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Stroke Risk Prediction With Hybrid Deep
Transfer Learning Framework

Jie Chen “, Yingru Chen, Jiangiang Li

Abstract—Stroke has become a leading cause of death
and long-term disability in the world with no effective treat-
ment. Deep learning-based approaches have the potential
to outperform existing stroke risk prediction models, but
they rely on large well-labeled data. Due to the strict pri-
vacy protection policy in health-care systems, stroke data
is usually distributed among different hospitals in small
pieces. In addition, the positive and negative instances
of such data are extremely imbalanced. Transfer learning
can solve small data issue by exploiting the knowledge
of a correlated domain, especially when multiple source
of data are available. In this work, we propose a novel
Hybrid Deep Transfer Learning-based Stroke Risk Predic-
tion (HDTL-SRP) scheme to exploit the knowledge structure
from multiple correlated sources (i.e., external stroke data,
chronic diseases data, such as hypertension and diabetes).
The proposed framework has been extensively tested in
synthetic and real-world scenarios, and it outperforms the
state-of-the-art stroke risk prediction models. It also shows
the potential of real-world deployment among multiple hos-
pitals aided with 5 G/B5G infrastructures.

Index Terms—stroke risk prediction, transfer learning,
generative adversarial networks, active learning, Bayesian
optimization.
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[. INTRODUCTION

TROKE is one of the most prevalent diseases which could
S lead to death or long-term disability among elderly people
all over the world. In a recent report [1], around 795 000 people
experience a new or recurrent stroke each year in the US;
one stroke incident occurs in approximately every 40 seconds.
Among the patients who suffered strokes, one in five would
die within one year [2]. For the survivals, the cost of treat-
ment and rehabilitation becomes an extremely high burden to
their families and the health-care system. From 2014 to 2015,
the direct and indirect cost due to stroke incidents was about
45.5 billion US dollars [3]. Thus, accurate stroke prediction
is highly desirable so that the cost can be reduced with early
interventions to delay the onset of and to reduce the risks of
stroke.

There exist several works which exploit medical data (e.g.,
electronic health record and retinal image) to develop Stroke
Risk Prediction (SRP) Models. These methods can be broadly
categorized into classical machine learning approaches [4], [5]
(e.g., Support Vector Machine (SVM), Decision Tree, Logistic
Regression) and deep learning-based approaches [6]-[11]. It
is reported that deep neural network (DNN) can achieve best
performance in stroke prediction [8]. However, a well-known
drawback is that such model relies on the availability of large
well-labeled data. In real-world scenario, the quantity of reliable
data that is required may not be readily available [12]. Due to
strict privacy protection policy in health-care system, sharing
stroke data between hospitals is usually difficult. Thus, the
full set of stroke data tends to be distributed among multiple
hospitals in small subsets. In addition, stroke data contains
extremely imbalanced positive and negative instances. Thus,
the DNN-based SRP models could work poorly in real-world
deployment [13].

Though the stroke data is small, some common chronic dis-
eases (e.g., hypertension and diabetes) have sufficiently larger
data and are highly correlated with stroke development in clini-
cal trials [14], [15]. When multiple correlated sources are avail-
able, Transfer Learning (TL) approaches offer a suitable frame-
work to address small data issue [16], [17]. Most of existing TL
works are single transfer approaches including feature trans-
fer [18], [19], instance transfer [20]—[22], network transfer [23],
[24]. A recent work [25] proposed a hybrid adapted-embedding
method and empirically showed that hybrid transfer outperforms
single transfer approaches. Transfer learning is also used in

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0002-9811-1694
https://orcid.org/0000-0002-2208-962X
https://orcid.org/0000-0003-2308-2259
https://orcid.org/0000-0001-6248-2875
mailto:chenjie@szu.edu.cn
mailto:lijq@szu.edu.cn
mailto:jia.wang@szu.edu.cn
mailto:2060271036@email.szu.edu.c
mailto:chencyr261@163.com
mailto:asoke.nandi@brunel.ac.uk

412 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 1, JANUARY 2022

Meta-learning framework for low-resource predictive modeling
with patient EHRs [26]. However, existing approaches do not
consider the issue of imbalanced labels in the target domain.
In contrast, this work proposes a hybrid transfer approach that
incorporates generative instance transfer coupled with active
selection which can exploit external stroke data to address the
label imbalance issue. The generative instance transfer can share
high-quality synthetic stroke data for training SRP model while
preserving patients’ privacy [27] and active instance selection
allows the most informative generated instances to be transferred
to the target domain [28]. Furthermore, the training and inference
of framework are designed in a distributed fashion such that it can
take advantage of high data transmission and stringent latency
in 5 G/B5G cellular network [29]-[31].

The proposed framework can achieve a better ability in es-
tablishing SRP model. However, the parameters such as the
number of transferred layer and the transferred sequence of
different source domains are vital factors for model perfor-
mance. Common methods such as grid and random search for
parameter tuning are often inefficient due to the search space
being too large [32]. Bayesian Optimization (BO) is an approach
for model-based global optimization of black-box function and
the most universally used model for BO is a Gaussian process
due toits simplicity and flexibility in constructing a probabilistic
model of objective function [33]. Therefore, BO is used to find
the best parameter in SRP model.

The contributions of this work are as follows:

o This work proposes a novel Hybrid Deep Transfer Learning-
based Stroke Risk Prediction (HDTL-SRP) framework that al-
lows simultaneous exploitation of multiple correlated sources of
medical data (e.g., hypertension, diabetes, and external stroke
data) to train a SRP model in a local hospital where only small
and imbalanced stroke data is available (Section IV).

e The proposed framework is extensively compared with the
state-of-the-art SRP models in synthetic scenario of stroke risk
prediction. In addition, our approach is tested in a real-world
dataset which contains 2426 stroke incidents recorded in three
collaborating hospitals during 2012-2017. The empirical results
show that the performance of HDTL-SRP outperform its coun-
terparts in both synthetic and real-world scenarios (Section V).

e The proposed HDTL-SRP framework can be deployed
among multiple hospitals to take advantage of the distributed
medical data while preserving the patients’ privacy (Section V-
B). In addition, this decentralized framework can gain efficiency
when the 5 G/B5G infrastructures are available among hospitals.

e In this work, Bayesian Optimization is used to find the
best parameters such as the number of transferred layer and the
transferred sequence of different source domains for HDTL-SRP
model (Section V-C).

