TR/04/92 May 1992

An Interpolatory Subdivision Algorithm for

Surfaces over Arbitrary Triangulations

Ruibin Qu



21600877



An Interpolatory Subdivision Algorithm for

Surfaces over Arbitrary Triangulations

Ruibin Qu
Department of Mathematices and Statistics,
Brunel University, Uxbridge, Middx., UB8 3PH, Britain

Abstract

In this paper, an interpolatory subdivision algorithm for surfaces over ar-
bitrary triangulations is introduced and its convergence properties over nonuni-
form triangulations studied. The so called Butterfly Scheme (interpolatory) is
a special case of this algorithm. In our analysis of the algorithm over uniform
triangulations, a matrix approach is employed and the idea, of "Cross Differ-
ence of Directional Divided Difference" analysis is presented. This method is a
generalization of the technique used by Dyn, Gregory and Levin etc. to analyse
univariate subdivision algorithms. While for nonuniform data, an extraordi-
nary point analysis is introduced and the local subdivision matrix analysis is
presented. It is proved that the algorithm produces smooth surfaces over ar-
bitrary triangular networks provided the shape parameters are kept within an

appropriate range.

81. Introduction

Although subdivision algorithms have been being studied intensively for many years,
they have been used for scientists and technicians since long ago. For example, the
so called Carpenter's Technique is a very simple algorithm of this type. While the
de Rahm's "Trisection Algorithm" (1947), the de Casteljau's Algorithm (1959) for the
Bernstein-Bézier curves and the Chaikin's Algorithm (1974) for curves are subdivision
algorithms which contribute much to the rapid development and investigation of this type
of algorithms. Recently, a lot of work has been done in this area to study subdivision
algorithms systematically. This includes the works by Dyn, Gregory, Levin, Dahmen,
Micchelli, Cavaretta, Daubechies and Largarias ... etc. And Interpolatory Subdivision
algorithms play a very important role in these applications. Our work in this area is to
investigate explicit conditions under which a subdivision algorithm could produce smooth
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surfaces with certain prescribed properties such as interpolatory and monotonicity. That
is, we try to generalize the Dyn-Gregory-Levin's uniform analysis (cf. [11]) for univariate
subdivision algorithms to the surface case.

In this paper, we report briefly some of our work on this subject. We firstly introduce
a general interpolatory subdivision algorithm for surfaces over arbitrary triangulations
and then present a convergence analysis of a 10-point Interpolatory Scheme for surfaces
over arbitrary triangulations. The Butterfly Scheme, which is a 8-point interpolatory
scheme is a special case of the algorithm. In the analysis, we use a matrix approach
and hence the idea of "Cross Difference of Directional Divided Difference" analysis is
introduced. This method is a generalization of the "Diadic Parametrization" technique
used by Dyn, Gregory and Levin (cf. [11,13,14]). which was firstly used to analyse
uniform subdivision algorithms for curves. It is proved that the algorithm produces
smooth surfaces provided the shape parameters are kept within an appropriate range
and an explicit condition for this is also provided. From this condition, it can be seen
clearly that the Butterfly Scheme cannot guarantee generating a smooth surface over an
arbitrary triangulation which can also be shown by graphic examples. More details about
the analysis can be found in [18]. Other analyses of uniform subdivision algorithms can
also be found in [2,5,6,16,17,etc.].

This algorithm has wide practical applications. For example, it can be used to solve
interpolatory-type surface fitting problem, or reversely, it can be employed to simplify
problems like data reduction. It is also hoped that subdivision algorithms could be
applied successfully in some optimization problems such as optimized data-transmission

and wavelets processing etc.

