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Abstract 

 For most people, the complex mechanisms of sensory reweighting and maintaining balance 

are effective in maintaining relative automaticity and stability. However, this optimal function can be 

jeopardized by a range of factors. Ageing, anxiety, changes in attention, and neurodegenerative 

disease are some of the factors that potentially affect sensory integration for balance. These factors 

are explored in this thesis over several empirical studies using visual perturbations delivered using 

virtual reality. First, I examined the effects of ageing and anxiety on the postural response to the 

erroneous visual experience of self-movement (Study 1). Secondly, I explored these effects in the 

context of Parkinson’s Disease with Freezing of Gait: a population with impaired non-visual sensory 

processing and increased anxiety related to motor control (Study 2). The final study attempts to 

isolate the effects of increased conscious control of movement on visual reweighting to examine the 

degree to which they account for the results of the previous studies (Study 3). Study 1 found that 

anxiety appears to relate to increased reliance on vision for balance, but it only partially accounts for 

greater reliance on vision in older adults. Study 2 found that people with PD+FOG take longer 

responding to the visual perturbation than healthy age-matched adults, and that freezing severity 

correlates with longer latency and possibly lower magnitude of response. Finally, Study 3 found no 

significant effect of increased conscious control of movement on reliance on vision for postural 

control. Overall, while anxiety does have the potential to increase reliance on visual input, increased 

visual dependency observed in older adults and people with PD is likely to have different origins, 

potentially related to physiological changes, rather than increased conscious control of movement. 

The General Discussion reviews the contribution of these findings to research on sensory integration 

and postural control, and discusses their implications, and directions for future research. 
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Chapter 1. General Introduction (Literary Overview) 

The most seemingly simple of tasks often require complex interactions between multiple 

systems in order to be performed smoothly. In humans, maintaining stable upright posture is one 

such function. This introductory chapter will first cover the basics of balance control, particularly 

regarding the different senses involved and how information from them is integrated to preserve a 

stable posture. This will be followed by an overview of the different (albeit non-mutually exclusive) 

factors that appear to affect sensory integration and postural behaviour, such as ageing, anxiety, and 

neurodegenerative disease. This overview, while acknowledging and describing previous work in the 

field, will also underline the current knowledge gaps in what we understand about how balance 

works in these contexts, and how the current thesis plans to address some of these questions.  

Balance Control & Sensory Integration 

The control of balance primarily relies on the function of the Central Nervous System (CNS), 

which must effectively integrate different sources of information from different sensory systems, 

such as the visual, vestibular, and proprioceptive systems (Della-Justina et al., 2015; Peterka, R. J., 

2002). The vestibular system uses information from the semicircular canals and the otoliths in the 

inner ear to signal rotational movements and linear accelerations, which, together with visual 

information, tell us where we are in space and therefore what movements are needed to maintain a 

stable position (Angelaki & Cullen, 2008). Additionally, proprioception provides a sense of self-

movement and body position through musculoskeletal signals; for example, the sensation of our feet 

on the ground (Stillman, 2002). 

Paradigms using self-motion perception (for example, heading estimates) illustrate the 

concept of how the CNS integrates these different sensory inputs. On its own, unimodal 

presentation of sensory information (e.g., visual cues alone) allows some, albeit variable, estimation 

of self-motion. However, when different sensory cues are presented together, heading estimates 

become more accurate (Butler, Smith, Campos, & Bülthoff, 2010; Butler, Campos, Bülthoff, & Smith, 

2011; Campos & Bülthoff, 2012). This is commonly referred to as the redundancy phenomenon, 

whereby observers integrate multiple estimates that are weighted according to their respective 

reliability and yield more accurate estimates of self-motion than they would alone (Butler et al., 

2011; Fetsch, Turner, DeAngelis, & Angelaki, 2009).  For example, in a paradigm used by Butler et al. 

(2010) and Fetsch et al. (2009), observers were provided with both visual (optic flow depicting dots 

moving at varying angles through a virtual starfield on a large screen) and vestibular cues (being 

translated along heading directions at varying angles) in order to complete a heading discrimination 

task. In some trials, only one of the two cue types were available, and in others, both cue types were 
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available. In some key trials, the cues were incongruent with each other, and their relative reliability 

was varied. Results demonstrated that heading estimates were significantly more accurate when 

both cue types were available, and that visual and vestibular cues were reweighted according to 

their perceived reliability in order to optimise heading estimation for balance control. Thus, accurate 

processing of sensory input and perception are necessary for effective motor control (Machado et 

al., 2010; Wolpert, Ghahramani, & Jordan, 1995). Furthermore, accurate perception also relies on 

motor actions such as active sensing (Kleinfeld, Ahissar, & Diamond, 2006; Wachowiak, 2011) and 

exploratory sway (Carpenter, M. G., Murnaghan, & Inglis, 2010). Meyer, Oddsson, and Luca (2004) 

demonstrated how the importance of foot cutaneous sensation for normal standing balance control 

is dependent on availability of other senses, whereby plantar sensation was demonstrably more 

useful for standing balance when participants had to close their eyes during bipedal stance.  

It is evident, therefore, that motor control and multisensory processing are mutually 

interdependent (Gibson, 1966; Halperin, Israeli‐Korn, Yakubovich, Hassin‐Baer, & Zaidel, 2020; Prinz, 

1997; Warren, 2006). Peterka (2018) describes a human balance control model that demonstrates 

how multiple sensory contributions are integrated and weighted to produce corrective motion. In 

this model, sensory inputs, from separate senses generated by current body sway angle (which may 

be produced by external stimuli such as visual surround tilt or support surface tilt), are integrated to 

form a “weighted summation of orientation information” (equalling to 1 when all senses are 

contributing). This estimate of body orientation is then compared with an internal reference, or 

“desired reference body orientation” (i.e., upright). If the internal estimate differs from the internal 

reference orientation, a sensory error is produced, which is transmitted to a “neural controller”. This 

controller then generates ankle torque, which, combined with passive torque generated by the body 

movement mechanics designed to keep the body in alignment with gravito-inertial forces, 

contributes to a corrective torque in the ankle. This corrective torque is proportionate to the amount 

of sensory error, which produces corrective body sway. This corrective motion then feeds back to 

the sensory inputs, and the process loops, providing ongoing corrective motion to keep the body in a 

stable position. 
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Figure 1. Visual depiction of the action-perception loop, adapted from Halperin et al. (2020). 

While multiple sensory inputs are acquired and utilised to maintain effective balance 

control, these different senses are not necessarily weighted equally. Many researchers postulate 

that sensory reweighting in the brain occurs through a Bayesian estimation process, whereby the 

CNS reweights incoming sensory inputs based on their relative reliability, where more reliable inputs 

are upweighted (Bronstein, 2019; Butler et al., 2010; Knill & Pouget, 2004). One way to measure how 

much people rely on a particular sensory modality is to create an illusory difference between 

information acquired by separate senses and measure the postural responses. These manipulations 

can be classified as intra-modality or inter-modality. Intra-modality refers to changes that occur in 

one sensory modality due to a manipulation of input of that same modality, whereas inter-modality 

describes the effect on responses that occur in one sensory modality due to a manipulation of input 

of a different sensory modality (Saftari & Kwon, 2018).  

In terms of vestibular sensory weighting, while previous research has found that vestibular 

weighting changes over different stages of dynamic movement (Bent, McFadyen, & Inglis, 2004), 

other experimenters have focused on static tasks and explored how the human postural system 

prioritises its reliance on visual, proprioceptive, or vestibular systems whilst in a static position. One 

of the earliest demonstrations of this type of task was done by Lee and Lishman (1975) who first 

utilised the “moving room illusion” to demonstrate the dominance of visual information in balance 



12 
EFFECTS OF POSTURAL THREAT ON VISUAL REWEIGHTING 

 

control. The authors used a small chamber suspended from the ceiling, whereby the walls could 

move while the participant remained still, presenting an illusory visual sensation of movement. This 

led to destabilisation of the participants’ balance, indicating the strong influence of vision compared 

to information from lower limbs and vestibular input.  

More contemporary methods have expanded on this line of research. For example, Keshner, 

Kenyon, and Langston (2004) exposed participants to either a moving support base (+/- 10cm in the 

anterior-posterior direction), a moving visual field (+/- 3m in a fore-aft motion, using a virtual reality 

delivered through stereographic goggles), or both at the same time. Postural response was 

measured via whole-body Centre of Mass (COM), and segmental movements were tracked using 

markers placed on the head, neck, femur, knee, and ankle, so that the movement and relative 

angular positions of each segment could be recorded. When each stimulus was presented by itself, 

the amplitude of postural response to either stimulus was relatively small. However, when they 

occurred simultaneously, the response to visual information was much stronger for the head and 

trunk movements and for the shank relative to either the visual or support base movement alone. 

Thus, the presence of a vestibular disturbance strongly potentiated the response to visual 

information – primarily, a large COM shift in the posterior direction in counteraction to the anterior 

visual perturbation. The authors argue that the brain does not ignore one input or another; rather, 

both are implemented in monitoring the environment, and subsequently affecting the body’s 

response to its surrounds. However, when the incoming cues are at odds with each other, the ability 

to determine whether the movement is due to self-motion or environmental motion is impaired, 

and exteroperceptive (e.g. visual) feedback is prioritised in order to respond appropriately to the 

changing external cues. Kabbaligere, Lee, and Layne (2017) found similar results when delivering 

conflicting proprioceptive (via an 80Hz vibration to the ankle) and visual (via optic flow in VR) 

stimulations. When applied separately, these stimulations elicited postural sway in opposing 

directions, with the proprioceptive stimulation eliciting backward shift in Centre of Pressure (COP) 

and the visual stimulation eliciting forward shift in COP. When applied together, a backwards sway 

was still elicited, but this was significantly reduced. This indicates that the presence of the conflicting 

visual motion moderated the extent of the proprioceptively induced postural response, and that the 

visual information received more “weight” in terms of reliability compared to the proprioceptive 

stimulation. 

These findings were extended by Wang, Kenyon, and Keshner (2010), who varied the speed 

of a moving virtual visual scene (pitch-upward optic flow, giving the impression of tipping forwards) 

as well as tilting the floorplate support base (to a toe-up/dorsiflexion position giving the impression 

of tipping backwards) to measure postural reaction (whole body COM; measured via the sum of the 
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movement several body segments, similar to Keshner et al. (2004)). In trials where only the visual 

scene moved, the scene was driven in the pitch-up direction at either 30°, 45°, or 60° per second. On 

a stationary support base, as the speed of the illusion increased, participants exhibited a 

counteracting backwards COM movement which increased in amplitude with the speed of the visual 

illusion. This effect was even stronger when the support base was tilted upwards (inclined at 30° per 

second for 30s in a toe-up position, then returned slowly to horizontal at 0.1° per second), which 

first elicited a forward COM shift in response to the support surface being tilted upward, followed by 

a corrective backward motion which increased in magnitude with the increase in visual scene flow 

velocity. These findings suggest that the control pathways for visual effects on posture are also 

utilised for postural sway elicited by the illusion of self-motion, and that vestibular input ambiguity 

leads to increased reliance on visual information to maintain an upright posture. These results are 

consistent with neurological findings that vestibular stimulation on its own causes activation of 

vestibular cortex areas with concurrent deactivation of visual areas, vice versa for visual stimulation 

on its own, while simultaneous stimulations of both senses produces activation in both areas 

(Deutschländer et al., 2002). 

Relevance to Ageing 

Evidence suggests that Older Adults (OAs) have greater difficulty maintaining stability both 

while standing and while walking (Hausdorff, Rios, & Edelberg, 2001; Horak, Shupert, & Mirka, 

1989), and suffer from an increased likelihood of falls (Tinetti, Speechley, & Ginter, 1988). Previous 

research suggests a link between visual function decline and fall risk, but how these factors are 

connected has not been explicitly researched. One particular aspect of visual function that may be 

contributing to OAs’ increased fall risk is visual motion perception, which strongly influences balance 

control and has been shown to be affected by ageing – as well as being an important aspect of 

sensory integration. A wealth of research suggests that optimal sensory integration (particularly 

during self-motion aspects of postural regulation) becomes somewhat impaired with age (Diederich, 

A., Colonius, & Schomburg, 2008; Ramkhalawansingh, Keshavarz, Haycock, Shahab, & Campos, 

2016). For example, Choy, Brauer, and Nitz (2003) demonstrate that older adults show an increased 

reliance on visual information for balance control, whereby older women were less able to maintain 

a single-limb stance than younger women when instructed to close their eyes. As described above, 

the ability to reweight reliance on difference senses depending on their relative accuracy is an 

important factor of sensory integration for balance control. OAs seem to show more rigidity in 

dynamic sensory reweighting tasks compared to YAs, and tend to incorporate unreliable cues that 

may negatively affect their balance performance (Lich & Bremmer, 2014; Ramkhalawansingh, Butler, 

& Campos, 2018). For example, Doumas and Krampe (2010) demonstrated increased anterior-
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posterior sway in OAs compared to a younger group when exposed to inaccurate proprioceptive 

information that persisted even once the inaccurate sensory input was removed, indicating a less 

efficient sensory reweighting system in OAs compared to YAs. Eikema, Htazitaki, Konstantakos, and 

Papaxanthis (2013) suggest that, while OAs are often more reliant on visual information for balance 

control than YAs, they also find it difficult to downweight inaccurate proprioceptive input, either due 

to reduced sensitivity to proprioceptive cues, impairments in attention shifting (Hawkes, Siu, 

Silsupadol, & Woollacott, 2012), and/or impairments in cognitive motor prediction and planning 

(Skoura, Personnier, Vinter, Pozzo, & Papaxanthis, 2008). One study using functional Near-Infrared 

Spectroscopy (fNIRS) suggested that balance control in OAs requires more attentional capacity than 

in YAs (Lin, C., Barker, Sparto, Furman, & Huppert, 2017), and several others have demonstrated 

increased cognitive demands on OAs for balance control and compared to their younger cohorts 

(Kerr, Condon, & McDonald, 1985; Shumway-Cook, Woollacott, Kerns, & Baldwin, 1997; Shumway-

Cook & Woollacott, 2000).  

Anxiety could be one cognitive factor contributing to balance difficulties in OAs and 

increased risk of falls. There is a relatively high prevalence of anxiety about falling in OAs, occurring 

in between 12% and 85% of OAs (Legters, 2002; Scheffer, Schuurmans, van Dijk, van Der Hooft, & De 

Rooij, 2008). Known widely as Fear of Falling (FOF), this specific type of anxiety is strongly associated 

with an increased likelihood of falling (Hadjistavropoulos, Delbaere, & Fitzgerald, 2011), and can 

cause debilitating personal, social, and economic costs. Therefore, it is evident that exploring the 

effects of anxiety on sensory integration for balance control is an important avenue of research that 

may lead to improvements in our understanding of how we may reduce fall risk in vulnerable 

populations. 

Neural Substrates of Balance Control & Anxiety 

Under relatively non-stressful conditions, different sensory inputs are typically integrated in 

a way that maintains a stable balance. However, this is not always the case in conditions of 

heightened anxiety. A number of studies have examined the neurophysiological mechanisms 

through which anxiety influences postural control; anatomical studies describe how the areas of the 

brain that process and regulate anxiety (e.g. limbic system) and balance-relevant sensory 

information (e.g. parabrachial nucleus) are apparently connected. Research has uncovered some of 

the potential underlying neural substrates of the link between anxiety and visuo-vestibular circuits. 

While balance control in general is thought to directly involve the cerebral cortex (Bolton, 2015), the 

vestibular system in particular is reported to have bi-directional links to the parabrachial nucleus 

(PBN), which in turn projects out to the amygdala and autonomic/sympathetic nervous system. 
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These areas form part of a network that processes incoming vestibular, somatic, and visceral input 

to mediate anxiety responses (Balaban, 2002). There also appear to be projections between the 

vestibular system and the caudal pole of the locus coeruleus (LC), which has been implicated as a 

starting point for anxiety responses and panic disorders (Aston-Jones, Rajkowski, & Cohen, 1999). 

The LC has also been suggested to be a modulator of vestibular function by mediating increases in 

postural sway and altered vestibular-evoked eye movements during stress-related arousal (Balaban 

& Thayer, 2001; Balaban, 2002). Furthermore, serotonergic and non-serotonergic connections are 

evident between the raphe nuclei and the vestibular system, as well as between the raphe nuclei 

and the LC (Furman & Lempert, 2016). Balaban (2002) suggests that this pathway contributes to the 

affective responses to unpleasant aspects of motion. This suggestion is supported by evidence that 

mood type and anxiety can alter balance performance (Bolmont, Gangloff, Vouriot, & Perrin, 2002). 

In clinical settings, the fact that selective serotonin reuptake inhibitors (SSRIs) can be effective in 

treating balance-related disorders such as vertigo provides further evidence for this link (Staab, 

2014). Additionally, the common comorbidity of balance disorders and anxiety disorders, such as 

chronic dizziness and generalised anxiety (Staab & Ruckenstein, 2005), as well as in diseases such as 

Parkinson’s (Ehgoetz Martens et al., 2017), provides further support for all these networks’ roles in 

mediating the relationship between anxiety and postural control (Balaban, Jacob, & Furman, 2011). 

In fact, the degree to which anxiety and balance-related systems (particularly the vestibular system) 

are evidently so intimately connected, Staab, Balaban, and Furman (2013) argue that they should 

not be viewed as separate mechanisms, but rather part of a larger integrated model that combines 

threat assessment with processing of information from sensory systems to produce ongoing 

mobility. 

Anxiety’s effects on sensory integration during balance control 

Many studies use virtual reality (VR), or visual illusions, paired with perturbations of a 

support base to study how vision and posture are linked and interact with each other. Jacob, 

Redfern, and Furman (Jacob, Redfern, & Furman, 1995) induced a sway response to optic flow 

stimuli in both people diagnosed with anxiety and SMD (space and motion discomfort, e.g. fear of 

heights) and non-anxious controls. Participants viewed a screen displaying optic flow stimuli through 

goggles that occluded one eye and only allowed central field vision in the non-occluded eye. The 

stimuli were a wall moving sinusoidally (towards or away from the viewer), a sinusoidally-moving 

tunnel, a constant tunnel, a checkerboard pattern that moved horizontally, or one that moved 

vertically. There were three baseline conditions: viewing a non-moving wall, viewing a blank 

stimulus, and eyes-closed, which were performed both before and after the optic flow conditions. 

Those with anxiety showed an overall greater sway response than the non-anxious controls but this 
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difference was significantly greater in response to the optic flow stimuli, indicating a greater reliance 

on visual cues to control their balance. The authors argue that these effects tended to persist longer 

in anxious participants after the optic flow stimuli had ceased in the ‘Eyes Closed’ condition, based 

upon a trend towards significance in that condition. The authors claim that, taken together, their 

findings indicate that anxious individuals with SMD have an increased reliance on non-vestibular 

input (e.g. vision) compared to non-anxious individuals, which may be a candidate risk factor for 

developing acrophobia (phobia of heights). However, the study did not have a non-SMD anxiety 

group, which raises the possibility that the atypical vestibular-visual reliance weighting may be 

simply due to anxiety itself rather than SMD in particular. Furthermore, this study did not include a 

height manipulation, so it lacks the ability to shed light on whether height itself actually influences 

sway response through anxiety.  

Similar results were found by Ohno, Wada, Saitoh, Sunaga, and Nagai (2004), who measured 

the correlation between the change in anxiety and body sway across two time points. Participants 

completed the State-Trait Anxiety Inventory (STAI; (Spielberger et al., 1979)) before being asked to 

stand on a platform while either keeping their gaze on a stable visual target (black circle on a white 

background), or while keeping their eyes closed. This was repeated a month later. Body sway was 

measured as a function of total length of body sway on the medio-lateral axis, antero-posterior axis, 

and the total length and enveloped area of sway. Analysis of the change in anxiety and the change in 

body sway parameters revealed that an increase in anxiety was positively correlated with an 

increase in antero-posterior sway as well as total enveloped area of body sway; however, these 

correlations were only significant in the Eyes Open condition. The authors suggest that these results 

demonstrate that anxiety has a specific effect on how visual information is processed in the brain in 

relation to postural control. Specifically, anxiety appears to solely influence the visual system in the 

context of orthostatic balance, since the effects were absent in the eyes closed condition. However, 

there is a possibility that participants became more anxious during the eyes closed condition, 

possibly leading to a difference in sensory reweighting. It impossible to gauge from these results 

whether or not this is the case, since anxiety measures were only taken for each of the two sessions 

as a whole, rather than separately for each condition. Thus, while these results support the notion 

that anxiety produces a particularly strong effect on the processing of visual information, a more 

controlled paradigm is necessary in order to more closely scrutinise the relationship between 

increased anxiety and sensory reweighting.  
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Inducing anxiety (postural threat) using height manipulations 

In order to study the effects of state anxiety on balance maintenance, several groups of 

researchers have put younger healthy adults on a high platform as a way of eliciting perceived 

postural threat. This paradigm has often been successful in producing height-related anxiety in 

younger adults. For example, Adkin, Frank, Carpenter and Peysar (2002) tasked a group of young 

adults with a “rise-to-toes” activity while standing on either a low or a high platform, and either right 

at the edge or away from it. The magnitude of balance-controlling muscle activity during anticipatory 

postural control was reduced in the most threatening high-edge condition, which the authors argue 

demonstrates a conservative strategy to reduce destabilisation. In this condition, COP and COM data 

revealed that the participants shifted further backward away from the edge of the high platform, 

compared to the other conditions. These changes in postural control were also accompanied by an 

increase in stress levels, with increased threat (i.e., the high-edge condition) producing an increase 

in skin conductance and self-reported anxiety, and a decrease in confidence and perceived stability. 