Il. RELATED WORK

Several studies have used classical machine-learning/deep
learning methods to construct SRP model. Khosla et al. [4]
proposed a feature selection algorithm combined with SVM
and carried out experiments in a dataset that has 4988 examples
with 299 occurrences of stroke. Miguel et al. [5] used machine
learning techniques to predict the functional outcome of a patient

three months after the initial stroke in a dataset with 425 acute
stroke patients. Lim et al. [7] used a deep learning approach
to develop SRP model using retinal images and achieved ac-
ceptable performance. But collecting retinal images is often
time-consuming and expensive. From the above works, we can
find that the amount of stroke data is less and the dataset is im-
balanced. To solve the imbalance issue, Liu et al. [11] proposed
a DNN-based model to predict stroke on an imbalanced dataset
which contains 43 400 records of patients with 783 occurrence
of stroke. However, the above methods cannot address the small
data and imbalance issues of stroke data.

There exist some works to solve the issues of small and
imbalanced data. They can be approximately classified as re-
sampling and data augmentation. In re-sampling approach, data
is under-sampled or over-sampled from original data. A classic
over-sampling method is SMOTE [34]. It generates samples
between the minority and their nearest neighbor. Some widely
used data augmentation methods are geometric transformation,
flipping, rotation, cropping, and so on [35]. However, most of
the above methods can only be applied to image data. Another
data augmentation method is generative adversarial networks
(GAN) [36]. It can generate artificial instances to maintain
feature similar to the original dataset. Meanwhile, compared
to other techniques, GAN can reduce information leakage. The
above methods solve the mentioned issues. But they cannot
exploit extra data when there are other data resources. Transfer
learning (TL) can address small data issue by training a model
on a related big dataset and then using knowledge of this model
in target task, especially when multiple correlated sources are
available [37]. But transfer learning cannot handle imbalance
issue. Inspired by the ideas of GAN and TL, we propose a hybrid
deep transfer learning framework to address the issues of small
and imbalanced data.

Intuitively, centralizing all available data from other hospitals
can build a better SRP model when amounts of stroke data
available in local hospitals are small. Secure Multiparty Com-
putation (SMC) [38] model involves multiple party data and
protects data privacy. But it demands each party knows nothing
except its input and output which is difficult to achieve. Another
recently proposed framework, federated learning [39], is also
used to protect multiple party data privacy. It can exploit multiple
distributed data to establish a better model. In federated learning,
data in different places would not be transmitted and the model
is encrypted during training. But federated learning framework
cannot solve the issue of small data. Notably, the above methods
have not been deployed in SRP application.

The parameter of Network Weight transfer module is an
import factor of HDTL-SRP model performance. Traditionally,
manual search and grid search [40] are strategies for hyper-
parameter optimization in a neural network. For the same time
budget, random search [41] finds better models than grid search
results by effectively searching a larger and less promising
configuration space. But they find a proper hyper-parameter
randomly or rely on the expert’s experience. Genetic Algorithm
(GA) [42]-[44], is an evolutionary search algorithm used to
solve optimization. However, GA demands enough initial sam-
ple points in hyper-parameter optimization so that the optimiza-
tion efficiency is usually low. Bayesian Optimization (BO) [45]
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TABLE |
NOTATION TABLE

Sst Stroke source domain.
Sur Hypertension source domain.
Sps Diabetes source domain.
Stroke target doamin.
Feature vector, feature vector set.
Batch size of selected samples.
Label space.
xZTW +b
Bias.
Actual label.
Predicited Label.
Weight matrix of DNN.
Rectified linear function.
Hyperbolic tangent function.
Sigmoid function.
L Loss function.
D Discriminator.
G Generator.
z Sampled Noise.
[] Expected value.
@) Value function of GAN.
Generated samples features matrix.
¢ Features matrix of chosen samples.
Features matrix of positive samples.
Entropy.
0 Model prameters.
The data of training set or validation set.
1 The layer number vector which need to optimize.
c optimized parameter.
) Kernel function.
S Parameter set.
D(+) Cumulative distribution function.
10 Probability density function.
I mean of Gaussian process.
o variance of Gaussian process.

is a flexible approach in hyper-parameter optimization, while
BO based on Gaussian processes [46] achieve successful imple-
mentation, as the Spearmint system [47].

IIl. FORMULATION OF STROKE RISK PREDICTION

Traditionally, the problem of SRP assumes that a set of stroke
data 7 is available locally for training SRP models (e.g., DNN,
SVM, and Decision Tree). Each point in 7 is a tuple (X,y)
where X is a feature matrix that contains the patient’s attributes
extracted from his/her medical records and y € {+1,—1} is a
binary label with 41 indicating an occurrence of stroke incident
(The important notations are listed in Table I). SRP model aims
to learn the underlying function f (.) from stroke data. then, given
feature X* of a new patient, SRP model can automatically return
a prediction § = f(X*) to the doctor.

In real-world scenarios, the stroke data 7 in a specific local
hospital tends to be small and imbalanced: (1) In the same
city, patients’ records are unevenly distributed among multiple
hospitals; intuitively, the hospitals which are located far away
from denser-populated districts or have reduced level facilities
would attract fewer patients. In addition, it is extremely strict
to share stroke data among hospitals due to privacy protection
policy; (2) As stroke are rare incidents among all patients’
hospital visits, the positive versus negative instances of stroke
dataset are highly imbalanced. Such small and imbalanced stroke

data could result in a poorly-performed SRP model using the
traditional workflow.

To address the issue with small stroke data, this work is
motivated by researches in health-care domain. Clinical trials
have revealed that hypertension is one of the most important risk
factors in the development of stroke [14] and diabetes is a strong
determinant of or factor in ischemic stroke due to its impact
on cardiovascular system among middle-aged women [15]. As
hypertension and diabetes are common chronic diseases among
elderly patients, much more records of hypertension and diabetes
are available than that of stroke. Then, the question is how fo
exploit effectively data from hypertension/diabetes to improve
SRP models?