82. Mathematical Description of the Scheme and its Basic Properties

The construction of the scheme is, originally, motivated by the ideas described in
papers by Dubec (cf. [10]), Dyn, Gregory and Levin (cf. [11,12]). The scheme is formu-
lated in order to solve such problems as high accuracy surface fitting and fast surface
representation. Thus, the aim is to generalize the "4-point interpolatory subdivision
scheme" described in [10,11] for surfaces. The scheme is so constructed that it preserves
the advantages of the "4-point scheme". The main property of the scheme, in addition
to the properties of general uniform subdivision schemes, is its generation of smooth
interpolatory surfaces and the reproductivity of cubic parametric polynomial surfaces
provided that the shape parameters are chosen within an appropriate range.

A mathematical description of a uniform subdivision scheme over uniform triangula-
tions, which is also called Binary Subdivision Algorithm, is as follows. Suppose that
the initial "control points" of a uniform triangular net work are denoted by P,a e Z’?, then,
the refined control points P, aeZ’,k>0, are obtained from PY,aeZ’ recursively
by the following formula ("Mask"):
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P =3 a,,,PaeZ’ (2.1)
Bez?

An equivalent form of this expression is

k+1 k 2
Pihy =, 0, =2, Pig0eZ 22)

BeZ2

where, vy =: (y1, y2) and y; =0 or 1, i = 1,2. Thus, the scheme is interpolatory if and
only if

a, =0, VaeZ’ (2.3)

Equation (2.2) shows clearly that the scheme is a 4-step subdivision scheme which can

be described by the following

k+1 _ k
Py = Z 8 0 Prim jen
m,n
k+1 _ k
P2i+l,2j - me,nPi+m,j+n
m,n
k+l k (2.4)
P2i,2j+l = Zcm,nPi+m,j+n
m,n
k+1 _ k
P2i+1,2j+1 - z dln,nPi+m,j+n .
m,n

The 10-point scheme is given by the following choice of the coefficients in (2.4):

Aoy = 1, b—l,() = bz,o = W3’b0,—1 = bl,l =W,,
b b ! 2 b b b b
0.0 = Do _E_ W) =W, =W;3,0__y =0, 1 =0y, =0, =W,
Coo1 =Cpp =W3,C 15 =C ) =W,,
1 (2,5)
Coo =Coy1 = E - 2w, —w, —wy,C, , =C,, =C 4 =C, =W,

d, = dz,z = w3,d1,0 = dO,l =W,,
doy=d,, = E_ W, —w, —ws,d, , =d_ ,=d,=d, =w,

where, w; ,i= 1,2,3, are three (tension) parameters. This special choice of the coefficients
comes from the 3-D symmetric structure of the scheme. In fact, there is a simpler way to
describe the scheme which uses only a single formula (only one ‘Mask’) to characterize
the scheme. The formula is given below (cf. Figure 1). This is due to the 3-direction-
symmetry property of the scheme. Since the scheme is interpolatory, only the inserted
values are to be evaluated. The formula for an inserted point, P,, is given by

1
PO:E(Pe+Pf)+w1(Pa+Pc+Ph+P].—2Pe—2Pf) (2.6)

+w,(P, +P, =P, -P;)+w,(P, +P, —P, —P)
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where, o is the midpoint of the edge joining the vertices e and f, see Figure 1. From this
construction, it is obvious that the scheme can be used (possibly, with some modification

at those so called Extraordinary Points) to produce surfaces over arbitrary triangulations
(cf. [18]).

In the uniform subdivision process, formula (2.6) is used to evaluate all “midpoint”
values to produce a refined uniform triangular control net in which the triangulation
of the refined control nets is formed by the “standard 3-D meshing rule” which will be
explained later in our convergence analysis. Repeated applications of this process will
therefore result in finer and finer control nets. Moreover, further studies show that if
the shape parameters {w;} are chosen appropriately, the scheme will produce smooth

interpolatory surfaces. This will be discussed in the next section.

It can be shown that the scheme has the following properties.

—_

The scheme is interpolatory.

2. The parameters {w;} work as tension controls along the three mesh directions respect-

tively.
3. The scheme reproduces linear surfaces for all {w;}.
4. The scheme reproduces bivariate cubic parametric surfaces if {w;} satisfy

1 1
wl:t—%,wZ:—Zt—£:2wl,w3:E—t (2.7)

where, t is any real number.
5. The scheme reduces to the Butterfly Scheme [cf. 11] if the parameters satisfy
w, = w,w, =-2w,w, =0. (2.8)
6. The scheme has certain data-dependent shape preserving properties.

