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Abstract. With the increasing demands of digital computing, Data Centers (DCs) 

have become a leading scheme for global energy issues. Major efforts that can be 

observed for DC energy efficacy solutions are focusing on relatively problematic 

infrastructure designs. Nevertheless, we emphasised the managerial strategies of 

using the existing facilities to achieve energy efficiency through active interven-

tion. It is believed that there exists a trade-off between the cooling devices and 

IT devices. Accordingly, the Vector Autoregressive Model- Reinforcement 

Learning(VAR-RL) approach will be proposed as a combination of traditional 

multivariate time series modeling technique and the artificial intelligence tech-

nique which allows us to predict and adjust the prediction of an error would help 

to explore the complex dynamic interrelationships between the two types of de-

vices. Moreover, an optimization decision support system will also be conducted 

subsequently to optimize Power Usage Effectiveness (PUE) by controlling the 

combination of Air Conditioners (ACs). The proposed VAR-RL approach would 

not only increase the forecasting accuracy but also would adapt to the environ-

ment changes dynamically, this would give a better foundation for the DC energy 

efficiency optimization. The data we adopted is the real-time data from a DC 

located in Turkey. Consequently, the novel of this study would save the DC en-

ergy consumption tremendously.  

Keywords: DC, Energy consumption, optimisation. 

1 Introduction 

DCs are energy-intensive industries and they are taking 1-1.5% of global electricity 

usage every year [1]. There are two main units of DCs that are supplied the energy, IT, 
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and cooling units. Widely cited studies and conservatively evaluation demonstrated the 

fact that there are around 40% of energy has been taken by the cooling system in a 

typical air-cooling DC [2]. IT equipment, along with its respective power supply, cre-

ates heat when being in use and will raise the surrounding ambient temperature. In con-

sequence, the equipment is likely to fail if the temperature becomes too high. Previous 

to 2004, IT companies were too fixated upon the performance of their equipment and 

adjusted the equipment’s environment with only reliability in mind, with little 

weighting to energy costs. Nowadays the temperature range has been wider to 18 −27℃ (ASHRAE 2016)[3]. However, there are over 90% of DCs still keeping a constant 

temperature which means that the DCs are over-cooled and energy inefficiency [4].  

Since most of the energy consumption lies in cooling, efforts have been made on 

reducing the cooling energy consumption in the DCs. It has been found that configura-

tion design predominantly affects on energy consumption. As long as there is a design 

revolution, the application still requires a long time. As a result, traditional air-cooling 

will still domain the DC cooling system in the next few decades [5]. Therefore, we are 

seeking DC cooling efficiency solutions from a different aspect. As we mentioned ear-

lier, cooling devices are the biggest energy consumers in the DC however there is no 

guideline on how to make the optimal usage of them. The common operations in DCs 

are still following traditional rules by turning off some certain number of ACs to save 

energy in winter. But to our knowledge, there is no sophisticated analysis so far to guide 

the optimal use of ACs combination, which gives us ideas to fill up this gap.  

According to the relationship of energy consumption units both IT and Air condi-

tioning devices, a lower temperature will increase the energy supplied, inversely, will 

reduce the energy consumption of IT devices due to an increasing computing effi-

ciency. Therefore, smart operation management on DCs to find out the optimal solution 

on temperature control to minimize the energy consumption without affecting the per-

formance of IT devices and meeting the service-level agreement has been investigated.  

Therefore, this has become our motivation for this study. The question can be modeled 

as a Linear Programming (LP) problem. However, applying the LP method to the prob-

lem requires understanding the complex interactions among many variables within the 

DC. To solve and simplify this issue, we adopt VAR model to identify such complex 

interactions. It has been taken to account for common features of the industry big data  

Changes rapidly in the structures. Changes in server workload, outside environment, 

device locations or human intervention all can be reasons that lead to structural breaks 

of the series. Numerous empirical studies put attention on post-event detection, which 

wildly used for economic or business analysis, while rarely of them are looking at this 

issue in a real-time. Instead, we expect the model would able to autonomous evaluate 

itself and correct the mistake once it notices it. In this study, we adopt RL approach for 

dynamic real-time adjustment of VAR model. It would take the responsibility to detect 

the structural break and trigger the parameter re-estimated system. With the proposed 

VAR-RL approach, the subsequent optimization problem can be solved with the con-

sideration of the changes in the environment in real-time. 