The above question can be formulated under the deep transfer
learning framework [48]. Briefly, the SRP model is designed
as a DNN which can be first trained in source domains using
hypertension Syt or diabetes Spg data; then, the weights of
the trained network can be transferred to the target domain of
stroke where the DNN is fine-tuned using local stroke data 7gr.
However, the imbalanced labels in the target domain still could
cause performance degeneration when fine-tuning the DNN. To
address this issue without violating the privacy protection policy,
this work also attempts to incorporate more data from external
sources by applying generative adversarial networks (GAN) [36]
in the source domains.

In this work, we formulate the learning task in the target
domain as stroke risk prediction in a local hospital (see Fig. 1).
As the stroke data in the target domain is usually insufficient, the
learning task can be improved with the help from various source
domains of different diseases (e.g., Hypertension/Diabetes).
However, due to the privacy protection policy among the health-
care systems, the medical datasets are collected and stored in
different hospitals; direct exchange of datasets between hospitals
is not feasible. A reasonable solution is to formulate a source
domain as a specific disease at a certain hospital. Then, the goal
is to improve the learning task in target domain (i.e., stroke
risk prediction at local hospital) via transferring knowledge
structures from multiple source domains across both local and
external hospitals.

In Fig. 1, the target and source domains are illustrated in a
scenario where one local hospital and K external hospitals are
considered. The core of the system is the proposed Hybrid Deep
Transfer Learning-based Stroke Risk Prediction (HDTL-SRP)
framework for exploiting all relevant sources of data to train
an accurate SRP model. The details of HDTL-SRP will be
described in the following section.

IV. HYBRID DEEP TRANSFER LEARNING FOR STROKE
RISK PREDICTION

To alleviate the issues caused by small and imbalanced stroke
data, this work proposes a Hybrid Deep Transfer Learning
(HDTL) approach that transfers knowledge structure from mul-
tiple source domains distributed among multiple hospitals to the
target domain of stroke. The proposed HDTL-SRP framework
works in a distributed fashion without having to share directly
the patients’ records between hospitals. It consists of three
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components: (1) Generative Instance Transfer (GIT) applying
GAN in external data to generate synthetic instances for model
training purpose, (2) Network Weight Transfer (NWT) making
use of data from highly correlated diseases (i.e., hypertension
or diabetes), (3) Bayesian Optimization (BO) to find the best
transferred parameters, and (4) Active Instance Transfer (AIT)
selecting more informative synthetic stroke instances to create
a balanced stroke dataset which is then exploited to fine-tune
SRP model. In the following, we will describe each component
in detail.

A. Generative Instance Transfer Using External
Stroke Data

Intuitively, the hospitals of higher rank or those located closer
to densely-populated districts tend to own more electronic health
records (EHR) on strokes. However, due to the strict data pro-
tection policy in health-care domain for preserving patients’
privacy, the invaluable stroke data cannot be easily shared for
training SRP model. To address this issue, the GIT component
of HDTL-SRP is deployed in each hospital; it can exploit the
historical EHR of the stroke instances to train a GAN [36]
model. Then, the knowledge structure hidden in the stroke data

can be transferred to the target domain via synthetic generative
instances.

Specifically, in an arbitrary hospital ¢, the GAN model consists
of a generator GG and a discriminator D which are both multilayer
perceptrons specified by 6, and 64, respectively. The generator G
aims to generate synthetic instances that cannot be distinguished
from the positive instances in stoke data Sé'% On the other hand,
the discriminator D aims to determine successfully whether an
input instance X is real or fake. The parameters 6, and 0, are
optimized by playing a minmax game according to the objective
function:

minmax V (D, G) = Ex p..(x) [log D(X;04)]

8, 64 n
FE 2 pre(z) [108(1 = D(G(2;6,); 0a))]

where ppoise(2z) is a Gaussian noise distribution, pgyoke (X) is
the distribution of the real positive stroke instances in source
domain SéZT) , and E ,[-] represents the expectation w.r.t. specific
distribution p (e.g., Pnoise (2) OF Dyroke (X ). After the training of
GAN model converges, the generator G' can be exploited to
generate stroke instances from hospital ¢ to the target domain.
As the generated instances do not correspond to any physical
patients, no privacy leakage is of any concern.

B. Network Weight Transfer Using Chronic Disease Data

NWT module of HDTL-SRP is designed to incorporate data
from source domains of other highly correlated chronic diseases,
such as hypertension or diabetes, which tend to have more health
records. In this work, the SRP model M is chosen to be an M -
layered DNN where hidden variables in the i-th layer is specified
ash; = ¢(hiT_1Wi + b;) where W; and b; represent the weight
matrix and bias vector at i-th hidden layer, respectively. Here,
hy in the first layer is the vectorized form of X and ¢(-) is a non-
linear activation function which can be chosen as the rectified lin-
ear function ReLU (h) £ min(0, h) or the hyperbolic tangent
function tanh(h) = (1 — exp(—2h))/(1 + exp(—2h)) or the
sigmoid function ¢(h) £ 1/(1 + exp(—h)) (used in the output
layer).

Then, a loss function L is specified as the cross-entropy
between the predicted labels using M and true labels:

s
L(M é*IS|Z [y;log(y;) + (1 —y;) log(1 —55)]. ()

The DNN model can be trained in a specific source domain using
either hypertension Syr or diabetes Spp data. Finally, given a
parameter m, NWT transfers the network structure and weights
of the first m layers to the target domain 7gy. The weights
of the other layers (m-th to M-th) of SRP model will be first
randomly initialized and then fine-tuned using stroke data. The
above procedure is shown in Fig. 2.

C. Network Parameters Selection Using
Bayesian Optimization

In network weight transfer approach, while multiple source
domains are available, the parameters such as the number of
transferred layer and the transferred sequence of different source
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domains are important factors of SRP model performance. To
construct the best SRP model while n related source domains are
available, as shown in Fig 3, we need to find the parameters that
make the model performance the best, including the transferred
layer number of i-th source domain S; and the transferred
sequence. The transferred layer number of i-th source domain S,
and the transferred sequence should be evaluated. Traditionally,
to find the best parameters, all parameters need to be evalu-
ated, which is time-consuming. To address this issue, Gaussian
process-based Bayesian Optimization approach (BO) [47] is
used to get the optimal parameters quickly. We use Levenshtein
Distance (LD) [49] to get the similarity of different transfer
sequence. Then, Multiple Dimensional Scaling (MDS) [50]
algorithm is used to get low dimension search space for BO.

