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Abstract: Fault detection and classification are two of the challenging tasks in Modular Multilevel
Converters in High Voltage Direct Current (MMC-HVDC) systems. To directly classify the raw
sensor data without certain feature extraction and classifier design, a long short-term memory
(LSTM) neural network is proposed and used for seven states of the MMC-HVDC transmission
power system simulated by Power Systems Computer Aided Design/Electromagnetic Transients
including DC (PSCAD/EMTDC). It is observed that the LSTM method can detect faults with 100%
accuracy and classify different faults as well as provide promising fault classification performance.
Compared with a bidirectional LSTM (BiLSTM), the LSTM can get similar classification accuracy,
requiring less training time and testing time. Compared with Convolutional Neural Networks
(CNN) and AutoEncoder-based deep neural networks (AE-based DNN), the LSTM method can get
better classification accuracy around the middle of the testing data proportion, but it needs more
training time.

Keywords: MMC-HVDC; fault detection; fault classification; LSTM; BiLSTM; CNN; classification
accuracy

1. Introduction

Modular multilevel converters (MMCs) have been widely applied due to their advan-
tages of modularity, extensibility, high-quality output, and high efficiency [1–3]. An MMC
is formed by cascading multiple sub-modules (SMs) with the same structure. In a high
voltage direct current (HVDC) transmission power system, the numbers of SMs are always
up to several hundreds or thousands, which may induce some faults of SMs more likely
to arise under complex and harsh conditions. The most application of SM circuits is the
half-bridge circuit topology (HB-SM), which consists of two wire-bound insulated gate
bipolar transistor (IGBT) modules along with their corresponding antiparallel diodes and a
capacitor [4,5]. The HB-SM is commonly used due to its simplicity in terms of component
count, lower losses, and ease of control. However, the main disadvantage in HB-SM is
that it cannot provide blocking against DC fault. IGBT damage is the most common cause
of sub-module failure [6], generally due to short-circuit faults or open-circuit faults [7].
Compared to the IGBT short-circuit fault, the IGBT open-circuit faults can last for a long
time without being detected, which can deteriorate the output of the MMCs and can make
the capacitors in the faulty SMs over-charged [8]. Therefore, this paper is concerned with
the IGBT open-circuit fault diagnosis of Modular Multilevel Converters in High Voltage
Direct Current (MMC-HVDC) systems.

Recently, several fault diagnosis methods have been discussed for the MMCs. These
methods can be categorized into hardware-based and software-based methods [5]. The
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hardware-based methods are not suitable for the MMCs in HVDC systems because of
the large number of the SMs in the MMC. Software-based methods can further be catego-
rized into model-based methods and signal processing-based methods [9,10], according
to whether the monitoring characteristics are inner characteristics or output characteris-
tics [11]. The observers such as Luenberger observer [12], sliding mode observer [13,14],
and Kalman filter observer [15,16], are prevalent model-based methods used to provide the
detection references. Signal processing-based methods have been considered reliable and
effective by several researchers [17–20] in recent years. However, both model-based and
signal processing-based methods need to obtain suitable and appropriate inner features
or thresholds of specific derived indices, such as zero-crossing current slope or harmonic
content, which can degrade the robustness of fault diagnosis.

An alternative to traditional software-based approaches, artificial intelligence-based
methods have been developed, which provide powerful tools to extract useful information
for fault diagnosis based on historical data. Neural networks (NNs), one of the most basic
artificial intelligence methods, have been used to detect a fault condition in the HVDC
systems [21–23]. However, NNs need lots of training data and training time. Support
vector machine (SVM) [24] and its optimization algorithms [25–28] have been employed to
diagnose the faults of MMC. The support tensor machine (STM) [29], a generalization of the
SVM, has been introduced to detect faults for MMC. However, in real-world applications,
these artificial intelligent methods depend on feature extraction techniques. The quality of
feature extraction directly affects the accuracy and efficiency of fault diagnosis.

Deep learning methods can avoid the problems of feature extraction, but the related
publications are very limited in the application of MMC-HVDC systems. Convolutional
Neural Networks (CNN) [30,31], and 1-D CNN [32] are proposed for fault classification and
fault location in MMC-HVDC. Our research group proposed CNN, AutoEncoder-based
deep neural network (AE-based DNN), and SoftMax classifier for MMC [33], the results
showed that these deep learning methods have good potential. It is worth noting that the
fault diagnosis of MMC so far has been mostly concerned on model-based research [34–37],
less on data-driven diagnosis methods [38], and only some pioneering work has arisen in
the publications about deep learning fault diagnosis of MMC.

