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A B S T R A C T   

Action observation and motor imagery are valuable strategies for motor learning. Their simultaneous use (AOMI) 
increases neural activity, with related benefits for motor learning, compared to the two strategies alone. In this 
study, we explored how sonification influences AOMI. Twenty-five participants completed a practice block based 
on AOMI, motor imagery and physical execution of the same action. Participants were divided into two groups: 
An experimental group that practiced with sonification during AOMI (sAOMI), and a control group, which did 
not receive any extrinsic feedback. Corticospinal excitability at rest and during action observation and AOMI was 
assessed before and after practice, with and without sonification sound, to test the development of an audiomotor 
association. The practice block increased corticospinal excitability in all testing conditions, but sonification did 
not affect this. In addition, we found no differences in action observation and AOMI, irrespective of sonification. 
These results suggest that, at least for simple tasks, sonification of AOMI does not influence corticospinal 
excitability; In these conditions, sonification may have acted as a distractor. Future studies should further explore 
the relationship between task complexity, value of auditory information and action, to establish whether sAOMI 
is a valuable for motor learning.   

1. Introduction 

Action observation (AO) and motor imagery (MI) are two forms of 
action simulation which exhibit computational equivalence to physi
cally executed actions (PE), without physical manifestation of move
ment (Guillot, Di Rienzo, MacIntyre, Moran, & Collet, 2012; Jeannerod, 
2001, 2004). AO is thought to be a bottom-up process whereby an 
observed action is mapped onto the observer’s own sensorimotor system 
(Friston, Mattout, & Kilner, 2011; Kilner, Friston, & Frith, 2007b), thus 
enabling action understanding (Kilner, 2011; Rizzolatti & Craighero, 
2004). On the other hand, MI has been modelled as a top-down process 
reflecting internally-driven simulation of the efferent and afferent 
characteristics of the action (Kilteni, Andersson, Houborg, & Ehrsson, 
2018). Thus, both AO and MI interact with the internal representation of 
the body and action, but from different perspectives (Vogt, Di Rienzo, 
Collet, Collins, & Guillot, 2013). Given the computational similarities 

between simulated and executed actions, studies focussed on the use of 
AO and MI in motor (re)learning (Abbruzzese, Avanzino, Marchese, & 
Pelosin, 2015; Buccino, 2014; Mulder, 2007). Even though evidence 
suggests that AO and MI are suboptimal compared to PE in terms of their 
ability to promote motor learning (Ingram, Kraeutner, Solomon, West
wood, & Boe, 2016; Kraeutner, MacKenzie, Westwood, & Boe, 2015; 
Mulder, Zijlstra, Zijlstra, & Hochstenbach, 2004; Pascual-Leone et al., 
1995), action simulation may represent a valuable addition to physical 
enactment – and in some circumstances may be the only viable alter
native to physical training for rehabilitation of neurological conditions 
or injuries that preclude movement (Abbruzzese, Avanzino, Marchese, 
and Pelosin, 2015; Mulder, 2007). Under the right conditions, mental 
simulation training does not induce neuromuscular fatigue (Rozand, 
Lebon, Papaxanthis, & Lepers, 2014), making it ideal for rehabilitation 
and to keep sensorimotor areas active during immobilization (Bassolino, 
Campanella, Bove, Pozzo, & Fadiga, 2014). 
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One major difference between simulated and executed action is the 
lack of movement (Guillot et al., 2012), and consequently movement- 
related feedback, which is thought to be a fundamental component of 
motor control and learning (Ostry & Gribble, 2016; Ostry, Mattar, 
Wong, & Gribble, 2010). Some studies explored strategies to augment 
the effects of action simulation training, by pairing AO with peripheral 
sensory stimulation, reporting increased corticospinal excitability and 
improved learning, compared to non-augmented conditions (Bisio et al., 
2015; Bisio, Avanzino, Biggio, Ruggeri, & Bove, 2017). A particularly 
interesting form of external feedback is sonification, an online auditory 
augmentation strategy whereby a sound characteristic, e.g. volume, is 
associated with, and modulated by silent movement parameters that 
would not be associated with a sound per se, such as action-related ki
nematics or kinetics (Dubus & Bresin, 2013; Sigrist, Rauter, Riener, & 
Wolf, 2013). The augmented information can be used to modulate 
performers’ behaviour. For example, the pitch of a sound can be asso
ciated with elbow flexion and extension, such that flexion would 
decrease the pitch and extension would increase it. A video of a tutor 
executing an action could then be shown, providing not only visual 
(Holmes & Calmels, 2008), but also sonification-related auditory guid
ance to the observer. To date, limited research on the topic suggests that 
sonification of action observation (sAO) yields more accurate perceptual 
judgments, as well as increased brain activity in sensorimotor areas. 
Schmitz et al. (2013) instructed participants to observe a breaststroke 
performed by an avatar, where the relative distance between the wrists 
and the ankles modulated two different sounds profiles. The sounds 
were modulated either congruently, or incongruently with the action. 
Congruent sonification yelded significant more accurate judgment of 
movement speed, and this was associated to increased functional con
nectivity between superior temporal sulcus, basal ganglia and the thal
amus, which are areas involved in motor control (Park, Coddington, & 
Dudman, 2020). More recently, Mezzarobba et al. (2018) provided ev
idence for the effectiveness of sAO of daily activities as an addition to 
traditional rehabilitation regimes in Parkinson’s patients. Three months 
of sAO induced significant reduction in freezing of gait in people, an 
improvement that was retained up to a month after the completion of 
the rehabilitation regime. Taken together, these studies suggest that the 
audiomotor associations during sAO may augment sensorimotor pro
cessing, affording better sensorimotor internal models (Kilner et al., 
2007b; Kilner, Friston, & Frith, 2007a). 