7. The scheme produces smooth surfaces if the shape control parameters are chosen prop-
erly. This will be discussed later.

83. Some Covergence Results of the Scheme

To study the convergence property of the subdivision algorithm over arbitrary tri-
angulations and the property of the surfaces produced by it, a definition of conver-
gence of subdivision algorithms and a parametrization of the surfaces as well should
be be introduced. By contrast to the univariate case, uniform convergence and the
“dyadic parametrization” are natural choices for uniform triangulations. The "diadic
parametrization" means that for uniform triangulations, the control points Pf, a €

k@, A €52

Z*k > 0, are parametrized at the “diadic points”: in the parameter

plane, e.g., the u-v plane. So, if we define
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W' vy =2"%a VYaez?, 3.1

then, the control net, which is defined by P;‘, aeZ? k>0, can be regarded as the
unique piecewise linear interpolant P*(u,v) from the uniform 3-D meshed u-v plane,

which is produced by mesh directions (0,1),(1, 0) and (1,1), to R® satisfying
P*w  v")=P!, aeZ’ (3.2)

Hence, the convergence of the scheme can be defined as the convergence of the continuous

surface sequence {P“(u,v)}. So we say the scheme is convergent if for any initial dada,
there is a continuous surface P(u,v) such that

lim P*(u,v) =P(u,v), Vu,v e R. (3.3)

If we assume here that the initial data are just real numbers and that they are
function values on the uniform integer grid (i,j), i,j € Z in the u-v plane. Then at

lever k, the control point values PY,aeZ’, will be the function values at a refined grid
27%(,j),(i,j) € Z’since the diadic parametrization is assumed. By meshing the control
nets Pi]fj in the same way as the uniform grid 2k (i,j) in the u-v plane, the 10-point

scheme can then be written in the following compact form:

k+1 _ pk
pzi,2]' _Pi,j
P = (L -4w, - 2w, - 2w,)(P~ + P~ )
2i+1,2] AN 1 2 3N i+1,j (3.4)
_ k k k k ’
=+w,(P i + Py + Py + Py i)
_ k k k k
=+w,(P,; + Py ) +ws(PL; + P,y )

with P;%. . and P}, being duals of the second equation. Now the forward dif-
ference operators {Ai}, i=1, 2,3, along the mesh directions can be defined:

A, = f)ilil,j - szj
A, =B~ P, (3.5)
A, = R«lil,jﬂ - Plk,

Using the above notion, the following convergence results are obtained (cf.[18,19j):
Theorem 3.1. The scheme produces C° surfaces if the parameters {w;} satisfy

L 2w w4 2w 4 2wy + o —wy| <l
2 1 (3.6)
4|w1| +2|w2| +2 |w3| <E

A simple symmetric solution to (3.6) is given by
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5w, | + 3w, | + 3fw;| < 1. (3.7)

2

Remark 3.2. For the cubic precision scheme, (3.6) becomes
— <t <—. (3.9)

Remark 3.3. Other conditions for C° convergence can also be obtained (cf. [18]).

In order to prove that the scheme produces C' surfaces, the Cross Differences of
the Directional Divided Differences, CDD, of the control nets are introduced and stud-
ied. This process is similar to the Divided Difference Analysis of univariate subdivision
schemes described in [2,3,10,11,etc.].

The CDD at lever k along mesh direction m and n, m,n = 1,2, 3, m # n, is defined
as follows:

ck =2"A AP Vi,j eZ. (3.9)

i,j,mn

Since the scheme is symmetric, we only need to study one type of CDD. Hence, without
loss of generality, we assume that in (3.9), m = 1, n = 2 and the subscripts m and n will
be omitted in our future discussion.