Therefore, to develop a new deep learning method used for IGBT open-circuit fault
diagnosis of MMC-HVDC systems to shorten such a gap, we aim to provide an LSTM
approach to address the above-mentioned problems. The main contributions of this paper
are outlined below.

(1) The proposed method has the ability to achieve accurate detection and classification
of IGBT open-circuit faults but also can reduce the computational cost of sensing and
learning from a large number of measurements.

(2) Without data preprocessing or post-operations, the fault detection accuracy of 100%
and excellent classification accuracy are achieved.

(3) Performance comparisons of LSTM, bidirectional LSTM (BiLSTM), CNN, and AE-
based DNN in terms of fault detection, classification accuracy, and time spent on train-
ing and testing for IGBT Open-circuit fault diagnosis of MMC-HVDC are provided.

This paper is organized as follows: Section 2 describes the MMC open-circuit faults
and simulation experiments. Section 3 introduces a Recurrent neural network (RNN)
and LSTM. Fault diagnosis of MMC-HVDC systems with LSTM is evaluated in Section 4.
Section 5 compares LSTM with BiLSTM, CNN, and AE-DNN methods. Conclusions are
drawn in Section 6.

2. Preliminaries on MMC Open-Circuit Faults and Simulation Experiments
2.1. MMC Sub-Module and Open-Circuit Faults

A typical structure of a three-phase MMC consists of six arms as shown in Figure 1 [33].
Each arm consists of one inductor (L) and several identical SMs. Each SM involves one DC
storage capacitor (C) and a half-bridge, which is composed of two IGBTs (i.e., T1 and T2)
and two diodes (D1 and D2). The circuit of SM is shown in Figure 2.
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Figure 1. Structure of a three-phase MMC with half-bridge submodules [33].

Figure 2. Circuit model of MMC sub-module.

Open-circuit faults of an SM can be sorted into T1 fault and T2 fault. When any
fault occurs, the SM can be in ON (si = 1) state or OFF (si = 0) state, where si is the
corresponding switch function. Table 1 illustrates the output voltages of SM in different
states for both normal and abnormal cases. In Table 1, ism is SM current, uc is the capacitor
voltage, and usm is the output voltage of SM.
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Table 1. Output voltages of SM in normal and fault cases.

SM State Normal T1 Fault T2 Fault

Si = 1, ism > 0 uc uc uc
Si = 1, ism < 0 uc 0 uc
Si = 0, ism > 0 0 0 uc
Si = 0, ism < 0 0 0 0

2.2. Simulation Experiments

In the PSCAD/EMTDC software environment, a two-terminal model of the MMC-
HVDC transmission power system was simulated for this study. The system parameters of
the operating environment and the MMC are shown in Table 2 [33].

Table 2. Parameters of MMC [33].

Parameters Value

number of SMs per arm 9
SM capacitor 1000 µF

arm inductance 50 mH
AC frequency 50 Hz

The data recorded for this study are AC-side three-phase current (Ia, Ib, Ic) and three-
phase circulation current (Idi f f a, Idi f f b, Idi f f c). The circulation current and bridge current
can be represented mathematically using the following equation:

idi f f k =
1
2

(
ikp + ikn

)
(1)

where k stands for the a, b, and c phase, while p and n separately denote for upper and
lower arms of the MMC. The symbols ikp and ikn are, respectively, the currents of the
upper bridge and lower bridge of each three phases. Since the values of iap, ibp, icp, ian,
ibn, and icn can be directly measured, we recorded them instead of idi f f a, idi f f b, and idi f f c.
Consequently, we recorded nine parameters, i.e., ia, ib, ic, iap, ibp, icp, ian, ibn, and icn, (see
Figure 1).

In our test, Table 3 [33] shows seven different health conditions of the MMC. In the
processing of the seven states of the wind farm side MMC, the values of the nine parameters
described above have been recorded. There are six types of faults occurring at different
IGBTs at different times. These six types of faults were A-phase lower SMs, A-phase upper
SMs, B-phase lower SMs, B-phase upper SMs, C-phase lower SMs, and C-phase upper
SMs, at six different locations of IGBT break-circuit fault manually for each bridge. The
total time of recording was 0.1 s while the time for the IGBT open circuit fault duration
has been varied from 0.03 s to 0.07 s. The time step is 2 µs and the sampling frequency is
0.5 MHz. We collected 700 cases of seven different health conditions.