Similar results were obtained by Naranjo, Allum, Inglis, and Carpenter (2015) who found that 

increased postural threat (standing at 3.2m height rather than ground level), and the associated 

increase in anxiety, produced elevated postural control responses in the form of increased vestibular 

evoked myogenic potentials (VEMPs) in the neck and lower leg muscles of young adults. Thus, it is 

possible to simulate postural threat in younger adults, and this method demonstrates how anxiety 

related to postural threat can have a potentially destabilising effect on balance control. 

Cleworth, Chua, Inglis, and Carpenter (2016) examined how height anxiety affects bodily 

reactions to perceived height and support-base perturbations. Healthy young adults were exposed 

to a support base perturbation in a virtual reality (VR) environment whilst standing on either a “low” 

(0.4cm) or “high” (3.2m) narrow surface. Participants showed more COP displacement in reaction to 

support base perturbations in the high condition than when the virtual scene was at floor level (low 

condition). Additionally, this COP displacement occurred earlier at height than at ground level, which 

contrasts with Adkin and colleagues’ (2002) findings that height did not influence the timing of 

postural adjustments. Being at height also significantly increased balance-correcting tonic muscle 

activity in the arm muscles and lower leg muscles. Psychosocial responses such as balance 

confidence, fear, and anxiety were also measured, with balance confidence decreasing with height, 

and fear and anxiety increasing with height. The authors propose that participants’ postural 

reactions to the perturbation were potentiated by anxiety elicited by being up at a height.  

Cleworth and Carpenter (2016) repeated their previous experiment, but with a real visual 

threat (as opposed to VR), and a stable base rather than a moving one. They examined participants’ 

awareness of postural sway by asking them to track how much they thought they were swaying in 
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the antero-posterior plane using a hand-held potentiometer, while also measuring their actual 

postural sway amplitude and frequency. Participants displayed increased frequency and decreased 

amplitude of postural sway (i.e., stiffening behaviour) at height, and reported higher levels of 

anxiety, but indicated that they perceived that they were swaying just as much as at ground level. 

The authors suggest that sensory gain might be increased at height to compensate for stiffening, in 

order to maintain conscious perception of postural movement i.e., swaying (even though in reality 

they are not swaying as much). These results further support the concept that integration of 

different senses (i.e., visual vs. vestibular vs. proprioceptive) is affected by anxiety related to 

postural threat.  

Vestibular Input Processing Changes as a Main Contributor to Anxiety-Related Postural Sway 

While it is clear that anxiety has an effect on the integration of senses relevant to postural 

control, there exists a lot of dispute about whether or not balance responses to height-related 

anxiety are directly due to vestibular information processing changes. Many studies use electrical 

vestibular stimulation (EVS) to manipulate vestibular input during anxiety-inducing paradigms to 

measure vestibular contribution to postural control. This method works by placing electrodes (anode 

and cathode) on the mastoid processes, which deliver a small controlled electrical stimulation to the 

participant that affects vestibular input, eliciting a false sensation of body sway (Fitzpatrick & Day, 

2004). There are several approaches to this method; galvanic vestibular stimulation (GVS) delivers a 

consistent current flow that evokes body sway toward either electrode, depending on the polarity of 

the stimulation (Inglis, Shupert, Hlavacka, & Horak, 1995; Welgampola, Ramsay, Gleeson, & Day, 

2013). Stochastic vestibular stimulation (SVS) works in a similar fashion, but the signal is delivered in 

a random fashion, rather than consistently, which elicits greater signal-to-noise ratio, but does not 

offer as much temporal accuracy (Britton et al., 1993; Mackenzie & Reynolds, 2018; Nashner & 

Wolfson, 1974). Horslen, Dakin, Inglis, Blouin, and Carpenter (2014) propose that balance responses 

are directly due to vestibular gain increases from height anxiety, on the basis of finding that 

manipulating vestibular input using SVS had a greater effect on balance when applied at height 

compared to at ground level. These differences between surface height levels appeared at an early 

phase (<800ms following onset of SVS) as well as at a later phase (>800ms). Specifically, they argue 

that manipulating vestibular input at height (and therefore a higher level of anxiety) leads to a 

stronger correlation between vestibular input and the resulting balance reflexes compared to that at 

low surface level, as well as an increase in response gain.  

Reynolds, Osler, Tersteeg, and Loram (2015) argue otherwise. These authors performed a 

similar experiment, using GVS rather than SVS. In contrast to Horslen et al. (2014) there was no 
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difference in the ‘early’ response to vestibular stimulation between height and ground level, only in 

the ‘late’ response (an attenuation of sway). The authors propose that this was due to the CNS 

acting to reduce sway by utilising the proprioception feedback once it was available, rather than a 

direct effect of vestibular processing change on balance control. Reynolds and colleagues (2015) 

attribute this discrepancy partly to the use of SVS in Horslen and colleagues’ (2014) study (as 

opposed to GVS), and argue that it does not sufficiently challenge balance. They also point out that 

the early balance responses recorded by Horslen et al. (2014) were mainly in the high frequency 

range, which are not typically thought to be directly indicative of conscious balance control (Dakin, 

Son, Inglis, & Blouin, 2007; Guerraz & Bronstein, 2008), so the relevance of these reported 

differences to balance is uncertain. Also, the analysis method used by Horslen et al. (2014) may have 

produced the difference in results; these authors used spectral analysis with SVS, which increases 

the statistical sensitivity to gain increases between the SVS and the balance response (measured in 

terms of ground reaction force). However, Reynolds et al. (2015) argue that this method is picking up 

small differences early on in the response, before proprioceptive information is integrated, that are 

irrelevant to balance control.  Similar results were found by Reynolds (2010) when investigating 

effects of voluntary control of body sway while standing and being given SVS: early responses were 

no different between conditions (relaxed or trying to stand still), but late responses were different 

whereby consciously controlling movement caused attenuation of the late component, reducing 

response duration by 825ms, as well as less phase lag with SVS below 2Hz. This, they argue, 

demonstrates that the postural response evoked by vestibular stimulation is made up of two 

components: an early high-frequency response that occurs in proportion with background activity, 

and a later low-frequency component that is heavily influenced by conscious control of posture. This 

suggests that it is the later component that is relevant to cognitive influences on balance, such as 

increased anxiety. 

Lim et al. (2017) used GVS to stimulate the vestibular system during quiet standing to 

examine how postural threat affects the coupling between the vestibular system and balance-

relevant muscle responses. Rather than using raised height as a threat, the authors used the threat 

of a tilting platform, where the support surface was unstable, and participants were made to expect 

unpredictable mediolateral surface tilts. In the no threat condition, participants stood quietly on a 

stable surface. During trials, participants were blindfolded and instructed to lean forward slightly (to 

increase triceps surae activation). EMG was used to measure muscle activation. Their results 

indicated that anxiety (in this case, threat of perturbation) increases EVS-EMG coupling in leg and hip 

muscles through changes in cross-correlation, coherence, and gain in lower body muscles, providing 

further evidence that postural anxiety has a significant effect on vestibular-evoked responses. These 
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results are consistent with studies that have used height as an anxiety-provoking manipulation, 

suggesting that these postural stiffening responses are a general vestibular response not specific to 

being on the edge of a high platform or to threat of movement alone.   

It is evident from these studies that the vestibular system contributes to anxiety-related 

postural responses, though perhaps not directly. While it is clear that different sensory inputs are all 

contributing, further research with a more direct paradigm is necessary to parse these effects i.e., a 

method that is able to parse visual from non-visual (i.e., vestibular or proprioceptive) input. The VR 

postural threat paradigm has often been successful in producing height-related anxiety in younger 

adults (Cleworth et al., 2016; Cleworth & Carpenter, 2016; Cleworth et al., 2019), and the results 

help to give further insight into how FOF affects postural control. However, since older adults show 

age related changes in sensory weighting during balance control (Choy et al., 2003; Doumas & 

Krampe, 2010; Eikema et al., 2013; Ramkhalawansingh et al., 2018), it is arguable that older adults 

should be included as a comparison group when conducting research in this specific field. Once we 

know more detail about the mechanisms at play during postural threat in young adults, using a 

comparator OA group, it will be possible to evaluate whether or how these effects change with age. 

If research can elucidate how balance control is affected by anxiety and the physical and 

psychological effects of ageing, it may be possible to improve fall-prevention strategies by, for 

example, encouraging treatment to be focussed more on an individual’s propensity towards anxiety, 

or their tendency to rely on one sense more than another. In short, findings from this type of study 

may lead to more specific and tailored interventions that cater to the varied and multi-factorial 

postural changes in at-risk populations.  

Relevance to Neurodegenerative Disease 

While so far, the relationship between anxiety and balance control has been discussed in the 

context of healthy populations, it is important to acknowledge how this relationship may change 

when observed in a clinical context. Parkinson’s Disease (PD; characterised by primarily motor-

related symptoms) is one such population in which balance control impairments are a key factor, 

and in which anxiety has been observed to have adverse effects. General anxiety is quite prevalent 

in PD – the lifetime prevalence has been reported at almost 50% (mostly Anxiety Disorder not 

otherwise specified; (Pontone et al., 2009)), and a recent systematic review puts point prevalence at 

31% (Broen, Narayen, Kuijf, Dissanayaka, & Leentjens, 2016). While anxiety it is often thought to 

occur as a result of debilitating PD symptoms (Ellgring et al., 1990), many researchers also postulate 

that anxiety is a core symptom of PD (rather than a separate comorbid symptom) that may develop 

years before the PD is diagnosed (Shiba et al., 2000; Tolosa, Compta, & Gaig, 2007), perhaps due to 
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the decreased dopaminergic transmission (Weisskopf, Chen, Schwarzschild, Kawachi, & Ascherio, 

2003). As reviewed above, Balaban (2002) demonstrates the neural basis of this comorbidity, 

describing the neurophysiological links between areas that process anxiety and areas relative to 

balance control. In particular, PD patients with Freezing of Gait (FOG; see Chapter 4) seem to be 

affected particularly by anxiety in the context of eliciting and maintaining movement; Ehgoetz 

Martens, Ellard, and Almeida (2014) instructed patients with PD and FOG or without FOG to walk 

across either a low-threatening or a high-threatening environment in VR. PD patients with FOG 

reported higher levels of anxiety than patients without FOG and showed increased freezing episodes 

during the high-threatening condition compared to the low. While these results provide good 

evidence that anxiety is a key factor underlying this specific movement difficulty in PD, it remains 

unclear how this relationship works with regards to sensory reweighting. As stated above regarding 

healthy populations, it could be that increased anxiety affects sensory integration in the brain, and 

potentially increases reliance on visual information. In this specific subset of people with PD, effects 

of anxiety on postural control may be especially troublesome, and warrant further investigation in 

order to inform more effective therapeutic techniques for reducing the risk of balance loss and 

injury in this group.  

These potential effects are compounded by a loss of functional proprioceptive processing 

(see Chapter 4). Since balance control requires adequate information from incoming sensory inputs 

in order to maintain balance (Butler et al., 2010; Della-Justina et al., 2015; Peterka, R. J., 2002), and 

that sensory inputs deemed as unreliable tend to be down-weighted (Bronstein, 2019), this arguably 

implies a need to rely on non-proprioceptive senses (e.g. vision) to a greater extent in people with 

PD than in healthy older adults. In other words, it is expected that those with impaired 

proprioceptive systems will rely more on visual input. Indeed, previous studies have suggested a 

heavier reliance on visual information for motor actions and balance in PD patients than healthy 

adults of a similar age (Azulay et al., 1999; Azulay, Mesure, Amblard, & Pouget, 2002; Cooke, Brown, 

& Brooks, 1978; Flowers, 1976; Vaugoyeau, Viel, Assaiante, Amblard, & Azulay, 2007), despite 

documented high-(Bowen, Hoehn, & Yahr, 1972; Davidsdottir, Cronin-Golomb, & Lee, 2005) and 

low-level (Bodis-Wollner et al., 1987; Price, Feldman, Adelberg, & Kayne, 1992; Silva et al., 2005) 

visual deficits (see Figure 2).  



22 
EFFECTS OF POSTURAL THREAT ON VISUAL REWEIGHTING 

 

 

Figure 2. This version of the action-perception loop demonstrates how perceptual deficits, 
multisensory integration impairments, and motor symptoms may interact in Parkinson’s Disease; 
adapted from Halperin et al. (2020).  

Bronstein, Hood, Gresty, and Panagi (1990) demonstrate how people with PD are less able 

to suppress visually-evoked postural responses (VEPRs) following presentation of a visual 

perturbation incongruent with proprioceptive input, even after multiple trials. Bronstein et al. (1990) 

(1990) argue that this gives evidence for increased visual control of posture in PD patients, where 

visual dependency is not able to be suppressed despite evidence of the unreliability of this sensory 

input, potentially due to disease-related impairments in vestibulo-proprioceptive signalling. 

However, since manipulation of state anxiety was not included in this study, it remains unknown 

how increased state anxiety might influence PD patients’ potential increased reliance on visual 

information for orthostatic balance compared to healthy cohorts. Following this rationale, and given 

the earlier discussed effects of posture-related anxiety on sensory reweighting, attempts to 

determine how sensory integration is affected by FOG severity and postural threat may help inform 

the direction to take when designing physiotherapeutic or behavioural strategies for those with PD 

and FOG, e.g. whether to focus therapeutic techniques on reducing anxiety related to posture. Since 

PD patients display a maladaptive reliance on vision, and are also heavily affected by anxiety, we 

could potentially improve balance control in this group by furthering the understanding of anxiety’s 

role in visual reliance, i.e., if anxiety can be somewhat relieved in PD/FOG patient groups, this may 

help to ameliorate the hazardous effects of impaired sensory reweighting that might be exacerbated 

by anxiety. 
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Conclusions & Introduction to Experimental Paradigm 

Given the impact that anxiety appears to have on postural control in both healthy old and 

young populations as well as in clinical groups, it is arguably important to further elucidate how the 

relationship between anxiety and balance works – especially with regards to sensory integration. 

Evidently, further research is necessary to better understand the psychophysiological mechanisms 

behind balance control and fall risk under conditions of anxiety, so that more effective fall risk 

interventions might be developed. Specifically, questions remain over how anxiety influences the 

perception and processing (re-weighting) of incoming vestibular and visual information. One 

plausible explanation is that height-related anxiety is affecting the vestibular system gain and muscle 

spindle sensitivity in a way that increases perception of sway, therefore leading to increased 

stiffening of posture (Cleworth & Carpenter, 2016), and a subsequent shift to rely on another source 

of sensory information that is deemed more reliable. Research on people with Persistent Postural-

Perceptual Dizziness (PPPD), a disease characterised by vertigo and perceived unsteadiness, suggests 

that anxiety is linked with PPPD, and also that one symptom of PPPD is an increased dependence on 

vision (Cousins et al., 2014a; Staab et al., 2017). This would suggest (though it is not explicitly 

demonstrated) that anxiety and visual dependence are linked, and that visual dependence can be 

exacerbated by unreliable signals coming from the vestibular system as a result of increased anxiety 

(Adkin & Carpenter, 2018; Popkirov, Staab, & Stone, 2018; Staab et al., 2017). Another possibility is 

that while postural-related anxiety leads to a gain in both visual and non-visual (i.e., 

vestibular/proprioceptive) input, the CNS still prioritises incoming visual information, leading to 

more reliance on vision than vestibular and somatosensory input. In other words, the increase in 

visual gain “shouts louder” than non-visual input and is therefore prioritised. These possibilities are 

not necessarily mutually exclusive, and research into this specific aspect of anxiety should aim to 

shed light on whether balance control changes in the context of anxiety are due to one, both, or 

neither of these.  

Evidently, there are currently several gaps in knowledge of sensory reweighting under 

conditions of heightened postural threat: First, how anxiety affects sensory reweighting – does 

postural threat increase reliance on visual information? Secondly, does this change with age? Finally, 

are people with impairments in motor control and sensory integration, such as PD patients with 

FOG, more reliant on vision than healthy cohorts even under conditions of relatively low anxiety, and 

does this become compounded with postural threat?  

The present set of experiments aimed to address these gaps in the research field by 

following a paradigm using virtual reality (VR) similar to Cleworth et al. (2016), but using an optic 

flow manipulation to alter visual information rather than manipulating proprioceptive information. 
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The current studies use VR to provide a height-related threat (simulating postural anxiety) by placing 

participants either on a platform at the top of a cliff, or on the ground, while (in reality) standing on 

a force plate at ground level, and subjecting them to a visual perturbation. Broadly, this thesis 

attempts to explore how heightened postural threat affects balance control, and any further 

mechanisms that may underlie this relationship, in several different groups. Firstly, a small pilot 

study was conducted using young adults to optimise the overall protocol for the main experiments, 

specifically testing out some virtual environments and several visual perturbation sizes to determine 

the most effective virtual paradigm to use as a basis for the main experiments. Following this 

optimisation stage, an initial study was carried out on two healthy age groups (young and older 

adults) to investigate the effect of postural threat on postural reactions to the chosen visual 

perturbation i.e., to answer whether or not postural threat (i.e., anxiety) leads to an increased 

reliance on vision, and whether this effect would change as a function of age. Following these 

results, the second study used the same paradigm as Study 1 in a clinical subgroup of Parkinson’s 

Disease patients who reported regularly experiencing FOG, with the aim of improving knowledge 

about how people with increased need for reliance on vision reweight their reliance on different 

senses following a disparity, and how postural threat affects this. Finally, the third study focused on 

young adults and set to further delve into the relationship between postural anxiety and response to 

discrepant visual information by including other factors, namely direction of attention (i.e., 

internal/increased conscious motor control vs. baseline), into the original paradigm.  
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Chapter 2. Methodology & Protocol Optimisation 

Part 1. Description of building a virtual environment using Unity 3D, and the coding/design of the 
visual perturbations paired with a sound cue for synchronisation 

One of the possible ways that postural threat affects balance control, as discussed in the 

previous chapter, is by affecting the integration of various sensory inputs (Cleworth et al., 2016; 

Cleworth & Carpenter, 2016; Cleworth et al., 2019; Naranjo et al., 2015; Paterson & Huxley, 2011; 

Sturnieks, Delbaere, Brodie, & Lord, 2016). For example, Cleworth and Carpenter (2016) 

demonstrate that people who are placed at height show a reduced amplitude of postural sway, 

despite perceiving themselves to be swaying at similar amplitudes to when standing at ground level. 

This finding indicates that postural threat may alter the integration of sensory inputs (Horslen & 

Carpenter, 2011; Horslen, Dakin, Inglis, Blouin, & Carpenter, 2015). Notably, results from other 

studies provide examples of how anxiety influences sensory function, and infer that anxiety is 

associated with an increase in reliance on visual information to control balance (Schniepp et al., 

2014; Willey & Jackson, 2014); however, the nature of this relationship remains unclear.  

In preparation for empirical studies, we aimed to create an environment to test the effects 

of postural threat on balance control while also prioritising participant safety. This necessitated a 

method that offered both a means to induce postural threat as well as to introduce sensory 

disparity. While previous experiments examining the effects of height-related anxiety on balance 

control have used real platforms to induce postural threat (Adkin et al., 2002; Cleworth, Horslen, & 

Carpenter, 2012; Cleworth & Carpenter, 2016; Naranjo et al., 2015), it is difficult to achieve this, 

combined with causing sensory incongruency, in a physically safe manner. To this end, it was 

decided that a virtual environment should be used, paired with the HTC Vive virtual reality (VR) 

system that uses a head-mounted display (HMD). Following the described work of previous 

researchers examining the effects of postural threat on balance control, it was decided that the most 

effective manipulation of postural threat to induce anxiety would be to include a condition where 

participants were situated at the edge of a platform at a large height in VR. To isolate visual input 

and introduce sensory disparity, a visual perturbation was determined to be the most effective 

method. A visual perturbation can be created by rotating the visual scene within the HMD, creating 

the illusory sensation that one is moving, while the non-visual sensory inputs are delivering 

contradictory signals (i.e., of not moving).  

In order to optimise the virtual paradigm, a pilot study was conducted using several different 

perturbation magnitudes, along with measurement of anterior-posterior Centre of Pressure (COP) 

displacement and verbally-reported state anxiety changes. This chapter describes this process.  
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Aims 

The present pilot experiment aimed to optimise the perturbation and threat manipulation 

characteristics of the subsequent empirical studies. The intended outcome was to determine which 

manipulations would best serve as a means to measure how reliance on visual vs. non-visual input 

changes with anxiety. Specifically, the pilot study aimed to answer two questions: 1) would our 

manipulation of postural threat be successful in producing an increase in anxiety and changes in 

postural response, and 2) what kind of visual perturbation would be the most effective as a 

manipulation of isolated visual stimulation in a postural threat paradigm. The results of this pilot 

study would be used to help shape the methodology for further empirical work detailed in Chapters 

3-6.  