A candidate of NWT configuration A = (0, 1) is specified by
both the transferring order o among multiple source domains
and the number of transferred layers 1 between a source domain
and its consecutive source domain. Transferring order of mul-
tiple source domains and the number of transferred layers are
defined as 0 = (01,02,...,0;) and 1 = (I1,1lo,...,1;), respec-
tively, where o; € {1,...,n}, I, € {1,..., M}. Meanwhile,
7 < n indicates at most n source domains are evaluated, and
0; # o; implies each source domain will be evaluated at most
once. When transferring the network structure among multiple
source domains by order, o; = k and [; = m indicates the k-th
source domains will be in the i-th place (see Fig. 3) and the
first m-th layers of k-th source domains will be transferred to
its consecutive domain, respectively.

To find the best candidate for specifying a machine learning
model, Genetic Algorithm [43], [44] and Bayesian Optimiza-
tion [47] can be used if the input space is an Euclidean space.
However, the NWT configuration A is in non-Euclidean space.
We project the parameter of transferred sequence into Euclidean
space by two steps. First, for any two transferring orders o
and o, we compute the minimum edit distance MED(o, 0’)
as the distance measure of these two sequences [49]. So,
given N sequence instances, we can calculate the minimum
edit distance matrix, where each element denotes the distance
between two different sequence instances. Second, after the
dimensionality reduction using MDS, each instance is reduced
to a k-dimensional vector which represents its position in low
dimensional space. In this work, we use BO to find the best
sequence and transferred layer number. Here, we normalize o;
and /; as 0 to 1. So the parameter need to be optimized is defined
asc € [0, 1]+,

The parameter is evaluated using training data D, and its
performance is validated in validating data D,,. We define the
validation error on D, as the output of the objective function
f (). Therefore, the best parameter can be represented as

¢ = argmin f(c|D¢, D). 3)

cel0,1]F I

In this work, the objective function f(-) is modeled by a
Gaussian process which can be fully specified by its mean func-
tion m(-) and kernel function (-, -), f(-) ~ N(m(-),x(-,")).
For simplicity, we assume the mean function as 0. x(-,-)
is the kernel function which can be chosen as Radial Basis
Function x(c, ¢’) = exp(—||c — ¢'||?/(26?)). Here, we split the
candidates in two parts of evaluated set S = {cy,ca,--- } and
unevaluated set S" = {c’1, ¢/, -+ }. We define the covariance
matrix as Kgg, Kss/, Kg's and Kgg.For |S| x |S’| covariance
matrix K gg/, eachelement [ gg]; ; indicates the value of kernel
function x(c;, ¢’;). The other three matrices are constructed in
the same way. Therefore, given a set S’ need to be evaluated,
it is to output its corresponding prediction fg. The Gaussian
process can be represented as

fs N((° Kss Kss

~J 5 . 4

<fS’ 0 Kgs Kgs )

So, we can get the predictive distribution of f(c’) which is a
normal distribution with mean and variance as

p(c') = KsisKggy(c) ®)

and
o(c)=Kgs — KgsKgeKsg. (6)
To trade off exploration of search space and exploitation of
current promising areas, we need to make use of acquisition

function [51]. We use the expected improvement (EI) [52]
function as our acquisition function. The expectation can be
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calculated as

apr(e) = (u(c) — f(e))® (“()f”)

)

where ®(-) and ¢(-) are cumulative distribution function and
probability density function of a standard normal distribution,
respectively. To find the next point to evaluate, we need to
maximize the expectation as

¢’ = argmax ags(c). 8)
celo,1)k+mI

Repeating the above step can achieve the effect of 3.

Given a ¢’ = (¢},..., ¢} ), We project it to the closest
NWT configuration (0,'1’) specifically. For the transferred se-
quence, ¢ to ¢, is used to compute the distance with each
NWT configuration in normalized space. Then the nearest one
is projected to its original space as o’. Then, for ¢}, to ¢, .,
compute each ¢; with the value of transferred layer number
in normalized space and project it to its original space as I/.
Finally, we get the NWT configuration (o,’1’) and evaluate its
performance.

D. Active Instance Transfer and Model Training

To fine-tune DNN network transferred from NWT module in
the target domain 7gr, we still need to balance the positive and
negative instances in stroke data. Thanks to the GIT module, suf-
ficient and abundant generative instances have been assimilated
in a candidate set Sgr. It leads to the question: which instances
in Sst should be selected to Tsr? To answer this question, AIT
component of HDTL-SRP exploits an active learning strategy
to select the instances that are the most informative for training
the SRP model. Formally, the most informative instance X * can
be iteratively selected according to

X" = argmax H(X) 9)
XESST

where H (X) is the entropy of each generative instance H (X') =
=2 yei+1,-1y P(y|X) log p(y[X) and p(y|X) can be evaluate
using output layer (i.e., using o function) of DNN. The selected
instance will be put into the target domain to form gradually a
balanced stroke data 7¢r = Tst J(X*, +1). Finally, the stroke
data T¢r is exploited to train the SRP model.

As shown in Fig. 1, the overall HDTL-SRP framework can
be deployed by running Algorithm 1 in hospitals with external
sources of stroke data and running Algorithm 2 in the hospital
hosting chronic disease data and target domain. The proposed
methods will be empirically evaluated in the next section.

V. EXPERIMENTS AND RESULTS

Dataset Description. The data used to test the proposed
method is collected from EHR databases of three hospitals

Algorithm 1: Generative Instance Transfer (GIT).
Input:
External stroke data Sgr, No. of requested instances N,
batch size I;
Output:
Synthetic stroke data Sgy ;
1:  for each training epoch do
: Sample I real stroke instances { X1, . .
SsT;
3: Update the discriminator by ascending its stochastic
gradient w.r.t 64:

., X1} from

I

.7 D llog D(X) + log(1 ~ DG
i=1

4: Update the generator by descending its stochastic
gradient w.r.t 0,:

I
Vo, 7 Y l0s(1 — D(G(2));

i=1
5: end for until convergence
6: return S{; < Generate N instances using G.

located at the same city.! Collaborating with medical doctors
from the department of neurology, we select 23 attributes (e.g.,
basic health records, blood tests, see TABLE II) as the features
of patients during Jan. 2012 and Dec. 2014. In addition, all
the monitored patients have their diseases (i.e., hypertension,
diabetes, and stroke) labeled from Jan. 2015 to Dec. 2017. As
three hospitals have different ranks (III-A > II-A > II-B), the
number of qualified health records is distributed unevenly (see
Table IIT). We aim to address the challenging task of predicting
stroke in lower-level hospital (II-B) which are constrained by
small and imbalance stroke data, and there are useful data
from other hospitals. As we can see, the stroke data owned by
the top-ranked hospital is over ten times of the lowest-ranked
hospital.