Our contributions to the literature including the following: (1) Give the DC energy-

efficient solution without changing DC configurations. (2) A dynamic simulation sys-
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tem based on VAR-RL approach has been made, this will provide an efficient and ac-

curate forecast for the complex environment with the adjustment of structural changes 

in the data. (3) Real-time optimization will be conducted based on the simulation result 

and future optimization also can be made by the forecasted data set. (4) This study will 

also arouse the environmental awareness of energy saving. 

2 Literatures review 

We have searched the empirical studies on DC effective cooling strategy of simulation-

based optimization. Among the ten results, eight of them adopted the Computational 

Fluid Dynamic (CFD) while and the rest of them used Data-driven Models (DDM) 

model and other configuration design simulation tools for airflow simulation.  

Most of them are from a pure configuration design and layout aspect, ie. [6] on sen-

sors placement strategy and [8] on air aisle and racks layouts [7]. There are only [8, 9, 

10] among the results that looking at the optimal temperature solutions, however [9] it 

doesn’t take the trade-off relationships between cooling and IT into considerations and 

[8] is an equation-based simulation that looking at system network control. Also [10] 

studied the combination of water and airflow in Indirect Adiabatic Cooling (IAC) DC. 

Numerous studies that use the First principle (FP) in terms of DC objectives largely 

rely on pre-defined algorithms. However, in practical, there are a variety of unknown 

relationships that cannot be acquired from physical principles. Data-Driven Models 

(DDMs) avoid this problem by adopting experimental data to train a system. There is 

study compares temperature prediction performance of four different types of DDMs 

including Artificial Neural Networks (ANN), Support Vector Regression (SVR), 

Gaussian Process Regression (GPR) as well as Proper Orthogonal Decomposition 

(POD) in a DC, the training data is given by CFD simulation and the result demon-

strated that most of them can give a relatively accurate prediction however only ANN 

could handle multiple output points in one model. Because of the unknown features of 

the system and multi-dimensional problem need to be solved in one model, so that it 

requires a large volume of data to feed in the model and moreover, all these types of 

models are facing similar difficulties which are computational expensive practical cases 

and relatively time-consuming [11]. 

We conservatively conclude that our VAR-RL approach would be the first study that 

further extended Linear Regression (LR) based RL to analyze complex industrial envi-

ronment, then apply the simulation result to real-time optimization in industrial practi-

cal case. Due to the limited resources, we reviewed similar studies that used the similar 

method for different problems. RL approach has been used for an auto-select different 

combination of data streams to feed to the parameters-fixed LRs and practical applica-

tion on typhoon rainfall prediction shows a better performance than traditional LRs 

[12]. More comprehensively, a Multi-Agent reinforcement learning (P-MARL) on pre-

dicting the future environment which allows the agents to adapt to the changes off-line 

by the combination of ANN and Autoregressive Integrated Moving Average (ARIMA) 

models, this joint approach also increased the prediction accuracy of the agents [13]. 

Moreover, efforts have been made on adapting RL to the side of the sensor to reduce 
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the energy transmission cost in the wireless sensor networks for signal prediction [14]. 

These approaches provided evidences that with RL adjustment, the prediction accuracy 

would be largely increased and gives the model more flexibility by self-learning during 

prediction without any training data which would require large storage and costs for 

computing. 

Our VAR-RL approach would take advantage of these empirical studies, moreover, 

we will adapt this into DC industrial practice: (1) Our model parameters will be dynam-

ically changed according to the feedback from the learning process that would allow 

our model to adapt to the environment changes. (2) We will propose a time-series linear 

regression model that will not only consider the previous one step (MACOV) but the 

whole period which has an effect on the present. (3) RL tool will be plugin to determine 

whether the model should be reused or rebuilt. (4) We will also avoid using the tech-

nique which has a black-box property such as Artificial Neuron Network (ANN) be-

cause it hides the interrelationships into the black-box procedure which limited the in-

terpretative of the model. (4) Also, as we expect to perform a light, fast, and efficient 

model to adapt to the rapid industrial practice. we will avoid the use of techniques that 

requires huge size of training data and local storage. (5) We will not change any DC 

configurations including the sensors, only managerial strategies will be applied to the 

DC energy-saving practice. 

