Adv. Intell. Syst. Comput., vol. 557, pp. 559–569,
2017, doi: 10.1007/978-3-319-53480-0_55.

[277] A. Llanes, J. M. Cecilia, A. Sánchez, J. M. García, M. Amos, and M. Ujaldón, “Dynamic
load balancing on heterogeneous clusters for parallel ant colony optimization,” Cluster
Comput., vol. 19, no. 1, pp. 1–11, Mar. 2016, doi: 10.1007/s10586-016-0534-4.

[278] J. M. Cecilia, J. M. García, A. Nisbet, M. Amos, and M. Ujaldón, “Enhancing data
parallelism for Ant Colony Optimization on GPUs,” J. Parallel Distrib. Comput., vol. 73,
no. 1, pp. 42–51, Jan. 2013, doi: 10.1016/j.jpdc.2012.01.002.

[279] R. Skinderowicz, “The GPU-based parallel Ant Colony System,” J. Parallel Distrib.
Comput., vol. 98, pp. 48–60, Dec. 2016, doi: 10.1016/j.jpdc.2016.04.014.

[280] R. Rohit Chandra, Leo Dagum, David Kohr, Parallel Programming in OpenMP. Elsevier,
2000.

[281] J. J. R. Sodani, Intel Xeon Phi Processor High Performance Programming: Knights
Landing Edition, Edition 2. Morgan Kaufmann, 2016.

[282] J. M. Cecilia, A. Llanes, J. L. Abellán, J. Gómez-Luna, L.-W. Chang, and W.-M. W. Hwu,
“High-throughput Ant Colony Optimization on graphics processing units,” J. Parallel
Distrib. Comput., vol. 113, pp. 261–274, Mar. 2018, doi: 10.1016/j.jpdc.2017.12.002.

[283] M. Veluscek, T. Kalganova, P. Broomhead, and A. Grichnik, “Composite goal methods
for transportation network optimization,” Expert Syst. Appl., vol. 42, no. 8, pp. 3852–
3867, May 2015, doi: 10.1016/j.eswa.2014.12.017.

[284] F. Li, “GACO: A GPU-based High Performance Parallel Multi-ant Colony Optimization
Algorithm,” J. Inf. Comput. Sci., vol. 11, no. 6, pp. 1775–1784, 2014, doi:
10.12733/jics20103218.

[285] C. Huang, Y. Li, and X. Yao, “A Survey of Automatic Parameter Tuning Methods for
Metaheuristics,” IEEE Trans. Evol. Comput., vol. 24, no. 2, pp. 201–216, Apr. 2020, doi:
10.1109/TEVC.2019.2921598.

[286] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary
algorithms,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 124–141, Jul. 1999, doi:
10.1109/4235.771166.

[287] H. H. Hoos, “Automated Algorithm Configuration and Parameter Tuning,” in
Autonomous Search, vol. 9783642214, Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 37–71.

[288] O. Maron and A. Moore, “Hoeffding Races: Accelerating Model Selection Search for
Classification and Function Approximation,” Adv. Neural Inf. Process. Syst., pp. 59–66,

164

1993.
[289] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, “A Racing Algorithm for

Configuring Metaheuristics,” Proc. Genet. Evol. Comput. Conf., no. May 2014, pp. 11–
18, 2002.

[290] M. Birattari, Tuning Metaheuristics, vol. 197. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009.

[291] P. Balaprakash, M. Birattari, and T. Stützle, “Improvement Strategies for the F-Race
Algorithm: Sampling Design and Iterative Refinement,” in Hybrid Metaheuristics, vol.
37, no. 3, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 108–122.

[292] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-Race and Iterated F-Race: An
Overview,” in Experimental Methods for the Analysis of Optimization Algorithms,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 311–336.

[293] T. Liao, M. A. M. de Oca, and T. Stützle, “Computational results for an automatically
tuned CMA-ES with increasing population size on the CEC’05 benchmark set,” Soft
Comput., vol. 17, no. 6, pp. 1031–1046, Jun. 2013, doi: 10.1007/s00500-012-0946-x.

[294] T. Liao, D. Molina, and T. Stützle, “Performance evaluation of automatically tuned
continuous optimizers on different benchmark sets,” Appl. Soft Comput., vol. 27, pp.
490–503, Feb. 2015, doi: 10.1016/j.asoc.2014.11.006.

[295] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stuetzle, “ParamILS: An Automatic
Algorithm Configuration Framework,” J. Artif. Intell. Res., vol. 36, pp. 267–306, Oct.
2009, doi: 10.1613/jair.2861.