Table 3. MMC health conditions [33].

Faulty Bridge Label Value

Normal 1
A-phase lower SMs 2
A-phase upper SMs 3
B-phase lower SMs 4
B-phase upper SMs 5
C-phase lower SMs 6
C-phase upper SMs 7
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3. RNN and LSTM

Recurrent neural network (RNN) has become one of the important subfields of deep
learning, which has been widely used in the fields of speech recognition [39], rotating
machine fault detection and classification [40], medical image segmentation [41], and
natural language processing [42]. Figure 3 shows the RNN structure. In order to avoid
the problems of gradient vanishing or exploding, a long and short-term memory (LSTM)
neural network, which involves creating a memory cell [43], is employed. Figure 4 shows
the LSTM structure which illustrates the flow of data at time step t.

Figure 3. RNN structure.

Figure 4. LSTM structure.

The cell state at time step t is given by

ct = ft � ct−1 + it � gt (2)

where � stands for the Hadamard product (element-wise multiplication of vectors). The
output (hidden) state at time step t is given by

ht = ot � tan h(ct) (3)
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Here are the calculation procedures of the LSTM cell at time step t.

it = σ(wixt + Riht−i + bi) (4)

ft = σ(w f xt + R f ht−i + b f (5)

gt = tanh
(
wgxt + Rght−1 + bg

)
(6)

ot = σ(woxt + Roht−i + bo) (7)

where σ(.) stands for the sigmoid function given by σ(z) = (1 + e−z)
−1, and x is the input

of the time-series data.
In an LSTM layer, input weights w, recurrent weights R, and bias b need to be deter-

mined by learning. The matrices w, R, and b are concatenations of the input weights, the
recurrent weights, and the bias of each component, respectively. The matrices are described
as follows:

w =


wi
w f
wg
wo



R =


Ri
R f
Rg
Ro


and

b =


bi
b f
bg
bo


where i, f , g, and o mark the input gate, forget gate, layer input, and output gate, respectively.

4. Fault Diagnosis of MMC-HVDC Systems with LSTM
4.1. Design of LSTM

The data used in this study are collected from a two-terminal simulation model of the
MMC-HVDC transmission power system described in Section 2. Seven MMCs conditions
include one normal condition and six IGBT open-circuit fault conditions in the lower and
the upper arms of the MMC. A total of 100 examples of each condition, nine current signals
of each example, and 5001 time samples of each current signal were recorded. Every current
signal represents a time-series sample, so the fault information of MMC-HVDC systems is
suitable for LSTM neural network.

The key parameters such as the number of layers, hidden layer size, batches, epochs,
time steps, and learning rate, are very important to the performance of LSTM. In order to
increase the model generalization ability and reduce the network calculation, we tested the
different values of parameters. To minimize the error of the training, the backpropagation
is used to update weights and bias. We selected the cross-entropy as the cost function to
illustrate the error between the estimated value and the true value.

E(θ) = −
N

∑
i=1

k

∑
j=1

tijln(yj(xi, θ)) (8)

where tij is the sign that the i-th example belongs to the j-th class, yj(xi, θ) denotes the
output for the i-th example.

Adam as a stochastic optimization method [44] is used to train LSTM and to determine
network parameters, weights, and bias because Adam can adaptively adjust the learning
rate by using the mean and variance of the gradient and has been successful in the learning
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rate optimization. Adam [44] uses an element-wise moving average of both the parameter
gradients and their squared values to update the network parameters.

θl+1 = θl −
αml√
vl + ε

(9)

ml = β1ml−1 + (1− β1)E(θl) (10)

vl = β2vl−1 + (1− β2)[E(θl)]
2 (11)

where l denotes the iteration number, θ is the parameter vector, α is the learning rate, β1 is
the decay rate of gradient moving average, β2 is the decay rate of squared gradient moving
average, E(θ) is the gradient of the loss function, m is the first-moment estimate of the
gradient, v is the second-moment estimate of the gradient, and ε is a small constant added
to avoid division by zero. Here, we set α at 0.001, β1 at 0.9, β2 at 0.999, and ε = 10−8.