3 Methodology.  

3.1 VAR model- A fundamental simulator 

Based on the field study in TUKSAT DC target IT room, we identified the main factors 

that participated in the IT room computing environment. We are going to include ceil-

ing sensors temperatures, Server rack inlet and outlet temperatures, air conditioner out-

flow temperatures as well as PDU values of the servers as our endogenous variables. 

To our knowledge, IT room objectives are mutually affected by each. As the graph 

shows below, we can infer that each variable can affect the others in two directions 

(direct or indirect), shown as a circulation (Fig.1). Statistical test (Granger causality 

test) results also confirmed the underlined inferences. Therefore, we briefly include all 

the related variables into one VAR model. 

 

 

Fig. 1. The DC variables and relationships  

Here we present how VAR modelling the above dynamic. VAR assumes all the var-

iables to be endogenous and explain those endogenous variables one by one by all their 

Business and Society

374CERC 2020

https://www.cerc-conference.eu


5 

past values. This allows us to use the estimated model to predict the future values of 

variables. A 𝑝𝑡ℎorder 𝑉𝐴𝑅(𝑝) can be represented as: 𝑋𝑡 = ∑ П𝑖𝑋𝑡−𝑖𝑘𝑖=1 + 𝐶 + 𝑢𝑡 (1) 

Assume we have 𝑁 variables, then 𝑋𝑡  is the 𝑁 × 1 order time series vector,  𝐶  is the 𝑁 × 1 order constant vector, the П𝑖   is the 𝑁 × 𝑁  order parameter matrix, 𝑢𝑡   is the 𝑁 × 1 order random error vector. We can extend the above equation to the matrix for-

mula as following (The lag length will be selected by the combination of "AIC", "HQ", 

"SC", "FPE" criteria): 

 (2) 

As VAR model is a dynamic forecasting model. We can use it to simulate the DC 

environment as well as forecast the future values of each variable. After we get the 

model parameters by real-time estimation, we will feed the data that cover the lag length 

and forecast the future value of each variable. To make it clear, here we summarize the 

procedure to train a VAR model and use it as a simulator to forecast DC environment 

in a flowchart (See Fig.2). 

 
  

Fig. 2. The structure of the simulator 

We first downloaded data from the historical Application Programming Interface 

(API) (Step 1). After data processing (Step 2), we use this data set to train a VAR model 

(Step 3). Then download historical data again (Step 4), after processing the data for 

another time (Step 5), we extract the most recent data which cover our lags, then input 

to the VAR model. The simulator will carry out iterations until reach to the requested 

forecasting length. 
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3.2 RL -A dynamic environment adaptor 

As we mentioned earlier, the data estimated in DC has a rapidly changing feature, there-

fore our fundamental simulator VAR may not apply for some special cases: ie., sud-

denly changing load by holidays or online exams, temperatures changes, or other hu-

man interventions. Therefore, we need to adjust our model to ensure the prediction ac-

curacy and be able to detect the environment changes and adapt itself to the changing 

world. Reinforcement learning as an environment adaptor to VAR model will be intro-

duced in this section. The process is shown in the following graph (Fig.3). 

 

Fig. 3. The environment adaptor based on RL  

With every prediction, we will have an evaluation of the accuracy. And we will give a 

reward (or punishment) to each prediction. The accumulated reward would be:  𝑅𝑐𝑢𝑚 = ∑ 𝑅𝑡+𝑔𝑛𝑔=1  (3) 

Where 𝑅𝑐𝑢𝑚is the total cumulated reward values, 𝑅 is the reward for each forecast eval-

uation. With the number of time steps increasing, the difficulty level to predict would 

be increasing too, to make it fair enough for the judgement, we assign the weight to 

each reward, and the weight of the reward would be decreasing over the time.  𝑅𝑐𝑢𝑚 = ∑ 𝛾𝑘𝑅𝑡+𝑘+1,∞𝑘=0 𝛾 ∈ [0,1) (4) 

Where, 𝛾 is the weight. 