From the subdivision process (3.4) and definition (3.9), one can show that if
wy=-2 wi, (3.10)

then all these CDD terms will satisfy the following refinement equations:

Ch; =2w,C,; — (4w, —2w,)C,,; +2w,Cf
+(1+ 8w, )C + 2w CIJ .
+2w,C{,; .y +2w,Cly
Chilia; = 2w, —2w,)C,,, —8w,C},
— (2w, - 2w;)C!,., + (2w, - 2w;)CL, ..,
- (2w, 2w )CHIJ (3.10)
Chliain = Qw, +2w;)CE, + Qw, — 2w;)CL,
- (2w, - 2w;)C{, ;,; —8w,Cf
+ (2w, - 2w3)CH1J+1
Corlai =2w,C,; —2w,C,, , +2w,C{
+(1+8w,)C}; +2w;C},,,
— (4w, - 2w;)Cy, .y + 2w, CL

By applying this recursive relation repeatedly, the following result is obtained:
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Theorem 3.4. There exists a constant B(wi, ws), which is a piecewise quadratic func-
tion of wy and ws, such that

Ci? < B(w,,w,)C, vk >0, (3.12)
where
Cy= max |CS,.. (3.13)
1,],m,n,m#n '

and B(w,, ws) < 1 provided that the shape parameters w, and w, satisfy

w, + 2w, =0
w,
w, + 7w, <
(3.14)
8(w, +0.07) - 3(w, —0.01) >0
(w, +010) + (w, +0.07) >0
10w, — 7w, <0

Remark 3.5. Condition (3.14) means that the parameters {w;} should lie in a polygonal
region Q in the plane & :w, =-2 w,. The region Q € R’ is depicted in Figure 2.

Theorem 3.6.The 10-point scheme produces C' surfaces if the shape parameters satisfy
(3.14). m

Corollary 3.7. The cubic precision scheme produces smooth surfaces if the tension
parameter t satisfy

Do . (3.15)

100 100
Remark 3.8. Condition (3.14) is a simple one. Other C! convergence conditions may
also be obtained (cf. [18]).

84. The Scheme over Arbitrary Triangulations

In this section, we study the 10-point scheme over nonuniform triangulations. Our
main result is that the limit surface is smooth even at the extraordinary points provided
that the scheme is modified properly at these points. In particular, these results are valid
for the butterfly scheme. The analyses of the scheme here are different from the previous
analyses of the scheme over uniform data. In fact, the analysis to be presented here is
an extraordinary point analysis. The Block-Circulant Matrix theory is used here. This

technique is quite suitable for the nonuniform analysis.
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4.1. Generalization of the Scheme to Arbitrary Triangulations

Since nonuniform triangular control polyhedrons often arise in practice, it is signif-
icant to investigate the behaviour of the scheme over nonuniform triangular networks.
From its construction, we know that the scheme can be easily ajusted to refine triangular
networks which leads to the generation of surfaces on arbitrary triangular networks. De-
pending on the local topology (more explicitly, the valances of the vertices), the 10-point

scheme can be easily generalized to arbitrary triangular networks in the following way.

Before describing the modified scheme, we introduce some conventions. In the fol-
lowing formulae, the index i is a cyclic integer in the range: i = 0, I, 2, ..., n-1, n. Here,
n is the valance of the vertex. For simplicity, it is also assumed in scheme that the cubic

precision parameters are used. That is, the parameters {w;} satisfy (2.7).

For simplicity, we assume also, without loss of generality, that the initial data is
locally uniform except one extraordinary point V. (In fact, this situation can be achieved
locally after the first subdivision.) Let V,P*,Qf,Rf denote the corresponding refined
control points near the vertex at lever k, then, the local scheme can be described as

follows.
Case I, n = 2.

