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A B S T R A C T   

Multi-view clustering has attracted increasing attention in recent years since many real data sets are usually 
gathered from different sources or described by different feature types. Amongst various existing multi-view 
clustering algorithms, those that are based on non-negative matrix factorization (NMF) have exhibited supe-
rior performance. However, NMF decomposing original data directly fails to exploit global relationships between 
data samples and cannot be applied to datasets that are not strictly non-negative. In this paper, a network-based 
sparse and multi-manifold regularized multiple NMF (NSM_MNMF) for multi-view clustering is proposed, where 
multi-view data is transformed into multiple networks, and NMF is used to jointly factorize transformed multiple 
networks for capturing the shared cluster structure embedded in different views. Furthermore, sparse and multi- 
manifold regularization are incorporated into NMF to keep the intrinsic geometrical information of the multi- 
view network manifold space. Networks characterize intra-view similarity, and joint factorization reveals 
inter-view similarity across distinct views, while using NMF to decompose the networks instead of the original 
data means NSM_MNMF can be applied to datasets that are not strictly non-negative and the clustering results are 
interpretable. Extensive experiments are conducted on nine real data sets to assess the method proposed, and the 
results illustrate that NSM_MNMF outperforms other baseline approaches.   

1. Introduction 

Multi-view clustering (Bickel & Scheffer, 2004) refers to dividing a 
set of multi-view data gathered from different sources or described by 
different feature types into clusters such that data samples within the 
same cluster are more similar than those in different clusters. Many real- 
world datasets, such as images and multi-variable time series, are 
composed of multiple views which often contain compatible and sup-
plementary information to each other, jointly uncovering a complete 
picture of the phenomenon or event of interest from different perspec-
tives (Kumar, Rai, & Daumé, 2011). Thus, clustering performance based 
on information extracted from multiple views outperforms that from a 
single view (Zong, Zhang, Zhao, Yu, & Zhao, 2017). In the last few years, 
multi-view clustering has attracted increasing attention from re-
searchers and has become an important research area in data mining 
(Zhang, Nie, Li, & Wei, 2019; Zhang, Liu, Shen, Shen, & Shao, 2019; 
Saini, Bansal, Saha, & Bhattacharyya, 2020). 

However, multi-view clustering faces more challenges than classical 
single-view clustering in which data samples are collected from a single 

source or represented by one kind of feature type because, as multi-view 
data may be heterogeneous, different features describe different infor-
mation from different perspectives (for example, a story can be written 
in different languages and reported by different news sources), and the 
similarity between data samples encapsulates complex relationships 
such as similarity across different views (inter-view similarity) and 
similarity just within a single view (intra-view similarity). How to 
integrate automatically different information extracted from different 
views and disclose the shared structure embedded in different views is 
the key to clustering multi-view data, which significantly affects clus-
tering effectiveness and efficiency. 

To integrate information extracted from different views for clus-
tering multi-view data, a number of algorithms based on NMF have been 
proposed (Singh & Gordon, 2008; Wendel, Sternig, & Godec, 2011; Liu, 
Wang, Gao, & Han, 2013; Zhang, Zong, Liu, & Yu, 2015) and have 
achieved promising performance. These algorithms efficiently discov-
ered the latent clustering structure embedded in multiple views through 
factorizing matrices formed by multi-view data, and they kept factorized 
matrices meaningful. Meanwhile, these algorithms imposed various 
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regularizations, such as multi-manifold regularization (Bickel & 
Scheffer, 2004) and graph dual regularization (Shang, Jiao, & Wang, 
2012), on the standard NMF proposed by Lee and Seung (1999) so as to 
encourage the sparsity of factorization and preserve the inherent 
geometrical structure embedded in data space. It has been shown that 
although these additional regularizations are simple, cluster structures 
discovered by NMF with regularizations have higher qualities than those 
discovered by standard NMF alone, which indicates that regularizations 
have a positive effect on clustering. 

However, existing NMF-based approaches cannot be applied to 
datasets that contain negative feature values, such as the Robot Execu-
tion Failures dataset (Camarinha-Matos et al., 1996), because NMF is 
strictly restricted to matrices that are non-negative. Moreover, in the 
original form of intrinsic features (i.e., data matrix), only the local 
relationship amongst neighboring data samples can be identified, whilst 
in general, the global relationship remains unknown (Ferreira & Zhao, 
2016), so decomposing the original data directly fails to recognize global 
relationships amongst data samples. On the other hand, the network- 
based approaches for clustering are able to characterize the relation-
ship between any pairs or any groups of data samples and can capture 
arbitrary cluster shapes (Ferreira & Zhao, 2016); thus, network-based 
approaches have been reported to achieve a promising performance 
(Zhan et al., 2019), but the clusters obtained lack clear interpretability 
and pose a difficulty to understand how the samples in each cluster are 
distributed in different views. 

The aim of this paper is to detect the shared cluster structure 
embedded in multi-view data. To this end, we propose a network-based 
sparse and multi-manifold regularized multiple NMF (NSM_MNMF), 
where multi-view data is transformed into multiple networks based on 
the similarities amongst data samples, and NMF is used to jointly 

factorize transformed multiple networks for capturing the shared cluster 
structure embedded in different views. Fig. 1 shows the framework of 
NSM_MNMF, where a network corresponds to a single view, and in a 
network, each node denotes a data sample, and each edge represents the 
similarity between two data samples in the view. The transformation 
from data domain to topological domain means NSM_MNMF not only 
gives networks the ability to characterize both local and global re-
lationships amongst data samples but also means it can be applied to 
datasets that are not strictly non-negative. NMF joint factorization of 
multiple networks detects the underlying part-based patterns in each 
view and reveals the potential connections between patterns of different 
views; thus, the clustering results are interpretable. In addition, to 
exploit the intrinsic geometric information embedded in the multi-view 
manifold space and to avoid overfitting on the latent cluster structure as 
well as controlling the sparseness, we impose multiple regularizations 
on NMF, including multi-manifold, smooth, and sparse regularization. 
These constraints make the factorizations drive similar samples of each 
view towards a common consensus and identify clusters across different 
views. 

The main contributions of this paper are summarized as follows: 

(1) An approach based on the NMF of multiple networks for clus-
tering multi-view data, which is referred to as NSM_MNMF, is 
proposed. NSM_MNMF first transforms multi-view data into 
multiple networks and then uses NMF to jointly factorize trans-
formed multiple networks for capturing the shared cluster 
structure embedded in different views. The transformation from 
data space into network space uncovers the intra-view similar-
ities within a view, while the joint factorization reveals inter- 
view similarities across different views. In this way, 

Fig. 1. The framework of NSM_MNMF.  
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NSM_MNMF is applicable to datasets that are not strictly non- 
negative, and the clustering results are interpretable.  

(2) A novel method for factorizing multiple networks is proposed, 
where multiple regularizations are imposed on NSM_MNMF to 
preserve the intrinsic geometric information embedded in the 
networks, and efficient updating rules are derived for computing 
optimal factorized matrices that can minimize decomposition 
loss. We also prove theoretically the correctness and convergence 
of the updating rules, and we design and implement an efficient 
iterative updating algorithm to complete factorizations.  

(3) We conducted extensive experiments on nine real multi-view 
datasets and compared the results of our NSM_MNMF with 
those of sixteen baseline approaches, including those that 
decompose the original data directly and those that decompose 
networks but with different regularizations, to evaluate the per-
formance of the proposed approach. The experimental results 
demonstrate that NSM_MNMF is much more accurate than the 
baseline approaches and is robust. 

The rest of the paper is arranged as follows. Section 2 offers a brief 
overview of related work. The details of NSM_MNMF and the conver-
gence proof of the optimization scheme are presented in Section 3. 
Section 4 provides extensive experiments and results, and in Section 5, 
conclusions are given. 

2. Related work 

2.1. Non-negative matrix factorization 

NMF (Lee & Seung, 1999) is a matrix factorization algorithm that 
decomposes a data matrix with non-negative elements into two low-rank 
matrices such that the product of the two low-rank matrices can 
approximate the original data matrix. 