While AO and MI alone are effective, their combination may improve 
the effectiveness of interventions using simulated actions. A recent 
theoretical framework, the dual action simulation hypothesis, suggests 
that AO and MI can be simultaneously represented in the brain (Eaves, 
Riach, Holmes, & Wright, 2016). Specifically, it is thought that AO and 
MI can be represented as two different sensorimotor streams which, 
according to their contents, can share or compete for computational 
resources during simulation of actions. Recent studies provide support 
for this hypothesis (Bruton, Holmes, Eaves, Franklin, & Wright, 2020). 
Engaging in congruent AOMI, in which a person is asked to imagine the 
kinaesthetic feeling of same observed action, from the same perspective, 
induces greater neural activity over sensorimotor areas compared to AO 
or MI alone (Berends, Wolkorte, Ijzerman, & Van Putten, 2013; Macuga 
& Frey, 2012; Nedelko, Hassa, Hamzei, Schoenfeld, & Dettmers, 2012; 
Taube et al., 2015). This increased activity is also reflected in higher 
motor evoked potentials (MEPs) during AOMI (Bruton et al., 2020; 
Meers, Nuttall, & Vogt, 2020; Sakamoto, Muraoka, Mizuguchi, & 
Kanosue, 2009; Wright, Williams, & Holmes, 2014; Wright, Wood, 
Eaves, et al., 2018). AOMI was shown to be effective in rehabilitation of 
different neurological conditions, such as stroke (Sun, Wei, Luo, Gan, & 
Hu, 2016) and developmental coordination disorder (Marshall, Wright, 
Holmes, Williams, & Wood, 2020; Scott, Emerson, Dixon, Tayler, & 
Eaves, 2019). Within the framework of the dual simulation hypothesis, 
sonification, once successfully associated to an action, could be inte
grated into the internal representation of a person, as a bottom-up 
sensorimotor stream, alongside visual phenomena. This could enhance 

sensorimotor interaction, thereby enhancing corticospinal excitability 
and plasticity (Eaves et al., 2016). In a previous study, we sought to 
investigate whether sonification could influence combined use of action 
observation and motor Imagery (sAOMI) of very simple actions (Castro 
et al., 2021). Sonification of a pinching task did not influence cortico
spinal excitability, compared to non-sonified conditions and, after the 
practice, audiomotor plasticity was not influenced by sonification. In 
this study, we aimed at further exploring sAOMI of a more complex 
audiomotor association. In addition, we also tested whether practice was 
able to induce audiomotor association, by assessing post-practice AO 
and AOMI with and without sonification sound. 

2. Methods 

2.1. Participants 

Twenty-five self-reported neurologically healthy, right-handed 
young adults were recruited for this study (Table 1). Participants were 
randomly assigned to either the experimental group (SON, 12 partici
pants), which completed the practice block with sonification, or the 
control group (CON, 13 participants), who did not receive auditory 
augmentation during the practice. Prior to the beginning of the experi
ment, participants completed the Edinburgh Handedness Inventory 
(Oldfield, 1971) to assess their degree of right-handedness, and were 
asked to complete a safety screening questionnaire, to assess potential 
contraindication for the use of Transcranial Magnetic Stimulation (TMS; 
Rossi, Hallett, Rossini, & Pascual-Leone, 2009, 2011). To assess baseline 
MI ability, participants completed the third version of the motor imag
ery questionnaire (MIQ-3; Williams et al., 2012), measuring MI vivid
ness. At the end of the study, each participant received a £20 Amazon 
gift card. 