Time windows will be plugin at every seasonality changing point. And the system will 

trigger RL to evaluate the prediction result. In this case, the prediction result from the 

fundamental simulator VAR will be evaluated by the error rate. A reward will be given 

to each evaluation. When the accumulated reward value reaches to a certain boundary, 

the environment changes will be detected. Then the RL adaptor will trigger the alarm 

then the VAR model parameters and features will be rebuilt. 

3.3  LP approach- An energy efficiency optimizer 

Empirical evidences show that increasing the AC setpoint by a single degree can result 

in 4-5% energy cost savings; and increasing the setpoint by 10 degrees, which is also a 

realistic number, can result in savings of over 40% [15]. Although this sounds straight-

forward and simple, considering the complex nature of DC assets, it is hardly the case. 

Increasing the AC setpoints blindly can jeopardize the health of servers and other hard-

ware, as existing hot spots may become even hotter and higher hot aisle temperature 
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may activate server fans and offset efficiency gains. Therefore, a rigorous plan for op-

timizing the AC temperature setpoint is critical to increasing the energy efficiency of 

the DC. Particularly, we aim to optimize the energy efficiency in the DC by determining 

the optimal combination of the supplied temperature of AC units, while taking into 

consideration the dynamic nature of IT power consumption, as well as satisfying the 

temperature constraints. 

We will use the following notations: 𝑆 =  {𝑆1, 𝑆2, … , 𝑆𝑚 } denotes the Server rack number 1 to 𝑚 𝐶  = {𝐶1, 𝐶2, … , 𝐶𝑙  } is a set of ACs unit number 1 to 𝑙.  𝑇𝑥𝑠𝑢𝑝(𝑡): the temperature supply of the 𝑥𝑡ℎ AC unit at time 𝑡. 𝑇𝑗𝑖𝑛(𝑡): the inlet temperature of the 𝑗𝑡ℎ server rack at time 𝑡. 𝑇𝑗𝑜𝑢𝑡(𝑡): the outlet temperature of the 𝑗𝑡ℎ server rack at time 𝑡. 𝑇𝑟𝑜𝑜𝑚(𝑡): the room temperature at time 𝑡. 𝑃𝑗𝐶𝑜𝑚𝑝(𝑡): the computational power (PDU) for the 𝑗𝑡ℎ server rack at time 𝑡 . 𝑃𝑥𝐶𝑜𝑜𝑙(𝑡): the computational power for the 𝑥𝑡ℎ AC unit at time 𝑡. 𝐸[𝑊𝑗(𝑡)]: the estimated workload (CPU usage) for the 𝑗𝑡ℎ server rack at time 𝑡 . 𝐶𝑜𝑃𝑥: the coefficient of performance.  𝐶𝑇𝐼𝑗𝑥  is the thermal correlation index. 

The IT consumption 

. Assumingly, the IT power consumption would not only be influenced by the compu-

tational workload, but also will be affected by the working temperature because the 

temperature will affect its working performance. Hence, at any time 𝑡, the total IT com-

puting power of server rack 𝑆𝑗 is the function of power spent on executing IT jobs and 

the rack inlet temperature. 𝑃𝑗𝐶𝑜𝑚𝑝(𝑡) = 𝛼𝑗𝐸[𝑊𝑗(𝑡)] + 𝛽𝑗𝑇𝑗𝑖𝑛(𝑡)  (5) 

Where 𝛼𝑗 and 𝛽𝑗are weight coefficients. 

The cooling consumption 

. Based on [16,17,18], the cooling cost of AC device 𝐶𝑥  ∈ 𝐶 can be presented as: 𝑃𝑥𝐶𝑜𝑜𝑙(𝑡) = 𝐶𝑇𝐼𝑥𝑗 ∑ 𝑃𝑗𝐶𝑜𝑚𝑝(𝑡)𝑚𝑗=1𝐶𝑜𝑃𝑥(𝑇𝑥𝑠𝑢𝑝(𝑡))  (6) 