Materials & Methods 

Participants  

10 young adults (7 males), aged 23-28 years old (µ = 25.6; s.d. = 2.32), were recruited 

through Brunel University London. No participants reported any diagnosed musculoskeletal or 

neurological disorders. All participants provided written informed consent. 

Equipment 

Anxiety Manipulation 

To manipulate anxiety (particularly anxiety related to postural threat), two virtual 

environments were created – one with a postural threat and one without. These environments were 

created using Unity 3D (version 5.5; Unity Technologies, 2015). One of the environments consisted 

of a wooden platform (similar to a diving board) atop a cliff overlooking a long gully (to induce 

anxiety), with some trees dotted around the top of the cliff where the participants were “standing”, 

and at the bottom of the gully, to provide some visual reference and easier distance perception. This 

was the “Threat” condition. The other environment was similar in every way except for everything 

being at ground level, as opposed to standing at height; this was the “Ground” condition. A virtual 

camera was placed in the scene. In the “Threat” condition, this was placed on the edge of the virtual 

wooden platform, overlooking the gully. In the “Ground” condition, it faced the same direction but 

at ground level. The perspective from this virtual camera was then displayed through the HMD, 

allowing the participants to perceive themselves as being either standing on the edge of the cliff, or 

at ground level (see Figure 3).  
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Figure 3. First Person View of the virtual “Threat” (top) and “Ground” (bottom) conditions; grey model 
represents position of participant in VR. 

VR System 

The VR system was calibrated so that the platform in VR corresponded to the force platform 

in reality; this allowed participants to perceive themselves as being the correct height up from the 

ground once the HMD was fitted i.e., the visual information was representative of that perspective 

in VR. The HMD system used to display the virtual reality was the HTC Vive (1080x1200 per eye 

resolution, 90Hz refresh rate, 110 degrees Field of View [FoV]).  Using an HMD denies the full 

availability of visual information in the periphery, thereby restricting optic flow information 

important for postural control (Piponnier, Hanssens, & Faubert, 2009). This inherently compromises 

the potency of the visual perturbations delivered. Nevertheless, the FoV afforded by recent VR 

headsets such as the HTC Vive or Oculus Rift appear to be sufficient in providing sufficient peripheral 

input to stimulate the visual field and specify some degree of self-motion. For example, Dennison 

and D’Zmura (2018) presented visual perturbations to participants via both a monitor and an HMD 

(Oculus Rift), and found that participants demonstrated increased postural sway when the 

perturbation was presented through the HMD than from a monitor. While the monitor they used 

permitted a smaller FoV than the HMD, this nevertheless provides evidence that using an HMD 

provides sufficient peripheral input. Despite it being unclear whether it is the size of the FoV or the 
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immersion of the VR that affords a larger postural sway, it seems that a VR HMD is a viable and 

flexible option for providing sensory stimulation in an empirical context. 

Many postural control studies use a CAVE system to present their virtual environments 

(Greffou et al., 2012; Keshner & Kenyon, 2000; Slaboda, Lauer, & Keshner, 2011), which is a room-

sized 3D video and audio environment where participants are surrounded by four projection screens 

for the walls and floor. Participants are required to wear stereoscopic glasses which restrict the FoV 

to 100 degrees – a smaller FoV than that afforded by the HTC Vive, and still sufficient in producing 

postural responses to virtual moving fields. Furthermore, a clear advantage of using an HMD (as 

opposed to a CAVE system) is that it enhances the immersion and permits the interaction of the 

participant with proximal environmental features. 

Visual Perturbations 

To explore the specific effects of different visual sway magnitudes, the experiment elicited 

three different visual perturbation sizes, with an aim to determine which perturbation type would be 

most effective for measuring visual reliance in a postural threat paradigm. Wang, Kenyon, and 

Keshner (2010) used a similar method and found that increasing the velocity of optic flow in the  

pitch-up (i.e., nose-upwards) direction significantly affected both Centre of Mass (COM) and ankle 

angular displacements (see previous chapter). This observation led us to expect that a larger/faster 

perturbation would produce a postural response of greater magnitude than a smaller/slower 

perturbation.  

Three visual perturbations in the anterior-posterior (AP) direction were delivered to 

participants, in both the Ground and Threat conditions. The order of threat condition and 

perturbation size was counterbalanced for each participant. These perturbations lasted for two 

seconds, and consisted of a sinusoidal movement in the pitch-up (posterior) direction for the first 

1000ms, followed by an pitch-down (anterior) motion back to upright over the latter 1000ms. The 

perturbation sizes were ‘large’ (15° per second), ‘medium’ (10° per second), or ‘small’ (5° per 

second). In Unity3D, these values represent Euler Angles. By attaching a code to the perturbation 

animations in Unity, each of the perturbations could be called with an individual keypress by the 

experimenter. In order for the perturbations to occur in a way that made the visual scene move in a 

way concurrent with the experience of swaying in the posterior direction, the HMD was made a 

“child object” of a 3D figure “parent” object in Unity. The animations were attached to this parent 
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object. Anything that occurred with the parent object, occurred in the child object i.e., the view from 

the HMD1.  

Technical Specifications 

Unity 3D and the HTC Vive system were run through a Viglen Genie desktop computer (Dell 

Precision Tower 3620, i7-6700 processer, GeForce GTX 1080 Graphics Card; Windows 10). The COP 

data were collected through Vicon Nexus 2.5 on a Dell Precision Tower 5810 (Windows 10).  

Kinetic data were recorded using a Kistler Forceplate (600x400x35mm, Kistler model 9286, 

SN1426829, software Nexus 2.5, Amp Control Unit Kistler 5233A), with feet positioned on the centre 

of the forceplate in a natural relaxed stance. COP data were collected from the forceplate through 8 

channels measuring ground reaction forces and sampled at 1000Hz. These data were synchronised 

with the sway animations using a sound cue that was triggered by the start of each animation in 

Unity3D and fed into the channel amplifier that received forceplate input, using a single separate 

channel. 

To ensure participants’ safety during the experiment, they were secured in a fall-arrest 

harness attached to a scaffold frame throughout the experiment to prevent falling and injury. 

Procedure 

All participants received a participant information sheet briefly describing the aims, 

procedure, and any associated risks, along with a consent form to sign. The participants were made 

aware that they were able to leave at any point during the experiment with no adverse 

consequences. Following informed consent, participants were strapped into the safety harness, and 

the HMD was secured and adjusted to a comfortable position on the head. Once the HMD was 

activated, participants experienced themselves as standing on the white platform either in the 

Ground environment or the Threat environment. Participants walked one meter up to, and then 

stood on, the forceplate, which corresponded to the edge of the white platform in Threat, and the 

central area of platform in Ground. Following a key press by the experimenter, the participants 

experienced one of three pitch-up rotations to mimic the experience of balance loss i.e., the visual 

scene rotated in the pitch-up direction, and then in the pitch-down direction, returning to upright 

position, in virtual reality.  

 
1 At the time the data was collected, it was not possible to directly animate the VR system, therefore any 
animations had to be attached to a “parent” object which would consequently cause animations to occur in 
the VR headset. As of 2020 it is now possible to directly animate a VR system in Unity 3D. 
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During each threat level condition, participants experienced three perturbations (one of each 

size), with a randomised number of between 2 and 5 seconds’ break between each perturbation. The 

order of the visual perturbation sizes was counterbalanced for each participant to prevent order 

effects of habituation.  

Following each trial, participants were given the Mental Readiness Form (MRF) questionnaire 

to measure state anxiety (Krane, 1994). The MRF uses three questions regarding feelings of worry 

(cognitive anxiety), body tension (somatic anxiety), and confidence, scored on a scale of 1 to 112. After 

experiencing each of the three visual perturbations in both conditions, the session finished. 

Participants were then free to remove the HMD and received a full debrief.  

Analysis 

The postural reaction to the perturbation was captured by selecting the data from the 

perturbation onset (identified via the sound cue) to three seconds following perturbation onset. The 

data from these sections were filtered in MATLAB (second order low-pass Butterworth filter with a 

cut-off frequency of 5Hz; R2017a, The Mathworks, Inc.), and the Root Mean Square and Range of 

COP displacement were calculated for this three-second perturbation period. Therefore, the 

following variables were calculated for each participant: the Range of COP Displacement (RCD) and 

RMS of COP Displacement (RmsCD) during the perturbation, for each of the three perturbation sizes.  

RmsCD was non-normally distributed for the Threat trials where a large perturbation was 

used, so a Related-Samples Wilcoxon Signed Rank test was used to test for differences between 

perturbation sizes. RCD was non-normally distributed for the Threat trials where the large and small 

perturbations were used, so a Related-Samples Wilcoxon Signed Rank test was used to test for 

differences between perturbation sizes.  

MRF data were normally distributed for the Threat condition, but not for the Ground 

condition, therefore a Wilcoxon Signed Rank test was used to test for differences in self-reported 

state anxiety levels between conditions. 

Results 

At Ground, the RCD response to the large perturbation was significantly larger than the 

response to the small perturbation (p = 0.013, Z = 2.497, r = 0.789). The medium perturbation did 

not elicit responses of significantly different magnitude to either the large (p = 0.333, Z = 0.968, r = 

 
2 NB since a higher score in the confidence question denotes lower anxiety, the confidence subscale was 
reverse coded. 



31 
EFFECTS OF POSTURAL THREAT ON VISUAL REWEIGHTING 

 

0.306) or small (p = 0.059, Z = 1.886, r = 0.596) perturbations. At Threat, however, there was no 

longer any difference between the RCD responses to large and small perturbations (p = 0.169, Z = 

1.376, r = 0.435), with the only significant difference occurring between the large and medium 

perturbations (p = 0.028, Z = 2.191, r = 0.693). This pattern of results was also observed for the 

RmsCD responses, with a significant difference observed between the small and large perturbations 

at Ground (p = 0.037, Z = 2.09 , r = 0.661) but not at Threat (p = 0.508, Z = 0.663, r = 0.209; see Table 

1 and Table 2). Analysis on the MRF data found that participants’ self-reported state anxiety was 

significantly higher at Threat (μ = 13.63) compared to Ground (μ = 5.38; p = .007, Z = 2.675, r = 

0.892). 

Table 1. Means and standard deviations of range of anterior-posterior COP displacement (RCD) at 
Ground and Threat using three different perturbation sizes. Square brackets denote significant 
difference between two variables (α=0.05). 

RCD Ground μ (s.d.) (mm) Threat μ (s.d.) (mm) 

Large 16.99 (12.33) 27.81 (23.76) 

Medium 12.75 (6.37) 14.81 (6.38) 

Small 8.93 (4.69) 18.13 (14.22) 

 

Table 2. Means and standard deviations of RMS of anterior-posterior COP displacement (RmsCD) at 
Ground and Threat using three different perturbation sizes. Square brackets denote significant 
difference between two variables (α=0.05). 

RmsCD Ground μ (s.d.) (mm) Threat μ (s.d.) (mm) 

Large 6.71 (4.06) 9.76 (7.36) 

Medium 5.89 (3.69)  6.46 (2.98) 

Small 3.29 (1.83) 7.84 (5.44) 

 

  

 
 

 



32 
EFFECTS OF POSTURAL THREAT ON VISUAL REWEIGHTING 

 

Brief Discussion 

This pilot study aimed to explore the efficacy of a VR postural threat environment in 

inducing anxiety, and what the ideal characteristics are for a visual perturbation to be effective in 

measuring visual reliance in a postural threat context.  

First, the healthy young adults in this pilot study reported significantly higher anxiety levels 

in the Threat condition compared to the Ground condition, indicating that the environment designed 

for this paradigm was successful in inducing anxiety in the form of postural threat. 

Secondly, given that the smallest perturbation elicited a change in COP displacement from 

Ground to Threat and elicited a postural response of comparable size to the large perturbation, it 

seems that a smaller sensory discrepancy is a more useful manipulation to use for measuring the 

effects of postural threat on visual reliance in sensory reweighting. While the larger perturbations do 

produce a larger postural response than the small perturbation at Ground, there is no difference 

between the small and large perturbation responses at Threat. Therefore, there is a possibility that a 

ceiling effect occurs when participants experience a larger disparity between visual and non-visual 

sensory input, where the capacity for change in postural response with a psychological manipulation 

such as induced anxiety is curbed by the size of the disparity at baseline. In order to minimise the 

risk of a ceiling effect occurring, it appears that a more subtle perturbation would be more useful to 

help answer the research question(s) of how postural threat affects visual reliance for postural 

control. 

In sum, these findings suggest that a) the threatening condition we designed was successful 

in increasing anxiety, and b) that the most useful perturbation size to use for this paradigm appears 

to be the smaller one. 
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Part 2: Next steps 

Optimisations 

Given the results of this pilot study, the smallest perturbation (5° per second) was chosen for 

all subsequent experiments using this paradigm. After each participant session, participants were 

asked about their thoughts on the environment and how it might be improved in terms of 

immersion. Following feedback from these participants, more objects were added to the virtual 

environment to improve the sense of distance accuracy. Specifically, objects closer to human size 

(such as barrels and a cart) were added to both conditions (see Figure 4). The objects were 

positioned at the same orientation and distance from the participant in each condition. A fixation 

point (red asterisk) was also added at roughly eye level to each condition (and kept consistent 

between conditions) to maintain consistency of fixation direction across conditions and participants.  

Furthermore, several studies in the field have observed habituation to the presentation of 

repeated incongruent sensory signals, manifested in a reduction in postural reaction to repeated 

perturbations (Nishiike et al., 2013; Oude Nijhuis et al., 2009; Pavol, Runtz, & Pai, 2004). Bronstein 

(1986) found that participants’ visually-evoked postural responses (VEPRs) to an incongruent visual 

stimulus was significantly lessened after one presentation, and argued that if an unreliable sensory 

signal is repeatedly presented, the central nervous system (CNS) soon recognises the input as false, 

and begins to downweight any sensory information arriving via this input. Therefore, in order to 

avoid any habituation effects that might occur with multiple or continuous perturbations, we limited 

the incongruent visual perturbation to a single instance per trial for the three main empirical studies. 
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Figure 4. First-Person view of improved VR environment for Threat (Top) and Ground (Bottom) 
conditions 

Changes to Main Outcome Measures 

Once interpretation began on the empirical data following the pilot, some issues became 

clear. One concern with using peak-to-peak Range of AP COP displacement as the primary outcome 

variable is that it does not account for factors, other than visual reliance, that may influence the 

overall range of movement, especially around the posterior peak. The use of a perturbation that 

reverses and moves in the pitch-down direction again following the first 1000ms of pitch-up motion, 

while designed to be broadly representative of a momentary loss of balance, prevents analysis of 

postural behaviour in the latter half of the perturbation period. This is because it is difficult to know 

whether the subsequent postural behaviour following reversal of the perturbation is influenced by 

attempts to return to upright standing, or continued visual influence of the perturbation. Therefore, 

examining the Range of COP displacement over the whole 2000ms perturbation period is 

problematic. In previous research observing postural response to visual perturbations (Keshner & 

Slaboda, 2009), stimulating optic flow in one direction initially produces a corrective response in the 

opposite direction. Therefore, we felt it necessary to reconfigure our interpretation of people’s 

postural responses and what the main outcome measures should be.  
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Based on existing work within this research area (particularly the work of Keshner and 

Slaboda (2009)), we decided that the most informative behaviour to look for in this context is the 

initial postural movement that counteracts the direction of a visual perturbation (for example, an 

anterior postural response to a visual stimulation that gives the participant the impression that they 

are swaying in the pitch-up/posterior direction). Thus, the main outcome of this reconfiguration of 

analysis was that participants’ anterior peak (relative to their baseline position) during the first 

1000ms following the initial pitch-up movement of the visual perturbation (i.e., Relative AP) became 

our primary outcome measure: the primary postural response to the pitch-up visual perturbation. 

The reversal motion of the perturbation was preserved, despite no longer measuring responses 

during this part of the perturbation, since it also serves the purpose of minimising the potential for 

habituation to the perturbation. That is, since it returns the participant’s view to upright, consistent 

with non-visual sensory information, there is less chance of visual information being downweighted 

before the next trial starts which would have confounded postural response observations of the 

subsequent trial. This also reinforces the rationale for selecting the smallest perturbation, since a 

more subtle perturbation helps to minimise the risk of habituation to the incongruent visual 

disturbance compared to a larger one. 

We also explored the possibility of further classifying participants’ responses, such as early 

vs. late response, as other studies have done (Haas, Diener, Bacher, & Dichgans, 1986). However, the 

perturbation is unlike other visual perturbations previously used in the field in terms of speed – the 

perturbation was, on average, six times slower than the perturbation speed used in studies such as 

that of Keshner and Slaboda (2009), thus with a flatter acceleration of the perturbation trace. This 

also impaired the feasibility to accurately discern the moment at which participants became aware 

of the perturbation, thus it was not possible to categorise people’s responses into subgroups. 

Therefore, we took the anterior peak occurring between perturbation onset and the point at which 

the perturbation reversed its movement again as the participant’s primary response. While use of a 

slower, small perturbation may bring an inevitable delay in response, the observations from this 

initial pilot study suggest that it is important to use a compelling perturbation where sensory 

discrepancy is harder to detect, in order to more accurately isolate the effects of postural threat on 

visual reliance. 

To further investigate the spatiotemporal nature of participants’ postural response, we also 

measured velocity i.e., the speed of initial movement between perturbation onset and when 

participants reached their anterior peak. Thirdly, we measured the time taken to reach the anterior 

peak (AP Latency) as a measure of response time to the perturbation. These additional measures 

allow for more detailed comparison of postural responses between conditions or subject groups, 
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where, for instance, the amplitude of the response is comparable but differences in latency may 

indicate meaningful effects. Lastly, Carpenter and Adkin (2018) have argued that using time windows 

of less than sixty seconds results in unreliable measures of RMS. Therefore, in the following 

empirical studies, RMS was not calculated for the perturbation period (which only lasts 2 seconds).  

Regarding sample size, a G*Power analysis on the difference in RCD between Ground and 

Threat in reaction to the small perturbation at 1-β = 0.95 revealed a desired sample size of 24 

participants (Faul, Erdfelder, Lang, & Buchner, 2007). However, since the planned outcome 

measures now only focus on a specific part of the whole range of anterior-posterior postural sway 

during the perturbation, and given the inherent data variability due to using only a single trial per 

condition, we aimed for a slightly larger sample size of 30 for each group to ensure sufficient power. 

These optimisations were implemented for the following empirical studies, all of which used 

the described paradigm. The first study compared young and older adults’ postural responses to the 

visual perturbation at both Ground and Threat to explore the effects of increased state anxiety and 

age on visual reliance. A second study explored the effects of these factors in people with 

Parkinson’s Disease with Freezing of Gait (when compared to healthy older adults) to explore how 

this neurodegenerative disease may impact the relationship between anxiety, age, and visual 

reliance. A final study assessed a group of younger adults and repeated the same paradigm with the 

additional independent variable of level of internal focus, in an effort to elucidate how increased 

conscious control of movement may further alter reliance on visual input when controlling balance. 
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Chapter 3.  

Study 1: Increased Perception of Postural Threat Increases Reliance on Vision to Control Balance in 
Young and Older Adults 

As described in Chapter 1, to maintain balance the Central Nervous System (CNS) must 

integrate information from different sensory systems, such as vision, vestibular input, and 

proprioception in order to regulate patterns of muscle activation (Della-Justina et al., 2015; Peterka, 

R. J., 2002). This can be demonstrated by paradigms that manipulate self-motion perception (e.g., 

heading estimates). In isolation, unimodal presentation of information (e.g., visual cues alone) allows 

some estimation of self-motion. However, when separate and congruent sensory cues are presented 

together, estimates become more accurate (Butler et al., 2010; Butler et al., 2011; Campos & 

Bülthoff, 2012). This is known as the redundancy phenomenon, whereby observers integrate several 

estimates that are weighted according to their respective ‘perceived’ reliability and yield more 

accurate estimates of self-motion than they would from one estimate alone (Butler et al., 2011; 

Fetsch et al., 2009). 

To study the intricacies of the different sensory inputs’ contribution to balance control, 

many researchers have designed paradigms that isolate individual sensory inputs, for example using 

visual perturbations that create optic flow in the relative absence of change in vestibular or 

proprioceptive input (Lee, D. N. & Lishman, 1975). However, since this often involves presenting 

information to one sense that is incongruent with others, one must account for the possibility of 

participants habituating to the perturbation if it is presented multiple times. Bronstein (1986) 

demonstrated a significant decrease in postural response to a repeated incongruent visual 

perturbation and argued that following the initial perturbation, since the visual signal is deemed to 

be unreliable, the CNS reweighted sensory inputs to be more dependent on non-visual information. 

Other research supports the notion that repeated or prolonged exposure to incongruent sensory 

information results in a progressive sensory reweighting that may not accurately reflect participants’ 

initial weighting (Bronstein, 2019; Nishiike et al., 2013; Oude Nijhuis et al., 2009; Pavol et al., 2004).  

Virtual reality (VR) is a useful tool for parsing different inputs to study sensory reweighting. 