2.2. Experimental design 

Fig. 1a depicts a schematic representation of the experimental pro
cedure. In a single session, we tested corticospinal excitability before 
and after a practice block, based on congruent and combined AOMI, MI 
and physical execution of the same action. Assessment of corticospinal 
excitability, before and after the intervention, was carried out by 
measuring motor-evoked potentials (MEPs) while participants were at 
rest, while observing the practiced action (AO), or while they performed 
congruent kinaesthetic imagery of the action as they observed it (AOMI). 
Pre-practice tests were completed without auditory augmentation. After 
the practice block, participants completed the same tests, but engaged in 
AO and AOMI tests twice, without and with auditory augmentation, 
respectively. We tested this to assess whether SON group developed an 
audiomotor resonance following the sonification training. The audio
motor condition was always completed after the silent condition, as 
there is evidence that even a short audiomotor pairing can establish an 
association (Launay, Dean, & Bailes, 2016; Ticini, Schutz-Bosbach, 
Weiss, Casile, & Waszak, 2011). In all tests, participants had a similar 
posture depicted in the video, composed of holding of a foam a ball with 
their right hand (Fig. 2a). Congruency between participants’ posture and 
observed action was needed as there is evidence that this type of 

Table 1 
Demographic data, by group   

SON CON  

Mean SEM Mean SEM 

Age (years) 26.22 3.08 24.44 2.10 
EHI Score 8.89 0.76 9.67 0.33 
Internal visual imagery 5.28 0.47 5.75 0.33 
External Visual Imagery 5.67 0.28 5.98 0.28 
Kinesthetic Imagery 5.33 0.44 5.58 0.33 
rMT 41.11 2.18 37.33 1.26  
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congruence affects motor resonance during AO (Zimmermann, Toni, & 
de Lange, 2013), as well as during MI (Saimpont, Malouin, Tousignant, 
& Jackson, 2012; Vargas et al., 2004). 

2.3. Combined action observation and motor imagery practice 

The practice block consisted of combined and congruent AOMI, 
followed by MI and physical execution of the same action. It comprised 
48 trials, for an average duration of 30 min. Trials were divided into 
three blocks one minute of rest between blocks. Fig. 1b depicts the 
practice structure and stimuli presentation. Participants first observed, 
while concurrently imagining the kinaesthetic feelings associated with 
the action they observed, from a first-person perspective (kinaesthetic 
imagery). In this phase, the SON group listened to the sonification sound 
too, and they were asked to pay attention to information that this sound 
may have provided with respect to the action. After the AOMI phase, a 
blue cross appeared, cuing participants to prepare for the next phase, in 
which they either imagine the same action (bubble icon appeared on the 
screen) or physically imitated the same action (hand icon). Executed 
trials represented 25% of the total trials and were fully randomised. At 
the end of either MI or PE, participants had to press a button with their 
left hand to rest for 5 s. 

2.4. Task and sonification process 

Participants observed and imagined an action in which an actor 

squeezed a foam ball with their index and thumb finger, viewed from a 
first-person perspective. We chose this action because one of the prime 
effectors for this action, the index finger, was the focus of our stimulated 
muscle, the FDI. This allowed us to be confident in the dynamics of 
corticospinal excitability during TMS stimulation. In addition, similar 
actions have also been used in previous TMS studies (Riach, Holmes, 
Franklin, & Wright, 2018; van Polanen, Rens, & Davare, 2020). The 
action lasted about 3 s. The sonification process was performed using a 
frame-to-frame strategy. Raw videos were recorded at 25 frame per 
seconds using a Sony HDR-TD3, at a resolution of 1920 × 1080. Soni
fication was performed using the open-source Audacity software, by 
synthetising a pitch of the same duration of the action. Raw videos and 
synthetised sound were then exported in the free video editing software 
Hitfilm express 2017 (FXHOME Limited, UK), where sound and video 
were manually synchronised. Sonification consisted of increasing or 
decreasing the volume of the tone according to the force visibly applied 
to the ball: as the ball was compressed, the volume of the tone increased, 
and diminished as the force decreased and the ball expanded back to its 
original shape. We chose this audiomotor association because it is 
among the most commonly used mapping in sonification research 
(Dubus & Bresin, 2013). We chose a synthetised sound because we were 
also interested in the effects of sonification on audiomotor resonance. 
We deemed unlikely that such a tone would be able to induce audio
motor resonance per se. However, after audiomotor practice, these type 
of sounds can induce activity in the motor system, after an audiomotor 
association has been established. (Launay et al., 2016; Ticini et al., 2011; 

Fig. 1. a. Schematic representation of the experimental design. In a single session, corticospinal excitability measures were collected before and after a practice 
block, at rest and during AO and AOMI. After the practice, motor-evoked potentials (MEPs) were collected twice during AO and AOMI, without and with sound. b. 
Schematic representation of stimuli presentation during the practice block. At the beginning of the cycle, participant observed a blue cross (‘get ready’ cue). After one 
second, the video of an actor’s hand squeezing a foam ball appeared. Participants were instructed to pay attention to the video, while at the same time imagining 
themselves performing the action. SON group also received auditory augmentation during AO. After the video, another blue cross appeared, after which participants 
were asked to either imagine the action they just saw (MI; bubble icon), or physically execute the same action (PE; hand icon). Participants were asked to press a 
button with their left hand when they completed the simulated of or executed action, thus triggering a rest period (white cross) for 5 s. 
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Ticini, Schütz-Bosbach, & Waszak, 2017). 