Experimental Settings. To verify the proposed method, we
conduct experiments on both synthetic and real-world scenarios.

Synthetic Scenario: Due to a data-sharing agreement for re-
search purpose among three hospitals, we are allowed to put
all the health records together. To simulate flexibly higher or
lower-level hospitals which could own different sizes of medical
data, we conduct experiments in different settings but they offer
similar results. For simplicity, we discuss one setting in the syn-
thetic experiments. First, we randomly select 10 test sets among
all the health records with stroke disease; each set consists of
100 (100) positive (negative) instances. The target domain 7gr is
an imbalanced set that consists of 100 (1000) positive (negative)
stroke instances. The source domain of chronic disease (i.e., Syt
and Spp) assumes to be balanced which is consistent with the

The patient data were anonymised, so we had no knowledge of any names
and we simply used anonymised datasets in our studies. The usage of data is ex-
empted from IRB approval by Huazhong University of Science and Technology
Union Shenzhen Hospital (aka. Nanshan Hospital), Shenzhen, China.
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Algorithm 2 Network Wight Transfer coupled with Active
Instance Transfer for SRP model training (NWT+BO+AIT)

Input:

Hypertension (Diabetes) data Syt (Spp), stroke data in
target domain 7gr, layers of DNN model M, objective
function f, No. of instances from each external source
N, initial design c;.;, No. of iteration using BO to
evaluated T;

Output:

DNN-based SRP model M;

I:  Sst < Request N instances by invoking GIT (see
Algorithm 1) in each external hospital;

2: 1 <« difference between no. of negative and no. of
positive instances in Tsr;

3: foriin{l,...,t}do
4. Map transferred setting according to c; and then
construct corresponding model M;
5: forjin{l,...,7}do
6: X < actively select one generative instance from
Ssts
T Th e Tr UK, )
8: Train and update M, using Tgr ;
9: end for
10: fi < validate M, using validating set;
11: Update Gaussian process model;
12:  end for
13: forkin{t+1,...,7} do
14: Select next parameter
C=arg MaXec(g, 1) +nl CEI (c);
15: Map transferred setting according to ck and then

construct corresponding model M ;

16:  forjin{l,...,7}do

17: X < actively select one generative instance from
Sst;

18: Tir < Tst U(X, +1);

19: Train and update M, using Tgy ;

20: end for

21: fr < validate M, using validating set;

22: Update Gaussian process model;

23: end for

24: return Cpes; = argmingege, o,y f(c)

real-world statistic (see Table III). The positive and negative
instances are both 10 000. For the source domain from external
stoke data Sgr, the positive and negative instances are chosen to
be 1000 and 10 000, respectively.

Real-world Scenario: We assume that stroke risk prediction in
the II-B (i.e., the lowest-ranked) hospital is in the target domain
7'(II B, ; hypertension/diabetes data in II-B hospital (Sl({HTB )/

(H B)) and external stroke data from II-A and III-A hospitals
(S(H A and S(HI A)) are some useful sources. The datasets are
divided randomly with a ratio of 8:1:1 for training, validating,
and testing respectively.

The SRP model is designed as a 9-layered DNN. The first
8 layers have 12 neurons each and the last layer has 1 neuron

TABLE Il

THE 23 ATTRIBUTES AFTER PREPROCESSING
Attribute Mean Range
Age 51.40 27-89
Number of neutrophils 4.65 0.05-51.36
Number of lymphocytes 2.02 0.11-52.5
Number of eosinophils 0.16 0.01-6.35
Number of basophils 0.01 0.00-1.60
Total protein 69.15 27.30-124.10
Albumin 42.60 11.60-59.60
Globulin 26.54 11.20-78.10
Total bilirubin 11.18 0.50-291.40
Direct bilirubin 3.13 0.08-161.70
Potassium 4.05 2.10-19.50
Sodium 141.33 | 96.00-164.60
Calcium 2.31 1.24-4.37
Urea nitrogen 5.27 0.20-64.00
AST/ALT 1.14 0.10-19.00
Triglyceride 1.98 0.02-65.44
High density lipoprotein 1.30 0.14-4.73
Low density lipoprotein 2.95 0.01-15.53
Average red blood cell 92.17 48.60-133.60
Thrombin time 12.73 0.47-66.10
International normalized ratio 0.99 0.30-8.18
Activated partial thromboplastin time | 32.96 13.70-119.00
Fibrinogen 3.65 0.69-11.04

TABLE Il
DATASETS COLLECTED BY THREE COLLABORATING HOSPITALS
Disease Rank | Domain | Positive | Negative
Stroke 1I-B Target 128 2159
Hypertension | II-B Source 529 469
Diabetes 1I-B Source 1638 1056
Stroke II-A Source 415 6477
Hypertension | II-A Source 3502 3752
Diabetes II-A Source 5168 3318
Stroke II-A Source 1883 22207
Hypertension | II-A Source 13769 11414
Diabetes III-A Source 12196 10711

using cross-entropy as loss function. The optimizer is Adam with
learning rate 0.001. Then, the proposed HDTL-SRP framework
is tested in the above two scenarios. The results are averaged
over 10 random settings.

Comparison. We compare the proposed HDTL-SRP with
existing SRP methods, such as SVM [5], decision tree
(DT) [5], random forest (RF) [5] and DNN [8]. To justify
that the AIT component can effectively work with imbal-
anced stroke data, we also compare with existing SRP mod-
els coupled with oversampled algorithm called SMOTE [34]
which is often used to address issue with imbalanced
labels.