Keshner and Slaboda (2009) used discrete perturbations in VR to examine sensory reweighting in 

young adults (YAs), older adults (OAs), and post-stroke patients. Participants stood on a platform 

that tilted backwards 3° into a position of dorsiflexion at a speed of 30°/s and remained stable at this 

3° tilt for 30s, before slowly tilting 3° forward again, returning to the starting level position at a 

speed of 0.1°/s. Meanwhile, the visual surroundings either i) moved to match the motion of the 

head (i.e., congruent with a natural visual response to the physical perturbation), ii) moved in a 
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pitch-up motion (i.e., incongruent with the physical perturbation, giving a visual perception of tilting 

forwards) at varying speeds, or iii) obscured (i.e., participants were in the dark). EMG and Centre of 

Mass (COM) responses were measured. In all groups, the postural responses to the tilting support 

base was affected by the presence of incongruent visual field motion. For example, participants 

showed greater lower limb muscle RMS values during visual field motion than when vision was 

absent. These results suggest that visual stimulation has a considerable effect upon postural control, 

indicating an increased reliance on vision given an unstable base of support. 

One notable finding of Keshner and Slaboda (2009) is the nature of the COM response to the 

physical dorsiflexion perturbations. Participants first displayed an initial anterior movement to 

counteract the posterior perturbation, followed by an accommodating posterior sway response, 

which (particularly in OAs) was increased when the visual field movement  conflicted with the 

physical perturbation, and often overshot the original COM position. Thus, it appears that the initial 

response to optic flow in one direction is a postural response in the opposite direction, and that this 

provides a useful measurement for gauging the relative reliance on visual information during 

experiments investigating sensory reweighting during optic flow. 

Ageing & Postural Sensory Processing 

The efficiency of many biological processes declines with age, and multisensory integration 

is no exception. Studies using unimodal vs. bi/multimodal cue conditions find that OAs benefit more 

from multiple cues than do YAs (Peiffer, Mozolic, Hugenschmidt, & Laurienti, 2007); however, these 

studies often also find that this integration is slower and less efficient in OAs than YAs (Diederich, A. 

et al., 2008; Mozolic, Hugenschmidt, Peiffer, & Laurienti, 2012; Ramkhalawansingh et al., 2016). 

Furthermore, while YAs demonstrate an ability to combine cues flexibly, OAs show deficits in 

integrating cues in an effective manner, especially when one or more cues are incongruent. For 

example, OAs demonstrate less ability than YAs to maintain a straight course towards a visual target 

when discrepant vestibular information is introduced (Deshpande & Patla, 2007). These sensory 

integration deficits have been implicated as a primary underlying mechanism in the reduced ability 

to maintain stability both while standing and walking compared to YAs (Hausdorff et al., 2001; Horak 

et al., 1989). The research community widely acknowledge age-related increases in visual reliance, 

evidenced primarily through decreased stability when asked to maintain balance with eyes closed 

(Choy et al., 2003) or higher visual field dependence scores on rotating visual field tests (Agathos et 

al., 2015). Isableu, Ohlmann, Crémieux, and Amblard (2003; 2011) expanded on this work and 

argued that a persistent and consistent upweighting of visual information is associated with 

impaired ability to dynamically reweight multiple sensory inputs during sensory disturbance. Eikema, 
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Hatzitaki, Konstantakos, and Papaxanthis (2013) suggest several reasons for this impairment; lower 

weighting on proprioception caused by rigid dependence on visual input could hamper older adults’ 

ability to detect a change in accuracy of incoming proprioceptive input, therefore impairing the 

ability to ignore inaccurate information. For example, in a study using a graduated tuning fork to 

stimulate the ankles with vibrations of varying amplitudes, OAs with lower gait and balance abilities 

demonstrated reduced sensitivity to this stimulation (Buchman, Wilson, Leurgans, & Bennett, 2009), 

indicating a relationship between proprioceptive integration deficits and balance control. 

Prioritisation differences observed in sensory reweighting could also be due to deficits in attentional 

set shifting, which could negatively affect the ability to shift sensory reliance from an unreliable 

input to an appropriate accurate source, and have been demonstrated to correlate with balance 

impairment (Eikema et al., 2013; Hawkes et al., 2012). Another potential culprit is a decline in 

cognitive motor abilities such as movement prediction and planning (Skoura et al., 2008).  

In the aforementioned study by Keshner and Slaboda (2009) using a discrete visual 

perturbation in VR paired with a support-surface perturbation, older adults and post-stroke patients 

were especially sensitive to the visual field motion compared to young adults, providing further 

evidence for age-related increases in visual reliance (Agathos et al., 2015; Choy et al., 2003). A 

subsequent study observed YAs and OAs using a similar paradigm, but with a continuous rotating 

visual field, and showed that OAs exhibit larger Centre of Mass (COM) and Centre of Pressure (COP) 

responses in the (anterior) direction of the visual field motion, as well as increased visual reliance in 

standalone Rod and Frame tests. The authors suggested that OAs tend to show more stiffening 

actions (such as increased muscle co-contraction in the ankle and less muscle modulation) as well as 

heightened visual sensitivity, which impairs their ability to maintain postural control during 

perturbations and incongruent sensory information (Slaboda et al., 2011). 

These studies have made valuable contributions to our understanding of how sensory 

integration is affected by increased age, but due to methodological limitations, the question of how 

ageing affects reweighting of sensory inputs (particularly visual vs. non-visual) is yet to be directly 

evaluated.  For example, while Choy et al. (2003) report an augmented reliance on vision due to 

increased age, their approach to quantifying postural sway, after instructing participants to close 

their eyes, represents an indirect measure of visual reliance. As such, this method does not account 

for the possibility that participants could dynamically reweight sources of sensory information within 

a given trial to accommodate the absence of visual information, and consequently adopt an altered 

postural strategy. For example, the increased instability observed in OAs during eyes-closed 

conditions could either be due to an inability to reweight sensory information, or it might suggest 

that OAs have deficits in non-visual sensory systems that result in balance problems when they try to 
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rely on these non-visual systems in situations where vision is unavailable. Furthermore, while 

informative, the use of rotating visual surrounds in many studies, to demonstrate persistent reliance 

on vision (Agathos et al., 2015; Lord & Webster, 1990; Redfern & Furman, 1994), is somewhat 

restrictive. While these findings indicate an inability to down-regulate visual reliance, the intra-

sensory disparity (e.g. illusion of self-motion) is often presented continuously, and therefore unable 

to necessarily indicate the level of reliance in contexts where participants are unaware that the 

visual information is incongruent (i.e., untrustworthy; (Bronstein, 2019; Nishiike et al., 2013; Oude 

Nijhuis et al., 2009; Pavol et al., 2004)). 

Thus, it is not clear how increased age leads to differences in sensory reweighting, but the 

cognitive/attentional factors are one hypothesised explanation. Another possibility is the 

observation that conscious control can influence vestibular responses (Reynolds, 2010). Conscious 

control of movement is a common theme in older adult research, and is often found to be elevated 

in adults who have increased concerns about their movement – particularly with regards to falling 

(Boisgontier et al., 2013; Chow, Ellmers, Young, Mak, & Wong, 2018; Clark, 2015; Ellmers, Cocks, & 

Young, 2019b; Magnard et al., 2019; Uiga et al., 2018; Wong, Masters, Maxwell, & Abernethy, 2008; 

Young & Williams, 2015). Age-related concern about falling may be the basis for how anxiety can 

influence sensory reweighting and other associated behaviours that may influence fall risk. In Older 

Adults (OAs), the effect of perceived postural threat on balance control is a particular concern, since 

anxiety about falling is apparent in between 12% and 85% of OAs (Legters, 2002; Scheffer, 

Schuurmans, Van Dijk, Van Der Hooft, & De Rooij, 2008) and is strongly associated with an increased 

likelihood of falling (Hadjistavropoulos et al., 2011).  

Effects of Anxiety on Postural Control 

Previous work has shown that anxiety, such as that induced by perceived threat to balance, 

may influence the way sensory inputs are integrated to control posture (Ohno et al., 2004). For 

example, Balaban (2002) described connections between areas of the brain that process and 

regulate anxiety and balance-relevant sensory information, such as between the limbic system and 

parabrachial nucleus. In terms of behavioural observations, Jacob, Redfern, and Furman (2008) 

induced a sway response using optic flow stimuli in anxious patients with space-motion disorder 

(SMD) and non-anxious controls. The anxious participants displayed greater reliance on non-

vestibular input (e.g. vision and proprioception) than non-anxious individuals. This raises the 

question whether such atypical vestibular-visual reliance might be partially due to anxiety-related 

factors; however, many of the previously mentioned studies examining age-related sensory 

integration differences did not include a manipulation of, or control for, levels of anxiety (Choy et al., 
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2003; Keshner & Slaboda, 2009; Slaboda et al., 2011), therefore it remains unknown exactly how 

anxiety affects sensory reweighting under conditions of congruent or incongruent visual and non-

visual information.  

The manipulation of anxiety in postural control studies has typically involved raising people 

up at height on a platform to increase perceived postural threat (Adkin & Carpenter, 2018). 

Cleworth, Chua, Inglis, and Carpenter (2016) placed young adults on a raised virtual platform while 

recording kinetic, kinematic, electromyographical, and emotional responses, and subjected them to 

unpredictable anterior and posterior support-surface perturbations. Participants displayed increased 

fear and anxiety, concurrent with increased muscle activity in the tibialis anterior prior to the 

perturbations. In response to the perturbations, participants produced increased mean lower leg 

and arm muscle activity, as well as earlier and larger Centre of Pressure (COP) displacements at 

virtual height compared to ground level. Supported by several previous studies (Cleworth & 

Carpenter, 2016; Cleworth et al., 2019; Lim et al., 2017; Phanthanourak, Cleworth, Adkin, Carpenter, 

& Tokuno, 2016), these results suggest that postural threat induces increased sensory gain as well as 

increases in EMG and sway frequency, indicative of a ‘conservative stiffening strategy’ (Carpenter, 

M. G., Frank, Adkin, Paton, & Allum, 2004; Cleworth et al., 2016). In the presence of the 

perturbation, the authors argue that the observed earlier and larger postural responses are due to 

threat-induced sensory gain and stiffness (Cleworth et al., 2016; Sinha, 1995). There are several 

studies that indicate a role of anxiety in increasing vestibular gain (Lim et al., 2017; Naranjo et al., 

2015). Similarly, previous findings have also implicated anxiety as having an augmenting effect on 

muscle spindle sensitivity (Horslen, Murnaghan, Inglis, Chua, & Carpenter, 2013).  

Aims & Hypotheses 

Overall, there appears to be a pervasive role of anxiety in affecting sensory integration 

across sensory modalities. However, the specific impact of anxiety on visual reliance is less clear. It is 

evident that further work is needed in order to better understand the influence of anxiety on 

balance-related sensory integration. The main aim of the current study was to evaluate the influence 

of increased perception of postural threat (and corresponding increased anxiety) on responses to a 

visual perturbation in both young and older adults.  

The current study used VR to manipulate perception of postural threat to increase anxiety, 

and to elicit the illusion of self-movement using a solely visual perturbation. VR enables placement 

of observers in a multitude of anxiety-inducing environments without incurring any significant 

physical risk, and, when compared to a ‘real world’ paradigm, placing someone at height in VR has 

comparable effects on postural control. As such, the integrity of the manipulation is largely 
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preserved (Cleworth et al., 2012). Our study used a paradigm similar to that of Cleworth et al. 

(2016), involving the manipulation of perceived height/postural threat. To investigate the effects of 

incongruent sensory input on balance, a visual perturbation was used whereby the participants’ 

viewpoint in VR environments was swayed in the pitch-up direction, and the postural reactions to 

this perturbation were compared between Threat levels and age groups. A physical perturbation was 

not included, to limit the number of trials. The current study used a paradigm that minimised the 

number of trials to one per condition, involving a discrete visual perturbation, in an attempt to avoid 

many of the aforementioned limitations related to within-trial modulation of sensory weighting 

(Balaban et al., 2011; Cleworth et al., 2016; Ehgoetz Martens et al., 2017; Lim et al., 2017; Staab & 

Ruckenstein, 2005; Staab, 2014).  

Since research suggests that OAs rely more on vision than YAs to control balance (Agathos et al., 

2015; Choy et al., 2003; Keshner & Slaboda, 2009; Lord & Webster, 1990; Slaboda et al., 2011), and 

that ageing is associated with impaired ability to maintain balance effectively during sensory disparity 

(Diederich, A. et al., 2008; Ramkhalawansingh et al., 2016), we predicted that OAs would show an 

increased postural response to a visual perturbation at both Ground and Threat compared to YAs. 

Given the idea that anxiety may be a significant factor contributing to these previously discussed age-

related sensory processing changes, we also predicted that both young and older adults would show 

increased postural response in reaction to the visual perturbation (i.e., show an increased reliance on 

vision) at Threat compared to Ground, concurrent with an increase in self-reported state anxiety.  

Materials & Methods 

Participants  

A cohort of 31 Young Adults (YAs) (18-30 years old, µ = 20.84, s.d. = 3.26), were recruited 

from undergraduate and postgraduate courses at Brunel University London. A cohort of 32 Older 

Adults (OAs) (65-94 years old, µ = 77.54, s.d. = 8.26) were recruited from community centres and 

local sheltered housing organisations in London. Participants in both groups had normal or 

corrected-to-normal vision, and no diagnosed neurological disorders. All participants were able to 

discuss and ask questions about the protocol and then provided written informed consent.  

Equipment 

Virtual environments were created as described in Chapter 2. The ‘Threat’ environment 

consisted of a platform atop a cliff overlooking a gully, with trees around the cliff top (where 

participants stood) and at the bottom of the gully, to provide some visual reference and enhanced 

distance perception. Presence of stable visual cues in close proximity to the viewer also serves to 
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reduce the risk of physiological height vertigo, which has been found to destabilise postural control 

(Bles, Kapteyn, Brandt, & Arnold, 1980; Brandt, Arnold, Bles, & Kapteyn, 1978; Brandt, Arnold, Bles, 

& Kapteyn, 1980). The ‘Ground’ environment consisted of a large platform at ground level, again 

with trees placed around the participant at similar distances. Both environments contained a fixation 

point placed at roughly eye level – the exact position was kept consistent between the two 

environments (see Figure 5). The Sony HTC Vive system (1080x1200 per eye resolution, 90Hz refresh 

rate, 110 degrees Field of View [FoV]) was used to display the VR environments. Kinetic data were 

recorded at 1000Hz using a Kistler forceplate (Kistler 9287BA), with feet positioned hip-width apart 

in the centre of the forceplate. Data were synchronised using an analogue output from the VR 

software. This specified the time of perturbation onset and was recorded in parallel with forceplate 

data.  

 

Figure 5. First-person views of Ground (bottom) and Threat (top) VR environments 
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Procedure 

Participants began each trial in a ‘starting position’ behind the forceplate. When given a 

verbal instruction, participants stepped forward onto the forceplate where the position of their feet 

was adjusted by an experimenter so that they were hip-width apart. The anterior edge of the 

forceplate corresponded with the anterior edge of the platform in the VR environment. At a 

randomly selected time (between 20 and 30 seconds after participants had assumed the required 

position on the forceplate and had received instructions to look at the fixation point, see Figure 3), 

participants experienced the visual perturbation described in Chapter 2: a sinusoid rotation of 5° per 

second, with both the pitch-up and returning pitch-down motions each lasting 1000ms. To ensure 

participants’ safety during the experiment, they were secured in a fall-arrest harness throughout the 

experiment. 

We included only a single perturbation (i.e., trial) within each condition to avoid potential 

sensory re-weighting effects that might occur once participants adapt to, or become aware of, 

visual-vestibulosomatosensory conflict, whereby Centre of Mass (COM) displacement and 

dependence on visual information reduces significantly in response to multiple perturbations 

following an initial perturbation (Bronstein, 1986; Bronstein, 2019; Jeka, Allison, & Kiemel, 2010; 

Nishiike et al., 2013; Oude Nijhuis et al., 2009; Pavol et al., 2004). This limited time spent in VR to 

under 2 minutes per condition, which also minimised the degree to which participants became 

familiar with the Threat environment, in an attempt to minimise any habituation to the threat that 

may incur downweighting of vision (Nishiike et al., 2013; Wuehr et al., 2019). The order of conditions 

was counterbalanced to account for the possibility that participants would start to predict the 

occurrence and/or timing of perturbation in the second trial. After each perturbation, while still 

viewing the VR environment, participants completed a verbal state anxiety self-report; the Mental 

Readiness Form (MRF) (Krane, 1994). The MRF uses three questions regarding feelings of worry 

(cognitive anxiety), body tension (somatic anxiety), and confidence, scored on a scale of 1 to 113.  

Analysis 

Anxiety 

In this study, the three MRF scores were summed to give a maximum possible score of 33, 

with higher scores reflecting greater state anxiety. 

 
3 Note, since a higher score in response to the confidence question denotes less state anxiety, the confidence 
subscale was reverse coded so that summing the scores gives a score where high scores represent increased 
anxiety. 
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COP Data 

Data were filtered (second order low-pass Butterworth filter with a cut-off frequency of 5Hz) 

in MATLAB (The Mathworks Inc., 2017), and characteristics of participants’ COP displacement 

following the visual perturbation was evaluated by selecting filtered data from a six-second time 

window starting at three seconds prior to perturbation onset. The value of each participant’s mean 

position during the three seconds prior to perturbation onset was subtracted from the position of 

their anterior peak occurring within the first 1000ms following perturbation onset, giving the 

primary outcome measure of Relative Anterior Peak (RelAP). This variable expresses the amplitude 

of initial anterior sway response as participants attempt to correct for their perceived posterior 

motion. Given that foot position is difficult to control when using VR, we avoid direct comparison of 

absolute values. Following work by Keshner and Slaboda (2009), we expect that RelAP will increase 

during Threat due to the hypothesised increased reliance on visual information with anxiety. We also 

expect that those in the OA group will show an increased overall response compared to YAs. 

To gain additional insight into the spatiotemporal nature of COP responses that contribute 

to the postural response, we isolated other specific components of the COP response. The time 

taken to reach their anterior peak (AP Latency) was analysed between conditions and groups. 

Previous research has found Threat-related decreases in the time taken to reach peak position in 

response to a perturbation (Cleworth et al., 2016; Sibley, Mochizuki, Frank, & McIlroy, 2010), and 

that age tends to increase this latency of response (Lin, S. & Woollacott, 2002). Therefore, in young 

adults, we expect that AP Latency will be reduced in Threat compared to Ground; this may also occur 

in OAs, but we do expect a longer latency overall in this group given previously demonstrated age-

related latency increases (Lin, S. & Woollacott, 2002). See Table 3 for means and standard deviations 

of each measure, and Figure 6 for a graphical representation of these measures.  
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Figure 6. A graphical representation of the outcome measures and the angular displacement of the 
visual perturbation used in this study. 

Statistics 

For each case where data were non-normally distributed, we performed a log 

transformation. Where data became normal, the log transformed data were entered into an 

appropriate ANOVA with Bonferroni correction. Where data remained non-normal after log 

transformation, we used non-parametric tests on the original data, which tested for differences 

between conditions within each age group, and between age groups, for each condition. Any 

outliers/participants with z-scores over 3 (or less than -3) for any measure were removed from 

analysis of that measure.  

MRF data were not normally-distributed and were not made normal following log-

transformation. Therefore, non-parametric tests were used to compare results between groups and 

conditions. RelAP data were not normally-distributed but became so following log transformation 

and adding a constant to each value to allow for log-transformation of negative values, therefore 

were analysed using a mixed ANOVA. AP Latency data were not normally-distributed for either 

group; log transforming was unsuccessful, therefore appropriate non-parametric tests were used to 

analyse differences between conditions and groups. 
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Figure 7. Raw traces of young adults’ anterior-posterior COP displacement during quiet standing and 
during the perturbation at Ground, normalised to the 3s baseline mean with overlaid perturbation 
waveform. Values in red indicate Euler angles. 

 

 

Figure 8. Raw traces of young adults’ anterior-posterior COP displacement during quiet standing and 
during the perturbation at Threat, normalised to the 3s baseline mean with overlaid perturbation 
waveform. Values in red indicate Euler angles. 
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Figure 9. Raw traces of older adults’ anterior-posterior COP displacement during quiet standing and 
during the perturbation at Ground, normalised to the 3s baseline mean with overlaid perturbation 
waveform. Values in red indicate Euler angles. 

 

Figure 10. Raw traces of older adults’ anterior-posterior COP displacement during quiet standing and 
during the perturbation at Threat, normalised to the 3s baseline mean with overlaid perturbation 
waveform. Values in red indicate Euler angles. 
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Results 

Anxiety 

Results showed a significant effect of Threat condition, with both age groups reporting 

significantly strongly increased state anxiety during Threat compared to Ground (p < 0.001, Z = 

3.916, r = 0.715 for YAs; p < 0.001, Z = 4.543, r = 0.844 for OAs; Wilcoxon Signed Rank Tests, alpha = 

0.025). No effect of Group was found at either Ground (p = 0.607, Z = 0.515, r = 0.07) or Threat (p = 

0.519, Z = 0.645, r = 0.08; Mann-Whitney U Tests, alpha = 0.025). 