Let X = [x1, x2,⋯, xn]
T
∈ R

n×m be a data matrix all of whose elements 
are non-negative and of which each row, xi, i = 1, ⋯, n, denotes the 
feature vector of a sample. NMF focuses on finding two low rank non- 
negative matrices, P = [pik] ∈ R

n×d and Q =
[
qjk

]
∈ R

m×d,d≪min{m, n} such that X ≈ PQT,s.t.P⩾0,Q⩾0. This means 

that the product of P and Q can approximate the data matrix X. In 
general, P is understood as a basis matrix, and Q is regarded as a coef-
ficient matrix, and coefficient vectors of Q are interpreted as the low- 
rank representation of samples with respect to the new basis P. To 
quantify the quality of the approximation between X and PQT, the 

square of the Frobenius norm ||X - PQT||
2
F =

∑
i,j

(
xij −

∑d
k=1pikqjk

)2 

(Paatero & Tapper, 1994), or the “divergence” D
(
X
⃒
⃒
⃒
⃒PQT) =

∑
i,j

(

xijlog 

xij

(PQT)ij
− xij +

(
PQT)

ij

)

(Lee & Seung, 2001) are commonly used as cost 

functions, where ||X - PQT||
2
F is symmetric but D

(
X
⃒
⃒
⃒
⃒PQT) is not. 

NMF is able to learn parts-based representation, which encodes much 
of the data and makes them easy to interpret, because it allows only 
additive rather than subtractive combinations in the process of matrix 
factorization. Through decomposition, samples are mapped into a new 
space where samples with similar features are close to each other. 
Therefore, NMF has been widely applied in clustering. 

However, Feng, Xiao, Zhou, and Zhuang (2015) summarized that the 
standard NMF proposed by Lee and Seung (1999) suffers from some 

inherent shortcomings: (1) it is difficult to control the sparsity of P and 
Q; (2) it is unable to explore the information of the geometric structure 
and the class label of data; and (3) it is merely optimal under the con-
dition of Gaussian or Poisson noise, and thus it is unfit to handle other 
noise types. 

To control the sparsity of P and/or Q, Liu, Lu, and Gu (2005) adopted 
L1/L2 regularized NMF (GSNMF) to yield group sparsity such that each 
of the obtained linear manifolds belongs to a particular class. Sun, Shen, 
Gao, Ouyang, and Cheng (2017) integrated the decoder with the 
encoder to form a unified loss function such that the orthogonality 
constraint naturally imposed by the symmetry between the decoder and 
the encoder, together with the non-negative constraint, makes sure that 
the learned representation is sparse. 

To discover the latent geometric structure embedded in the data 
space, Cai, He, Han, and Huang (2011) constructed an affinity graph to 
encode the latent geometric information on the data distribution and 
incorporated the geometry as an additional regularization term into 
NMF (GNMF). The basis of GNMF is the manifold assumption that means 
if data point xi is close to xj in the inherent geometry of the data dis-
tribution, then the representations of xi are also close to those of xj in the 
new basis obtained by NMF. According to the hypothesis that if a data 
point is given birth by several neighboring points on a specific manifold 
in the original space, it can be reconstructed in a similar way in the low 
dimensional subspace, Shen and Si (2010) proposed NMF of multiple 
manifolds (MM_NMF), which used a L1-graph to preserve the geometric 
information of multiple manifolds. Shang, Jiao, and Wang (2012) pre-
sented a graph dual regularized NMF (DNMF), which constructs nearest 
neighbor graphs for the data manifold and feature manifold respec-
tively, such that the geometric information embedded in the data and 
feature spaces can be encoded simultaneously. 

To deal with other noise except for the Gaussian or Poisson noise, 
Kong, Ding, and Huang (2011) extended the standard NMF with L2,1- 
norm (L2,1 NMF) for Laplacian noise. Feng, Xiao, Zhou, and Zhuang 
(2015) extended the standard NMF as a locally weighted sparse graph of 
regularized NMF (LWSG_NMF), which exploits the local structure in-
formation of data with sparse block noise. Peng, Kang, Hu, Cheng, and 
Cheng (2017) integrated NMF with the principal component model and 
designed a robust graph of regularized NMF to incorporate fundamental 
nonlinear structures and capture noise and outliers in the process of 
factorization. 

In addition, Ding et al. (2010) developed the convex and semi-non- 
negative matrix factorizations (Semi-NMF) by relaxing the non- 
negativity limitation on the data matrix and the basis matrix. Tri-
georgis, Bousmalis, Zafeiriou, and Schuller (2017) proposed Deep Semi- 
NMF, a deep architecture for Semi-NMF, to automatically learn lower- 
dimensional hierarchal features for clustering data that is not strictly 
non-negative. 

2.2. Multiple non-negative matrix factorization 

The standard NMF and its variants can be applied to only one matrix 
whose data come from just one view. However, many real-world data-
sets, such as images of the human face and hand-written digital notes, 
are represented by different features or views, which often supply in-
formation complementary to each other for describing the same set of 
samples. In order to integrate various heterogeneous features for 
uncovering the common latent structure shared by multiple views, 
various joint non-negative matrix factorization algorithms have been 
developed. For example, jNMF and SNMNMF, proposed by Zhang et al. 
(2012), decomposed original data matrices sharing the same row 
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dimension into a common basis matrix and multiple coefficient 
matrices; MultiNMF (Liu, Wang, Gao, & Han, 2013) and MMNMF (Zong, 
Zhang, Zhao, Yu, & Zhao, 2017) decomposed original data matrices into 
multiple basis matrices and multiple coefficient matrices. Yu, Wang, 
Wang, and Zeng (2020) took account of the uncertain relationship be-
tween a sample and a cluster, then investigated an active three-way 
clustering method via low-rank matrices to improve the clustering ac-
curacy. Huang, Kang, and Xu (2020) proposed an auto-weighted 
approach that utilized a deep matrix decomposition framework to cap-
ture the hierarchical semantics of the input data in a layer-wise way. 
Zhang, Zhou, Wang, Huang, and He (2021) derived the view-specific 
representation from data samples by exploiting the local structure 
within each view and generated the low-rank tensor representation from 
the view-specific representation to capture the high-order correlation 
across multiple views, such that the intra-view pairwise information and 
the inter-view complementary information can be explored. Meanwhile, 
various constraints have been used to improve clustering performance. 
SNMNMF (Zhang et al., 2012) enforces the must-link constraints on the 
adjacency matrices representing the interaction of samples. MultiNMF 
(Liu, Wang, Gao, & Han, 2013) uses the constraint of consensus coeffi-
cient matrix. Wang, Jiang, Wu, and Zhou (2011) introduced a local 
graph regularization to deal with the inner-view relatedness. Zong et al. 
(2017) adopted multi-manifold regularization to retain locally the 
geometrical structure embedded in the multi-view data space. Further-
more, Zhao, Ding, and Fu (2017) presented a deep framework to carry 
out Semi-NMF, where graph regularizers are introduced to respect the 
intrinsic geometric structure embedded in each view. SNMNMF en-
courages smoothness and sparsity, but jNMF, MultiNMF, MMNMF, and 
Deep Semi-NMF do not. 

2.3. The network-based approaches 

Network-based approaches have been studied for several clustering 
tasks, owing to their ability to uncover the hidden structures of data. 
Ferreira and Zhao (2016) proposed a network-based method to cluster 
univariate time series data by transforming a time series from a time–-
space domain to a topological domain and applying community detec-
tion algorithms for networks to identify groups of densely connected 
nodes. Zhan et al. (2019) integrated the graph structures of different 
views into a global one, such that the correlation of graph structure 
amongst multiple views can be taken into account. Dai et al. (2019) 
proposed a reverse nearest neighbor structure-based algorithm (RNN- 
NSDC) to clustering data that contains clusters of outliers and arbitrary 
shapes.  Kumar et al. (2011) proposed two multi-view spectral clustering 
algorithms (Co-Reg (Pairwise) and Co-Reg (Centroid)) with co- 
regularization schemes. The first co-regularization scheme required 
that the eigenvectors of a view pair should have high pairwise similarity 
(pairwise co-regularization), while the second one forced the view- 
specific eigenvectors to look similar by regularizing them towards a 
common consensus (centroid based co-regularization). Brbić and 
Kopriva (2018) proposed multi-view low-rank sparse subspace clus-
tering (MLRSSC) algorithms that learned a joint subspace representation 
by constructing affinity matrix shared among all views. MLRSSC 
enforced agreement between the affinity matrices of the pairs of views 
and between the affinity matrices towards a common centroid. Lu, Yan, 
and Lin (2016) proposed the convex pairwise sparse spectral clustering 
(PSSC) model to improve sparse spectral clustering (SSC) by exploiting 
multi-view information of data. 

3. A network-based sparse and multi-manifold regularized 
MNMF (NSM_MNMF) 

In this section, we present the detailed introduction of the proposed 

NSM_MNMF approach, including the method for transforming multi- 
view data into multiple networks, the design and optimization of the 
objective function of NSM_MNMF, and the pseudo-code of an algorithm 
to complete factorization. 