Where 𝐶𝑜𝑃𝑥 is the performance coefficient, shown as the ratio of the amount of heat 

the AC device 𝐶𝑥 needs to remove to the energy it needs to consume to perform the 

removal. 𝐶𝑜𝑃𝑥 indicates the efficiency of the AC device, and is typically a non-linear, 

increasing function of the supplied cold air temperature, 𝑇𝑥𝑠𝑢𝑝(𝑡). It means that operat-

ing the AC system at a higher temperature is saving energy, as providing colder air 

requires the AC to work harder and consume more energy to remove heat. Hence, we 

can minimise 𝑃𝑥𝐶𝑜𝑜𝑙(𝑡)   by maximise the allowable supplied cold air temperature, 𝑇𝑥𝑠𝑢𝑝(𝑡) that satisfies the constraint of redline thresholds. The simulation approach will 
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also be used to get the function of 𝐶𝑜𝑃𝑥 (𝑇𝑥𝑠𝑢𝑝(𝑡)). 𝐶𝑇𝐼𝑗𝑥  is the thermal correlation in-

dex, 𝐶𝑇𝐼𝑗𝑥  = ∆𝑇𝑗𝑖𝑛∆𝑇𝑥𝑠𝑢𝑝, which represents the influence of each AC unit 𝐶𝑥 on inlet temper-

ature of server rack 𝑆𝑗. As defined in Eq. (6), it quantifies the response of the server 𝑆𝑗 ’s inlet temperature 𝑇𝑗𝑖𝑛  to a step-change in the supply temperature 𝑇𝑥𝑠𝑢𝑝  of 𝐶𝑥 . 𝐶𝑇𝐼𝑗𝑥  is a static metric, which is stable with time but based on the physical configura-

tion of the DC. Hence, we use the simulation approach to get the value of  𝐶𝑇𝐼𝑗𝑥 . The 

detailed explanation of this metric can be seen in [17,18]. 

Thermal modelling 

. According to the law of energy conservation, almost all the computing power con-

sumed by a server is transformed into heat, hence the relationship between the power 

consumption and inlet/outlet temperature of server rack 𝑆𝑗 can be presented as: 𝑇𝑗𝑜𝑢𝑡(𝑡) =  𝑇𝑗𝑖𝑛(𝑡) +  𝐾𝑗  𝑃𝑗𝐶𝑜𝑚𝑝(𝑡)                                                                      
 (7) 

 

Where 𝐾𝑗 = 𝑝𝑓𝑗𝑐 is the thermal-physical term. This can be estimated by our data ob-

tained in DC. 

Typically, the server’s inlet temperature (𝑇𝑗𝑖𝑛) tends to be higher than the AC’s sup-
plied air temperature (𝑇𝑥𝑠𝑢𝑝)  due to the phenomenon so-called heat recirculation where 

the hot air from the server and the supplied cool air from the AC are mixed then recir-

culats in the room. Based on the energy conservation as described in Eq. (8) and the 

assumption of the fixed airflow pattern in the computer room, prior studies (eg. [19]) 

characterise this phenomenon with a heat distribution matrix  𝐴  = {𝑎𝑗𝑜} where 𝑎𝑗𝑜 is 

the temperature increase at the inlet of server rack 𝑀𝑗 due to the heat emitted at the 

outlet of the server rack 𝑀𝑜. Here we adjust this to matrix  𝐴  = {𝑎𝑗} denotes the heat 

increased at the inlet of server rack 𝑆𝑗 caused by the heat recirculated inside the rack 

due to computation. Hence, the inlet temperature of a server rack 𝑆𝑗  comes from the 

combination of the supplied cold air from the AC and hot air recirculated inside the 

rack. This relationship can be written as:  𝑇𝑗𝑖𝑛(𝑡) = ∑ 𝑐𝑗𝑥𝑙𝑥=1 𝐶𝑇𝐼𝑗𝑥𝑇𝑥𝑠𝑢𝑝(𝑡) + 𝑑𝑗𝑃𝑗𝐶𝑜𝑚𝑝(𝑡) (8) 

Where 𝑐𝑗𝑥 is a binary variable which equals to 1 if the AC unit  𝐶𝑥 is assigned to supply 

cold air to the rack slot of server rack 𝑆𝑗, and 0 otherwise. As the DC layout is fixed, 

the value of 𝑐𝑗𝑥 will be given by VAR estimation. 