RelAP (Relative Anterior Peak) 

A mixed ANOVA revealed a main effect of Threat (F(1, 57) = 12.55, p = 0.001, ηp
2 = 0.18), i.e., 

both groups showed significantly increased anterior peak relative to mean baseline position at 

Threat compared to Ground. There was also a main effect of Group, where OAs showed significantly 

increased RelAP across conditions compared to YAs (F(1, 57) = 5.88, p = 0.019, ηp
2 = 0.093). There 

was no interaction between Group and Threat conditions (F(1, 57) = 0.348, p = 0.558, ηp
2 = 0.006). 

See Figure 5. 

AP Latency 

In YAs, the AP response latencies were significantly moderately increased at Threat 

compared to Ground (p = 0.023, Z = 2.277, r = 0.409). This effect was not observed in OAs (p = 0.813, 

Z = 0.237, r = 0.043; Wilcoxon Signed Rank Tests, alpha = 0.025). However, there were no observed 

group differences at either Ground (p = 0.293, Z = 1.051, r = 0.134) or Threat (p = 0.176, Z = 1.353, r = 

0.172; Mann-Whitney U Tests, alpha = 0.025). 
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Table 3. Means and standard deviations for each measure of COP response and state anxiety 

Group Condition RelAP 
(mm) 

AP Latency 
(ms) 

 

State Anxiety  
(max. score = 33) 

YAs Ground 1.10 (2.47)  358.81 (329.35)  5.10 (3.13)  

Threat 3.14 (3.14) 559.81 (385.71) 13.27 (8.46) 

OAs Ground 2.59 (2.66)  447.97 (348.00) 5.90 (4.17) 

Threat 4.63 (4.57) 427.29 (316.06)  14.93 (9.06) 

Values are in the form of µ(s.d.). * indicates significance at alpha level 0.017; ** indicates 
significance at alpha level 0.01; *** indicates significance at alpha level 0.001. 

Correlational Analyses 

Given the non-normally distributed nature of the Anxiety data, Spearman’s rho correlations 

were performed to check for correlations between state anxiety levels and postural behaviour. In 

YAs, there were no significant correlations between RelAP and Anxiety at either Ground or Threat. In 

OAs, these variables were significantly moderately correlated at Threat (p = 0.013, r = 0.413), but not 

at Ground (see Table 4). There were no correlations in either group between Anxiety and AP 

Latency. 

Table 4. Results of the correlational analysis between several outcome measures in both groups in 
both conditions. 

Group Condition Anxiety/RelAP Anxiety/AP Latency 

YAs Ground 0.261; 0.086 0.028; 0.443 

Threat -0.006; 0.487 -0.151; 0.213 

OAs Ground -0.065; 0.369 -0.302; 0.056 

Threat 0.413; 0.013* -0.102; 0.299 

Values are one-tailed Spearman r followed by the p-value. * indicates significance at alpha level 
0.017. 

 

 ** 

 *** 

 *** 

 ** 

 

 

 * 

 * 
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Figure 11. Line graph of mean RelAP (pre-log transformation) for YAs and OAs at both Ground and 
Threat, showing a significant increase in RelAP with both Threat and Age. * indicates significance at 
alpha level 0.05; ** indicates significance at alpha level 0.01. 

Discussion 

The primary aim of the current study was to investigate whether anxiety is a significant 

factor contributing to changes in sensory reweighting. To this end, this study examined whether a 

heightened perception of postural threat serves to increase reliance on vision to maintain balance, 

as measured through the behavioural sway response to a visual perturbation. By utilising a discrete 

visual perturbation paradigm to separate visual and non-visual sensory inputs, this study is the first 

to show direct evidence for increased state anxiety eliciting greater reliance on vision, resulting in a 

destabilising effect on orthostatic balance control. This discussion will first review the overall effects 

of postural threat on visual reliance, followed by a discussion of the observed age effects.  

Increased Reliance on Vision with Postural Threat 

Our primary outcome measure of Relative Anterior Peak (RelAP) indicates a significantly 

increased response to the visual perturbation at Threat compared to Ground, suggesting a significant 

effect of increased state anxiety on visual reliance. These observations are in line with previous 

findings that indicated an increase in visual reliance with anxiety (Jacob et al., 1995; Jacob et al., 

2008), but provide direct evidence in a manner than is less susceptible to reweighting. Concurrent 
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with this measure, the latency of response was increased at Threat compared to Ground in YAs. 

Previous studies have observed reduced latencies with postural threat (Cleworth et al., 2016; Sibley 

et al., 2010). Presumably, in the current study, the effect of postural threat on the magnitude of the 

anterior peak response on YAs was great enough that these participants took longer to reach their 

anterior peak compared to ground. 

The protocol of relying on only a single trial (i.e., perturbation) per condition is potentially 

volatile, and interferes with the ability to make more definitive conclusions about individual 

responses. Previous studies in this field use continuous oscillating visual perturbations paired with 

longer trials (Slaboda et al., 2011) that allow for more reliable interpretation of individual mean 

responses. However, Jeka, Allison, and Kiemel (2010) demonstrated down-weighting of visual input 

during repeated visual perturbations in trials of shorter duration than those used by the 

aforementioned studies. While we acknowledge that discrete perturbations and limited trial 

protocols (as employed here) present their own challenges and confounds, we also argue that this 

approach largely bypasses the issue of progressive down-weighting of visual input that presumably 

occurs when this information is deemed unreliable following prolonged trials with repeated 

perceptible perturbations (Bronstein, 2019; Shumway-Cook & Horak, 1990). As such, we argue that 

increased perceived postural threat does indeed increase visual reliance, and that the outstanding 

questions now relate to factors that influence the rate of down-weighting. 

Effects of Ageing 

Our second main conclusion is that Older Adults (OAs) appear to rely more on vision for 

balance control than YAs, even in the absence of postural threat. This conclusion is driven by group 

differences observed across outcome measures. First, we observed significantly greater RelAP in OAs 

compared to YAs across both conditions, indicating a greater reliance on visual input for self-motion 

information. While there was no significant group effect in AP Latency, this measure was 

significantly increased by Threat in YAs, but not OAs. This could indicate age-related differences in 

how the processing of incongruent sensory inputs is affected by increased anxiety. Others have 

demonstrated that OAs are less tolerant of incongruent sensory cues (Berard, Fung, & Lamontagne, 

2011; Deshpande & Patla, 2007) whereby they are less able to integrate multiple inputs as 

effectively as YAs to maintain balance. Basharat, Mahoney, and Barnett-Cowan (2019) suggest 

decline in GABA concentration as a potential culprit in age-related multisensory processing deficits, 

particularly when attempting to judge the temporal order of different senses (Lupo & Barnett-

Cowan, 2018). In the current study, these differences could be influencing postural performance at 

Ground, resulting in less capacity for change in OAs’ postural behaviour between Ground and Threat 
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i.e., a ceiling effect. We speculate that, since OAs are potentially less able to distinguish relevant 

sensory signals from noise (Mozolic et al., 2012), OAs may have taken longer to process the incoming 

discrepant sensory information (Diederich, A. et al., 2008), leading to a delay in response, even at 

Ground. However, increased response amplitudes observed in OAs’ RelAP suggest that, once the 

sensory discrepancy has been ‘detected’, OAs rely more on visual than non-visual input. These 

results could be indicative of a ‘ceiling effect’, whereby RelAP was already at a sufficiently large 

amplitude at Ground that the increase in state anxiety at Threat had relatively little effect. This 

suggests that the observed Threat-related changes in YAs could be predominantly responsible for 

driving the main effect of Threat on RelAP magnitude (see Figure 11).  

A relationship was observed between sway response and anxiety, as demonstrated by the 

significant correlations between RelAP and state anxiety whereby these postural responses were 

higher when participants reported greater anxiety. However, this correlation was only significant in 

OAs. While this may be due to a lesser range of values in YAs, we suggest that, for OAs, anxiety 

about falling may represent an emotion that is more meaningful and representative of that 

encountered in daily life (Legters, 2002; Scheffer et al., 2008). As such, during Threat trials where 

participants self-report greater anxiety (see Table 1), OAs may have employed mechanisms (e.g., for 

consciously controlling movement) that represent familiar changes in attention and balance control 

(Ellmers et al., 2019b). As suggested by previous work (Eikema et al., 2013; Hawkes et al., 2012), this 

may have contributed to an increased reliance on vision and therefore increased RelAP in response 

to the visual perturbation.  

With no discernible differences between groups in anxiety levels in the present study, group 

differences in postural response measures indicate that age-related factors (other than anxiety) are 

primarily responsible for driving increased reliance on vision (Choy et al., 2003; Diederich, A. et al., 

2008; Hausdorff et al., 2001; Horak et al., 1989; Tinetti et al., 1988), even in our relatively healthy, 

low-risk older group. Recent research has attempted to further elucidate how sensory reweighting 

during balance maintenance is affected by ageing. Ramkhalawansingh et al. (2018) found age-

related decline in visual-vestibular integration during self-motion perception, albeit not in the 

context of heightened anxiety. Jeka et al. (2010) demonstrated increased reliance on visual 

information in older adults compared to younger adults, and showed that older participants are 

slower at reweighting visual information when exposed to high amplitude visual stimuli. This 

difference was also apparent between healthy older adults and their age-matched fall-prone 

cohorts, where fall-prone OAs were even more reliant on vision than OAs at a low risk of falling. 

Alberts, Selen, and Medendorp (2019) suggest that this age-related increase in visual reliance may 

be due to increased noise in the vestibular system. These age-related changes in sensory processing 
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could explain the group differences observed in the current study, whereby factors such as increased 

vestibular noise in the OA group could have resulted in their increased reliance on vision, thus their 

increased response to the visual perturbation even in the absence of anxiety at Ground. 

An additional explanation for age-related differences in observed postural responses 

between conditions relates to where participants allocated attention. Some argue that attention 

may be a key factor in mediating the effects of anxiety/postural threat on balance control (Adkin & 

Carpenter, 2018; Zaback, M., Carpenter, & Adkin, 2016). Increasing postural threat by raising 

participants 3.2m above ground level produces an increase in self-reported conscious control of, and 

concern about, posture, compared to when standing at ground level (Adkin & Carpenter, 2018). 

Following this work, Zaback, Carpenter, and Adkin (2016) found increased allocation of 

attention to self-monitoring of movement and self-regulatory strategies at height (compared to 

ground). The authors suggested that allocating attention towards self-body movement may 

represent a priming of ‘bottom-up’ processes, since other research indicates gain increases in 

proprioceptive (Davis et al., 2011) and vestibular (Naranjo et al., 2015) inputs with postural anxiety 

(not specific to increased conscious control). Furthermore, Reynolds (2010) demonstrated that 

conscious control of movement can attenuate long-latency vestibular-evoked postural responses, 

i.e., voluntary conscious regulation of postural control can directly influence output from the 

vestibular system. Since OAs are more likely to consciously monitor and control movement 

(Boisgontier et al., 2013; Chow et al., 2018) it is possible that the OAs in the current study increased 

the conscious monitoring/control of their movement during both conditions, eliciting changes in the 

gain of different sensory inputs, thus resulting in increased visual reliance/postural response 

compared to YAs.  

Limitations 

The mean response latencies observed in this study are greater than those typically 

discussed in previous literature (Cleworth et al., 2016; Keshner & Slaboda, 2009; Lin, S. & 

Woollacott, 2002). However, the visual perturbation used in the current study was much slower than 

those in previous studies (Keshner and Slaboda (2009), for example, used perturbations occurring at 

a speed of 30°/s – six times faster than the perturbation in the current study). Combined with the 

sinusoidal nature of this perturbation, this suggests that the responses seen at these latencies were 

visually driven. Furthermore, given that this particular perturbation type has not been used in 

previous studies, there was no specific precedent for removing responses occurring at any given 

time from analysis. It is important to note that perceptual integration of multimodal stimuli is not a 

linear process; studies have shown that even young, healthy individuals reweight these inputs 
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differentially (Streepey, Kenyon, & Keshner, 2007). Again, given the relatively novel nature of the 

perturbation characteristics utilised here, it is difficult to characterise/classify between-subject 

differences in response to the perturbation (such as early vs. late responses that may indicate more 

vs. less visual dependence), since there is little precedence in the current paradigm to classify these 

potential groups. While conducting a rod-and-frame test prior to the VR session may have given 

some insight into individual levels of visual dependence, these scores are not typically correlated 

with subsequent postural reactions to perturbations/visual flow stimulations (Slaboda et al., 2011), 

and therefore would not be useful for categorising participants’ postural responses in this context. 

Another limitation is the use of a perturbation that contains a reversal in direction after the first 

1000ms of posterior motion. While this was designed to be representative of a real-life momentary 

loss of balance, this prevents analysis of postural behaviour in the latter half of the perturbation 

period, since we cannot determine whether the subsequent post-reversal postural behaviour is 

influenced by attempts to return to upright standing or continued visual influence of the 

perturbation. Future studies may endeavour to optimise the use of visual stimuli in VR to accurately 

measure postural responses without such confounding factors while still avoiding potential effects of 

habituation or loss of realism. 

All participants using vision-correcting equipment (e.g. glasses, contact lenses) wore them in 

the VR environment. Since the main comparison in this study related to a within-subjects design, the 

nature of corrected vision remains consistent across comparisons. One potential issue is that more 

OAs wore glasses than YAs, and it is possible that the frames of the glasses may have caused some 

occlusion of the peripheral visual field. However, by partially obscuring peripheral vision, one would 

expect participants to show attenuated postural responses to the visual perturbation by virtue of the 

reduced saliency of the perturbation, relative to other available sensory information. On the 

contrary, since OAs showed an increased sway response, we do not consider the fact that more 

participants wore glasses in this group to be a major confound. Avoiding the use of corrective lenses 

in older cohorts represents a logistical challenge and could introduce issues relating to recruitment 

bias; it is hoped that future work may endeavour to account for this issue through use of in-built 

corrective lenses within the VR headset. 

As a study on the effects of postural threat during orthostatic balance, the extent to which 

these findings can be extrapolated to interpret behaviours observed during gait are limited, but 

future research combining a dynamic task such as treadmill walking with postural threat in VR could 

elucidate this issue of how sensory reweighting during locomotion might be affected by increased 

state anxiety. Similarly, in the absence of any direct measure indicating how other senses were 

utilised, we are limited to drawing conclusions related to increased visual reliance, and not reliance 
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on specific proprioceptive or vestibular input. Previous research has demonstrated that increased 

postural threat results in upregulation of proprioceptive signals (e.g. muscle spindle sensitivity 

(Horslen et al., 2013) and increased perception of sway (Cleworth & Carpenter, 2016)). We speculate 

that, while these incoming non-visual signals are subject to anxiety-related gain increases (Cleworth 

& Carpenter, 2016; Davis et al., 2011; Horslen et al., 2013; Horslen et al., 2014; Lim et al., 2017), the 

CNS still down-regulates their relative contribution during the integration process in favour of 

prioritising visual input. Since voluntary control of movement can modulate balance-related 

vestibular responses, it would be informative to focus future efforts on evaluating whether explicit 

manipulation of attention (either inward i.e., movement processes/proprioception, or outward i.e., 

visual cues) might change sensory re-weighting during periods of anxiety and discrepant sensory 

input.  

Conclusions 

Our findings indicate that perception of increased postural threat leads to increased reliance 

on vision to control balance. Our results strengthen the foundation for concluding that a causal link 

exists between increased anxiety and visual reliance, and support the use of a limited-trial paradigm 

for investigating the effects of postural threat on visually-evoked postural responses. This study also 

demonstrates an age-related increase in postural sway in response to sensory incongruence, with an 

age-related increase in visual reliance that is not fully explained by increased anxiety, thereby 

prompting further suggestions for alternative factors that may be responsible for intolerance of 

sensory disparity and (ultimately) impaired balance control. While previous studies have drawn 

similar conclusions, we argue that they have only ever been founded on indirect evidence and/or 

using longer trial durations with continual perturbations, where participants could potentially 

reweight their reliance between senses during the trial, or excluded the use of postural threat. The 

current study represents the first instance where a single trial per condition protocol containing a 

discrete perturbation has been used, thus providing direct evidence for increased visual reliance 

while largely avoiding the main confounds present in previous work. Future research in this field 

would benefit from investigating the temporal nature of reweighting visual input in favour of other 

senses during sensory discrepancy. 
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Chapter 4. 

Study 2: The Effect of Postural Threat on Visual Reliance for Balance Control in a Clinical Setting: 
Parkinson’s Disease 

In Chapter 3, we observed that older adults (OAs) display postural behaviour consistent with 

more reliance on vision than younger adults (YAs) despite comparable levels of self-reported anxiety, 

and even in the absence of postural threat. Therefore, it appears that other age-related changes in 

sensory integration may be influencing the upweighting of vision. 

As previously described in Chapters 1 and 3, sensory integration literature suggests 

impairments in some senses may lead to upweighting of others. This is particularly relevant in 

neurodegenerative diseases such as Parkinson’s, characterised by deficits in the motor system and 

sensory inputs relevant to self-motion. In this neurodegenerative disease, a reduction in dopamine 

production from the basal ganglia produces debilitating paucity of movement, which may be 

manifested through tremors, bradykinesia (slowness of movement), and akinesia (lack of normal 

movement) (Nieuwboer, Weerdt, Dom, & Lesaffre, 1998).  

Proprioceptive Deficits in Parkinson’s Disease 

A decline in proprioceptive function is typical in PD (Konczak et al., 2009), both as a result of 

the basal ganglia damage from the disease itself (Maschke, Gomez, Tuite, & Konczak, 2003; 

Maschke, Tuite, Krawczewski, Pickett, & Konczak, 2006) and possibly because of the dopaminergic 

medication taken to reduce parkinsonian symptoms (O'Suilleabhain, Bullard, & Dewey, 2001). A 

review by Konczak and colleagues (2009) discusses the impairments in the basal ganglia resulting in 

noisy and abnormally-timed signals propagating to the motor system, leading to a downweighting of 

proprioceptive input. This impairment in proprioceptive function is likely to elicit a larger reliance on 

non-proprioceptive input such as vision (Bronstein, 2019; Butler et al., 2010; Knill & Pouget, 2004).  

These deficits (and subsequent effects) are apparent in studies on sensory reweighting and 

postural behaviour. Bronstein, Hood, Gresty, and Panagi (1990) compared the postural response to a 

visual perturbation between PD patients and healthy controls. Participants stood on an earth-fixed 

platform, which measured centre of force displacement in a room with movable walls. In controls, 

sway was attenuated during the second perturbation compared to the first perturbation. PD 

patients, in contrast, were not able to attenuate their body sway despite repeated exposure to the 

perturbation.  This, argue Bronstein and colleagues, illustrates how, in order for a response to an 

erroneous sensory signal to be suppressed, information from a different reliable source must be able 

to be processed. In this case, healthy adults can suppress the response to visual stimulus because 
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their proprioceptive system is able to correctly process incoming proprioceptive signals, thus 

restoring balance control appropriate for the situation. However, for those with PD, the 

proprioceptive system is impaired, thus proprioceptive information is not available for use of 

stabilising the body once visual input is deemed unreliable. Therefore, the reliance remains largely 

on the visual system, resulting in VEPRs that are no smaller than in response to the first 

presentation. This suggests that PD patients are less able to recruit proprioceptive input for balance 

control when other senses (such as vision) are erroneously incongruent with inertial cues. It is also 

worthwhile to note that while deficits in low-level vision have also been well-documented in 

Parkinson’s Disease (Bodis-Wollner et al., 1987; Bulens, Meerwaldt, Van der Wildt, & Van Deursen, 

1987; Diederich, N. J., Raman, Leurgans, & Goetz, 2002; Weil et al., 2016) these are unlikely to affect 

self-motion perception (Halperin et al., 2020). Thus, it is unlikely that these visual deficits would 

dissuade the sensory integration system from relying on vision as opposed to impaired 

proprioception.  

Freezing of Gait 

This is particularly problematic for a subset of PD patients who also suffer from a specific 

symptom called “Freezing of Gait” (FOG), characterised by a compromised ability to initiate or 

continue self-generated movement, particularly walking (Hausdorff et al., 2003; Vandenbossche et 

al., 2013). While Bronstein and colleagues’ study (1990) shows the impact of PD in a basic 

environment, it did not include a manipulation of anxiety, which seems to be particularly 

problematic for PDs with FOG (PD+FOG; (Witt, Ganjavi, & MacDonald, 2019). Many studies have 

found a positive association between anxiety levels and FOG severity (Lieberman, 2006; Pimenta et 

al., 2019; Walton et al., 2015). Furthermore, manipulating anxiety in PD patients with FOG 

exacerbates motor symptoms; Ehgoetz Martens, Ellard, and Almeida (2013) exposed PD patients 

(with and without FOG) to both a non-threatening and a threatening (being placed at height) VR 

environment. Participants were instructed to walk while their gait was recorded. Those with FOG 

experienced significantly increased motor symptoms during the threatening environment than the 

non-threatening, while those without FOG had comparable gait characteristics across both 

environments. In subsequent research, rather than examining motor symptoms associated with 

PD+FOG, it remains to be seen if these manipulations of anxiety will influence visual reliance. If so, 

any observed changes in reweighting might be implicated in contributing to motor symptoms in 

PD+FOG.  