3.1. Transforming multi-view data into multiple networks 

Let X(v) ∈ R
n×m(v)

, v = 1,⋯, nv be the data of the v - th view, where n 
is the number of samples, and m(v) is the feature dimension in the v - th 
view. Denote the i - th row of X(v) as X(v)

i: , representing the i - th sample. 
To transforming multi-view data into multiple networks represented 

by a set of affinity matrices A = {A(v)}
nv

v=1, a distance function (such as 
Euclidean distance or Pearson correlation) is firstly used to measure the 
similarities between samples. Then, each sample is represented as a 
node, which is connected to its k most similar nodes (k-NN). The process 
is repeated nv times, each dealing with a view. A(v) = {A(v)

ij }
n

i,j=1 
is the 

affinity matrix of the v - th view, which can be computed based on the 
similarities amongst data samples in the v - th view (which is referred to 
as intra-view similarity with respect to the v - th view). The Algorithm 
Mv2Mn describes the procedure for computing A = {A(v)}

nv

v=1 from 
X = {X(v)}

nv

v=1, where Nk(X
(v)
i: ) is the set of k nearest neighbours of X(v)

i: .  
Algorithm Mv2Mn 

Input: multi-view dataX = {X(v)}
nv

v=1  

Output: affinity matricesA = {A(v)}
nv

v=1  
1. For each view v ∈ {1,⋯,nv}

2.Compute the distance d
(

X(v)
i: ,X(v)

j:

)
of each pair of samples 

(
X(v)

i: ,X(v)
j:

)
, i, j = 1,⋯,n  

3.Find k-NN of each sample X(v)
i: : //k = ⌊log2n⌋ + 1  

Nk

(
X(v)

i:

)
=
{

X(v)
j1 : ,X(v)

j2 : ,⋯,X(v)
jk :

⃒
⃒
⃒ d
(

X(v)
i: ,X(v)

j1 :

)
< d
(

X(v)
i: ,X(v)

j2 :

)
< ⋯ < d

(
X(v)

i: ,X(v)
jk :

)

4.if X(v)
j: ∈ Nk

(
X(v)

i:
)

or X(v)
i: ∈ Nk

(
X(v)

j:

)
, thenA(v)

ij = exp

⎛

⎜
⎝ −

⃦
⃦
⃦X(v)

i: − X(v)
j:

⃦
⃦
⃦

2

2

d
(

X(v)
i: ,X(v)

jk :

)
× d
(

X(v)
j: ,X(v)

jk :

)

⎞

⎟
⎠

5.else A(v)
ij = 0  

6. End for  

3.2. Objective function of NSM_MNMF 

Given the set of affinity matrices A = {A(v)}
nv

v=1 of nv views, the aim 
of NSM_MNMF is to search basis matrix P ∈ R

n×c
+ and coefficient 

matrices {Q(v)}v=1,...,nv
, Q(v) ∈ R

n×c
+ , where c is the number of clusters. P 

reflects the latent cluster structure shared across multiple views, and the 
entry Pij indicates the possibility that i - th sample belongs to the j - th 
cluster; thus, P is also referred to as a membership matrix. Q(v) repre-
sents the aggregation strength of samples within each cluster in the 
v - th view, and the entry Q(v)

ij indicates the coherency of the i - th 
sample with respect to the j - th cluster in the v - th view. 

Let D(v) be a diagonal matrix, and D(v)
ii =

∑
lA

(v)
il , L(v) = D(v) − A(v) be 

the Laplacian matrix of the v - th view. Manifold assumption indicates 
that contiguous data points in each view locate on or close to a local area 
of a manifold that is discretely approximated by L(v). By their nature, 
multi-view datasets locate on or close to a local area of multiple mani-
folds (Zong, Zhang, Zhao, Yu, & Zhao, 2017). In this study, we use a 
consensus manifold (graph Laplacian) L* and a consensus coefficient 
matrix Q* to represent the latent geometrical structure and aggregation 
strength shared by multiple views. Then, NSM_MNMF aims to minimize 
Eq. (1), 
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where ||⋅||2F represents the Frobenius norm, Tr(⋅) denotes the trace of a 
matrix, and (Q(v))

T means the transpose of Q(v). The first item of Eq. (1) 
is the square fitting error between the affinity matrix and the approxi-
mate matrix in each view. The second item of Eq. (1) is designed to 
minimize the difference between the consensus coefficient matrix and 
each coefficient matrix. It indicates that coefficient matrices represent-
ing aggregation strength in the network space of each view should be 
regularized towards a shared consensus matrix Q*. The third item of Eq. 
(1) aims to minimize the difference between the consensus manifold and 

the manifold of each view. It indicates that Laplacian matrices in mul-
tiple views should be regularized towards a shared consensus Laplacian 
matrix L*. The fourth item of Eq. (1) imposes a smoothness constraint in 
the membership matrix P, which is used to avoid overfitting on the 
latent cluster structure. The fifth item of Eq. (1) imposes a sparsity 
constraint on the coefficient matrix Q(v) of each view, which is used to 
control the sparseness of Q(v). The sixth and last item of Eq. (1) makes 
sure that the manifold assumptions can be satisfied in each view and the 
consensus coefficient matrices to preserve the local geometry informa-
tion of the multi-view network spaces. Thus, the inherent local geometry 
properties of data, smoothness, and sparseness have been taken into 
account simultaneously. 

The parameter γ1⩾0 inhibits the growth of P, the parameter γ2⩾0 
controls the sparseness of Q(v), and the parameters λ1, λ2⩾0 are used to 
adjust the weights of the multi-manifold regularizations. γ1, γ2, λ1 and λ2 
are called trade-off parameters. 

3.3. Updating rules 

It is impracticable to obtain a global optimal solution with an algo-
rithm because the objective function of Eq. (1) is convex for just one 
variable individually rather than jointly convex for all variables 
together. Thus, all variables can only be optimized one by one. In this 
study, an iterative update procedure consisting of the following four 
steps is repeated until convergence for minimizing Jof Eq. (1): (1) fixing 
L*, Q*, and P to minimize J over Q(v); (2) fixing L*, Q*, and Q(v) to 
minimize J over P; and (3) fixing P, Q(v), and Q* to minimize J over L*; 
and (4) fixing P, Q(v), and L* to minimize J over Q*. 

3.3.1. Fixing L*, Q*,and P, to minimize J over Q(v)

When L*, Q*, and P are kept unchanged, for each given view v, the 
computation of the coefficient matrix Q(v) is independent of Q(v’),v’ ∕= v; 

thus, just JQ(v) needs to be minimized where JQ(v) =

⃦
⃦
⃦A(v) − P(Q(v))

T
⃦
⃦
⃦

2

F
+

‖Q* − Q(v)‖
2
F + γ2‖Q(v)‖1 + λ1Tr

(
(Q(v))

TL(v)Q(v)
)

with the constraint 

Q(v)⩾0. Let ω be the Lagrange multiplier matrix for the constraint 
Q(v)⩾0, we can write the Lagrange as:   

Based on the Karush-Kuhn-Tucker (KKT) conditions, the partial de-
rivative of HQ(ν) on Q(v) can be derived as follows: 

∂HQ(v)

∂Q(v) = − (A(v))
TP + Q(v)PTP − Q* + Q(v) + γ2I + λ1L(v)Q(v) + ω

= − (A(v))
TP + Q(v)PTP − Q* + Q(v) + γ2I + λ1(D(v) − A(v))Q(v) + ω

ωl,kQ(v)
l,k = 0, ∀1⩽l⩽n,∀1⩽k⩽c

(3)  

where I is an identity matrix. Correspondingly, the following update rule 
for Q(v) element-wise can be derived and shown in Eq. (4). 

(Q(v))lk = (Q(v))lk

(
(A(v))

TP + Q* + λ1A(v)Q(v) )

lk(
Q(v)PTP + Q(v) + γ2I + λ1D(v)Q(v))

lk

(4)  

Theorem 1:. Based on the updating rules of Eq. (4), the objective 
function J of Eq. (1) is non-increasing. 

The proof of Theorem 1 is presented in the Appendix A. 