With equations (5) and (8), we can transfer  𝑇𝑗𝑖𝑛(𝑡) to the function of  𝑇𝑥𝑠𝑢𝑝(𝑡).  𝑇𝑗𝑖𝑛(𝑡)  = ∑ 𝑐𝑗𝑥𝑙𝑥=1 𝐶𝑇𝐼𝑗𝑥𝑇𝑥𝑠𝑢𝑝(𝑡)+𝛼𝑗𝐸[𝑊𝑗(𝑡)]1−𝛽𝑗   (9) 

Optimization solution 
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. PUE value is a measurement of the power utilization efficiency of DCs that is 

adopted internationally. It is the ratio of total power consumed by the DCs to the power 

consumed by the IT load.  𝑃𝑈𝐸 = 𝑃𝑡𝑜𝑡𝑎𝑙(𝑡)𝑃𝑗𝐶𝑜𝑚𝑝(𝑡) = 1 + 𝑃𝑥𝐶𝑜𝑜𝑙(𝑡)𝑃𝑗𝐶𝑜𝑚𝑝(𝑡) (10) 

The closer the PUE value is to 1, the higher the greenness of a DC.  

 Let 𝐺∗ = 𝑃𝑥𝐶𝑜𝑜𝑙(𝑡)𝑃𝑗𝐶𝑜𝑚𝑝(𝑡) (11) 

Then to optimize 𝑃𝑈𝐸 is equal to the question to minimize 𝐺∗. 
Let denote [𝑡1, 𝑡2] be the interval of interest. Based on the Eq. (5, 6) above, our objec-

tive function can be written as: 

𝑀𝑖𝑛 𝐺∗ = 𝑃𝐶𝑜𝑜𝑙𝑃𝐶𝑜𝑚𝑝  = ∫ (  ∑ 𝑃𝑥𝐶𝑜𝑜𝑙(𝑡)𝑙𝑥=1∑ 𝑃𝑗𝐶𝑜𝑚𝑝(𝑡)𝑚𝑗=1 )𝑡2𝑡1 𝑑𝑡 = ∫ ( 
 ∑ (∑ (𝐶𝑇𝐼𝑥𝑗 ∑ 𝑃𝑗𝐶𝑜𝑚𝑝(𝑡)𝑚𝑗=1𝐶𝑜𝑃𝑥(𝑇𝑥𝑠𝑢𝑝(𝑡))𝑚𝑗=1𝑙𝑥=1 ))∑ (𝛼𝑗𝐸[𝑊𝑗(𝑡)]+𝛽𝑗𝑇𝑗𝑖𝑛(𝑡)𝑚𝑗=1 ) ) 

 𝑡2𝑡1 𝑑𝑡 =
∫ ( 
 ∑ (∑ (𝐶𝑇𝐼𝑥𝑗(∑ (𝛼𝑗𝐸[𝑊𝑗(𝑡)]+𝛽𝑗𝑇𝑗𝑖𝑛(𝑡))𝑚𝑖=1𝐶𝑜𝑃𝑥(𝑇𝑥𝑠𝑢𝑝(𝑡))𝑚𝑗=1𝑙𝑥=1 ))∑ (𝛼𝑗𝐸[𝑊𝑗(𝑡)]+𝛽𝑗𝑇𝑗𝑖𝑛(𝑡)𝑚𝑗=1 ) ) 

 𝑑𝑡𝑡2𝑡1  (12) 

Align Eq.(12) with Eq.(9), we can transfer the objective function to the function of the 

cooling temperature combinations 𝑇𝑥𝑠𝑢𝑝(𝑡). Hence, to minimise 𝐺∗, we can optimise 𝑇𝑥𝑠𝑢𝑝(𝑡), which is also the decision variable in this model.  