In this case, there are several alternative choices that can be used. One of them is
described by the following (Figure 3). Fori =0, 1, 2, ..., n-1, n, we have the following
subdivision process:

Pik+1 —w,V + (w, + ZU4)Pik + (w, + w3)QIk + sz,-k + wlpiljrl

+w, R}, + w Pt + wZRzk—l,
0¥ = p* 4.1)
R =w,V + w,Pf +wQf + w,R +w,Pf, +w,Qf,

+w,P*, + 2w,P*, + w,R},

where ¢ is the local tension control, and {w;} are defined by

9
w, =t —-—,
16
w,=-2t+—-=-2w, (4.2)
1
w3 :E_t,
w, =t

Casell,n =23

In this case, the scheme is just the utterfly scheme That is, using the butterfly
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formula everywhere. Since in this case the scheme also produces surfaces (to be proved
later), it is not necessary to construct more complicated schemes at this vertex although
some other schemes may also be used. In fact, a cubic precision scheme can be constructed
but the the coefficients of the formulae are quite complicated. The scheme is like this.

Applying the butterfly scheme near the extraordinary point we obtain the following
subdivision formulae (Figure 4)

PH = %V + % P' + wR! - 2wP}, + wPh}, - 2wP/,

i+2
+ wR!, + wP,,
o =P, (4.3)

k

1 1
Rl.k+1 =-2wV + Epzk + lek - Zlek + EP:'I + ij+1

+ WP, + WP,

where w is the local tension control.
4.2. The. Subdivision Matrix at the Extraordinary Point

Writing (4.1) and (4.3) in a matrix form, we obtain:

! 0
Pik+1 E w Rk W2 O 0 Bf—l
of=|1 0 0 o'l +(0 0 0 o'
k+1 k k
Ri l O W2 RI l w 0 Ri+1
2 2
w 0 0 P, w, 0 w P,
+10 0 0. |Q+]0 o0 o] .|0Q, (4.3)
w O 0 Rik+2 w 0 O Rzk—Z
. 1
w 0 F 2
+10 0 Qik_1 + 10 V.
0 0 Rl.k_1 W,

CO =

R— =R -

0 w w, 0 0 w 0
0 01, C:=]0 0, C,:=10 01|, (4.4)
0 w 0

1
w w, 2

w
c,:=|0 0 0| C,:=|0
w 0 0 0

and the control point vector:

Fk = (vilj()k’Q(l)c’R(l;,Plk’Q{(’RfJPZk’Q;’Ré ""'7Pnk’er’(’R:)t (4'4)
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Here, F¥ is a vector of length 3(n+1)+1. Thus, the subdivision process (4.1) and (4.3)
at V can be written in a more compact form:

F“'"=AF, k=0,12,... (4.6)

where, A is called the local subdivision matrix. More explicitly the matrix is given in

the form
A Lo 4.7)
=l 4l )

Here, a is a vector of length 3(n+l) and A' is a Block Circulant Matrix defined by

A'=Bcirc(Ay 4, 4y, A, | 4))

AO Al AZ n—1 An
An A() AI n—2 n—1

= An—l An AO e An—3 An—2 (4 . 8)
A4 A, A A A

and {A;} are some 3 by 3 matrices defined by {C;} and {w;}. In fact, for n=3, we have

(4.9)

and for n=4, we have

::C,
2T (4.10)

Now, we have constructed the subdivision matrix upon which the properties of the

limit surfaces depend. Next we will study the convergent properties of the modified

schemes at the extraordinary point.
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4.3. The Spectrum Analysis of the Subdivision Matrix

In order to study the C° and C' properties of the scheme over arbitrary triangu-
lations, it is sufficient to prove that the limit surface of the schemes C° or C' is at
the extraordinary point since the limit surface is C' everywhere else provided that the
tension parameter satisfies (3.14). Since the eigen-properties of the subdivision matrix
play a very important role in the convergence analysis (cf. [1,12,20]), we first study the
eigen-properties of the subdivision matrix A. It should be stressed that eigenvalues and
their corresponding eigenvectors of A can be evaluated analytically since the matrix is
a Block-Circulant Matrix composed of 3 by 3 sub-matrices, therefore these eigenvalues
are roots of cubic polynomials.