3.3.2. Fixing L*, Q*, and Q(v), to minimize J over P 
When P is updated, the items that are irrelevant to P may be 

neglected; thus, just JP = 1
2

(
∑nv

v=1

⃦
⃦
⃦
⃦A(v) − P

(
Q(v)

)T
⃦
⃦
⃦
⃦

2

F
+ γ1‖P‖2

F

)

with 

the constraint P⩾0 needs to be minimized. Let ψ be the Lagrange 
multiplier matrix for the constraint P⩾0, then the Lagrange can be 
written as:   

J
(
P,Q(1),⋯,Q(nv)

)
=

1
2
∑nv

v=1

⃦
⃦A(v) − P(Q(v))

T ⃦⃦2
F +

1
2
∑nv

v=1
‖Q* − Q(v)‖

2
F +

1
2
∑nv

v=1
‖L* − L(v)‖

2
F

+
γ1

2
‖P‖2

F +
γ2

2
∑nv

v=1
‖Q(v)‖1 +

λ1

2
∑nv

v=1
Tr
(
(Q(v))

TL(v)Q(v) )+
λ2

2
Tr
(
(Q*)

TL*Q* )

s.t.P⩾0 and Q(v)⩾0,L*⩾0,Q*⩾0, ∀v = 1,⋯, nv

(1)   

HQ(v) = JQ(v) + Tr(ωQ(v))

= Tr
(
A(v)(A(v))

T
− 2A(v)Q(v)PT + P(Q(v))

TQ(v)PT )+ Tr
(
(Q*)

TQ* − 2(Q*)
TQ(v) + (Q(v))

TQ(v))

+γ2‖Q(v)‖1 + λ1Tr
(
(Q(v))

TL(v)Q(v))+ Tr(ωQ(v))

(2)   

L. Zhou et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 174 (2021) 114783

6

Based on the Karush-Kuhn-Tucker (KKT) conditions, the partial de-
rivative of HP on P can be derived as follows: 

∂HP

∂P
=
∑nv

v=1

(
− A(v)Q(v) + P(Q(v))

TQ(v) )+ γ1P + ψ

ψi,kPi,k = 0,∀1⩽i⩽n, ∀1⩽k⩽c

(6) 

Correspondingly, the update rule for P element-wise can be derived 
and shown in Eq. (7). 

Pik = Pik

( ∑nv
v=1A(v)Q(v))

ik( ∑nv
v=1P(Q(v))

TQ(v) + γ1P
)

ik

(7)  

Theorem 2:. Based on the updating rules of Eq. (7), the objective 
function J of Eq. (1) is non-increasing. 

The proof of Theorem 2 is omitted because it is similar to that of 
Theorem 1. 

3.3.3. Fixing P, Q(v) and Q*, to minimize J over L* 

When L* is updated, just JL* = 1
2
∑nv

v=1
⃦
⃦L* − L(v) ⃦⃦2

F +

λ2
2 Tr

(
(Q*)

TL*Q*
)

with the constraint L*⩾0 needs to be minimized. Let υ 

be the Lagrange multiplier matrix for the constraint L*⩾0, then the 
Lagrange can be written as: 

HL* = JL* +Tr(υL*)

=
1
2
∑nv

v=1
Tr((L*)

TL* − 2(L*)
TL(v) +(L(v))

TL(v))+
λ2

2
Tr((Q*)

TL*Q*)+Tr(υL*)

(8) 

According to the Karush-Kuhn-Tucker (KKT) conditions, the partial 
derivative of HL* on L* can be derived as follows:   

Thus, the update rule for L* element-wise, is: 

(L*)ik = (L*)ik

( ∑nv
v=1D(v) )

ik(
nvL* +

∑nv
v=1A(v) + λ2Q*(Q*)

T )

ik

(10)  

Theorem 3:. Based on the updating rules of Eq. (10), the objective 
function J of Eq. (1) is non-increasing. 

The proof of Theorem 3 is omitted because it is also similar to that of 
Theorem 1. 

3.3.4. Fixing P, Q(v) and L*, to minimize J over Q* 

When Q* is computed, just JQ* = 1
2
∑nv

v=1
⃦
⃦Q* − Q(v) ⃦⃦2

F +

λ2
2 Tr

(
(Q*)

TL*Q*
)

with the constraint Q*⩾0 needs to be minimized. Let ξ 

be the Lagrange multiplier matrix for the constraint Q*⩾0, then the 
Lagrange can be written as: 

Table 1 
Statistics of the nine datasets (where “− ” means no information in this view).   

Robot Execution Failures (Time series) 3-Source (Text) WebKB (Text) BBCSport (Text) Digit (Image) 

LP1 LP2 LP3 LP4 LP5 

Number of instances 88 47 47 117 164 169 203 282 2000 
Number of views 6 6 6 6 6 3 3 3 2 
Number of classes 4 5 4 3 5 6 4 5 10 
Dimensions of view 1 15 15 15 15 15 3560 1703 2582 76 
Dimensions of view 2 15 15 15 15 15 3631 230 2544 240 
Dimensions of view 3 15 15 15 15 15 3068 230 2465 – 
Dimensions of view 4 15 15 15 15 15 – – – – 
Dimensions of view 5 15 15 15 15 15 – – – – 
Dimensions of view 6 15 15 15 15 15 – – – –  

HP =
1
2

(
∑nv

v=1

⃦
⃦A(v) − P(Q(v))

T ⃦⃦2
F + γ1‖P‖2

F

)

+ Tr(ψP)

=
1
2

(
∑nv

v=1
Tr(A(v)(A(v))

T
− 2A(v)Q(v)PT + P(Q(v))

TQ(v)PT)+ γ1Tr
(
PTP

)
)

+ Tr(ψP)

(5)   

∂HL*

∂L* = nvL* −
∑nv

v=1
L(v) + λ2Q*(Q*)

T
+ υ = nvL* −

∑nv

v=1

(
D(v) − A(v) )+ λ2Q*(Q*)

T
+ υ

υi,kL*
i,k = 0, ∀1⩽i⩽n,∀1⩽k⩽c

(9)   
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the partial derivative of HQ* on Q* is: 

∂HQ*

∂Q* = nvQ* −
∑nv

v=1
Q(v) + λ2L*Q* + ξ

ξi,kQ*
i,k = 0,∀1⩽i⩽n, ∀1⩽k⩽c

(12)  

and the following update rule can be derived as follows: 

(Q*)ik = (Q*)ik

( ∑nv
v=1Q(v) )

ik

(nvQ* + λ2L*Q*)ik

(13)  

Theorem 4:. Based on the updating rules of Eq. (13), the objective 
function J of Eq. (1) is non-increasing. 

The proof of Theorem 4 is omitted because it is also similar to that of 
Theorem 1. 

It is easy to see that 
(

Q(v)
)

lk
, Pik, (L*)ik and (Q*)ik remain non- 

negative after each update because all operations do not involve any 
negative elements. 

3.4. The algorithm NSM_MNMF 

The procedures for calculating and updating P, Q(v), L*, and Q* are 
performed in Algorithm NSM_MNMF. When the value of J(P,Q(1),⋯,

Q(nv)) in the Eq. (1) is no longer decreasing (this can be guaranteed by 
Theorem 1 ~ Theorem 4), the calculated P reflects the latent cluster 
structure shared by multiple views, and the entry Pij indicates the pos-
sibility that the i - th sample belongs to the j - th cluster; therefore, the 
cluster label of sample i can be assigned by computing argmaxkPik. 

The pseudo-code of the Algorithm NSM_MNMF is shown below:  
Algorithm NSM_MNMF 

Input: multi-view data X = {X(v)}
nv

v=1, trade-off parameters γ1,γ2,λ1,λ2, the number 
of clusters c.  

Output: Membership matrix P, coefficient matrix Q(1),Q(2),⋯,Q(nv), consensus 
Laplacian matrix L*, and consensus connectivity matrix Q*.  

1. Compute the affinity matrices A = Mv2Mn(X ) //A = {A(v)}
nv

v=1  

2. Initialize P,Q(1),Q(2), ...,Q(nv), L*, Q* with random values uniformly selected from 
the interval [0,1]  

3.Repeat 
4. For v = 1 to nv  

5. Fixed L*, Q*, P,Q(1),⋯,Q(v− 1) ,Q(v+1),⋯,Q(nv), update Q(v) with Eq. (4)  
6. End for 
7. Fixed L*, Q*, Q(1),Q(2),⋯,Q(nv), update P with Eq. (7)  
8. Fixed P, Q(1),Q(2),⋯,Q(nv), Q*, update L* with Eq. (10)  
9. Fixed P, Q(1),Q(2),⋯,Q(nv),L*, update Q* with Eq. (13)  
10. Until Eq. (1) convergence. // the value of J is no longer decreasing or maximal 

iterations is exhausted   

here are nv views and n samples; each sample is described by 
m(v)features, so the time complexity of Algorithm Mv2Mn is O(nvn2m(v)). 
Let tloop be the number of iterations for the outer loop (Line 3–10 in 
Algorithm NSM_MNMF), then the execution time for factorizing jointly 

nv affinity matrices is O(tloopnvn2c). Thus, the total execution time of 
Algorithm NSM_MNMF is O(nvn2m(v) + tloopnvn2c). It is linear with the 
number of views and clusters but is squared with respect to the number 
of samples. 