Nevertheless, the adjustment of the supplied cold air temperature is subject to the con-

straint that the inlet temperatures of all server racks are below the redline temperature 

threshold specified by the device manufacturers (i.e. typically below 25oC). Hence, 

based on Eq. (8)(5), the constraint of redline threshold (𝑇𝑟𝑒𝑑1) can be presented as: 

𝑇𝑗𝑖𝑛(𝑡) = ∑ 𝑐𝑗𝑥𝑙𝑥=1 𝐶𝑇𝐼𝑗𝑥𝑇𝑥𝑠𝑢𝑝(𝑡) + 𝑑𝑗𝑃𝑗𝐶𝑜𝑚𝑝(𝑡) = ∑ 𝑐𝑗𝑥𝑙𝑥=1 𝐶𝑇𝐼𝑗𝑥𝑇𝑥𝑠𝑢𝑝(𝑡) +𝑑𝑗 . (𝛼𝑗𝐸[𝑊𝑗(𝑡)] + 𝛽𝑗𝑇𝑗𝑖𝑛(𝑡) ≤  𝑇𝑟𝑒𝑑1(13) 
 

Also, we will restrict the room temperature to be within the allowance (18~27 oC ac-

cording to AHREA 2016). As we define the room temperature as the function of ACs 

temperatures and the Server racks outlet temperatures, based on Eq.(7)(5), the temper-

ature with thresholds (𝑇𝑟𝑒𝑑2) and (𝑇𝑟𝑒𝑑3) will be represented as: 𝑇𝑟𝑒𝑑2 ≤ 𝑇𝑟𝑜𝑜𝑚(𝑡) = ∑ ℎ𝑥𝑙𝑥=1 𝑇𝑥𝑠𝑢𝑝(𝑡) + ∑ 𝑔𝑗𝑇𝑗𝑜𝑢𝑡(𝑡)𝑚𝑗=1 = ∑ ℎ𝑥𝑙𝑥=1 𝑇𝑥𝑠𝑢𝑝(𝑡) +∑ 𝑔𝑗(𝑇𝑗𝑖𝑛(𝑡) + 𝐾𝑗  𝑃𝑗𝐶𝑜𝑚𝑝(𝑡)𝑚𝑗=1 ) = ∑ ℎ𝑥𝑙𝑥=1 𝑇𝑥𝑠𝑢𝑝(𝑡) + ∑ 𝑔𝑗(𝑇𝑗𝑖𝑛(𝑡) +𝑚𝑗=1
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 𝐾𝑗  (𝛼𝑗𝐸[𝑊𝑗(𝑡)] + 𝛽𝑗𝑇𝑗𝑖𝑛(𝑡)) = ∑ ℎ𝑥𝑙𝑥=1 𝑇𝑥𝑠𝑢𝑝(𝑡) + ∑ ((𝑔𝑗 + 𝑔𝑗𝛽𝑗)𝑇𝑗𝑖𝑛(𝑡) +𝑚𝑗=1𝑔𝑗𝐾𝑗𝛼𝑗𝐸[𝑊𝑗(𝑡)]) ≤ 𝑇𝑟𝑒𝑑3  (14) 

Moreover, for each AC, there are thresholds (𝑇𝑟𝑒𝑑4) and (𝑇𝑟𝑒𝑑5), which will restrict 

the AC temperatures to be within the range (0 − 30℃).   

 𝑇𝑟𝑒𝑑4 ≤ 𝑇𝑥𝑠𝑢𝑝(𝑡) ≤ 𝑇𝑟𝑒𝑑5                                     (15) 

Similarly, by aligning with Eq. (9), we can transfer the constraints functions Eq. (13,14) 

to the function of 𝑇𝑥𝑠𝑢𝑝(𝑡). 
In short, the operational problem that we will address at the first stage is to optimize 

the objective function in Eq. (12) by determining the optimal supplied cold temperature 

of the AC devices, given the constraints in Eq. (13, 14, 15). The optimization would 

start once we estimate the DC may perform inefficiently by VAR-RL forecasting, and 

target temperature combination will be set at 𝑡1 − 𝛥𝑡 periods on the timeline (Where 𝛥𝑡. is also defined by VAR-RL).  

4 Future Studies 

Future studies will be made on forecasting verification and model adjustment. An ap-

plication UI (User Interface) will be applied for the DC managers to make sustainable 

DC management. Field trial studies will also be conducted subsequently, we will mod-

ify our models and further studies will be done accordingly. 
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