While several recent studies suggest persistent upweighting of vision in PDs compared to 

healthy OAs and YAs, these studies use multiple and/or repeated trials (e.g. (Yakubovich et al., 
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2020). Therefore, it is unclear what happens during an unexpected perturbation without the 

possible confounds of repeated exposure to the sensory incongruence – especially in with those with 

FOG. The current study is novel in that it uses a single perturbation (i.e., experience of vection) per 

condition. The novelty of using a single perturbation avoids the potential confounding factors of 

using repeated trials – namely habituation to the stimulation. As trials are repeated, the observed 

behaviour may mask any initial reweighting effects that could be present during the first/early 

unexpected (part of the) stimulation. 

Aims & Hypotheses 

Since postural anxiety has been demonstrated to elicit altered sensory reweighting 

((Cleworth et al., 2012; Cleworth & Carpenter, 2016; Cleworth et al., 2016); Chapter 3), and to be 

particularly problematic for PD patients with FOG (see Chapter 1; (Ehgoetz Martens et al., 2017)), it 

would be beneficial to discover a) whether increased reliance on vision in PD patients with patients 

with FOG compared to healthy controls will still be observed in a VR environment using a limited-

perturbation paradigm (where the visual perturbation is sudden/unexpected, therefore mitigating 

habituation effects), and b) how this effect might be exacerbated by increased anxiety; we might 

expect a particularly strong VEPR in PD patients with FOG during postural threat compared to their 

healthy cohorts. With the pathogenesis of FOG not being well-understood, and the relative 

ineffectiveness of treatments (Nutt et al., 2011), there is clearly a need for more in-depth 

understanding of the underlying mechanisms of sensory reweighting in PD+FOG. This, ideally, will 

lead to more effective interventions and therapeutic techniques to improve quality of life from 

people with PD and FOG. 

Therefore, the aim of the current experiment is two-fold. First, we aim to examine the effect 

of sensory disparity on VEPRs in a population affected by proprioceptive and motor impairments 

compared to healthy controls, who have arguably less propensity to rely on vision compared to PDs 

with FOG. Second, to look at relevant effects of postural threat in this patient population, which will 

also be compared to their healthy cohorts. The current experiment uses the original paradigm as 

described in the previous chapters. We first hypothesise that PDs with FOG will rely more heavily on 

vision than their healthy equivalents, and that this will be manifested through increased COP 

displacement (primarily an initial anterior COP response to the pitch-up perturbation) in participants 

with PD+FOG compared to healthy controls in a ground-level environment. Second, we predict that 

this effect will be exacerbated by changes in balance-related sensory reweighting precipitated by 

postural threat, with the PD+FOG group showing a larger increase in COP measures and self-

reported state anxiety than healthy controls. 
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Materials & Methods 

Participants 

23 people with Parkinson’s Disease, who all reported some degree of Freezing of Gait 

(PD+FOG), were recruited via various Parkinson’s Disease support and research groups throughout 

the UK. The age group ranged from 48 to 83 (µ: 70.98, s.d.: 8.56). All participants in the PD+FOG 

group completed the experiment between one and two hours after medication dosage (i.e., during 

the ON state). Twenty-three healthy age-matched older adults (OAs) were primarily recruited 

through Brunel Older people’s Reference Group (BORG), with a few participants recruited via their 

accompaniment of PD+FOG participants. All PDs completed the FOG questionnaire (Giladi et al., 

2000), and the Montreal Cognitive Assessment (MoCA; (Nasreddine et al., 2005). All PD patients 

scored at least 22 on the MoCA, above the threshold for cognitive impairment (Trzepacz et al., 

2015). While we were unable to recruit a non-FOG PD group for comparison, the FOG questionnaire 

allows for correlation analysis to assess any within-group effects of FOG severity on postural 

behaviour. Since the study paradigm required participants to be able to step safely on and off a 

forceplate and stand unaided (other than the safety harness), all PD participants participated in the 

study during the “on” state of their PD medication. While an “on” state may mask some between-

subject differences that we may see in “off” state PD participants, the stress that may have been 

experienced by PD participants caused by movement difficulties usually ameliorated by medication 

would arguably have confounded our results. Approval to conduct the study was obtained from the 

Brunel University Ethics Committee, and all participants gave written informed consent. 

Equipment 

 Equipment remained the same as the previous study; see Chapter 3. 

Procedure  

The procedure followed that of the previous experiment/chapter – two trials, one at Ground 

and one at Threat, each consisting of a short period of quiet standing in the VR environment 

followed by a 2-second visual perturbation (1 second sinusoid movement of 5 degrees in the pitch-

up direction followed by a second sinusoid movement of 5 degrees in the pitch-down direction back 

to upright). As previously mentioned, prior research has used paradigms involving repeated and/or 

prolonged presentations of perturbations and/or sensory incongruence. While multiple/prolonged 

trials obviously increase the power of the observed results, this method risks confounding the 

findings with reweighting that may occur over multiple or long trials (Bronstein, 1986; Bronstein, 

2019; Jeka et al., 2010; Nishiike et al., 2013; Oude Nijhuis et al., 2009; Pavol et al., 2004). Thus, the 
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perturbations (i.e., trials) were limited to one per condition. Each trial was followed by verbal 

completion of the Mental Readiness Form (MRF) questionnaire (Krane, 1994).  

Analysis 

Measured variables remained the same as the previous experiment/chapter. Self-reported 

anxiety levels during each condition were measured through scores given on MRF following each 

trial. Relative Anterior Peak (RelAP) was the measurement of initial compensatory movement (in the 

anterior-posterior plane) in reaction to the initial pitch-up motion of the visual perturbation. This 

served as a measure of reliance on visual information. Anterior Peak Latency (AP Latency) was the 

measurement of time taken to reach the anterior peak following the perturbation onset, and served 

as a measure of response time to the stimulation.  

Statistics  

Where data were non-normally distributed, they were log transformed. If successful, the 

transformed data were entered into appropriate parametric analyses. If not, appropriate non-

parametric analyses were applied. Any multiple comparisons received appropriate corrections, and 

any outliers were removed from the relevant analysis. 

Results 

Anxiety 

Non-parametric analyses revealed a significant effect of Threat on MRF scores for both 

groups (PDs: p = 0.001, Z = 3.405, r = 0.743; OAs: p < 0.001, Z = 3.728, r = 0.814; Wilcoxon Signed-

Rank tests). There were trends towards PDs reporting higher levels of state anxiety than OAs at both 

Ground (p = 0.042, Z = 2.033, r = 0.314) and Threat (p = 0.04, Z = 2.055, r = 0.317), but these were 

not significant after adjustment for multiple comparisons. 

RelAP (Relative Anterior Peak) 

A Mann-Whitney U test revealed no effect of Group at Ground (p = 0.318, Z = -1, r = 0.209). 

This result was also true for Threat (t(44) = 0.187, p = 0.853). No effect of Threat was found for 

either PDs (p = 0.503, Z = 0.669, r = 0.140; Wilcoxon Signed-Rank test) or OAs (t(22) = 2.082, p = 

0.049; not significant following adjustment for multiple comparisons). A Levene’s test of equality of 

variances showed a violation at Ground, with variability being greater in the PD group than in the 

OAs. 
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AP Latency 

A mixed ANOVA showed no effect of Threat (F(1, 44) = 1.941, p = 0.171, ηp
2 = 0.042), but a 

main effect of Group was significant (F(1, 44) = 5.857, p = 0.020, ηp
2 = 0.117), with PD patients 

showing a larger delay between perturbation onset and subsequent postural reaction compared to 

OAs. There was no significant interaction between Threat and Group (F(1, 44) = 0.891, p = 0.350, ηp
2 

= 0.020).  

Table 5. Means and standard deviations (of original non-log-transformed data) of state anxiety at 
both levels of threat, for both PDs and OAs. 

  RelAP 

(µ(sd); mm) 

AP Latency 

(µ(sd); ms) 

State Anxiety 

µ(sd); max score 33 

PDs Ground 3.816 (4.944) 620.09 (352.415)  8.81 (6.445)  

Threat 4.540 (5.319) 450.13 (337.534) 16.95 (8.028) 

OAs Ground 1.649 (2.240) 409.35 (322.499) 5.05 (3.471)  

Threat 4.680 (4.162) 379.30 (275.194) 11.9 (9.165) 

Values are in the form of µ(s.d.). * indicates significance at alpha level 0.017; *** indicates 
significance at alpha level 0.001. 

Initial Conclusions 

Firstly, the absence of a significant difference in RelAP between groups indicates that 

Parkinson’s Disease with Freezing of Gait has no effect on the magnitude of response to a visual 

perturbation, therefore we must reject our hypothesis that people with PD and FOG rely more 

heavily on visual input than their healthy cohorts. In other words, we cannot conclude from this 

initial result that the severity of PD symptoms influences sensory reweighting. Further correlation 

analysis will elucidate the nature of these findings (see below). 

While primary analysis did not reveal significant effects on response magnitude, group 

differences became apparent in response latency. AP Latency was significantly increased in PDs 

compared to the healthy OAs. This suggests that, while the magnitude of the postural response to 

the perturbation was similar between groups, the PD group response was delayed compared to the 

healthy OA group, indicating an impairment in sensory integration in PDs with FOG. This suggests 

that PD with FOG may influence the time taken to detect a disparity in sensory modalities, 

concurrent with previous research. For example, Falkenstein and colleagues (2001) found that basal 

ganglia deficits are linked to error detection in PDs.  

 

 

 * 

 *** 

 *** 
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Although all participants did self-report as being significantly more anxious at Threat than 

Ground, this did not translate to a change in magnitude of response to the perturbation in either 

Group. This is not necessarily surprising given the effects discussed in the previous chapter regarding 

a possible ceiling effect, where older participants may already be reacting to such a degree at 

Ground level that this cannot be further exacerbated by postural threat. Furthermore, we do see a 

trend of PDs reporting higher anxiety levels than OAs during both conditions. Postural anxiety may 

be more relevant in the PD group, supporting the idea that PDs (especially those with FOG) 

experience increased anxiety about falling (fear of falling; FOF) (Adkin, Frank, & Jog, 2003). The 

significantly increased variance in PDs’ RelAP during Threat may point to a significant between-group 

difference in response magnitude being masked by the response variance in this group. 

Prior to more in-depth interpretation, and in order to further elucidate the nature of these 

results, further analyses on the relationship between FOG scores and postural behaviour were 

performed on the data from the PD+FOG group.  

Correlational Analyses 

As we were primarily concerned with whether or not severity of Freezing symptoms have an 

effect on postural behaviour at baseline, the correlations were performed for data collected at 

Ground only. Scores representing increased freezing severity were predicted to positively correlate 

with increased postural response (RelAP and AP Latency). Since the order of conditions was 

counterbalanced for each participant, it was necessary to ascertain that the order of conditions did 

not affect postural response magnitude or latency. No effect of trial order was found; see Table 6. 

Table 6. Test and significance values of independent samples t-tests comparing trial order groups on 
amount of change in postural responses between Ground and Threat.  

PDs 

RelAP Z = 1.799; r = 0.375; p = 0.077 

AP Latency t(21) = 1.14; p = 0.267 

OAs 

RelAP t(21) = 0.43; p = 0.671 

AP Latency t(21) = 1.621; p = 0.120 

Data pertaining to RelAP in the PD group were not normally distributed, therefore a Mann-Whitney U 
test was used to analyse the difference between trial order groups for this variable. 

Subsequently, one-tailed Spearman’s correlations were conducted to check for a 

relationship between RelAP at Ground and participants’ scores on the Freezing of Gait 

questionnaire. FOG score was significantly negatively correlated with RelAP (r = -0.443, p = 0.022; 
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see Table 7). Appropriate correlations were conducted to check for a relationship between AP 

Latency at Ground and FOG. There was a trend of FOG score positively correlating with AP Latency (r 

= 0.385, p = 0.042).  

Table 7. Correlations between RelAP/AP Latency at Ground and participants' FOG scores. 

* indicates significance at alpha level 0.025 

Since anxiety is often linked with freezing pathology, we also checked for correlations 

between postural responses and state anxiety at Ground, using a one-tailed Spearman’s rho. This 

was not significant for AP Latency (r = 0.245, p = 0.142), but a trending positive correlation did occur 

between RelAP and state anxiety (r = 0.409, p = 0.033). No significant correlations occurred in the OA 

group between state anxiety reports and postural measures. To check for any potential mediating 

factor of anxiety in the correlation between FOG score and postural responses (and vice versa), we 

performed non-parametric partial correlation analyses. The correlation between FOG score and 

RelAP became a negative trend when controlling for state anxiety levels (r = -0.433, p = 0.036). 

Meanwhile, the trending positive correlation between FOG and AP Latency became significant when 

controlling for state anxiety levels (r = 0.499, p = 0.017).  

Discussion 

This study aimed to examine the impact of incongruent visual stimulation in a group likely to 

experience reduced proprioceptive gain and increased susceptibility to anxiety in comparison to 

healthy controls, during non-threatening compared to postural threat conditions. This section will 

first review how the additional correlational analyses elucidate the primary analyses, followed by a 

discussion of these results as a whole in the context of research on Parkinson’s Disease and sensory 

processing. 

The exploratory analyses suggest that those with increased FOG symptoms are more likely 

to show a delayed response compared to those with less freezing pathology, but that the response 

itself is potentially of a lesser magnitude. They also suggest that changes in postural response are 

explained by physiological issues with processing sensory information, rather than anxiety. 

The delayed and possibly muted responses with increased FOG severity may be due to 

increased motor inhibition in those with higher levels of FOG. Georgiades and colleagues (2016) 

  Correlations with RelAP Correlations with AP Latency 

FOG  r = -0.427; p = 0.022* r = 0.385; p = 0.042 

State 
Anxiety 

 r = 0.409; p = 0.033 r = 0.245; p = 0.142 
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demonstrate impaired motor initiation and increased inhibition in PD patients with FOG. Freezers 

experienced frequent start hesitation and slower footstep initiation, as well as less ability to inhibit 

movement, compared to non-freezers during a VR motor task. However, these previous findings 

pertain to impairments in voluntary movements/actions rather than involuntary visually-evoked 

postural responses. A key symptom of FOG is non-purposeful motor arrests, thought to be at least 

partly due to pathological subthalamic activity, but the pathogenesis of FOG events remains a 

subject of debate (Georgiades et al., 2019). For example, Nutt and colleagues (2011) implicate 

breakdowns in locomotion and balance circuits as neurological underpinnings of FOG, such as 

impairments in descending control of spinal networks on gait control, and disruptions of the loop(s) 

between the basal ganglia (BG) and the supplementary motor area (SMA; required for self-

generated movement). Such atypical neurological activity and the potential downstream effects on 

movement abilities may help explain the delays in postural response observed in the PD+FOG group 

in the current study. 

Impaired perceptual processing of the environment is another proposed causal factor of 

FOG. For example, prior research has found an exaggerated response to action-relevant visual 

information (such as an upcoming doorway) in those with PD and FOG (Cowie, Limousin, Peters, & 

Day, 2010). However, this effect does not occur when the patient is seated, so it is unlikely to be a 

simple visual-perceptual processing deficit – there must be deficits in the complex online planning of 

locomotor adaptation based on environmental changes. Wang and colleagues (2016) propose that 

these deficits in visual processing are due to abnormal functional connectivity between the 

Pedunculopontine Nucleus (PPN) and visual temporal areas, with white matter deficits spreading to 

motor, sensory, and cognitive regions. In the current study, these impairments in functional 

connectivity could explain why we observed increased response latency in the PD+FOG group, with 

the degree of latency escalating in magnitude (along with a trending decrease in response 

amplitude) with increased severity of FOG. This is an area that warrants further research, perhaps 

with more emphasis on how these connectivity differences relate to changes in complex online 

locomotor planning and sensory reweighting. 

One possible interpretation of the lack of group difference in response magnitude is that 

people with PD do not rely any more heavily on vision in any given instant than healthy people. 

While sensory integration impairment in PDs has been indicated in previous research, these previous 

findings have usually observed a persistent upweighting of vision in PDs compared to healthy OAs 

during prolonged or repeated exposure to sensory disparity. The results observed here suggest that, 

while in the context of prolonged stimulation used in previous studies PDs may persistently rely on 

vision more than healthy cohorts, they do not necessarily rely more on vision at any one given 
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moment. In other words, they are unable to suppress inaccurate visual information, but vision is not 

necessarily constantly upweighted compared to non-diseased older adults. Cowie and colleagues’ 

(2010) finding that people with PD’s exacerbated response to visual information only occurs during 

ongoing motion is perhaps consistent with this concept. However, given the trending negative 

relationship between FOG severity and response magnitude (which we speculate may be due to 

disease-related response inhibition), it is arguable that if a non-FOG PD group was compared to 

healthy OAs in this paradigm, we would then observe a significant difference in response magnitude 

indicative of the increased visual reliance suggested in previous research. That said, this is an area 

that warrants further investigation, using a paradigm similar to the current study including both FOG 

and non-FOG PD groups to compare with healthy OAs. 

Limitations 

 Again, the use of a paradigm that only includes one trial per condition lends itself to very 

variable responses; this variability has implications for our null results, which, due to the reduction in 

statistical power, must be considered cautiously. In other words, it is possible that the lack of 

statistically significant difference in RelAP magnitude between groups is due to a Type 2 error. 

However, since differences in habituation to a visual perturbation has been observed in these 

populations (Bronstein et al., 1990), a paradigm using limited perturbations was deemed necessary 

to avoid the potentially confounding effects of habituation to the visual perturbation and allow for 

between-group comparisons.  

 Since the current study did not measure participants’ experiences of vection, we cannot 

reliably dissociate participants’ perceptions of sensory disparity from their motor responses to 

perceived vection. On the other hand, short of neuroimaging, it is unclear how one might 

disentangle the perceptual and motor aspects of visual self-motion, given that self-reports of 

perceived self-motion would be unreliable since it may be that their perceptions are functionable – 

simply delayed. This is an important area to investigate further in future research, using carefully 

constructed paradigms to attempt to tease apart these mechanisms. 

Future Research 

Aside from deficits in subcortical and motor areas described above, cognitive/executive 

function deficits may also explain the latency of responses. Other studies have shown impaired 

reaction times in motor response in people with PD, where cognitive capacity and frontal lobe 

function correlated with RT (Jordan, Sagar, & Cooper, 1992). Similarly, poorer frontal lobe function in 

FOG patients compared to non-FOG patients; Cohen and colleagues (2014) compared PDs with and 

without FOG in several executive function tasks. FOGs displayed tendency to hesitate and miss 
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response window in Go trials of Go-Nogo task and made slower responses in incongruent Stroop 

task trial compared with non-FOGs.  Nutt and colleagues (2011) also describe pre-frontal cortex 

(PFC) dysfunction as a potential causal factor for FOG, reviewing other studies showing impairment 

of executive function in FOG, e.g. set-shifting, attention, problem solving, and response inhibition. 

While none of the participants in the current study reached a threshold for cognitive impairment 

(Trzepacz et al., 2015), it is possible that more specific tests of executive function may yield 

observation of significant within-subject differences in postural response in a similar cohort of PD 

patients. Future studies should endeavour to replicate the current findings using a more thorough 

battery of neuropsychological/executive function tests and examine how this affects latency of 

postural response. 

Another potential factor influencing the observed behaviours in this study is Conscious 

Control of Movement (CCM). While increased conscious control does seem to be a factor of healthy 

ageing (Boisgontier et al., 2013; Chow et al., 2018; Reynolds, 2010), this has the potential to be 

exacerbated in ageing pathology.  In PD, automatic movement is compromised (Wu, Hallett, & Chan, 

2015). One aspect of the disease’s typical bradykinesia is the loss of motor automaticity, where the 

ability to perform movements that were previously achievable without conscious thought (such as 

arm swing during walking; (Nieuwboer et al., 1998) is impaired. This is thought to be due to basal 

ganglia damage, which impairs the regulation of well-practiced movements (Almeida, Wishart, & 

Lee, 2003; Garraux et al., 2005; Wu, Hallett, & Chan, 2015). Research by Morris, Iansek, Summers, 

and Matyas (1995) suggests that reduced movement automaticity may lead to compensatory 

increased conscious control of movement. People with PD often self-report increased conscious 

monitoring and control with regards to their movement; Masters, Pall, MacMahon, and Eves (2007) 

show that people with PD tend to increase their conscious movement control as the disease 

progresses.  