Performance Metric. Given the prediction and the ground
truth, we can compute true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) for the test set. Then,
the performance of the proposed approach is evaluated using
four metrics: (1) Accuracy (i.e., (TP+TN)/(TP+TN+FP+FN)),
(2) Recall (i.e., TP/(TP+FEN)), (3) F1 score, and (4) Area Un-
der the ROC Curve (AUC) [7]. For all the above metrics,
the values O and 1 represent the worst and the best perfor-
mance, respectively. To evaluate the efficiency of BO, we
use validation error [51] which is the classification error in
validating set.
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TABLE IV
PERFORMANCE OF NETWORK WEIGHT TRANSFER LEARNING VERSUS NO TRANSFER (IMBALANCED STROKE DATA)
SRP Method Accuracy Recall F1 Score AUC
SVM (No Transfer) 0.695+0.020  0.385+0.007 0.5524+0.005 0.701 +0.010
DT (No Transfer) 0.7124+0.015  0.463+0.017 0.6024+0.019 0.711 £0.015
RF (No Transfer) 0.675+0.012  0.332+0.024  0.504 +£0.027  0.685 + 0.010
DNN (No Transfer) 0.719 +0.016 0.468 + 0.029 0.611 +£0.026 0.776 £ 0.013
DNN+Weight-sharing (Sur) 0.482+0.013  0.294+0.012 0.361 £0.014 0.482+0.011
DNN+Weight-sharing (Spg) 0.487+£0.018  0.416+0.017  0.446 £0.014 0.467 +0.011
DNN-+Pre-train-fine-tuning (Spr) 0.700 £ 0.012 0.463 £+ 0.012 0.607 £0.016 0.763 £ 0.020
DNN-+Pre-train-fine-tuning (Spg) | 0.688 £0.018  0.455 £0.019  0.593 £0.018 0.740 £ 0.012
DNN+NWT (Sur) 0.725£0.024 0489 £+ 0.041  0.625 £ 0.021  0.771 £ 0.029
DNN+NWT (Sps) 0.729 + 0.019  0.491 + 0.026  0.625+0.026  0.781 + 0.027

—&— DNN+NWT
=== DNN (No Transfer)

—&— DNN+NWT
=== DNN (No Transfer)

in Fig. 4 c-d). When m = 9, the performance of DNN+NWT is
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Fig. 4. Performance of DNN-based SRP models (Imbalanced stroke
data in target domain).

A. Synthetic Experiments

Performance of Network Weight Transfer: We first conduct
experiments in the synthetic scenario to test the effectiveness
of NWT module which aims to transfer knowledge structure
in chronic disease data to stroke domain. The DNN-based SRP
model is trained using either Syt or Spg and transferred the first
m layers to the target domain for fine-tuning using 7sr. As the
results shown in Table IV, a combination of DNN and NWT
(DNN+NWT) outperforms those SRP methods which only rely
on stroke data. The results indicate the NWT can effectively
transfer knowledge in the chronic disease data to stroke domain.
We also compare the proposed DNN+NWT with transer learning
basedlines (i.e., weight-sharing and fine-tuning of a pre-trained
full model). The results show that the proposed DNN+NWT
method still outperforms the baselines in both scenarios of
transferring knowledge from hypertension and diabetes data to
the stroke prediction task.

We further investigate how the number m of transferred layers
affect the performance of SRP model. As shown in Fig. 4, the per-
formance of SRP improves when m increases at the beginning
and then declines at certain point (m = 6 in Fig. 4 a-b, m =5

even worse than DNN with no transferred knowledge. This is
because the hidden features of layers in deep neural network tend
to transit from general to specific [23]; the transferred hidden
features become too specific to be adapted using st when m is
too large.

Performance of Hybrid Transfer: In Table V, we evaluate
the performance of the proposed HDTL-SRP model which can
simultaneously exploit data from both chronic disease and ex-
ternal stroke data; the performance of HDTL-SRP is compared
with that of existing SRP models coupled with oversampling or
generative techniques. We can see that the overall performance
of HDTL-SRP is better than a combination of DNN and AIT
(DNN+AIT) (no network weight transfer from chronic disease).
This results again indicate that NWT component of HDTL-
SRP can effectively transfer knowledge from chronic disease
data to target domain for improving stroke prediction. We also
compare the performance of transferring real-world stroke data
(DNN+Real-world) and transferring randomly selected stroke
data from generated data using GAN (DNN+GAN). As we can
see, compared with the method directly using the real-world
stroke data, the performance of those methods using synthetic
data (i.e., DNN+SMOTE, DNN+GAN, DNN+AIT) degrade to
some extent. This could be the price for preserving the data pri-
vacy. Interestingly, the performance of active selection method
(DNN+AIT) is only slightly different from that of DNN+Real-
world. This indicates that the AIT component can select more
informative data points from the source domain. In addition,
we can observe that DNN coupled with AIT outperforms DNN
coupled with SMOTE. This indicates that the AIT component
of HDTL-SRP can better transfer instances from external stroke
data to target stroke domain.

The performance of HDTL-SRP is also evaluated by varying
the number m of transferred layers (See Fig. 5). Similar to
Fig. 4, due to the representation specificity, the performance
of HDTL-SRP drops when m = 9; however, the performance
decline is not as drastic. In addition, HDTL-SRP consistently
outperforms DNN+AIT (no transfer from chronic disease do-
main). This implies that the NWT component can perform better
when the target domain has balanced stroke data.