2.5. Assessment of corticospinal excitability 

Assessment of corticospinal excitability was done by collecting MEPs 
from the right first dorsal interosseous (FDI) muscle. For each condition, 
twenty-five MEPs were collected, with a stimulation intensity of 130% of 
the individually defined resting motor threshold (rMT).We chose this 
stimulation intensity based on previous neurophysiological studies on 
AO (Aglioti, Cesari, Romani, & Urgesi, 2008; Alaerts, Heremans, Swin
nen, & Wenderoth, 2009; Alaerts, Swinnen, & Wenderoth, 2010, 2009; 
Romani, Cesari, Urgesi, Facchini, & Aglioti, 2005; Urgesi, Candidi, 
Fabbro, Romani, & Aglioti, 2006). However, we acknowledge that a 
stimulation intensity of 110% of rMT has been recommended (Loporto, 
Mcallister, Williams, Hardwick, & Holmes, 2011), as it is less likely to 
evoke direct waves (Di Lazzaro et al., 2004, 2012). Participants sat on a 
chair in front of a 24′′ LCD monitor, at a viewing distance of one meter 
from the screen. In rest condition, TMS pulses were delivered while 
participants directed their visual attention at a fixation cross, at the 
centre of the screen, and engaged in a secondary, non-motoric task, 
consisting of a countdown from 200 to 0 (Kumpulainen et al., 2014). 
During AO and AOMI tests participants kept an arm configuration 
congruent with the action (Fig. 2a), and TMS pulses were delivered 
when the video depicted the maximal squeezing phase (Fig. 2c). TMS 
monophasic pulses were delivered using a Magstim 200 (Magstim 
Company, Whitland, U.K.), using a 70 mm figure-of-eight stimulation 
coil, oriented to induce posterior-to-anterior current. Muscle responses 
were collected using Ag/AgCl electrodes arranged in a bipolar, belly- 
tendon setup. Participants’ skin area was shaved (if needed), abraded 
using an abrasive paste and cleaned using isopropyl alcohol swabs. After 
preparation, and before any test, the hotspot for TMS stimulation was 
determined as coil position that evoked MEPs of the largest amplitude, 
at the same intensity, and then marked on participants scalp with a soft- 
tip pen. rMT was estimated, using adaptive threshold hunting technique 
(Ah Sen et al., 2017; Awiszus, 2011), which allowed us to determine rMT 
with a reduced number of TMS stimulations, thereby improving 

participants’ comfort. At the end of the experiment, we collected the 
maximum evoked muscle twitch (Mmax) evoked by peripheral magnetic 
stimulation at the FDI muscle. This was done by placing the TMS coil on 
participants’ right elbow, between the olecranon and the medial epi
condyle, with the coil handle perpendicular to the direction of the ulnar 
nerve, to induce current flow in the nerve with the monophasic stimu
lator (Lampropoulou, Nowicky, & Marston, 2012). To determine Mmax, 
we collected five evoked responses for responses ranging between 20% 
and 70% of the maximum stimulus output, in incremental steps of 10%. 
Surface electromyography (EMG) and evoked responses were recorded 
using Signal (v.6, CED, UK) and amplified at a gain of 1000 and sampled 
at 4 kHz. To reduce the influence of external artefacts, an online band- 
pass filter (5–2000 Hz) was applied. TMS pulses were delivered 
through synchronized stimulus presentation, using TTL output triggers 
generated by E-Prime software (v 3.0; Psychology Software Tools, 
Pittsburgh, PA), and sent to the magnetic stimulator. 

2.6. Data and statistical analysis 

2.6.1. MEPs analysis 
Peak-to-peak MEP amplitude and background EMG were calculated 

for every trial using a custom-made script in Signal software (CED, 
v6.05; UK). For background EMG, we calculated the root mean square of 
muscle activity during 100 ms prior to the TMS pulse. Given partici
pants’ hand posture during TMS stimulation, trials where background 
EMG was greater than 300 µV were excluded from the analysis. MEPs 
were normalised and expressed as percentage of Mmax, using the 
following formula: 

Normalised MEP = 100*
MEP
Mmax

(1) 

We chose this normalization method according to the rationale that 
Mmax measures the maximum possible contraction, and it is thought to 
be stable against transient changes in excitability (Palmieri, Ingersoll, & 
Hoffman, 2004). In addition, this normalization method is commonly 
used to express spinal excitability (Palmieri et al., 2004). Unless other
wise specified, in later sections MEPs will refer to normalized, not raw, 
values. 