Let the eigenvalues and their corresponding (generalized) eigenvectors of A be de-
noted by {Xl.,vl.},where | A; | 2|XH1| for all i_ > 1. Then, we can obtain the following

result (cf. [20]).

Theorem 4.1. The subdivision matrix A has the following properties:

rM=1 v(L1L..1)
(4.11)
A<l i=23,..3n+33n+33n+4
Provided that
0.3125<t<0.6000, for n=2
4.12
—i<w<0,f0r n>3. (4.12)
12
Furthermore, We have
0<A, =4, <A, |A|<4, i=4,
. (4.13)
dim span {v, v;}=2
if
0.5275<t<0.5500, for n=2,
(4.14)

1
——<w<0, or n=3.
12 f

Remark 4.2. Tlae eigenvalue A, is a double root of A and has two linearly independent

eigenvectors. This can be shown explicitly by using the Block Circulant Matrix theory
(cf. [20]) or the Fourier Transform Technique (cf. [1]).

4.4. The Convergence Analysis
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In this section, we will prove that the limit surface has tangent plane continuity at
the extraordinary point. Thus, the surface is smooth everywhere. Firstly, we have the
following C” and C' convergence results that can be proved in a similar way as in in the

uniform case. For details see reference [20].

Theorem 4.3. The limit surface is C” if (4.12) holds. m
Theorem 4.4. The limit surface is C' if (4.14) holds. m

Remark 4.5(cf. [20]). The limit surface of the interpolatory scheme has a unique
tangent plane at the extraordinary point, that is the surface is C' if the subdivision
matrix has following properties:

@ A =1 v(Ll..,1)";
(@) 0<A, =A; <], dimspan {v,, v;}=2; (4.15)
(iii) |\,| <X, i=45,..3n+4.

It can also be shown that a necessary condition for the limit surface to have a unique
tangent plane at the extraordinary point is:

@). A=1 v, =(L1,..,1"
(@i). There exists N, =3, such that
O<Ah,=A;=A,=.. =?»NO <1, dim span{vz, v3,---,vN0}= 2;
(iii). <Xy, i=Ny+l...3n+4
(4.16)

Remark 4.6. The Extraordinary Point analysis is still valid for other subdivision algo-
rithms.

§5. Conclusions

In this paper, an interpolatory subdivision algorithm for surfaces over arbitrary
triangulations is introduced and its convergence properties over nonuniform triangula-
tions studied and the local subdivision matrix analysis is presented. It is proved that
the algorithm produces smooth surfaces over arbitrary triangular networks if the shape
parameters are chosen properly.

18,19
7 of the scheme

The analyses of the scheme here are different from the analyses
over uniform data. In fact, the analysis presented here is a pointwise analysis. The Block-
Circulant Matrix theory is used here. This technique is quite suitable for the nonuniform

analysis.



Subdivision Algorithm for Surfaces over Arbitrary Triangulations 13

§6. Graphic Examples

Here, we present a graphic example of the subdivision algorithm with the shape

control parameter w = —1/12 to show the smoothing process of the scheme. The initial

data comes from the standard unit cube and the initial triangulation of the unit cube is

produced by adding six diagonal lines on each face of the cube (the direction of each line

is either (1,1,0), (0,1,1), or (0,1,1) therefore there is a symmetry in the triangulation as

shown in Figure 5.) Hence, there are 8 vertices, 12 triangles and 18 edges in the initial

triangulation. All the vertices are irregular vertices: four of them are 4-poked vertices

and the other four are 5-poked vertices. The graphics are plotted on the Postscript Laser

Printer at the Computer Centre of Brunei University, U.K.

10.
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Figure 1. Geometric construction of the scheme.

15

Figure 2. The C' convergence region Q of the scheme.



Figure 3. The scheme at a 3-poked vertex.

Figure 4. The scheme at a n-poked vertex. (n > 3).
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Figure 8. The piecewise liner surface after the third subdivision (k = 3).
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5).

Figure 10. The piecewise liner surface after the fifth subdivision (k