B. Real-World Experiments

In this experiment, HDTL-SRP framework is tested in a
more realistic scenario. Among three collaborating hospitals
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TABLE V
PERFORMANCE OF HDTL-SRP (BALANCING STROKE DATA IN TARGET DOMAIN)
SRP Method Accuracy Recall F1 Score AUC
SVM+SMOTE 0.731£0.021  0.545 £0.002 0.658 £0.020 0.809 £ 0.021
DT+SMOTE 0.707 £0.021  0.504 £0.025  0.64240.026  0.767 #+ 0.021
RF+SMOTE 0.715+£0.018  0.495+0.030  0.64540.029  0.755 4 0.017
DNN+Real-world(Ssr) | 0.7394+£0.012  0.65240.017  0.725+£0.035 0.817 £ 0.013
DNN+SMOTE 0.737£0.018  0.530£0.044  0.667 +0.033  0.818 £ 0.028
DNN+GAN(Sst) 0.725+£0.027  0.612+0.030  0.69140.031  0.798 4 0.027
DNN+AIT (Sst) 0.745+£0.023  0.630£0.020  0.716 +0.025 0.819 £ 0.025
HDTL-SRP (Sur,Sst) | 0.7474+0.032  0.712+£0.045  0.757 + 0.035  0.825 £ 0.035
HDTL-SRP (Spp,Ssr) | 0.757 £ 0.032  0.715 £ 0.039  0.749+0.034  0.834 + 0.038
TABLE VI
PERFORMANCE OF HDTL-SRP FRAMEWORK IN REAL-WORLD EXPERIMENTS
Test Source Domain Approach Accuracy Recall F1 Score AUC
#1 NA. SVM+SMOTE | 0.715£0.023  0.532£0.038  0.653 £0.026  0.740 & 0.019
#2 N.A DT+SMOTE 0.693 £ 0.021 0.5134£0.047  0.63440.028  0.721 £0.024
#3 N.A. RF+SMOTE 0.675 £ 0.011 0.475+0.026  0.6224+0.024  0.735 £ 0.013
#4 N.A. DNN+SMOTE | 0.7174£0.012  0.5104£0.024  0.667 £0.033  0.783 4 0.014
#5 N.A No Transfer 0.628 £0.017  0.425+£0.027  0.56540.027  0.695 & 0.019
#6 S Weight 0.7114£0.016  0.461£0.033  0.6124+0.029  0.734 & 0.032
#7 SaB Weight 0.704 £ 0.018 0.463 £0.034  0.611+£0.031  0.741 4 0.031
#3 A Instance 0.7074£0.027  0.521£0.051  0.639+0.042  0.753 & 0.024
#9 S Instance 0.736 £0.030  0.570£0.045  0.683+0.041  0.763 & 0.031
#10 ) SO Instance 0.754£0.027  0.630£0.047  0.718 £0.036  0.788 & 0.027
#11 S, S&Y Hybrid 0.745 4+ 0.023 0.586 4+ 0.037  0.69340.031  0.790 4 0.031
#12 S5, sS4 Hybrid 0.751£0.026  0.609+£0.033  0.706 £ 0.031  0.803 & 0.033
#13 S, SE Hybrid 0.774 4+ 0.026 0.6374+0.038  0.73440.032  0.804 4+ 0.033
#14 SoEP, Sa Hybrid 0.774 £ 0.031 0.628 £0.029  0.7314+0.022  0.811 +0.038
#15 SHP, SEN | SEA Hybrid 0.778 £0.023  0.652+£0.047  0.756 £0.032  0.816 & 0.030
#16 SepP, SEY , SE Hybrid 0.782 4 0.025 0.669 +-0.041  0.75740.031  0.82140.031
#17 | S&P, SV, S, S&, sEA Hybrid 0.787 + 0.017 0.67240.024  0.7614+0.031  0.835 4 0.029
#18 | S5, SLY. SHY, S&NY L S&EY Hybrid 0.784 4+ 0.038 0.678 4+ 0.033  0.772 + 0.021 0.844 + 0.026
—=— HDTL-SRP 0.74{ —=— HDTL-SRP 0.26 4 —e— BO
DNN+AIT DNN+AIT —e— Random
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Fig. 5. Performance of DNN-based SRP model (Balancing stroke data
in target domain).

(see Table III), the higher-ranked III-A and II-A hospitals host

source domains of stroke SéITH'A) and SSTI'A), respectively; the
1-B)

lower-ranked II-B hospital hosts target domain of stroke TS(T ,

. . . . 1I-B
source domain of chronic disease: hypertension Sy~ and

diabetes SOE®. Then, Algorithm 1 is deployed in III-A and
II-A hospitals and Algorithm 2 is deployed in the II-B hospital.
Based on HDTL-SRP framework, we test all possible transfer
approaches using different combinations of source domains for
training SRP model in the target domain.

The results are shown in Table VI. As we can see, although the
weight-based tests (#6 and #7) can exploit other useful sources,
their performances are worse than baselines (#1-#4). This is
because the dataset of the former is extremely imbalanced. The
method with no transfer has the poorest performance (see #5)
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TABLE VII
THE TEST PERFORMANCE OF EACH EVALUATION OF BO