4.2. Results and Analysis

In this section, the parameters of LSTM are selected, and the performance of the
proposed method is illustrated and discussed.

4.2.1. Parameters Selection of LSTM

To design an LSTM structure with higher classification accuracy, several parameters
such as hidden layer size, mini-batch size, the maximum number of epochs, and learning
rate, need to be discussed and determined. In this paper, the parameters quantification of
hidden layer size, batches, and epochs have been explored to select better values based on
a comparative evaluation of the performances. The learning rate is set to 0.001.

The accuracy and computation time at different hidden layer sizes are depicted in
Figure 5, when the maximum number of epochs set to 50 and the mini-batch size is set to 7.
It can be shown that as the hidden layer size raises from 100 to 300, the computation time
has a distinct peak with the hidden layer size set to 260 while the accuracy curve always
rises as the layer size get bigger. In theory, the abscissa of the focus of the two lines should
be the most optimal Hidden numbers. However, in the case of a small difference in time
consumption, we are more concerned about the classification accuracy. Therefore, we select
the hidden layer size as 300 by considering accuracy and computation time.
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Figure 5. Accuracy and computation time at different hidden layer sizes.

The accuracy and computation time at different mini-batch sizes are depicted in
Figure 6, when the maximum number of epochs set to 50 and the hidden layer size is set to
300. It can be shown that as the mini-batch size increases from 1 to 7, the accuracy curve
and computation time have distinct rise, and then they tend to go down. We select the
mini-batch size as 7.
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The accuracy and computation time at different maximum numbers of epochs are
depicted in Figure 7, when the hidden layer size is set to 300 and the mini-batch size is
set to 7. It can be shown that as the maximum number of epochs raises from 10 to 80,
the accuracy curve has a distinct peak with the maximum number of epochs set to 50
while the computation time curve always rises as the layer size get bigger. By considering
comprehensively from both facets of accuracy and computation time, the maximum number
of epochs is selected as 50.
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Figure 6. Accuracy and computation time at different mini-batch sizes.
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4.2.2. Detection and Classification of MMC-HVDC System with LSTM

According to the above studies, we set the parameters of LSTM hidden layer size at
300, the mini-batch size at 7, the maximum number of epochs at 50, and the learning rate
at 0.001.

We conducted experiments from the testing data proportion of 0.1 to 0.9. For each
testing data proportion, we ran it 20 times. The results following are the average of 20 runs.
Testing data proportion is the ratio of the test samples number to the total number. The
detection accuracy of the LSTM is described in Table 4. In terms of fault detection, the
network output is divided into two types: normal and abnormal. We can see from Table 4
that the detection accuracy of the LSTM is 100% at each testing proportion.

The results for training data and testing data are shown in Figure 8. STD in Figure 8
means the standard deviation, which is a measure that is used to quantify the amount
of variation or dispersion of data values. It is observed that, with the rise of testing data
proportion, classification accuracy for training data is steady (except a little dip at the
testing data proportion of 0.8) and classification accuracy for testing data declines. The
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maximum mean accuracy of the testing dataset is 98.4% at 0.1 testing data proportion
and the minimum average accuracy is 92.6% at 0.9 testing data proportion. The standard
deviation of the classification accuracy for the training dataset increases with the increasing
testing data proportion. However, for the testing dataset, the standard deviation of the
classification accuracy at the ends of the testing data proportion is greater than around
the middle of the testing data proportion. Moreover, the standard deviation of the clas-
sification accuracy for the training data set is less than that for the testing data set at all
data proportions.

Table 4. Fault detection accuracy.

Testing Data Proportion Detection Accuracy (%)

0.1 100
0.2 100
0.3 100
0.4 100
0.5 100
0.6 100
0.7 100
0.8 100
0.9 100

Sensors 2021, 21, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 8. The classification results of training and testing data. 