4. Experiments and results 

This section presents the extensive experiments conducted to iden-
tify the latent clustering structure shared by multiple views, which were 
carried out to evaluate: 

W1: whether factorizing networks can get more rational clustering 
results than factorizing original data 
W2: whether regularizations of NSM_MNMF can preserve the 
intrinsic geometrical structure of data 
W3: whether joint factorization can capture both intra-view and 
inter-view similarities amongst nodes 
W4: whether NSM_MNMF can achieve fast converge, and how sen-
sitive NSM_MNMF is to regularization parameters. 

4.1. Datasets 

We used nine datasets in the experiments. The nine datasets consist 
of five time series datasets on Robot Execution Failures (LP1 ~ LP51), 
three text datasets (3-Source,2 WebKb,3 and BBCSport4), and one 
handwritten digit dataset (Digit5). Table 1 sums up the main statistics of 
the nine datasets. 

Robot Execution Failures dataset: The time series datasets, con-
sisting of LP1 ~ LP5, describe five different learning problems respec-
tively. Each dataset contains measurements of three forces (Fx, Fy, Fz) 
and three torques (Tx, Ty, Tz) within 315 ms after the failure detection 
of a robot, and the evolution of each force or each torque is characterized 
by 15 force/torque values. The evolution of each force or torque is 
treated as one view. Each time series is annotated with one of the class 
labels, such as normal, collision, or obstruction. 

3-Sources: a text dataset on news stories reported in three well- 
known online news sources, where each news story was marked with 
one of the six topical labels: business, entertainment, health, politics, 
sport, and technology; 169 new stories reported in all three sources were 
selected for experiments, where each source is treated as one view. 

WebKB: composed of 203 web-pages collected from 4 universities in 
the US. Each web-page is characterized by the content of the page, the 
anchor text of the hyper-link, and the text in its title. Each page is an-
notated with one of the four topical labels: course, faculty, project, and 
student. 

BBCSport: a text dataset of articles of sports news collected from the 
BBC Sport website. The dataset consists of 282 documents; each docu-
ment was divided into three parts and was marked with one of the five 

HQ* =
1
2
∑nv

v=1
‖Q* − Q(v)‖

2
F +

λ2

2
Tr((Q*)

TL*Q*) + Tr(ξQ*)

=
1
2
∑nv

v=1
Tr
(
(Q*)

TQ* − 2(Q*)
TQ(v) + (Q(v))

TQ(v))+
λ2

2
Tr
(
(Q*)

TL*Q*)+ Tr(ξQ*)

(11)   

1 http://archive.ics.uci.edu/ml  
2 http://mlg.ucd.ie/datasets  
3 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/  
4 http://mlg.ucd.ie/datasets/segment.html  
5 http://archive.ics.uci.edu/ml/datasets.html 
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topical labels: athletes, cricket, football, rugby, and tennis. 
Digit: an image dataset from the UCI repository. The dataset consists 

of 2000 images of hand-written digits (0–9). In total, 76 Fourier co-
efficients and the 240 pixel averages in 2 × 3 windows were selected as 
two views for our experiments. 

In this study, the similarities between samples are measured by 
Euclidean distance in the Robot Execution Failures and Digit datasets, 
while cosine similarity is used for the other three datasets (3-Sources, 
WebKB, and BBCSport). 

4.2. Evaluation metrics 

Three metrics, namely, the accuracy (AC), normalized mutual in-
formation (NMI), and RandIndex (RI) (Halkidi et al., 2001), were 

employed to assess and compare the performance of the proposed al-
gorithm in this study. AC was used to compute the clustering accuracy 
that measured the percentage of the correct clustering results; NMI was 
used to measure the mutual dependence information between the 
clustering results and the ground truth. When data samples are parti-
tioned perfectly, the NMI score is 1, and when the clustering labels and 
the ground truth labels are independent, the NMI score is 0; RI is a 
measure of the similarity between the clustering results and the ground 
truth, reflecting the purity within each cluster. The scores of the three 
metrics can be computed according to the difference between the ob-
tained cluster labels and those offered by the datasets. For these three 
metrics (AC, NMI, and RI), a value does close to 1 means a good clus-
tering result. 

Table 2 
The parameters of NSM_MNMF.   

Robot Execution Failures (k = 7) 3-Source (k = 7) WebKB (k = 7) BBCSport (k = 7) Digit (k = 100) 

LP1 LP2 LP3 LP4 LP5 

NSM_MNMF λ1 1 1e− 3 0.01 0.1 1 100 1e+3 10 1 
λ2 100 1 1 10 0.01 1 100 0.1 1e− 3 
γ1 100 0.1 1e− 3 1e+3 1e− 3 1e− 3 1 100 1e− 3 
γ2 1e− 3 100 1e+3 1e− 3 0.01 100 100 0.01 1e− 3  

Table 3 
RI of algorithms on nine datasets.  

RI Robot Execution Failures 3-Source WebKB BBCSport Digit 

LP1 LP2 LP3 LP4 LP5 

MultiNMF  –  –  –  –  –  0.75  0.43  0.63  0.95 
MultiNMF (Graph)  0.76  0.69  0.63  0.59  0.67  0.80  0.57  0.86  0.96 
GMultiNMF  –  –  –  –  –  0.75  0.73  0.60  0.97 
GMultiNMF (Graph)  0.76  0.69  0.63  0.62  0.69  0.79  0.68  0.80  0.98 
SNMNMF  –  –  –  –  –  0.71  0.39  0.64  0.92 
SNMNMF (Graph)  0.77  0.72  0.63  0.66  0.70  0.87  0.70  0.89  0.97 
MNMF  0.88  0.76  0.69  0.75  0.68  0.80  0.61  0.84  0.97 
CMNMF  0.85  0.80  0.77  0.76  0.75  0.80  0.61  0.84  0.97 
GMNMF  0.86  0.80  0.81  0.85  0.80  0.83  0.61  0.86  0.97 
Co-Reg (Pairwise)  0.79  0.83  0.78  0.73  0.77  0.83  0.76  0.78  0.95 
Co-Reg (Centroid)  0.75  0.84  0.67  0.71  0.76  0.86  0.67  0.79  0.94 
MLRSSC (Pairwise)  0.86  0.81  0.76  0.68  0.70  0.84  0.71  0.91  0.94 
MLRSSC (Centroid)  0.87  0.79  0.80  0.67  0.76  0.83  0.72  0.88  0.94 
KMLRSSC (Pairwise)  0.80  0.83  0.77  0.49  0.75  0.81  0.69  0.72  0.93 
KMLRSSC (Centroid)  0.85  0.79  0.75  0.68  0.73  0.80  0.69  0.71  0.94 
CSMSC  0.72  0.83  0.78  0.77  0.78  0.76  0.68  0.87  0.93 
NSM_MNMF  0.88  0.86  0.83  0.88  0.77  0.88  0.82  0.95  0.98  

Table 4 
AC of algorithms on nine datasets.  

AC Robot Execution Failures 3-Source WebKB BBCSport Digit 

LP1 LP2 LP3 LP4 LP5 

MultiNMF  –  –  –  –  –  0.54  0.54  0.46  0.88 
MultiNMF (Graph)  0.63  0.43  0.38  0.57  0.40  0.57  0.61  0.78  0.89 
GMultiNMF  –  –  –  –  –  0.49  0.75  0.52  0.93 
GMultiNMF (Graph)  0.65  0.43  0.47  0.57  0.45  0.60  0.73  0.73  0.95 
SNMNMF  –  –  –  –  –  0.65  0.53  0.58  0.72 
SNMNMF (Graph)  0.69  0.57  0.62  0.74  0.46  0.78  0.74  0.87  0.92 
MNMF  0.88  0.63  0.45  0.75  0.40  0.56  0.47  0.78  0.93 
CMNMF  0.84  0.60  0.62  0.77  0.48  0.57  0.46  0.78  0.92 
GMNMF  0.85  0.60  0.70  0.89  0.60  0.65  0.52  0.80  0.93 
Co-Reg (Pairwise)  0.71  0.63  0.63  0.78  0.56  0.66  0.68  0.64  0.86 
Co-Reg (Centroid)  0.57  0.70  0.44  0.75  0.55  0.72  0.61  0.59  0.85 
MLRSSC (Pairwise)  0.85  0.62  0.61  0.73  0.52  0.65  0.62  0.83  0.79 
MLRSSC (Centroid)  0.86  0.58  0.66  0.71  0.53  0.66  0.63  0.79  0.81 
KMLRSSC (Pairwise)  0.72  0.60  0.64  0.61  0.50  0.61  0.57  0.53  0.77 
KMLRSSC (Centroid)  0.84  0.59  0.60  0.74  0.52  0.60  0.57  0.51  0.78 
CSMSC  0.56  0.65  0.63  0.83  0.60  0.72  0.71  0.77  0.74 
NSM_MNMF  0.88  0.68  0.70  0.92  0.55  0.78  0.79  0.94  0.94  
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4.3. Baseline algorithms 