[296] H. H. Hoos and T. Stützle, Stochastic Local Search. Elsevier, 2005.
[297] L. Pérez Cáceres and T. Stützle, “Exploring variable neighborhood search for automatic

algorithm configuration,” Electron. Notes Discret. Math., vol. 58, pp. 167–174, Apr.
2017, doi: 10.1016/j.endm.2017.03.022.

[298] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stützle, “The
irace package: Iterated racing for automatic algorithm configuration,” Oper. Res.
Perspect., vol. 3, pp. 43–58, 2016, doi: 10.1016/j.orp.2016.09.002.

165

9. APPENDIX

The following section describes the Transcom problem in section 2.3.2.3. in more

details and give numerical examples.

Dataset tables

• Available Aircraft – table containing the number of aircraft of given type at each

of the military bases/airports at time zero.

• Aircraft to Base Compatibility – matrix representation of given aircraft type

access to any of the military bases or commercial airport. For example, none of

the military aircraft can land at commercial airports, however, some of the

military bases share runway and allow commercial aircraft.

• Aircraft data – table of attributes of any given aircraft type. Some of the aircraft

support in-air refuel, where the range of aircraft is reset. As military aircraft costs

are calculated per hour, it is assumed that refuel costs are included as part of

the refuel time delay. All ground refuel time is assumed to be 1 hour.

Furthermore, table also contains Cost per flight hour, cruise speed (mph) for

each aircraft type as well as the maximum number of pallets it can carry. Table

also contains the crew required to fly the plane (Flight Crew Required), as well

as the number of crew required for fuelling up and safety checks (Ground Staff

Required). Moreover, both flight crew and ground staff must arrive defined

number of hours before the flight (Prefetch time) and stay longer after the flight

(Post mission time).

• Material Sources – table of locations and quantity of the pallets of material

needed to fill the demand.

• Material Demand Destinations – table of locations that require the quantity of

pallets to be delivered. There are two kind of destinations – Humanitarian and

Resupply. Furthermore, table also lists the aircraft constraints for given

destination. For example, none of the commercial aircraft can land at

Humanitarian destination, however, some commercial aircraft can supply

military bases.

166

• Base to Base Edges – table provides the starting point and end point

coordinates for each of the base to base connections as well as the straight-

line distance (in miles).

• Base to Destination Edges – table provides starting point and end point

coordinates for each of the base to destination connections as well as the

straight-line distance (in miles).

• Destination to Destination Edges – table provides starting point and end point

coordinates for each of the destination to destination connections as the

straight-line distance (in miles).

• CP to CP Edges – table provides starting point and end point coordinates for

each of the commercial partner destinations as well as the straight-line distance

(in miles). Furthermore, cost per pallet is also provided for each of the paths.

• Base to CP Land Edges – table provides ground links between military bases

and commercial partner locations. Includes start and end point coordinates as

well as straight-line distance in miles, total time on path (hours) and cost per

truck. Furthermore, maximum number of pallets per truck is also provided.

• CP to Base Air Edges – table provides air links between commercial partner

locations and military bases that share common runway. Provides start and end

point coordinates, as well as the straight-line distance (in miles) and total cost

per pallet.

Example scenario A:

In the given scenario A shown in Figure 50, military plane without in-air refuel

capability is supplying 6 pallets of cargo to Base B that is 1000 miles away.

Figure 50. Scenario A – Simplified Transcom supply chain example

167

Plane costs $10,000 per hour to fly and it takes 1 hour to fully refuel. The total

distance between the two bases is 1000 miles and airplane cruise speed is 200 miles

per hour. Because range of the airplane is not enough to fly both directions, it needs

to refuel at the destination base (Base B). Total timespan to satisfy Base B demand

of 6 pallets of cargo therefore is 13 hours:

𝑇𝑖𝑚𝑒𝑠𝑝𝑎𝑛 =

= 𝑜𝑛𝑙𝑜𝑎𝑑𝑇𝑖𝑚𝑒 + 𝑓𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒 + 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑇𝑖𝑚𝑒 + 𝑟𝑒𝑓𝑢𝑒𝑙𝑇𝑖𝑚𝑒 + 𝑓𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒 =

=
6

6
+

1000

200
+

6

6
+ 1 +

1000

200
= 13 ℎ𝑜𝑢𝑟𝑠

And the total cost for the given route:

𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡(𝑀𝐴) ∗ 2 = (10 ∗ $10,000) ∗ 2 = $200,000

Example scenario B:

Although scenario A is easy to follow example, the supply chain solved in Transcom

problem is not as simple. Figure 52 and Figure 52 shows more representative

example of the Transcom supply chain complexity. It involves 5 military bases, 2

commercial partner (CP) locations, 2 military planes, 1 commercial plane and 4 trucks.