Those with FOG are particularly compromised in motor automaticity (Vandenbossche et al., 

2013): freezing episodes often occur during performance of a task simultaneously with another task 

that is usually automatic, e.g. talking while walking. In PD patients and especially those with FOG, 

external sensory cues seem to help people who have difficulty self-generating movement because 

they bypass the supplementary motor area of the brain, which usually enables automatic movement 

(Ma, Trombly, Tickle-Degnen, & Wagenaar, 2004; Rocha, Porfírio, Ferraz, & Trevisani, 2014). To use a 

specific example, step initiation is internally generated and more dependent on the BG than when 

externally generated by stimuli; a loss of automaticity explains why the movement of people with 

FOG is ameliorated by external cues. For example, using an auditory cue such as a ticking 

metronome improves the stability and gait pattern of walking in PD patients, because it bypasses the 
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deficit in the brain’s ability to maintain an internal rhythm and provides a voluntary rhythm 

(McIntosh, Brown, Rice, & Thaut, 1997). Using a visual cue enables the visual-cerebellar motor, 

facilitating an improved gait pattern (Azulay et al., 1999). Similarly, external somatosensory cues 

have been shown to aid PD patients with FOG with movement, such as using vibratory stimuli on the 

legs to help with walking. This presumably compensates for the loss of reliable proprioceptive signals 

in PD (Konczak et al., 2009). This concept of conscious motor processing warrants further exploration 

with regards to sensory reweighting; it would be informative to isolate this factor in a further study 

to see if increased CMP affects reliance on vision during a simple standing task. 

Concluding Remarks 

Overall, there are clearly some disease-related differences in sensory processing/how the 

brain deals with incongruent senses, supporting previous research. However, our study suggests that 

these differences may be more nuanced than previously implied.  

Based on the lack of between-group differences in response magnitude, it is possible that 

people with PD may not rely on vision more than healthy OAs in any given moment, despite inability 

to suppress visual information given ongoing disparity. However, since our study only recruited PD 

patients with FOG, we cannot reliably generalise this concept to the wider PD population. Further 

work is necessary to explore this possibility in PD patients who do not experience any FOG 

symptoms, preferably using a paradigm that controls for possible habituation effects while also 

mitigating against the low power that comes with using limited perturbations. That said, within the 

PD group, those with increased FOG symptoms showed differences in visual weighting to those who 

experience FOG symptoms to a lesser degree, with a postural response characterised by a delayed 

and possibly muted response to optic flow. This suggests that a lower magnitude of postural 

response could be possibly due to motor inhibition mechanisms observed in people with FOG, 

potentially caused by impairments in sensory processing networks and connections between the 

basal ganglia and motor areas important for self-initiated movement. 

It is clear that further work is necessary to evaluate the behavioural consequences of 

changes related to neurodegenerative disease and to explore the potential range of factors that 

might influence sensory reweighting in the PD population, especially those with FOG. While the 

current results do provide limited evidence that the sensory integration of people with Parkinson’s 

Disease and Freezing of Gait is more affected by a visual perturbation than their healthy 

counterparts, more robust research strategies are required to more fully elucidate this particular 

research area. 
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Chapter 5. 

Study 3: The Effect of Increased Conscious Motor Control on Orthostatic Postural Control 
Responses to a Visual Perturbation 

Balance control involves the coordination of multiple sensory systems, integrating visual, 

vestibular, and proprioceptive inputs (Della-Justina et al., 2015; Peterka, R. J., 2002). Typically, the 

central nervous system (CNS) weights these sources in respect to their perceived reliability, and 

integrates them accordingly to maintain stable balance (Bronstein, 2019; Della-Justina et al., 2015; 

Peterka, R. J., 2002). However, different factors influence the way these senses operate. For 

example, increased postural threat (typically induced via standing participants on a raised platform) 

leads to both greater subjective feelings of anxiety and increased gain in vestibular and muscular 

signals (Cleworth et al., 2016; Horslen et al., 2013; Horslen et al., 2014).  

In Chapter 3, young and older adults were exposed to one high and one low postural threat 

condition, accompanied by a single visual perturbation in each condition. Both younger adults (YAs) 

and older adults (OAs) showed an increased anterior centre of pressure (COP) displacement in 

reaction to a pitch-up visual perturbation when placed at height compared to at ground level. Both 

groups showed further differences in several other related parameters such as the response latency, 

and the velocity of movement between perturbation onset and anterior peak. We interpreted this 

augmented postural response as evidence of increased reliance on visual information, most likely 

driven by the concomitant significant increase in state anxiety. The study also supported previous 

research by demonstrating that OAs are more reliant on visual input in general, and less tolerant of 

sensory disparity (Alberts et al., 2019; Jeka et al., 2010; Ramkhalawansingh et al., 2016). The OAs 

showed significantly increased COP displacement measures both at ground and at height level 

compared to their younger cohorts. Their levels of anxiety, however, were not significantly different 

than those of the younger group, and at height the levels of anxiety were only significantly 

correlated with postural response in OAs. The fact that the levels of anxiety between the groups 

were comparable, yet OAs still displayed an increased postural response to the visual perturbation, 

suggests that mechanisms other than anxiety also influence the degree to which vision is used to 

maintain stable posture.  

One possible explanation for the findings in Chapter 3 relates to the degree to which an 

individual directs attention internally towards monitoring or controlling their balance movements. 

OAs show an increased tendency to consciously control their balance movements (Boisgontier et al., 

2013; Chow et al., 2018; Clark, 2015; Magnard et al., 2019), particularly those at higher risk of falling 

(Ellmers, Cocks, & Young, 2019a; Uiga et al., 2018; Wong et al., 2008; Young & Williams, 2015). 
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Furthermore, postural threat (induced via a raised platform) appears to increase conscious control of 

balance-related movement processes in both YAs (Ellmers & Young, 2018; Huffman, Horslen, 

Carpenter, & Adkin, 2009; Zaback, M. et al., 2016) and OAs (Ellmers et al., 2019a; Johnson, Zaback, 

Tokuno, Carpenter, & Adkin, 2019). Postural threat manipulations have also been shown to lead to 

an increase in sensory gain (Cleworth et al., 2016; Cleworth et al., 2019). Cleworth and colleagues 

(2019) placed YAs in two height conditions (low = 1.1m and away from edge; high = 3.2m) and 

delivered continuous roll platform rotations, and instructed them to indicate their perceived 

amplitude of medio-lateral body movements using a handheld encoder, while also collecting 

kinematic data. While the actual level of sway amplitude remained comparable across conditions, 

perceived sway amplitude, along with self-reported and physiological levels of anxiety, was 

significantly increased for the high height condition. The authors proposed that such change may be 

underpinned by participants directing preferential attention towards threatening stimuli and the 

subsequent amplification of sensory processing related to the perception of self-movement. Thus, in 

conditions of heightened anxiety, the manner in which relevant senses are processed and perceived 

is altered. Specifically, increased anxiety appears to heighten the sensitivity of balance-relevant 

sensory systems and amplify the perception of whole-body movement. This could be the result of 

increases in attention toward own-body movement (Ellmers, Kal, & Young, 2020).  

Further inference that increased conscious movement control and visual input are 

interrelated may be taken from a study by Schniepp et al. (2014), who found that patients with 

Phobic Postural Vertigo show increased conscious control of movement as well as a shift towards 

visual control of movement as opposed to proprioceptive. It is, therefore, possible that our previous 

findings (increased visual reliance both during conditions of postural threat, and in older adults 

compared to younger) may be underpinned by greater conscious processing of balance movements. 

In Chapter 4, we exposed OAs with Parkinson’s Disease (PD) and Freezing of Gait (FOG) and healthy 

age-matched controls to the same paradigm and measured their postural responses. We found that 

while the amplitude of the postural response was comparable to the healthy age matched controls, 

those with PD/FOG showed increased latency of response compared to their healthy counterparts, 

with FOG severity positively correlating with degree of latency. Prior research has identified 

increased conscious control of movement (CCM) as a common factor of PD (Masters et al., 2007). 

Given the association between PD and lack of motor automaticity and the need for conscious motor 

control (Masters et al., 2007; Morris et al., 1995; Nutt et al., 2011), we might consider PD as a model 

for increased requirements for CCM. However, when comparing the data indicating the degree of 

visual reliance, the null result between PD and non-PD groups in Chapter 4 indicates that CCM may 

not be a primary driver of increased weighting on visual input. Nevertheless, this model of PD has 
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several confounds, as PD affects several other factors associated with sensory integration, such as 

processing of vestibular (Bertolini, Wicki, Baumann, Straumann, & Palla, 2015) and proprioceptive 

input (Konczak et al., 2009). Therefore, since the results from Chapter 4 cannot give a definitive 

answer on whether or not increased need for conscious control of movement is a contributing factor 

to increased reliance on vision, it is necessary to carry out a study that isolates and manipulates 

conscious control of movement to answer the research question of whether or not this factor leads 

to increased visual reliance. 

While Cleworth and colleagues (2016) postulate that changes in sensory processing are due 

to threat-related increases in attention towards own-body movements, it is possible that these 

factors operate independently. In Chapter 3, for example, the OAs may have experienced increased 

reliance on vision compared to YAs due to their increased tendency towards conscious control of 

movement – despite comparable levels of anxiety. Studies using directed focus instructions 

demonstrate pronounced behavioural changes when using internal focus instructions, such as less 

efficient gait (Mak, Young, Lam, Tse, & Wong, 2019) and more constricted visual search behaviour  

(Ellmers & Young, 2019). One possible mechanism is that increased CCM may drive increased 

reliance on vision through inducing the senses to be more aware of potentially destabilising stimuli 

in the environment, thus increasing the weighting of visual input for balance control. So far, no 

studies have looked to experimentally increase CCM while measuring visual reliance. Given the lack 

of research exploring causal effects of attentional focus/CCM on sensory reweighting, questions 

remain over how and to what extent the effect of postural threat on sensory reweighting is 

moderated by attentional focus. 

The current study aims to explore this possibility by experimentally manipulating the level of 

CCM in YAs and examine postural reactions to a visual perturbation as well as emotional reactions to 

postural threat. We hypothesised that increasing participants’ focus on internal movement 

processes would elicit an increased reliance on vision to regulate postural stability compared to 

Baseline. This would be evidenced by greater magnitude of anterior-posterior COP displacement 

measures in reaction to a visual perturbation, as observed previously in YAs during postural threat 

and in OAs during both threatening and non-threatening environments (Chapter 3). We expected 

this difference to be present during a low-threat condition (Ground level), but not necessarily during 

the Threat condition (standing on an elevated platform), since we expect that postural threat may 

lead to involuntarily increased conscious control of movement irrespective of an internal focus 

experimental manipulation. 
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Materials & Methods 

Participants  

A new cohort of 31 YAs (18-36 years old, µ = 24.48, s.d. = 3.81), were recruited from 

undergraduate and postgraduate courses at Brunel University London. All participants had normal or 

corrected-to-normal vision, and no diagnosed musculoskeletal or neurological disorders. Those 

participants using vision-correcting equipment (e.g. glasses, contact lenses) wore them in the VR 

environment. All participants provided written and informed consent following approval obtained by 

the Brunel University London ethics committee. The research protocol was carried out in accordance 

with the principles laid down by the Declaration of Helsinki. 

Equipment 

The equipment and VR environments were identical to that used in Chapters 3 and 4, with a 

Threat and Ground environment/condition (see Figure 12, Figure 13). COP data were recorded at 

1000Hz using a Kistler Forceplate (Kistler 9287BA), with feet positioned hip-width apart on the 

forceplate. Participants’ toes were aligned to a marked line to maintain foot position consistency 

between both participants and experimental trials. The anterior edge of the forceplate 

corresponded to the anterior edge of the VR platform. Forceplate data were synchronised using an 

analogue channel containing a voltage change triggered by the start of each VR 

animation/perturbation. 
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Figure 12. First person view of the Threat condition (top) and Baseline condition (bottom). 

 

Figure 13. First person view of the Threat condition looking down into the gully. 
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Procedure 

 Both the Ground and Threat environments were repeated twice, under 1) a Baseline 

condition and 2) an Internal Focus (IF) condition. Participants were asked to keep their eyes fixed on 

a fixation point (positioned at eye level), and either keep all their focus on it and report when it 

changed colour (Baseline condition), or keep all of their focus on their lower limbs and to report 

where they felt their weight was distributed (e.g. more on one side, balls of the feet, heels, etc.) at 

the timepoint when the fixation point changed colour (IF condition). Each of the four experimental 

trials included one single visual perturbation that occurred at a random timepoint between sixty and 

seventy seconds following the start of the trial (see Chapter 3 for details of the perturbation), 

followed by the fixation point changing colour at a point between 3 and 10 seconds after the 

perturbation (randomised for each participant). The perturbation always occurred prior to the 

fixation point changing colour to prevent any interference of the colour change/the act of giving a 

verbal response on their postural response to the perturbation. As detailed in Chapter 3, trials were 

limited to a single trial per condition to prevent potential sensory re-weighting effects and 

desensitisation to the VR environment (Bronstein, 1986; Bronstein, 2019; Nishiike et al., 2013; Oude 

Nijhuis et al., 2009; Pavol et al., 2004). The order of the four trials was randomised for each 

participant. After each trial, while still in the VR environment, participants completed both the 

mental readiness form (MRF) (Krane, 1994) as a measure of self-reported state anxiety, and a self-

report measure of conscious control of movement (CCM), a shortened version of the Movement 

Specific Reinvestment Scale (M-MSRS) (Ellmers & Young, 2018). The MRF uses three questions 

regarding feelings of worry (cognitive anxiety), body tension (somatic anxiety), and confidence, to 

which the participant must respond on a scale of 1 to 11 (e.g. “On a scale of 1 to 11, how worried are 

you feeling?”; 1 = not at all; 11 = very much so)4. In this study, the three scores are summed to give a 

total out of 33, with higher scores reflecting greater state anxiety. The M-MSRS uses four items, split 

into two subscales measuring conscious motor processing (CMP; e.g. “I am always trying to think 

about my movements when I am doing this task”) and movement self-consciousness (MSC; e.g. “I 

am concerned about my style of moving when I am doing this task”), each rated on a 6-point Likert 

scale (1 = strongly disagree; 6 = strongly agree). Participants’ sum of scores for both of the sub-scales 

on the M-MSRS were calculated, giving a maximum CCM score out of 12 for each subscale; where 

higher scores reflect greater CCM. 

 
4 Note, the confidence subscale was reverse coded. 
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Analysis 

 As in Chapters 3 and 4, characteristics of participants’ COP displacement following visual 

perturbation were evaluated by filtering the raw force data (using a second-order low-pass 

Butterworth filter with a cut-off frequency of 5 Hz) in MATLAB (R2017a, The Mathworks, Inc.) 

followed by selecting data from a one second time window starting at perturbation onset. The 

relative anterior peak (RelAP) was calculated as the value of each participant’s mean position during 

the three seconds prior to perturbation onset subtracted from the position of the anterior peak 

occurring within the first 1000ms following perturbation onset. This measure served as the primary 

outcome measure of participants’ initial counteractive reaction to the visual perturbation. AP 

Latency was again also calculated to further elucidate the nature of the postural response by 

describing the time taken to respond to the perturbation (number of milliseconds between 

perturbation onset and subsequent anterior peak; see previous chapters for more detailed 

explanation of these measures). 

Statistics 

For each case where data were non-normally distributed, we attempted to log transform. 

Where data became normal, the log transformed data were entered into an appropriate ANOVA 

with Bonferroni correction. Where data remained non-normal after log transformation, we used 

non-parametric tests on the original data, which tested for differences between conditions. Any 

outliers/participants with z-scores over 3 (or less than -3) for any measure were removed from 

analysis of that measure.  

MRF data were not normally-distributed and were not made normal following log-

transformation. Therefore, non-parametric tests were used to compare results between groups and 

conditions. Two outlying participants were removed from analysis, and another was removed due to 

a technical fault in saving the data. The conscious control of movement data were only normally 

distributed in Baseline Ground and Internal Threat trials, therefore a mix of appropriate parametric 

and non-parametric analyses were performed to gauge effects of condition on these scores. The 

movement self-consciousness scores were non-normally distributed and remained so after log 

transformation, therefore non-parametric tests were performed on the original data to examine for 

differences between conditions5. Two participants were removed from this analysis due to confusion 

with regards to completing the M-MSRS questionnaires. 

 
5 Where any data remained non-normal following attempted log transformation, non-parametric tests were 
performed on the original data, to test for differences between conditions. 
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  RelAP data were not normally-distributed, but became so following log transformation and 

adding a constant to each value to allow for log-transformation of negative values, therefore were 

analysed using a mixed ANOVA. AP Latency data were not normally-distributed for either group; log 

transforming was unsuccessful, therefore appropriate non-parametric tests were used to analyse 

differences between conditions and groups.  

Results 

Anxiety 

 A Friedman test revealed a significant difference between the four conditions (Ground-

Baseline, Ground-Internal Focus, Threat-Baseline, and Threat-Internal Focus; χ2(3) = 35.466, p < 

0.001). Further non-parametric analysis revealed that there was no significant difference in self-

reported anxiety between Baseline and IF trials at Ground (p = 0.052; Z = 1.942; r = 0.359), nor at 

Threat (p = 0.192; Z = 1.303; r = 0.251), but there was a significant difference between Ground and 

Threat trials during both Baseline (p < 0.001, Z = 4.018, r = 0.773) and IF conditions (p < 0.001, Z = 

3.735, r = 0.719). 

Conscious Control of Movement 

 A Friedman test revealed a significant effect of condition on CMP (χ2(3) = 14.283, p = 0.003). 

Further Wilcoxon Signed-Rank tests revealed significantly higher scores for CMP measures in the IF 

condition compared to Baseline at Ground (p = 0.003; Z = 2.928; r = 0.553). A paired samples t-test 

also revealed a significant difference between IF and Baseline CMP during Threat (t(28) = 2.182, p = 

0.038). CMP did not differ significantly between Ground and Threat during Baseline trials (p = 0.121, 

Z = 1.549, r = 0.293), nor Internal Focus trials (p = 0.890, Z = 0.138, r = 0.026).  

 A Friedman test revealed no significant main effects of condition on MSC, therefore no 

further analyses were carried out for this variable (χ2(3) = 6.431, p = 0.092). 
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Table 8. Means and standard deviations of self-reported anxiety and conscious movement 
processing scores. 

  Baseline Internal Focus 

  Ground Threat Ground Threat 

State Anxiety (MRF) 

(max. score = 33) 

µ = 5.37 

s.d. = 2.29 

µ = 10.33 

s.d. = 5.17 

µ = 6.70 

s.d. = 2.92 

µ = 11.78 

s.d. = 6.05 

M-MSRS – Conscious 
Control of Movement 

(max. score = 12) 

µ = 6.89 

s.d. = 2.57 

µ = 7.48 

s.d. = 2.13 

µ = 8.90 

s.d. = 2.40 

µ = 8.83 

s.d. = 2.45 

M-MSRS – Movement 
Self-Consciousness 

(max. score = 12) 

µ = 4.57 

s.d. = 2.65 

µ = 4.86 

s.d. = 2.52 

µ = 5.59 

s.d. = 2.89 

µ = 5.76 

s.d. = 2.76 

* indicates significance at alpha level 0.05; ** indicates significance at alpha level 0.01;  
*** indicates significance at alpha level 0.001. 

Combined, these results act as manipulation checks that confirm that the CCM and State Anxiety 

manipulations were successful. The M-MSRS results also provide evidence that any increase in 

participants’ CCM was due to the experimental manipulation, rather than the perturbation, since 

these scores were only significantly elevated in the Baseline conditions. 

RelAP (Relative Anterior Peak) 

 A repeated measures ANOVA revealed no significant effects of either Threat (F(28) = 0.112, p 

= 0.741, ηp
2 = 0.004) or Focus condition (F(28) = 2.31, p = 0.140, ηp

2 = 0.076) on the size of 

participants’ RelAP following onset of perturbation. No interaction was observed (F(28) = 0.508, p = 

0.482, ηp
2 = 0.018). 

AP Latency 

 Wilcoxon Signed-Rank tests did not reveal any significant difference in response latency 

neither between Internal and Baseline conditions at Ground (p = 0.510, Z = 0.660, r = 0.121) nor at 

Threat (p = 0.797, Z = 0.257, r = 0.047). There were also no apparent differences when comparing 

*** *** 

 ** 

 ** 
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Ground and Threat conditions during either Internal Focus (p = 0.131, Z = 1.512, r = 0.276) or 

Baseline (p = 0.275, Z = 1.092, r = 0.199).  

Table 9. Means and standard deviations of anterior-posterior COP displacement parameters. 

  Baseline Internal Focus 

  Ground Threat Ground Threat 

RelAP (non-
transformed 
data, mm) 

µ = 1.225 

s.d. = 2.534 

µ = 1.109 

s.d. = 1.954 

µ = 1.416 

s.d. = 1.839 

µ = 1.816 

s.d. = 3.185 

AP Latency (ms) µ = 418.13 

s.d. = 342.708 

µ = 526.83 

s.d. = 369.861 

µ = 364.47 

s.d. = 350.931 

µ = 513.67 

s.d. = 376.494 

 

Discussion 

This study investigated whether changes in conscious control of movement may underpin 

the previously observed relationship between postural threat and increased reliance on visual 

information (Chapter 3). Specifically, we explored whether instructing participants to direct their 

focus internally towards consciously processing their balance movements would elicit increased 

magnitude of balance-related responses to a visual perturbation at ground level, comparable to that 

previously observed under conditions of heightened threat. This discussion will first discuss the lack 

of significant effect of conscious control of movement on visual reliance, followed by 

contextualisation of these findings to previous observations of balance performance. 