2.6.2. Post-Training audiomotor resonance 
To assess audiomotor resonance arising from the sonification prac

tice, we calculated the percentage change between pre- and post- 
practice raw MEP values. For both AO and AOMI, we compared pre- 
with post-practice completed with or without sonification sound. 

MEP No Sound = 100*
Pre − Post no Sound

Pre
(2)  

MEP Sound = 100*
Pre − Post Sound

Pre
(3) 

Both CON and SON completed this. Since CON was not exposed to 
the sound during the training, we did not expect modulation of corti
cospinal excitability with sound, so it was used as control for SON. 

2.6.3. Statistical analysis 
Statistical comparisons were carried out using SPSS. Outliers were 

assessed using z-scores; values greater than ± 2.99 were considered as 
outliers and removed from the analysis. Data distribution was assessed 
with the Shapiro-Wilk test. Handedness, MIQ and corticospinal excit
ability changes between AO/AOMI and rest were analysed using 
nonparametric tests. For the analysis of corticospinal excitability 
changes between pre- and post-practice at rest and during AO and AOMI, 
we ran a mixed ANOVA with factors TIME (2 levels, pre and post) and 
GROUP (2 levels, SON and CON). For the analysis of audiomotor reso
nance during AO and AOMI, we run a mixed ANOVA with factors 
SOUND (2 levels, sound and no sound) and GROUP (SON and CON). 

Fig. 2. a. Arm configuration during TMS testing and practice block. Partici
pants were instructed to keep their hands on a table and hold a ball, which 
rested on the table, in their hands, and participants were asked to relax as much 
as possible and avoid muscle contractions. To further improve their comfort, a 
foam mat was placed under their forearm. b. The initial video frame; c. The 
point in the video at which TMS pulses were delivered (maximal compression). 
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3. Results 

Table 1 provide a summary of participants’ demographic data, by 
group. There were no significant between-group differences in hand
edness (z = − 0.748, p = 0.454), rMT (z = 0.906, p = 0.365), Internal 
visual imagery (z = − 0.164, p = 0.870), external visual imagery (z =
− 0.301, p = 0.764) and kinaesthetic imagery (z = − 0.164, p = 0.870). 
There were no significant differences in bgEMG levels between AO and 
rest (z = − 1.789, p = 0.074). Engaging in AO did not result in a sig
nificant modulation of corticospinal excitability, compared to resting 
conditions (z = 1.655, p = 0.098). On the other hand, engaging in AOMI 
resulted in a significant increase in corticospinal excitability, compared 
to rest (z = 2.44, p = 0.015). However, bgEMG analysis revealed 
significantly differences in muscle activity between AOMI and rest (z =
− 2.731, p = 0.006). 

3.1. Effects of practice on corticospinal excitability at rest and during AO 
and AOMI 

Practice effect was assessed by comparing MEPs amplitude before 
and after the practice, at rest, as well as during AO and AOMI (Table 2). 
There were no significant differences in bgEMG levels in all three con
ditions (p greater than 0.05; see S1 for statistical details). At rest, 
(Fig. 3a), there was a significant increase of MEPs amplitude after the 
practice: main effect of TIME, F(1, 23) = 15.03; p = 0.001, N2

p = 0.395. 
No TIME × GROUP interaction was detected: F(1, 23) = 0.289; p =
0.596, N2

p = 0.012. During AO (Fig. 3b), there was a significant increase 
in MEP amplitude after the practice: main effect of TIME, F(1,23) =
27.450; p < 0.001; N2

p = 0.544. There was a trend towards significance 
for the interaction TIME × GROUP: F(1,23) = 3.509; p = 0.074; N2

p =

0.132. Lastly, during AOMI (Fig. 3c) there was a significant increase of 
MEP amplitude after the practice: main effect of TIME on MEP ampli
tude: F(1,23) = 7.742; p = 0.011; N2

p = 0.252. No TIME × GROUP 
interactions were found: F(1,23) = 0.311; p = 0.582; N2

p = 0.13. 

3.2. Effects of sonification on audiomotor resonance after practice 

After the practice block, we collected MEPs during AO and AOMI 
with and without sonification sound. MEPs with sound were always 
collected last. We compared these with Pre-practice measures, to 
explore whether sonification induced an audiomotor association 
(Table 3). During AO (Fig. 4a), a rmANOVA revealed no statistical dif
ferences for SOUND, F(1,22) = 1.834, p = 0.189, N2

p = 0.077, and no 
SOUND × GROUP interactions were found: F(1,22) = 0.014, p = 0.906 

Table 2 
Descriptive Statistics for corticospinal excitability measures. MEPs are expressed 
as percentage of Mmax.        