In this study, sixteen algorithms were used to compare with our 
NSM_MNMF:  

(1) MultiNMF (Liu, Wang, Gao, & Han, 2013): joint non-negative 
matrix factorization, decomposes the original data 
X = {X(v)}

nv

v=1 directly into multiple basis matrices and multi-
ple coefficient matrices  

(2) MultiNMF (Graph): a variant of MultiNMF, decomposes affinity 
matrices A = {A(v)}

nv

v=1  
(3) GMultiNMF (Wang, Kong, Fu, Li, & Zhang, 2015): considers the 

inner-view relatedness of data, and decomposes the original data 
X = {X(v)}

nv

v=1 directly 
(4) GMultiNMF (Graph): a variant of GMultiNMF, decomposes af-

finity matrices A = {A(v)}
nv

v=1 
(5) SNMNMF (Zhang et al., 2012): the sparse regularized NMF, en-

forces the must-link constraints on the affinity matrices repre-
senting interaction of samples, and decomposes the original data 
X = {X(v)}

nv

v=1 into a common basis matrix and multiple coef-
ficient matrices  

(6) SNMNMF (Graph): a variant of SNMNMF, decomposes affinity 
matrices A = {A(v)}

nv

v=1  
(7) MNMF (Du et al., 2018): decomposes affinity matrices 

A = {A(v)}
nv

v=1, without any regularization being imposed on 
NMF;  

(8) CMNMF: a variant of MNMF with L2 norm constraint, whose 

objective function is defined as: JCMNMF =
1
2 

(
∑nv

v=1

⃦
⃦
⃦
⃦A(v) − P

(
Q(v)

)T
⃦
⃦
⃦
⃦

2

F
+ λ1‖P‖2

F

+ λ2
∑nv

v=1
‖Q(v)‖

2
F

)

s.t.P,Q(v)⩾0   

(9) GMNMF: a variant of CMNMF with local graph regularization 

L(v), whose objective function is defined as: JGMNMF =
1
2 

(
∑nv

v=1

⃦
⃦
⃦
⃦A(v) − P

(
Q(v)

)T
⃦
⃦
⃦
⃦

2

F
+ λ1‖P‖2

F + λ2
∑nv

v=1
‖Q(v)‖

2
F

)

+
γ
2

Tr

(

P
∑nv

v=1
L(v)PT

)

s.t.P,Q(v)⩾0   

(10) Co-Reg (Pairwise) (Kumar et al., 2011): co-regularized multi- 
view spectral clustering with pairwise co-regularization ensures 
that the eigenvectors U(v) and U(w) of a view pair (v,w) have high 
pairwise similarity  

(11) Co-Reg (Centroid) (Kumar et al., 2011): co-regularized multi- 
view spectral clustering with centroid co-regularization ensures 
the view-specific eigenvectors look similar by regularizing them 
towards a common consensus  

(12) MLRSSC (Pairwise) (Brbić & Kopriva, 2018): multi-view low-rank 
sparse subspace clustering based on pairwise similarities, en-
courages similarity between pairs of representation matrices;  

(13) MLRSSC (Centroid) (Brbić & Kopriva, 2018): centroid-based 
MLRSSC enforces representations across different views to-
wards a common centroid 

(14) KMLRSSC (Pairwise) (Brbić & Kopriva, 2018): the kernel exten-
sion of MLRSSC (Pairwise) solves the problem in a Reproducing 
Kernel Hilbert Space (RKHS) 

(15) KMLRSSC (Centroid) (Brbić & Kopriva, 2018): the kernel exten-
sion of MLRSSC (Centroid) solves the problem in a RKHS  

(16) CSMSC (Lu, Yan, & Lin, 2016): convex sparse multi-view spectral 
clustering with pairwise regularization 

The variants of MultiNMF, GMultiNMF, and SNMNMF, i.e., Mul-
tiNMF (Graph), GMultiNMF (Graph), and SNMNMF (Graph), were 
designed to evaluate W1. By comparing the results of decomposition 
from the original data and the networks, we can evaluate whether fac-
torizing networks can get more rational clustering results than facto-
rizing the original data. 

CMNMF, GMNMF, Co-reg, MLRSSC, and CSMSC were used to eval-
uate W2. Comparing the results of decomposition under different con-
straints, it is possible to evaluate whether regularizations of NSM_MNMF 
can preserve more intrinsic geometrical structures. 

The comparison between the results of MultiNMF and GMultiNMF 
with those of SNMNMF, MNMF, and NSM_MNMF is helpful to evaluate 

Table 5 
NMI of algorithms on nine datasets.  

NMI Robot Execution Failures 3-Source WebKB BBCSport Digit 

LP1 LP2 LP3 LP4 LP5 

MultiNMF  –  –  –  –  –  0.45 0.10  0.17  0.80 
MultiNMF (Graph)  0.37  0.31  0.23  0.33  0.31  0.59 0.18 0.70  0.82 
GMultiNMF  –  –  –  –  –  0.44 0.35  0.29  0.86 
GMultiNMF (Graph)  0.37  0.29  0.29  0.41  0.35  0.50 0.42  0.61  0.89 
SNMNMF  –  –  –  –  –  0.45 0  0.24  0.66 
SNMNMF (Graph)  0.41  0.37  0.32  0.39  0.27  0.62 0.43  0.70  0.84 
MNMF  0.69  0.53  0.34  0.60  0.36  0.59 0.19  0.68  0.85 
CMNMF  0.70  0.54  0.48  0.67  0.37  0.59 0.18  0.68  0.86 
GMNMF  0.71  0.57  0.53  0.67  0.45  0.62 0.18  0.68  0.86 
Co-Reg(Pairwise)  0.61  0.51  0.44  0.56  0.37  0.56 0.46  0.45  0.79 
Co-Reg (Centroid)  0.45  0.61  0.31  0.56  0.41  0.66 0.30  0.47  0.77 
MLRSSC (Pairwise)  0.72  0.51  0.42  0.47  0.38  0.57 0.38  0.76  0.75 
MLRSSC (Centroid)  0.73  0.45  0.49  0.45  0.46  0.58 0.40  0.68  0.77 
KMLRSSC (Pairwise)  0.68  0.51  0.41  0.09  0.45  0.52 0.33  0.33  0.75 
KMLRSSC (Centroid)  0.71  0.50  0.41  0.48  0.40  0.51 0.34  0.33  0.76 
CSMSC  0.38  0.51  0.44  0.55  0.41  0.63 0.28  0.67  0.73 
NSM_MNMF  0.78  0.55  0.54  0.72  0.42  0.71 0.54  0.83  0.87  
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W3 because MultiNMF and GMultiNMF produce different basis 
matrices, while SNMNMF, MNMF, and NSM_MNMF jointly factorize 
matrices such that they produce only a shared basis matrix. 

The W4 was evaluated by comparing the results obtained by carrying 
out NSM_MNMF under different regularization parameters (Section 4.6 
and 4.7). 

For baselines, MultiNMF,6 MultiGNMF,7 SNMNMF,8 Co-reg,9 

MLRSSC,10 and CSMSC,11 we executed the source codes released by the 
authors and tuned their parameters to obtain clusters with the highest 
metric values. 

4.4. Clustering performance 

The parameters of NSM_MNMF are presented in Table 2, while the 
parameters of the baseline algorithms are presented in Appendix B. 
MultiNMF (graph), GMultiNMF (graph), and SNMNMF (graph) use the 
same parameters as MultiNMF, GMultiNMF, and SNMNMF. Since the 
clusters discovered by NMF-based algorithms were related to the initial 
values chosen randomly, each algorithm was run 20 times for each 
dataset, and the average accuracy is reported. The clustering results are 
presented in Tables 3–5, where bold numbers represent the best results. 
Note that no results exist for MultiNMF, GMultiNMF, and SNMNMF on 
LP1 ~ LP5 datasets because these datasets are not strictly non-negative, 
meaning that the three algorithms cannot be used. 

From Tables 3–5, we made the following observations, which answer 
the questions W1 ~ W3: 

Fig. 2. The visualization of clustering results obtained by different NMF.  