Table 5 is a confusion matrix of the classification results for each condition at testing 
data proportions of 0.2, 0.5, and 0.8. From Table 5, it is observed that the recognition of 
the normal condition is 100% at testing data proportions of 0.2, 0.5, and 0.8. At testing data 
proportion of 0.2, 2.75% of testing examples of B-phase lower SMs are misclassified as A-
phase lower SMs and 1.5% of testing examples of B-phase lower SMs are misclassified as 
C-phase lower SMs. At testing data proportion of 0.5, 1.8% of testing examples of B-phase 
lower SMs are misclassified as A-phase lower SMs and 0.9% of testing examples of B-
phase lower SMs are misclassified as C-phase lower SMs. Furthermore, at testing data 
proportion of 0.8, our method misclassified 1.69% of testing examples of B-phase lower 
SMs as A-phase lower SMs and 4.62% of testing examples of B-phase lower SMs as c C-
phase lower SMs. 

Table 5. Sample confusion matrix of the classification results. 

Testing Data Proportion = 0.2 

 Normal 
A-Phase Lower 

SMs 
A-Phase Upper 

SMs 
B-Phase Lower 

SMs 
B-Phase Upper 

SMs 
C-Phase Lower 

SMs 
C-Phase Upper 

SMs 
Normal 100 0 0 0 0 0 0 

A-phase lower SMs 0 96.25 0 1.25 0 2.5 0 
A-phase upper 

SMs 
0 0 98.75 0 1.25 0 0 

B-phase lower SMs 0 2.75 0 95.75 0 1.5 0 
B-phase upper SMs 0 0 0 0 98.75 0 1.25 
C-phase lower SMs 0 1.25 0 2.25 0 96.5 0 

C-phase upper 
SMs 0 0 0.25 0 3.75 0 96 

Testing Data Proportion = 0.5 

 Normal 
A-Phase Lower 

SMs 
A-Phase Upper 

SMs 
B-Phase Lower 

SMs 
B-Phase Upper 

SMs 
C-Phase Lower 

SMs 
C-Phase Upper 

SMs 
normal 100 0 0 0 0 0 0 

A-phase lower SMs 0 96.2 0 2.7 0 1 0.1 
A-phase upper 

SMs 
0 0 98.5 0 1.1 0 0.4 

Figure 8. The classification results of training and testing data.

Table 5 is a confusion matrix of the classification results for each condition at testing
data proportions of 0.2, 0.5, and 0.8. From Table 5, it is observed that the recognition of
the normal condition is 100% at testing data proportions of 0.2, 0.5, and 0.8. At testing
data proportion of 0.2, 2.75% of testing examples of B-phase lower SMs are misclassified as
A-phase lower SMs and 1.5% of testing examples of B-phase lower SMs are misclassified as
C-phase lower SMs. At testing data proportion of 0.5, 1.8% of testing examples of B-phase
lower SMs are misclassified as A-phase lower SMs and 0.9% of testing examples of B-phase
lower SMs are misclassified as C-phase lower SMs. Furthermore, at testing data proportion
of 0.8, our method misclassified 1.69% of testing examples of B-phase lower SMs as A-phase
lower SMs and 4.62% of testing examples of B-phase lower SMs as c C-phase lower SMs.
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Table 5. Sample confusion matrix of the classification results.

Testing Data Proportion = 0.2

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

Normal 100 0 0 0 0 0 0

A-phase lower
SMs 0 96.25 0 1.25 0 2.5 0

A-phase upper
SMs 0 0 98.75 0 1.25 0 0

B-phase lower
SMs 0 2.75 0 95.75 0 1.5 0

B-phase upper
SMs 0 0 0 0 98.75 0 1.25

C-phase lower
SMs 0 1.25 0 2.25 0 96.5 0

C-phase upper
SMs 0 0 0.25 0 3.75 0 96

Testing Data Proportion = 0.5

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

normal 100 0 0 0 0 0 0

A-phase lower
SMs 0 96.2 0 2.7 0 1 0.1

A-phase upper
SMs 0 0 98.5 0 1.1 0 0.4

B-phase lower
SMs 0 1.8 0 97.3 0 0.9 0

B-phase upper
SMs 0 0.2 0.2 0 97.4 0 2.2

C-phase lower
SMs 0 0.2 0 1.6 0 98 0.2

C-phase upper
SMs 0 1.9 0 0 3.1 0 95

Testing Data Proportion = 0.8

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

normal 100 0 0 0 0 0 0

A-phase lower
SMs 0 95.88 0 0.69 0 3.12 0.31

A-phase upper
SMs 0 0 93.12 0.44 3.25 1.13 2.06

B-phase lower
SMs 0 1.69 0 93.69 0 4.62 0

B-phase upper
SMs 0 0.25 1.56 0 94.81 0.88 2.50

C-phase lower
SMs 0 2.06 0 2.44 0 94.88 0.62

C-phase upper
SMs 0 3.88 1.81 0 2.81 0.50 91
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5. Comparison