95% CI    
Mean Median SD SEM Lower Upper 

Control 
Rest Pre 17.01 12.94 10.41 3.00 10.40 23.63 

Post 25.29 20.73 13.33 3.85 16.81 33.76 
AO Pre 18.55 15.22 10.77 3.11 11.71 25.39 

Post 27.47 25.46 14.46 4.17 18.28 36.65 
Sound 24.45 21.93 14.58 4.21 15.18 33.71 

AOMI Pre 21.89 18.71 13.46 3.88 13.34 30.44 
Post 29.73 28.50 12.02 3.47 22.09 37.36 
Sound 28.60 26.16 14.90 4.30 19.13 38.07 

Sonification 
Rest Pre 17.38 13.92 12.48 3.76 9.00 25.77 

Post 21.83 18.82 13.61 4.10 12.69 30.97 
AO Pre 17.69 17.88 12.00 3.62 9.63 25.75 

Post 21.97 15.59 15.26 4.60 11.72 32.22 
Sound 20.14 17.26 12.67 3.82 11.62 28.65 

AOMI Pre 20.49 20.17 11.64 3.51 12.67 28.31 
Post 24.73 23.75 12.97 3.91 16.02 33.45 
Sound 23.68 22.42 14.35 4.33 14.04 33.33  

Fig. 3. Corticospinal excitability measures before and after the practice block, 
measured at rest (a), during Action Observation (b), and during combined ac
tion observation and motor imagery (c). Circle represents SON group (12 par
ticipants), while the triangles represent CON groups (13 participants). Black 
bars represent group-level means. *: p < 0.05: **: p < 0.01; ***: p < 0.001. 

Table 3 
Descriptive statistics for percentage change in MEP values pre- and post- 
practice, measured without and with sonification sound.        

95% CI    
Mean Median SD SEM Lower Upper 

Control 
AO Sound 46.04 42.40 66.10 19.93 1.63 90.44 

No Sound 60.62 53.10 37.81 11.40 35.22 86.02 
AOMI Sound 44.07 44.72 52.44 15.81 8.85 79.30 

No Sound 48.63 37.35 66.67 20.10 3.83 93.42 
Sonification 
AO Sound 22.13 2.46 50.99 14.72 − 10.26 54.53 

No Sound 32.48 19.59 55.87 16.13 − 3.02 67.97 
AOMI Sound 13.22 8.67 39.34 11.36 − 11.77 38.21 

No Sound 22.63 8.42 45.69 13.19 − 6.40 51.66  
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N2
p = 0.001. Similarly, during AOMI (Fig. 4b) there were no significant 

main effect of SOUND, F(1,22) = 0.385, p = 0.541, N2
p = 0.017. No 

SOUND × GROUP interaction emerged: F(1,22) = 0.281, p = 0.601, N2
p 

= 0.013. 

4. Discussion 

The aim of this study was to investigate the effects of sAOMI on 
corticospinal excitability and the associated development of audiomotor 
association. Participants completed a practice block composed of AOMI, 
motor imagery and execution of the same action. SON group received 
auditory augmentation during AOMI, while CON group did not receive 
any extrinsic auditory stimulation. 

4.1. Effects of sAOMI on corticospinal excitability 

At the end of the practice block, participants’ corticospinal excit
ability was significantly higher than pre-training measures at rest, as 
well as during AO and AOMI. However, we did not find significant 
differences between the two groups. The fact that corticospinal excit
ability after the practice block increased in both groups is in line with 
literature suggesting that, among others, practice induces changes in 
corticospinal excitability, due to an unmasking of silent cortico-cortical 
connections (Dayan & Cohen, 2011; Rosenkranz, Kacar, & Rothwell, 
2007; Ziemann, Ilić, Pauli, Meintzschel, & Ruge, 2004), resulting in 
long-term potentiation of circuits involved in practice. This neural 
mechanism is also involved in observational and mental practice 
(Avanzino et al., 2015; Lepage et al., 2012). 