6 https://github.com/SunMuxin/Multi-view/tree/master/multiviewNMF  
7 https://github.com/DUT-DIPLab/Graph-Multi-NMF-Feature-Clustering  
8 http://page.amss.ac.cn/shihua.zhang/software.html  
9 https://github.com/dugzzuli/CoregularizedSC  

10 https://github.com/Geovhbn/MLRSSC  
11 https://github.com/dugzzuli/CSMSC 
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• Amongst all methods, NSM_MNMF achieves the highest measures 
with respect to the three metrics (RI, AC, NMI) in most datasets. This 
shows that NSM_MNMF can capture the global intra-view relation-
ships within a view and inter-view relationships across multiple 

views; meanwhile, NSM_MNMF also preserves the intrinsic geomet-
rical information embedded in the network space.  

• Amongst MultiNMF, GMultiNMF, and SNMNMF and their variants, 
methods factorizing the networks outperform those factorizing the 

Fig. 3. Performance of the NSM_MNMF w.r.t. parameters λ2 (λ1 = γ1 = γ2 = 0.001).  

Fig. 4. Convergence curve of CMNMF, GMNMF and NSM_MNMF algorithms.  
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original data only. This shows that in clustering multi-view data, 
utilizing global relationships amongst nodes characterized by net-
works can improve the clustering performance.  

• Amongst NSM_MNMF, MultiNMF, GMultiNMF, MNMF, Cog-Reg, 
MLRSSC, and CSMSC and their variants, methods with graph regu-
larization in general are superior to those without graph regulari-
zation or those that use the L2 norm. This can be explained because 
graph regularization preserves the intrinsic geometrical information 
embedded in the dataset or network space.  

• Amongst all the methods, those producing a shared basis matrix 
surpass methods producing different basis matrices, which suggests 
that joint factorization can capture both intra-view and inter-view 
similarities amongst nodes. 

4.5. Visualization of clustering results 

We used t-SNE (Maaten & Hinton, 2008) to visualize clustering re-
sults, i.e., each sample is mapped as a point in a two-dimensional space, 
and each cluster is denoted as a color. A good clustering method is ex-
pected to produce clusters such that samples within the same cluster (i. 
e., points with the same color) are close to each other, while samples 
belonging to different clusters (points with different colors) are sepa-
rated far apart in the two-dimensional space. As a representative case, 
Fig. 2 presents the visualization of clusters obtained by different ap-
proaches in the Digit dataset. From Fig. 2, we can observe that 
NSM_MNMF can obtain clearer visualization results compared with the 
other baseline methods, as the points with the same color are close to 
each other, and the points with different colors are far from each other. 
GmultiNMF, GMNMF, Co-Reg (Pairwise), and MLRSSC (Pairwise) do not 
perform as well as NSM_MNMF because although the points with 
different colors are far from each other, the points with the same color 
are not condensed enough. Meanwhile, in the results of MultiNMF, 
MNMF, CSMSC, and CMNMF, all points with different colors are mixed 
together such that it is difficult to distinguish different clusters. This 
further verifies the effectiveness of the proposed NSM_MNMF method. 

4.6. Parameter study 

There are four regularization parameters in the NSM_MNMF algo-
rithm: λ1,λ2, γ1 and γ2, where λ1 and λ2 are utilized to adjust the weights 
of the multi-manifold regularization, γ1 is applied to suppress the growth 
of P, and γ2 controls the sparseness of Q(v). To investigate the influence 
of these parameters on clustering results, the Algorithm NSM_MNMF is 
executed under different parameters. Each parameter ranges from 1e to 
3 to 1e+3 with step 0.001, and we chose a value from this interval for a 
parameter with the fixed values of the other three parameters. 

Fig. 3 presents the values of the RI, AC, and NMI with respect to 
different λ2 on nine datasets. The trends of the RI, AC, and NMI with 
respect to different λ1, γ1, and γ2, are similar to the one with respect to 
λ2, so we do not present them. 

As we can see from Fig. 3, NSM_MNMF performs in a relatively stable 
manner on all datasets when 0⩽λ2⩽1. Based on the experiments with 
respect to λ1, γ1, and γ2, we suggest that the appropriate ranges for the 
four parameters are 0⩽λ1⩽0.01, 0⩽λ2⩽1, 0⩽γ1⩽0.01, and 0⩽γ2⩽0.01 
respectively, which can ensure that the NSM_MNMF performance is 
relatively stable on all datasets. 

4.7. Algorithm convergence 

In this sub-section, we examine the convergences of CMNMF, 
GMNMF, and NSM_MNMF. The convergence curves of three algorithms 
are shown in Fig. 4, where the abscissa denotes the iteration number, 
and the ordinate represents the log-value of the objective function. It can 
be seen that in all datasets, the objective values of all algorithms 
decrease quickly within 10 iterations and converge within 50 iterations. 
Meanwhile, after convergence, the log-value of the objective function of 
NSM_MNMF is less than those of CMNMF and GMNMF except on 
WebKB. This indicates that the objective function and updating rules 
designed for NSM_MNMF serve their purpose. 

Fig. 5. The comparison of consumed time of algorithms on all datasets.  
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4.8. Consumed time 

Fig. 5 presents the execution times of ten algorithms on nine datasets, 
where the numbers 1–10 under the horizontal axis denote MultiNMF 
(graph), GMultiNMF (graph), SNMNMF, MNMF, CMNMF, GMNMF, 
NSM_MNMF, Cog-Reg, MLRSSC, and CSMSC respectively. The number 
of iterations was set as 500 for all algorithms, while the number of in-
ternal iterations of MultiNMF and GMultiNMF was set as 1. 

It can be seen from Fig. 5 that MultiNMF runs fastest on all datasets; 
the execution times of MNMF, CMNMF, GMNMF, and NSM_MNMF have 
no significant difference, and in general, they are more time consuming 
than other algorithms. This indicates that NMFs with a shared basis 
matrix take more time than NMFs with different basis matrices. One 
exception is that GMultiNMF (graph) spends the most time on the Digit 
dataset. Cog-Reg, MLRSSC, and CSMSC are faster than MNMF, CMNMF, 
GMNMF, and NSM_MNMF. 

5. Conclusion 

The challenge for clustering multi-view data is how to capture the 
intra-view similarities amongst data samples within a view and the 
inter-view similarities across distinct views, and how to make the clus-
tering results interpretable. In this study, we developed an approach of 
network-based sparse and multi-manifold regularized multiple NMF 
(NSM_MNMF) for clustering multi-view data. This approach first trans-
forms multi-view data into multiple networks and then jointly factorizes 
these networks. We also proposed a novel method to factorize multiple 
networks, where multiple regularizations are imposed on NMF and 
efficient updating rules are derived for computing optimal factorized 
matrices. Furthermore, we conducted extensive experiments on nine 
real multi-view datasets and compared them with sixteen baseline ap-
proaches using three evaluation metrics; NSM_MNMF achieves the 
highest measures in terms of RI, AC, and NMI in most datasets, which 
demonstrates that NSM_MNMF can capture the global intra-view 

relationships and inter-view relationships. Meanwhile, NSM_MNMF also 
preserves the intrinsic geometrical information embedded in the 
network space. The combination of NMF and network representation 
enables NSM_MNMF not only to be equipped with the ability to char-
acterize both local and global relationships amongst samples but also 
inherits the high interpretability of NMF, meanwhile enabling 
NSM_MNMF to be applied to datasets that are not strictly non-negative 
and, therefore, extending the applicability of NMF. 

As for future work direction, we will continue to study how to select 
regularization parameters automatically, such as by bi-level optimiza-
tion or attention networks. In addition, we consider to use the method of 
deep architecture to extend NSM_MNMF to automatically learn lower- 
dimensional hierarchal and non-linear features embedded in the 
multi-view data for further improving the performance of clustering. 
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Appendix A. (the proof of the Theorem 1): 

The objective function J of NSM_MNMF in Eq. (1) is certainly bounded from below by zero. 
We will follow the similar procedure described in Lee and Seung (2001) to prove Theorem 1. It begins with the definition of the auxiliary function. 

Definition. G(q(v), q′ (v)) is an auxiliary function for F(q(v)) if the conditions G(q(v), q′(v))⩾F(q(v)),G(q(v), q(v)) = F(q(v)) are satisfied. 

Lemma 1:. If G(q(v), q′ (v)) is an auxiliary function of F(q(v)), then F(q(v)) is non-increasing under the update: q(v)(t+1) = arg
q(v)

minG(q(v),q(v)(t)). 