Figure 51. Scenario B pallet flow between military bases and Commercial Partners (CPs).

168

Figure 52. Scenario B: Realistic Transcom supply chain example

In this example, the demand for Base E is 8 pallets. At Time zero, Base A has 2

pallets, Base B and C have 3 pallets each. Plane1 flight time between Base A and

Base C is 4 hours and Plane2 flight time between Base B and Base C is 5 hours.

Plane1 has to wait for Plane2 to offload its pallets before it can continue flight to Base

D. Furthermore, Plane1 also need to refuel at Base C as the distance between Base

A – Base B – Base C exceeds its range. Plane1 then continues its path to Base D for

6 hours, where it needs to offload 8 pallets. From there, pallets are shipped to CP

location CP1. Due to capacity constraints each truck can only transfer 4 pallets at a

time, hence 2 trucks drive to CP1 in parallel and takes 1 hour each. From CP1 8 pallets

are onloaded to commercial plane Plane3 and transferred to CP2, which takes another

1 hour. Two trucks are again needed to transfer the 8 pallets to their final destination

– Base E (1 hour).

169

Figure 53. Transcom Scenario B timeline

In Transcom problem supply chain algorithm must work with multiple parallel

timelines in order to model all demand accurately. Figure 53 shows the Scenario B

timeline, where there are two parallel military aircraft flying to the same destination

from different starting points. Plane2 starts its journey by onloading 3 pallets (30

minutes) and flying to Base C (5 hours), once arrived at Base C, offloading the 3 pallets

(30 minutes), totalling of 6 hours. Meantime, Plane1 starts its journey by onloading 2

pallets (20 minutes), flying to Base C (4 hours), but as it is still waiting for Plane2 to

land, it refuels (1 hour) and onloads the 3 pallets located at Base C (30 minutes).

Which leaves 10 minutes of idle time for Plane1 till Plane2 offloads its load.

Only at 6-hour mark can Plane1 start its next leg of the journey, by onloading the 3

pallets delivered from Plane2 (30 minutes) and flying to Base D (6 hours), where it

needs to offload aircraft completely, which takes 80 minutes for 8 pallets. Total of 8

hours.

Once pallets are offloaded from airplane at Base D, two commercial trucks (Truck1

and Truck2) are onloaded in parallel taking 4 pallets each (40 minutes). Transferring

cargo to Commercial Partner facility at CP1 (1h) where pallets are offloaded again (40

minutes). Total of 2 hours and 20 minutes.

From CP1 commercial Plane3 takes all 8 pallets onboard (80 minutes) and fly them

to CP2 (1h flight time), where they are again offloaded (80 minutes). Total of 3 hours

and 40 minutes.

At the last stage, at CP2 are again onloaded onto two trucks (Truck3 and Truck4)

in parallel (40 minutes each) and transferred to their final destination BaseE (1 hour),

where they are offloaded (40 minutes each). Total of 2 hours and 20 minutes.

170

Therefore, the total timespan required to satisfy demand of 8 pallets at Base E is

22 hours and 20 minutes.

Assuming cost per hour of Plane1 is $10,000 and $1,500 for Plane2, the total cost

for military aircraft 𝐶𝑜𝑠𝑡(𝑀𝐴) can be calculated

𝐶𝑜𝑠𝑡(𝑀𝐴) = $10,000 ∗ (4 + 6) + $1,500 ∗ 5 = $107,500

Assuming cost per pallet for Plane3 between CP1 and CP2 is $15,000, the total

cost for commercial aircraft 𝐶𝑜𝑠𝑡(𝐶𝐴) can be calculated

𝐶𝑜𝑠𝑡(𝐶𝐴) = $15,000 ∗ 8 = $120,000

Assuming cost per truck for path between Base D and CP1 is $4,000 and between

CP2 and Base E is $5,000, the total cost for commercial trucks 𝐶𝑜𝑠𝑡(𝐶𝑇) can be

calculated

𝐶𝑜𝑠𝑡(𝐶𝑇) = $4,000 ∗ 2 + $5,000 ∗ 2 = $18,000

Therefore, the total cost of given solution is

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = $107,500 + $120,000 + $18,000 = $245,500