With regard to sonification, our results are in line with our previous 
study on sAOMI (Castro et al., 2021), but seem to be in contrast with 
existing literature on sAO, which suggest that observing an action with 
congruent sonification induces a more precise perceptual judgment 
about movement speed in healthy population, associated with an 
increased activation in areas involved in sensorimotor transformations 
and motor control (Schmitz et al., 2013). In addition, sAO was associ
ated with significant improvement of a variety of measures of freezing of 
gait in parkinsonians (Mezzarobba et al., 2018). Lastly, research on 
movement sonification generally reports that congruent sonification has 
beneficial effects in inducing changes in performance (Schaffert, Janzen, 
Mattes, & Thaut, 2019; Sigrist et al., 2013). Some differences between 
our study and others may explain this disparity. In our study we used 
sonified congruent AOMI to deliver auditory augmentation. Compared 
to AO or MI alone, AOMI induces increased neural activity, as measured 
with fMRI (Macuga & Frey, 2012), and EEG (Eaves, Behmer, & Vogt, 
2016), which is ultimately reflected in increased corticospinal excit
ability, compared to AO and MI alone (Bruton et al., 2020; Meers et al., 
2020; Sakamoto et al., 2009; Wright et al., 2014; Wright, Wood, Eaves, 
et al., 2018). It is possible that the inclusion of MI during sAO could have 
masked the effect of sonification, as recent studies show that MI seems to 
have a major effect on corticospinal excitability during AOMI (Bruton 
et al., 2020; Meers et al., 2020). However, MI implies a functional 
equivalence in internally-induced predictions of sensorimotor charac
teristics of an action (Kilteni et al., 2018; Kilteni, Engeler, Boberg, & 
Maurex, 2021), including a sense of agency (Nierula, Spanlang, Martini, 
Sanchez-vives, Nikulin, Taylor, & Farina, 2020). Thus, it could be 
hypothesised that sonification during AOMI would result in a better 
matching between top-down and bottom-up processing. It is possible 
that sonification did not exerts its effects because the ball-squeezing 
action chosen for this study was not challenging enough for our par
ticipants. This is akin to many common daily tasks, which people 
without movement disorders can perform with little effort. We chose 
this task because research show that MI vividness – the clarity of the 
generated image – affects corticospinal excitability, thus suggesting that 
even though a task is easy to perform, it may not be easy to imagine 
(Lebon, Byblow, Collet, Guillot, & Stinear, 2012; Williams, Pearce, 
Loporto, Morris, & Holmes, 2012). However, MIQ results suggests that, 
on average, our participants were ‘good imagers’ (Marchesotti, Basso
lino, Serino, Bleuler, & Blanke, 2016; Vuckovic & Osuagwu, 2013). 
Thus, it is possible that this action was simple to internally simulate, and 
sonification did not exert its augmenting influence. 

Another explanation for the lack of effect of sonification may be an 
increase in cognitive effort during the practice. Despite research on 
sonification generally reports a reduction in cognitive load (Dyer, Sta
pleton, & Rodger, 2015), a study by Ronsse et al. (2011) suggests that 
compared to visual augmentation, sonification may induce slower rate 
of learning at the beginning of a coordinative bimanual task practice, 
associated with increased attentional demands, evidenced by increased 
activity in the dorsolateral prefrontal cortex, a brain area widely 
involved in attentional processing (Gottlieb, 2012; Suzuki & Gottlieb, 
2013). It is possible that auditory processing may have interfered with 
AOMI processing during the practice block. Different studies suggests 
that, within the right condition, AO requires relatively low cognitive 
effort, especially when compared to MI (Nota, Chartrand, Levkov, 
Montefusco-Siegmund, & DeSouza, 2017). However, neural activity 
during AO is modulated by different factors, such as background with 
the observed action seems to influence motor resonance (Riach et al., 
2018), visual attention (D’Innocenzo, Gonzalez, Nowicky, Williams, & 
Bishop, 2017; Gandevia & Rothwell, 1987; Wright, Wood, Franklin, 
et al., 2018) and cognitive effort (Puglisi, Leonetti, Cerri, & Borroni, 
2018). Recent studies also suggest that changing the relation between 
the content of the imagined and observed action seems to influence MEP 
amplitude and attentional measures. To explore this, studies usually 
contrast three forms of AOMI: congruent, coordinative, and conflicting. 
In the first one, the observed and imagined action has the same content, 

Fig. 4. Pre-post percentage change comparisons on the influence of auditory 
stimulation while engaging in AO (a) and AOMI (b). After the practice block, we 
measured corticospinal excitability during AO and AOMI in two conditions, 
with and without sonification sound. The ‘No Sound’ condition represents 
comparisons between pre and post-no sound, while the ‘Sound’ condition 
represents comparisons between and post-sound. For both AO and AOMI, no 
significance differences were found between the SON group (12 participants; 
circles) and CON group (13 participants; triangles). Black bars represent group- 
level means. 
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while in coordinative AOMI it may be the same but from a different 
perspective, or a complementary action which may assist the other. On 
the other hand, in conflicting AOMI the observed and imagined actions 
are different and not compatible with each other. Recently, Bruton et al. 
(2020) reported that corticospinal excitability was lower in conflicting 
AOMI, compared to congruent AOMI. Interestingly, engaging in coor
dinative and conflicting AOMI also increased attentional demands and 
cognitive efforts, compared to congruent AOMI. The fact that engaging 
in different forms of AOMI is associated with different neurocognitive 
signatures is in line with a representationalist framework originally 
developed by Cisek and Kalaska (2010), but later adapted to action 
simulation by Eaves et al. (2016), suggesting that the brain represents 
different potential actions and, through a process of competition reso
lution, it interfaces with the environment, selecting the most appro
priate one, given prior intentions, predictions and sensations sampled (c. 
f. Bestmann & Duque, 2016; Derosiere & Duque, 2020 for an account of 
action preparation and competition resolution). If the action was very 
simple to imagine for the participants, and the sonification did not exert 
its augmenting effects, it may have acted as a distractor, interfering with 
sensorimotor processing is a similar fashion as coordinative and incon
gruent AOMI. Future studies, with a larger sample size, are needed to 
further explore and add robustness to the relationship between the value 
of an augmented sensory information and action simulation. In this 
study, we focussed on congruent AOMI, but it is possible that sonifica
tion may have beneficial effects on other forms of AOMI. Especially with 
coordinative AOMI, sonification could be associated to a complementary 
aspect of an observed action, while a person engages in MI. To the best of 
our knowledge this question remains unanswered. 