Proof: .. Considering any element q(v)
ab in Q(v), we use F(v)

ab to denote the part of JQ(v) which is relevant only to q(v)
ab . It is easy to check that: 

F’(v)
ab =

(∂JQ(v)

∂Q(v)

)

ab
=
(
− (A(v))

TP + Q(v)PTP − Q* + Q(v) + γ2I + λ1L(v)Q(v) )

ab  

F’’(v)
ab =

(
PTP + I

)

bb + λ1(L(v))aa  

Lemma 2:. Function 

G
(
q(v)

ab , q
(v)(t)
ab

)
= F(v)

ab
(
q(v)(t)

ab
)
+ F’(v)

ab
(
q(v)(t)

ab
)(

q(v)
ab − q(v)(t)

ab
)
+

(Q(v)PTP+Q(v)+λ1D(v)Q(v))ab
+γ2

2q(v)(t)ab

(
q(v)

ab − q(v)(t)
ab

)2is an auxiliary function for F(v)
ab , the part of JQ(v)

which is relevant only to q(v)
ab . 

Proof.. It is obvious thatG
(
q(v)

ab , q
(v)
ab
)
= F(v)

ab
(
q(v)

ab
)
, so we need only show that G

(
q(v)

ab , q
(v)(t)
ab

)
⩾F(v)

ab
(
q(v)

ab
)
. To do this, we compare G

(
q(v)

ab , q
(v)(t)
ab

)
with the Taylor 

series expansion of F(v)
ab (q

(v)): 

F(v)
ab

(
q(v)

ab

)
= F(v)

ab

(
q(v)(t)

ab

)
+F

′ (v)
ab

(
q(v)(t)

ab

)(
q(v)

ab − q(v)(t)
ab

)
+

(
PTP + I

)

bb + λ1(L(v))aa

2
(
q(v)

ab − q(v)(t)
ab

)2 

To find that G
(
q(v)

ab , q
(v)(t)
ab

)
⩾F(v)

ab

(
q(v)

ab

)
is equivalent to 
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(
Q(v)PTP + Q(v) + λ1D(v)Q(v))

ab + γ2

q(v)(t)
ab

⩾
(
PTP + I

)

bb + λ1(L(v))aa 

Because 
(
Q(v)PTP

)

ab =
∑k

l=1q(v)(t)
al

(
PTP

)

lb⩾q(v)(t)
ab

(
PTP

)

bb, 
(Q(v))ab

q(v)(t)ab
= (I)bb, 

λ1(D(v)Q(v))ab = λ1

∑M

l=1
D(v)

al q(v)(t)
lb ⩾λ1D(v)

aa q(v)(t)
ab ⩾λ1(D(v) − A(v))aaq(v)(t)

ab = λ1L(v)
aa q(v)(t)

ab 

Thus, (
Q(v)PTP+Q(v)+λ1D(v)Q(v))ab

q(v)(t)ab
⩾
(
PTP + I

)

bb + λ1(L(v))aa. 

Also because (Q(v)PTP+Q(v)+λ1D(v)Q(v))ab
+γ2

q(v)(t)
ab

⩾(Q(v)PTP+Q(v)+λ1D(v)Q(v))ab

q(v)(t)ab
, thus 

(
Q(v)PTP + Q(v) + λ1D(v)Q(v))

ab + γ2

q(v)(t)
ab

⩾
(
PTP + I

)

bb + λ1(L(v))aa 

It means G
(
q(v)

ab , q
(v)(t)
ab

)
⩾Fj

ab

(
q(v)

ab

)
. 

Proof of theorem 1. q(v)(t+1)
ab can be obtained by minimizing G

(
q(v)

ab , q
(v)(t)
ab

)
. To do this, we compute the partial derivative of the auxiliary function G

(
q(v)

ab ,

q(v)(t)
ab

)
to q(v)

ab and let it be equal to 0: 

∂G
(
q(v)

ab , q(v)(t)
ab

)

∂q(v)
ab

= F’(v)
ab

(
q(v)(t)

ab

)
+

(
Q(v)PTP + Q(v) + λ1D(v)Q(v))

ab + γ2

q(v)(t)
ab

(
q(v)

ab − q(v)(t)
ab

)

=
(
− (A(v))

TP + Q(v)PTP − Q* + Q(v) + γ2I + λ1L(v)Q(v))

ab −
(
Q(v)PTP + Q(v) + λ1D(v)Q(v))

ab − γ2

+

(
Q(v)PTP + Q(v) + λ1D(v)Q(v))

ab + γ2

q(v)(t)
ab

q(v)
ab = 0  

(
− (A(v))

TP − Q* − λ1A(v)Q(v))

ab +

(
Q(v)PTP + Q(v) + λ1D(v)Q(v))

ab + γ2

q(v)(t)
ab

q(v)
ab = 0 

Thus q(v)
ab = q(v)(t)

ab
((A(v) )TP+Q*+λ1A(v)Q(v))ab

(Q(v)PTP+Q(v)+λ1D(v)Q(v))ab
+γ2

. 

Since G
(
q(v)

ab , q
(v)(t)
ab

)
is an auxiliary function of F(v)

ab , F(v)
ab is non-increasing under this update rule. 

Appendix B. (the parameters of the baseline algorithms):   

Robot Execution Failures (k = 7) 3-Source(k = 7) WebKB(k = 7) BBCSport(k = 7) Digit(k = 100) 

LP1 LP2 LP3 LP4 LP5 

MultiNMF λv 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
GMultiNMF λf 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01           

μ 10 10 10 10 10 10 10 10 10 
SNMNMF λ1 1e-3 100 1e+3 0.1 100 10 1e-3 10 1e-3 

λ2 0.1 10 10 10 100 0.1 0.1 0.1 1e-3 
γ1 1e-5 1e-4 1e-4 0.01 0.1 0.01 1e-5 0.01 1e-3 
γ2 1e-3 1e-4 1e-4 0.1 0.01 1e-5 0.1 1e-5 1e-3 

CMNMF λ1 0.1 100 10 1e-3 10 1e-3 1e-3 1e-3 1e-3 
λ2 100 1 10 1e-3 10 1e-3 1e-3 1e-3 1e-3 

GMNMF λ 1e-3 10 10 10 100 1e-3 1e-3 1e-3 0.1 
γ 1e-3 1e-3 10 10 1e-3 1e-3 1e-3 1e-3 0.1 

Co-Reg (Pairwise) λ 0.1 1e-5 1e-4 0.01 0.1 1e-5 0.01 0.01 0.1 
Co-Reg (Centroid) λ 0.1 1e-3 1e-3 0.1 0.1 0.1 1e-3 1e-5 1e-3 
MLRSSC(Pairwise) μ 100 100 100 100 100 100 1e+4 100 100 

β1 0.3 0.3 0.3 0.3 0.3 0.3 0.9 0.3 0.5 
β2 0.7 0.7 0.7 0.7 0.7 0.7 0.1 0.7 0.5 
λ 0.4 0.4 0.4 0.4 0.4 0.3 0.7 0.4 0.7 

MLRSSC(Centroid) μ 100 100 100 100 100 100 1e+4 100 10 
β1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.1 0.9 
β2 0.9 0.9 0.9 0.9 0.9 0.9 0.5 0.9 0.1 
λ 0.7 0.7 0.7 0.7 0.7 0.7 0.3 0.7 0.7 

KMLRSSC(Pairwise) μ 1e+3 1e+3 1e+3 1e+3 1e+3 1e+3 1e+4 1e+3 1e+4 
β1 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.7 
β2 0.7 0.7 0.7 0.7 0.7 0.7 0.5 0.7 0.3 
λ 0.4 0.4 0.4 0.4 0.4 0.3 0.9 0.4 0.7 

KMLRSSC(Centroid) μ 1e+4 1e+4 1e+4 1e+4 1e+4 1e+4 1e+4 1e+4 1e+4 
β1 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.7 
β2 0.7 0.7 0.7 0.7 0.7 0.7 0.5 0.7 0.3 
λ 0.7 0.7 0.7 0.7 0.7 0.7 0.3 0.7 0.5 

(continued on next page) 
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(continued )  

Robot Execution Failures (k = 7) 3-Source(k = 7) WebKB(k = 7) BBCSport(k = 7) Digit(k = 100) 

LP1 LP2 LP3 LP4 LP5 

CSMSC α 0.01 1e-4 0.1 0.1 1e-5 0.01 1e-4 0.01 1e-3 
β 1e-5 1e-5 1e-4 1e-4 1e-5 1e-3 1e-5 1e-5 1e-4 

NSM_MNMF λ1 1 1e-3 0.01 0.1 1 100 1e+3 10 1 
λ2 100 1 1 10 0.01 1 100 0.1 1e-3 
γ1 100 0.1 1e-3 1e+3 1e-3 1e-3 1 100 1e-3 
γ2 1e-3 100 1e+3 1e-3 0.01 100 100 0.01 1e-3  

References 

Bickel, S., & Scheffer, T. 2004. Multi-view clustering., The Fourth IEEE International 
Conference on Data Mining (ICDM 2004): 19-26. Brighton, UK. 
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