To validate the effectiveness of the proposed method, several deep learning methods
have been used for comparison. A Bidirectional LSTM (BiLSTM) is a sequence processing
model that consists of two LSTMs: one access past information in a forward direction, and
the other access future information in a reverse direction. The use of BiLSTM may not
make sense for all sequence prediction problems but can offer some benefit in terms of
better results to those domains where it is appropriate [45]. Therefore, we compare LSTM
with BiLSTM on the detection accuracy, classification accuracy, training time spent, and
the testing time spent with the testing data proportion from 0.1 to 0.9. We also compare it
with CNN and AE-DNN. The implementation details of CNN and AE-DNN have been
described in [33].

5.1. Comparison with BiLSTM

In order to compare, we set the parameters of BiLSTM the same as the parameters of
the LSTM. The results are the arithmatic average of 20 runs, which include the detection
accuracy, classification accuracy, training time spent, and the testing time spent. The
comparisons are detailed in Table 6.

Table 6. The results comparison of LSTM with BiLSTM.

Testing Data
Proportion

Detection Accuracy Classification Accuracy Training Time Spent Testing Time Spent

LSTM BiLSTM LSTM BiLSTM LSTM BiLSTM LSTM BiLSTM

0.1 100 100 0.984 0.974 942.4 2169.1 0.41 0.97
0.2 100 100 0.974 0.974 863.8 1519.0 0.69 1.40
0.3 100 100 0.979 0.980 794.4 1469.8 0.92 1.89
0.4 100 100 0.974 0.970 724.5 1362.9 1.29 2.63
0.5 100 100 0.975 0.973 677.9 1249.0 1.51 3.10
0.6 100 100 0.963 0.967 590.9 1147.0 1.83 3.93
0.7 100 100 0.959 0.962 531.6 1068.1 2.05 4.56
0.8 100 100 0.948 0.951 490.6 951.4 2.45 5.26
0.9 100 100 0.926 0.924 417.5 863.5 2.62 5.88

From Table 6, we can see that both LSTM and BiLSTM have the detection accuracy
of 100%. The classification accuracy of BiLSTM is similar to LSTM, but BiLSTM required
more training time and testing time.

5.2. Comparison with CNN and AE-DNN

Compared to CNN and AE-based DNN from Figure 9, it is observed that in terms
of detection accuracy, the proposed method (LSTM) behaves outstandingly well at each
testing data proportion. When the testing data proportion ranges from 0.1 to 0.7, these
deep learning methods can detect faults perfectly.

Compared to CNN and AE-based DNN from Figure 10, it is observed that the pro-
posed method (LSTM) offers higher classification accuracy at the testing data proportion
0.3, 0.4, 0.5, and 0.7. When the testing data proportion is 0.1, 0.2, and 0.9, which are located
at the ends, CNN has better classification accuracy than LSTM and AE-based DNN.

Figure 11 shows the training time spent and testing time spent of the three methods.
We can see that at each proportion, the LSTM method spends more training time than other
methods and spends more testing time than CNN. We also can see that LSTM spends less
testing time than AE-based DNN at the testing data proportions 0.1–0.6.
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6. Conclusions

Fault diagnosis of MMC-HVDC has become one of the most important directions
in research and practice. This paper presented an LSTM deep learning method for fault
detection and classification to avoid the design of handcrafted features and classifiers.
To validate its effectiveness, we compared it with BiLSTM and two other deep learning
methods, CNN and AE-based DNN, using raw current sensor data of MMC-HVDC. The
simulation results with data generated in PSCAD/EMTDC show that LSTM and BiLSTM
have the best detection accuracy of 100%. CNN and AE-DNN can achieve high detection
accuracy of more than 99.7%, while AE-based DNN is a little better than CNN. Additionally,
these four methods achieve high classification accuracies. Compared with BiLSTM, LSTM
has similar classification accuracy and requires less training time and less testing time.
Compared with CNN and AE-DNN, LSTM provides better classification accuracy around
the middle of the testing data proportions, though it needs more training time.
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