4.2. Effects of sonification of audiomotor association 

After the practice block, we tested corticospinal excitability during 
AO and AOMI without or with sonification sound. Both groups did not 
show significant differences in corticospinal excitability between the 
two conditions. For CON, no corticospinal excitability change was ex
pected, as sonification sound was novel to them. On the other hand, SON 
practiced with sAOMI, so the development of an audiomotor association 
could be hypothesised. Action sounds interact with the sensorimotor 
system, similarly to AO, by mapping the sound into the listener’s own 
sensorimotor system, through a process of multisensory convergence 
(Aglioti & Pazzaglia, 2011). Even though action and non-action sounds 
are thought to be processed differently (Pineda et al., 2013), it is possible 
to associate a non-action sound to a motor response. Music is a chief 
example for this: Listening to the sound of a practised piece activates 
brain areas responsible for physical execution of the same action (Bau
mann et al., 2007; Lahav, Saltzman, & Schlaug, 2007). In addition, it has 
been reported that it is possible to associate a sound with a simple button 
press. Ticini et al. (2011) trained participants to press two buttons, one 
with the index and the other with the little finger, which were associated 
to two different tones. After the training, playing the sounds evoked 
increased MEPs in the fingers used to press the button during the asso
ciation practice. Interestingly, if the relationship between muscle and 
button was reversed, the pattern of corticospinal excitability was 
reversed too, such that it preserved the audiomotor relationship devel
oped during the practice. This suggests that the association is not just 
tone-muscle, but of higher order, associating the sound to the goal of the 
action. More recently, Ticini et al. (2017) reported that when the asso
ciation was established, a training of equal time inducing opposite as
sociation was not enough to dissociate the audiomotor resonance 
developed during the training. 

In this study, we used a synthetised sound, and the audiomotor as
sociation – volume of a sound associated with perceived kinetics – is a 
common audiomotor mapping in sonification research (Dubus & Bresin, 
2013). However, our results are in line with a possible distracting role of 
sonification for sensorimotor computations underlying action simula
tion. Sensory information are thought to be processed in early sensory 

cortices, which deal with the physical nature of the stimulus, and then 
integrated by higher order multisensory areas (Rizzolatti & Sinigaglia, 
2010), where they are integrated into the representation of the body and 
the outside environment, which are thought to be used to make top- 
down predictions about perception and actions (Friston et al., 2011; 
Kilner et al., 2007a). Research on processing of auditory distractors 
during movement suggest a role of parietal areas in the resolution of the 
conflict provided by the distractor (Bigliassi, Karageorghis, Nowicky, 
Wright, & Orgs, 2018), which allows performance to be carried out 
without detriment. In this study, if sonification did not exert its aug
menting effect, possibly because the task was too simple, it is possible 
that the sound was not fully integrated the visual stimuli and predictions 
about the sensory consequences of the imagined action. In other words, 
it is possible that processing of auditory information was attenuated, to 
prevent performance detriment. Interestingly, Franklin, Wright, and 
Holmes (2020) reported that if a sound of a congruent action-related 
word was provided during AO, corticospinal excitability was signifi
cantly higher than AO alone, as well as if the word was not action- 
related and incongruent with the observed action. Taken together, this 
may be suggestive of a critical role of the epistemic value of a sensory 
information during sensorimotor processing underlying AO and AOMI. 
Our discussion on the relationship between sonification sound and ac
tion simulation remains, however, somewhat speculative, and future 
studies are needed to further explore this area. Specifically, our study 
used a relatively easy tasks to perform, and a more complex task may 
induce different results. In addition, a larger sample size would add 
robustness to the analysis. 

5. Conclusions 

The purpose of this study was to explore whether sonification of 
combined action observation and motor imagery (sAOMI) influenced 
corticospinal excitability, and whether a practice block based on sAOMI, 
MI and physical execution of the same action influenced the establish
ment of an audiomotor association. Our results suggest that, at least for 
simpler tasks, sonification does not influence corticospinal excitability 
and, on the contrary it may act as a distractor, preventing an audiomotor 
association from being developed. Future studies are needed to further 
explore the relationship between auditory augmentation and action 
simulation, to establish the optimal audiomotor mapping to maximise 
neural activity and practice-dependent plasticity. 
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