Test Structure Accuracy Recall F1 Score AUC

#1 None | 0.741 £0.027 0.621 +£0.021 0.703 £0.015 0.771 £ 0.024
#2 Sur i Tst | 0.771+0.012 0.649 +0.015 0.741 +0.015  0.805 + 0.022
#3 None | 0.745+0.028 0.625+0.022 0.708 £0.026 0.776 £ 0.015
#4 Sur g Sos i> Tst | 0.785+0.030 0.663 +0.022 0.759 +0.024 0.822 + 0.015
#5 None | 0.755+0.014 0.634+0.017 0.721 £0.018 0.787 £ 0.032
#6 Sur i Tst | 0.785+0.031 0.663 +0.012 0.759 +0.017  0.822 £ 0.022
#7 Spp l> Sur L> Tst | 0.805+0.017 0.681 +0.030 0.783 +0.033 0.844 +0.014
#8 Sur l> Sps £> Tst | 0.78240.018 0.660 +0.026  0.755+ 0.013  0.818 + 0.032
#9 Sop i> Tst | 0.787 £0.021 0.6654+0.022 0.761 +0.023 0.824 +0.014
#10 Sur L> Tst | 0.773 £0.022 0.651 +0.011 0.743 +0.032 0.808 + 0.012
#11 None | 0.752+0.014 0.632+£0.026 0.7174+0.026 0.784 4+ 0.024
#12 | Spp g Sur 3> Tsr | 0.788 £0.018 0.665 4+ 0.018 0.762 +0.025 0.825 + 0.031
#13 Sur l> Sop i> Tst | 0.801 £0.031 0.676 =0.026  0.777 +=0.011  0.838 + 0.033
#14 | Sur i Sos i> Tst | 0.805+0.020 0.6774+0.018 0.778 +£0.022  0.839 + 0.030
#15 | Sur l> Sos L> Tsr | 0.797 +£0.021  0.674+0.019 0.774+0.013  0.836 + 0.015
#16 | Spp 3) Sur i> Tst | 0.8044+0.032 0.680 +0.013 0.782 4+ 0.020 0.843 +0.011
#17 | Sps i Sur 3> Tsr | 0.781 £0.026 0.659 +0.029 0.754 +0.031  0.817 + 0.024
#18 Sos i> Tst | 0.785+0.030 0.662+0.012 0.758 +0.027  0.821 £ 0.025
#19 Sur 1> Tst | 0.773 £0.015 0.651 £0.015 0.743+0.032 0.808 +0.014
#20 | Sps g Sur i Tsr | 0.793 +0.028 0.670+0.014 0.768 +0.030  0.831 + 0.019
#21 None | 0.756 +£0.015 0.635+0.020 0.722+0.030 0.788 £+ 0.025
#22 | Sur l> Sos i> Tsr | 0.81240.027 0.684 +0.029 0.796 + 0.030  0.854 + 0.025
#23 Sop 1> Tst | 0.794 +0.014 0.671 4+ 0.02 0.770 £ 0.032  0.832 + 0.022
#24 | Spp l> Sur 3> Tsr | 0.795+0.012 0.6724+0.022 0.771 +0.025 0.833 + 0.028
#25 Spp ﬁ) Sur i> Tst | 0.811 £0.018 0.687 +0.029 0.791 +0.015 0.851 +0.012
#26 | Spp l> Sur i> Tst | 0.799 £0.028 0.676 +0.023 0.776 +0.032  0.838 + 0.027
#27 | Sur i Sos i> Tst | 0.790 +0.024 0.667 +0.019 0.764 +0.016  0.827 + 0.024
#28 | Spp 3) Sur 3> Tst | 0.798 £0.023 0.674 +0.011 0.774 +0.017 0.836 + 0.022
#29 | Sir 2> Spp = Tsr | 0.819 + 0.019  0.695 + 0.024  0.801 + 0.023  0.861 + 0.024
#30 | Sur g Sos i Tst | 0.805+0.019 0.682+0.013 0.784 +0.014  0.845+ 0.012
#31 Sop i> Tst | 0.785+0.028 0.663 +0.020 0.759 +0.028 0.822 + 0.012
#32 Sur i> Tsr | 0.774+0.016 0.652+0.032 0.745+ 0.033  0.809 + 0.020
#33 Sur 3> Tst | 0.763 £0.015 0.641 +0.024 0.731 +0.030 0.796 + 0.031
#34 | Sur i> Sps l> Tsr | 0.8124+0.030 0.688 +0.025 0.793 +0.031  0.853 + 0.022
#35 | Sps E) Sur E> Tst | 0.798 +0.015 0.675+0.025 0.775+0.019  0.837 £ 0.027
#36 | Sur i Spp i> Tst | 0.803+£0.016 0.6804+0.024 0.781 +0.024 0.842 + 0.017
#37 | Sur i> Sos i> Tsr | 0.793 +0.013 0.670 +0.031 0.768 +£0.029  0.831 £ 0.024
#38 Spp 3) Sur i> Tst | 0.7924+0.030 0.669 +0.013 0.767 +0.018  0.829 + 0.016
#39 | Sur 1> Sps i> Tsr | 0.795+0.018 0.6724+0.013 0.771 +0.025 0.833 + 0.033
#40 | Spp i) Sur 3> Tst | 0.806 +0.026  0.682+0.032 0.785+ 0.022  0.846 + 0.017

compared to other transferred methods as expected. It can also
be observed that the instance-based tests (#8-#10) outperform
the weight-based tests (#6-#7). This is because the external
stroke data is more correlated to the target domain than the
chronic disease data. In addition, results of tests #8-#10 indicate
that the performance of SRP can be effectively improved when
more external stroke data is used. The overall performance of
hybrid transfer tests (#11-#16) is better than the single transfer
approaches (#6-#11); among all the hybrid transfer tests, the
performance of #17 and #18 outperform the rest. This implies
that more source domains can achieve better performance. To
sum up, HDTL-SRP framework can be practically deployed

in the real-world scenario for effective performance of SRP
tasks.

C. Network Structure Optimization in Multiple Sources
Using Bayesian Optimization

To get the best transferred structure, we conduct experiment
using Bayesian Optimization. As shown in Fig. 6, compared with
selecting parameter randomly, BO can get lower validation error
in the same evaluation number. To show clearly the procedure
of BO, we depict each evaluation in Fig. 7 and TABLE VII. In
Fig. 7, the number represents the optimized order of a candidate.
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Fig. 7. Each evaluation and sequence of Bayesian Optimization.

We can see that during about the first 15 evaluations, the points
are distributed in each candidate. Later bigger numbers tend
to gather around upper and lower right corner (diamond and
star). This indicates that BO explores the performance in the
whole space in the beginning and then exploits in promis-
ing areas (candidates of multiple sources). In this experiment,

Sur - Sps = Tsr represents the weight of first 7 layers of Syr
is transferred to Spg. After training the model in Spg, the weight
of the first j layers of Spg is transferred to 7sr. TABLE VII
records each evaluation of BO and its performance in testing set.

. 4 .
As we can see, the 29-th evaluation Syt 3, Spe — Tst achieves
the best performance. Therefore, BO is able to find better models
within same computation time.

VI. CONCLUSION

This work has addressed the issues of SRP with small and
imbalanced stroke data. We have proposed a novel Hybrid Deep
Transfer Learning-based Stroke Risk Prediction (HDTL-SRP)
framework which consists of three key components: (1) Genera-
tive Instance Transfer (GIT) for making use of the external stroke
data distribution among multiple hospitals while preserving the
privacy, (2) Network Weight Transfer (NWT) for making use
of data from highly correlated diseases (i.e., hypertension or
diabetes), (3) Active Instance Transfer (AIT) for balancing the
stroke data with the most informative generated instances. It
is found that the proposed HDTL-SRP framework outperforms
the state-of-the-art SRP models in both synthetic and real-world
scenarios.

There are still several open questions for future work: how
to (1) extend NWT to consider simultaneously multiple chronic
diseases, (2) learn the optimized number of layers to be trans-
ferred automatically, (3) implement the system of other diseases
as the health-care data share similar characteristics (i.e., small
and imbalanced), and (4) improve the interpretability, which
is a critical feature in health-care applications [53], of the SRP
model as the interpretable mechanism could reveal the important
knowledge structures to transfer.
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