Part 1. Discussing lack of effect of conscious control of movement on visual reliance  

Overall, there is no observable significant effect of increased Internal Focus (and subsequent 

increased CCM) on postural response to a visual perturbation, therefore we must reject our 

hypothesis that increased conscious motor control elicits an increased reliance on visual information 

for orthostatic balance.  

One possibility is that CCM simply does not increase reliance on vision. Previous 

observations indicate that populations such as older adults and those with Parkinson’s Disease do 

rely more on vision while also demonstrating increased CCM. However, this age- and/or disease-

related increase in CCM may not be a driving factor of increased visual reweighting, but rather a 
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consequence of it. It is possible that when CCM alone is increased, attention is directed towards 

one’s own body, and lessens the awareness of external visual stimuli (though not of a sufficient 

magnitude to cause a significant decrease in postural response).  

Alternatively, it might be that CCM only increases visual reliance when one can see one’s 

own body movements. The full version of the MSRS (i.e. the extended version of the mini-MSRS that 

was used in the present study), which sees score increases in PDs and many OAs, involves 

statements such as “If I see my reflection in a shop window, I will examine my movements” 

(Masters, Eves, & Maxwell, 2005). High agreement with this statement presumably indicates higher 

visual awareness of one’s own body. In contexts of impaired proprioception such as PD, this is 

predictable, since successful movement presumably relies more on the relatively unimpaired sense 

of vision (Bronstein et al., 1990; Bronstein, 2019; Butler et al., 2010; Knill & Pouget, 2004). In the 

current study, people were not able to see their own body in VR. This suggests that if CCM does 

indeed increase visual reliance, it is related to visual feedback of one’s own body movement rather 

than just an internal awareness. Future studies examining internal focus and sensory reweighting in 

VR should include visual feedback of body movement, perhaps using an avatar. Since this data was 

collected, some virtual reality games have developed the ability to include reliable avatar body 

feedback that matches the player’s movements, especially in the upper half of the body. The new 

Valve Index can even reliably replicate individual finger movements. In some new videogames, 

whole body avatars are available in VR. This is probably not sufficiently refined for reliable visual 

feedback of movement for research involving gait analysis, but it is perhaps good enough for studies 

on orthostatic balance. Future studies could also combine motion capture with VR to feedback 

participants’ body motion to the VR system and replicate the participant’s movements in real-time in 

a VR avatar. 

Part 2. Contextualising these findings to previous observations of balance performance 

The current results suggest that an increase in conscious control of movement does not 

affect visual reweighting for balance control. Previous research has observed that promoting 

reduced conscious control of movement, or directing attention towards external cues, improves 

control of balance (e.g., studies on balance learning). Wulf, McNevin, and Shea (2001) demonstrated 

a reduction in balance errors when participants were asked to adopt an external focus of attention 

during a dynamic balance task compared to an internal focus. Similarly, Chiviacowsky, Wulf, and 

Wally (2010) showed improved balance performance in a group instructed to perform a task using 

external focus compared to the group that received internal focus instructions. Following this work, 

Wulf (2013), in her review of focus on attention and motor learning, concluded that inducing 
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external focus produces balance performance benefits across various tasks, age groups, and skill 

levels. 

Given these previous findings, clearly attentional focus has an influence on balance control. 

However, the lack of effect of Focus on visual reliance in the current study suggests that these 

previously observed balance changes are unlikely to be a result of focus-induced changes in visual 

reliance. Therefore, manipulations of direction of focus must induce changes in mechanisms other 

than visual weighting, such as proprioceptive and/or vestibular weighting. Richer and Lajoie (2020) 

instructed participants to remain standing while either focussing neutrally, internally, externally, or 

while performing easy or difficult cognitive tasks. Centre of Pressure data indicated that participants’ 

stability improved and became more automatic in the external focus and cognitive task conditions, 

with increased input from higher frequency bands suggesting greater input from the vestibular 

system during tasks that promoted greater automaticity. Thus, decreased conscious movement 

control is associated with increased vestibular input. Reynolds (2010) found vestibular-evoked sway 

responses were attenuated by conscious control of standing balance (at least for the later 

component of the sway response), again indicating that conscious control of movement affects 

vestibular processing by reducing vestibular reliance. We might expect that directing attention 

internally would decrease vestibular input, thereby possibly increasing the response to a visual 

stimulus since vestibular gain is decreased (and therefore downweighted). Nevertheless, we did not 

observe such an increased response to visual stimulation in the current study. Since CCM and 

proprioception are linked (Gottwald, Owen, & McNevin, 2020), we cannot assume changes in 

vestibular function will influence visual weighting, since this process of vestibular input weighting 

change might simply reflect a trade-off between proprioceptive and vestibular inputs. However, 

Reynolds (2010) also suggests that voluntary control of movement reduces the threshold for 

detecting sensory conflict, so any incongruent stimulus would be attenuated. This could be why we 

do not observe a difference between internal and baseline conditions in the current study, since it is 

possible that the visual stimulus was detected earlier and the response thus attenuated. 

Other researchers have found no effect of direction of attention on balance control. de 

Melker Worms and colleagues performed two studies in 2017 (de Melker Worms et al., 2017; de 

Melker Worms, Stins, van Wegen, Loram, & Beek, 2017) showing no effect of external versus 

internal focus instructions on balance control in elderly adults during a five-minute gait task. While it 

is arguable that their null findings may be due to participants being unable to maintain internal focus 

for that length of time, these results are in line with our finding that internal focus does not 

influence visual weighting. At least, they demonstrate that the improvements in balance 
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performance with external focus may be restricted to orthostatic/simple balance tasks and are not 

generalisable to more complex gait tasks.  

Limitations 

The absence of a significant effect of Threat on participants’ postural responses contrasts 

with our findings in Chapter 3, where we observed significantly increased postural response to a 

visual perturbation in the Threat environment compared to the Ground environment. One issue in 

the current study is that despite only using a single perturbation in each condition and 

counterbalancing the trials, the four sequential conditions may have been sufficient enough for the 

CNS to begin downweighting visual signals due to the repeated incongruence with non-visual 

sensory inputs (Bronstein, 2019), despite significant increases in self-reported CCM and anxiety. 

Therefore, it is a possibility that due to the repeated trials and potential subsequent habituation to 

the perturbation, any effects of Internal Focus and/or Threat are being “washed out” resulting in a 

Type 2 error; consequently, the null results of this study must be considered with caution. Including 

a “buffer” task between trials in future experiments might lead to a reweighting of sensory inputs to 

normal levels, thus “resetting” the balance of visual and non-visual inputs and allowing for more 

valid measurements of the effects of increased internal focus on visual reliance.  

The current paradigm was essentially attempting to mimic in YAs the tendency of OAs to 

consciously control their movements. However, as discussed above, presumably CCM in OAs 

develops relatively gradually as they age as a learned adaptation – indeed, Mak, Young, Lam, Tse, 

and Wong (2019) note that the manipulations of focus on own-body movement in the laboratory are 

unlikely to reflect the specific conscious motor processing mechanisms in OAs. In YAs, asking them to 

suddenly switch to an unfamiliar state of attention/method of standing still may not be a valid 

method of recreating the CCM prevalent in OAs and people with PD. In other words, it is possible 

that this gradual learned adaptation to increased CCM may be a factor in increasing visual reliance in 

OAs, but a sudden switch in attention direction in YAs does not have the same effect on sensory 

reweighting, despite the self-reported rise in conscious control of movement. 

Conclusions 

Based on the current results, we cannot conclude that experimentally manipulated 

conscious control of movement has any observable effect on visual reliance. This may be due to 

several factors, such as the lack of visual feedback of participants’ own-body movement, which has 

previously been demonstrated to have an effect on balance control. Alternatively, the null results 

could be due to the nature of the task, which required young adults to control their balance in a way 

that is unnatural for them, compared to it being a naturally occurring learned adaptation in older 
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adults. In sum, it is still unclear to what degree internal focus of attention affects balance control in 

general. If it does, our results suggest it may not affect visual reweighting – rather other mechanisms 

involved in balance such as vestibular reweighting. These possibilities warrant further investigation 

in future studies. Furthermore, this study serves to reiterate the importance of restricting the 

number of consecutive trials where incongruent sensory stimulations are used, since this may be 

resulting in downweighting of vision, despite sustained increases in self-reported measures. 
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Chapter 6. General Discussion 

Overview of Thesis 

The previous five chapters can be described as an attempt to further illustrate the effects of 

postural threat on visual reweighting for balance control, in an effort to better understand how 

changes in sensory weighting affect ageing and clinical populations, and how we might be able to 

mitigate fall risks in future.  

The first experimental chapter (Chapter 3) aimed to explore how postural threat affects the 

reweighting of sensory inputs, particularly whether it increases reliance on visual information, and 

how this is affected by ageing. Younger (YAs) and Older Adults (OAs) were exposed to a small pitch-

up visual perturbation in two virtual environments, one designed to emulate postural threat and the 

other non-threatening. Both groups demonstrated an increased response to the visual perturbation 

during the Threat condition, indicating an increase in reliance on vision with anxiety. Meanwhile, the 

OAs showed an increased overall response compared to the YAs, indicating the involvement of 

factors other than anxiety in increasing visual reliance. The second study (Chapter 4) aimed to 

investigate the impact of Parkinson’s Disease on reliance on vision. This study compared a group of 

people with Parkinson’s Disease and Freezing of Gait (PD+FOG) – a disease that affects 

proprioceptive sensory input and increases the need for conscious control of movement – with 

healthy controls, during both threatening and non-threatening environments. The results of this 

study were less clear; while there was a clear difference between the two groups in the timing of 

their postural response to the perturbation, the magnitude of the postural response was 

comparable between groups in both conditions. However, relationships between the severity of FOG 

symptoms and postural response characteristics were observed, with more severe FOG being linked 

with more delayed postural responses of a lesser magnitude. The third study (Chapter 5) aimed to 

evaluate the causal links between conscious motor control and visual dependence in a more direct 

manner, by exploring how increased conscious control of movement (CCM6) might impact visual 

dependency as a moderator of postural threat, as a potential explanator for the age group 

difference observed in the first study. YAs were placed in a non-threatening virtual environment and 

instructed to direct their attention either internally towards their own body movement, or towards 

an external stimulus, while again, as in previous chapters, experiencing a visual perturbation. Results 

implied that increased CCM does not significantly increase reliance on visual information, which 

 
6 In this chapter, IF refers to the specific condition used in Chapter 4’s paradigm (where participants were 
indirectly instructed to increase their Internal Focus), whereas CCM refers to the general concept of increased 
conscious movement control discussed in the wider research field. 
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suggests that the previously described age group difference is due to age-related factors other than 

increased internal focus (IF, or conscious control of movement) in older people.  

Main Findings 

Analysing the results of these studies reveals several noteworthy points. First, we do see an 

effect of increased anxiety on the response to a visual perturbation, particularly in young people: the 

study in Chapter 3 shows increased visual reliance in conditions of heightened perceived postural 

threat that induced anxiety. Thus, we do see that anxiety leads to upweighting of visual input – 

which could possibly be interpreted with respect to an Attentional Control Theory (ACT)-type model 

(Eysenck, Derakshan, Santos, & Calvo, 2007). This model proposes that anxiety causes increased 

salience of threat-related stimuli – in the case of the present set of studies, the visual environment. 

This could underlie the findings in Chapter 3, where participants may have been hyper-vigilantly 

attending to the visual environment at Threat due to being more anxious, thus more sensitive to 

changes in visual scene motion, resulting in increased visually-evoked postural responses (VEPRs) at 

Threat compared to Ground. This model is also particularly relevant for OAs, especially those with 

Fear of Falling (FOF), who show increased likelihood to direct attention towards threat-relevant 

stimuli (Brown, White, Doan, & de Bruin, 2011). However, since ACT proposes that this increased 

threat-related attention is induced by anxiety, and there were no discernible differences in anxiety 

levels between groups, it is unlikely that this model can fully explain the main group effect in these 

findings observed in Chapter 3.  

Regarding the impact of neurodegenerative disease on visual control of posture, the only 

significant Group effect in Chapter 4 was that the PD+FOG group took longer to react to the 

perturbation than healthy OAs. This may be representative of disease-related bradyphrenia and/or 

impairments in detection of sensory errors (Falkenstein et al., 2001; Rogers, 1986; Steinke, Lange, 

Seer, Hendel, & Kopp, 2020), but the lack of clear observable group differences in the magnitude of 

postural response indicate the necessity for further, more directed research on if, and how, sensory 

reweighting is affected in people with PD, particularly those with FOG. The further analysis of the 

relationship between self-reported measures and postural responses in the PD+FOG group indicated 

that the degree of FOG severity is linked to a more delayed and potentially attenuated reaction to 

visual information that is incongruent with non-visual sensory input, indicating that FOG symptoms 

increase with impairments in processing sensory discrepancy. The analyses also indicated that these 

changes in postural response were independent from anxiety levels, implicating other sensory 

processing differences in sensory reweighting in this group. 
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As mentioned above, the results of Chapter 5, a study including an IF condition aimed at 

increasing participants’ CCM, suggest that IF/CCM is not a potential driving factor for these observed 

differences in postural response. Several studies provide evidence that anxiety leads to increased 

CCM (Ellmers et al., 2019b; Huffman et al., 2009; Johnson et al., 2019; Zaback, M. et al., 2016; 

Zaback, Martin, Adkin, & Carpenter, 2019), but the current results imply that CCM does not have an 

effect on visual weighting – at least not in this context of orthostatic balance. Likewise, other studies 

have found that directing attention away from own-body movement and/or towards external stimuli 

improves balance control (Chiviacowsky et al., 2010; Wuehr, Brandt, & Schniepp, 2017; Wulf et al., 

2001; Wulf, 2013), but again our results from Chapter 5 would suggest that this is due to changes in 

mechanisms other than visual weighting, such as vestibular and/or proprioceptive processing 

(Reynolds, 2010; Richer & Lajoie, 2020).  

More recent work may offer some theoretical resolution to these conflicting findings – some 

suggest that increased postural responses at Threat, specifically increased sensitivity to afferent 

feedback, are due to increased CCM (Wuehr et al., 2017; Zaback, Martin et al., 2019).  However, 

Ellmers, Kal, and Young (2020) found that that this still occurs even when participants are not 

experiencing increased CCM. Participants were placed at Ground and Threat, with either no 

distraction task (baseline), or a distraction task to divert attention from conscious motor processing. 

Their participants showed a shorter transition window between open and closed loop postural 

control (indicative of a lower threshold for sensory feedback) at Threat – during both the non-

distraction and, importantly, the distraction task. They also found coinciding increases in both sway 

frequency and sample entropy, reflecting higher automaticity, at Threat compared to Baseline. 

LeDoux and Pine (2016) describe two types of anxiety responses – automatic and conscious, which 

may differentially affect postural responses to Threat. Therefore, as Ellmers et al. (2020) argue, the 

increased postural response at Threat probably relates more to automatic mechanisms triggered by 

the Central Nervous System (CNS). This response may then be constrained by the conscious 

processes that then ‘kick in’ due to the conscious experience of anxiety. Thus, a lack of effect of 

Internal Focus in Chapter 5 could be because the process of visual reliance/upweighting is an 

automatic, defensive reaction, independent from a conscious emotional reaction. According to 

LeDoux and Pine (2016), the experience of being at Threat would have increased participants’ 

physiological sensitivity to threatening inputs (in this case, the visual perturbation), resulting in an 

automatic postural response to the perturbation – separate from the emotional/cognitive response. 

Thus, we see an increase in postural response to the perturbation during the Threat condition 

compared to Ground in Chapter 3, but no difference in postural response between Internal 

Focus/Baseline tasks in Chapter 5 since these changes in CCM may reflect separate, more cognitive 



86 
EFFECTS OF POSTURAL THREAT ON VISUAL REWEIGHTING 

 

processes. However, this does not explain why we do not see a main effect of Threat on postural 

response in Chapter 5. This may be due to habituation effects caused by using four 

perturbations/trials (compared to only two trials included in Chapters 3 and 4), therefore future 

work using more carefully constructed paradigms is necessary to further explore the possibilities of 

how CCM affects postural control, and how it interacts with experiences of heightened anxiety. For 

example, future research could implement paradigms including “buffer trials” to prevent habituation 

to the visual disparity. 

Implications of Individual Measures 

By defining the various outcome measures used in this thesis, we can attempt to explain the 

mechanisms involved in driving the observed relevant behaviour. Relative Anterior Peak (RelAP), as 

already described in earlier chapters, may be considered an initial compensatory response to the 

visual experience of a pitch-up perturbation. Anterior Peak Latency (AP Latency), measured as the 

amount of time between perturbation onset and when the participant’s subsequent anterior 

movement reaches a peak, represents the time it takes participants to respond to the visual 

perturbation.  

In the second study, participants with PD+FOG seem to show few differences compared to 

their healthy cohorts, but disease-related changes in response latency appear to be attenuated. 

Diseases such as PD+FOG may not have much effect on the actual magnitude of response to sensory 

incongruence, which seems to be indistinguishable from adults of the same age, but they may affect 

the time taken to perceive and react to the incongruency. Again, this could be due to sensory 

processing deficiencies in neurodegenerative diseases such as PD (Falkenstein et al., 2001; Rogers, 

1986; Steinke et al., 2020). It is possible that disease-related deficiency in dopamine affects the 

detection of sensory errors (e.g. impaired performance in tasks requiring high cognitive control such 

as a Go-NoGo task (Falkenstein et al., 2001)) – possibly due to the fact that central processing of 

vestibular signals is impaired in PD (Colnat-Coulbois et al., 2005; Colnat-Coulbois et al., 2011). While 

PD is associated with a decrease in automaticity of movement (thus a greater need for conscious 

control of movement; (Hardeman, Kal, Young, van der Kamp, & Ellmers, 2020; Masters et al., 2007; 

Nutt et al., 2011; Wu et al., 2015)) it is unlikely that tendencies towards increased CCM are involved 

in the observed differences, since the subsequent study revealed no effect of increased CCM on 

visual reliance. While these findings are small and therefore perhaps difficult to interpret, one may 

argue that they open the door to more informed and nuanced research on the topic. 
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Wider Perspectives 

Key Theoretical Models and Implications 

As described in Chapter 1, Peterka’s human balance control model (2018) describes how 

sensory inputs from various senses are integrated and weighted to analyse body movement and 

produce corrective motion. This model gives some context to our main finding in Study 1, where we 

see an increase in response to a visual perturbation in one condition compared to another. Peterka’s 

model would suggest that the visual input elicited by the visual perturbation is weighted more 

heavily in one condition, producing an orientation estimate biased towards the visual information. 

Thus, a larger sensory error is elicited when this estimate is compared with the “internal reference” 

and thereby producing increased corrective torque, i.e. a larger postural response. Further 

elaborations on Peterka’s model help to explain why this effect occurs in the Threat condition of the 

current paradigm; Bronstein (2019) elaborated upon the initial ‘internal orientation estimate’ stage 

of Peterka’s model, and described a “general comparator” in his model of visual control of posture. 

In this model, a “comparator” in the CNS assesses the nature of an incoming visual stimulus and uses 

Bayesian estimation to determine how reliable the visual information is, and therefore whether to 

increase or decrease visual gain. In this model, any incoming visual information that appears 

incongruent with other sensory inputs (for example, a visual perturbation that is incongruent with 

inertial signals) would be weighed up against these other inputs and its reliability interpreted. This 

model emphasises the persistent nature of visual processing that often seems to supersede other 

senses relevant to balance, evidenced both by the simple demonstration that, at least on the first 

presentation, visual signals elicited by a visual perturbation override inertial cues and produce a 

postural response, and also by evidence of persistent upweighting of vision in several contexts, 

especially those of increased anxiety (Bronstein et al., 1990; Cousins et al., 2017; Jacob et al., 1995). 

Importantly, Bronstein (2019) argues that psychological inputs (such as anxiety or rumination) serve 

to bias the “general comparator” in favour of visual cues, thus increasing the gain of visual input.  
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Figure 14. Illustration of the human balance control model required for balance maintenance, 
adapted from Peterka (2018) and Bronstein (2019). Ta: ankle torque. Tp: passive torque. Tc: 
corrective torque. BS: body sway. VS: visual surround tilt. VB: VS relative to body sway angle. SS: 
support surface tilt. BF: BS angle relative to feet angle on support surface. Wprop/Wvis/Wvest: 
weighted proprioceptive, visual, and vestibular sensory contributions. 

Together, these models can explain our current findings that anxiety leads to increased 

visual reliance, whereby anxiety related to posture in the Threat condition biases the comparator 

towards the visual input generated by the visual perturbation, thereby producing a larger postural 

response to the perturbation, compared to the non-anxiogenic Ground environment (see Figure 14). 

Overall, it is evident that anxiety, especially anxiety related to postural control, affects the 

way multiple incoming senses are integrated and processed in the brain, with general evidence 

pointing to an upweighting of visual input (Alharbi, 2017; Cousins et al., 2017; Hainaut, Caillet, 

Lestienne, & Bolmont, 2011; Jacob et al., 1995; Ohno et al., 2004), and the results from Study 1 

showing increased visual weighting with increased anxiety. To return to the issue originally described 

in Chapter 1, what are the implications of these models and the current results for FOF in OAs? In 

OAs with FOF, Bronstein’s model (2019) would suggest that the anxiety about falling may be biasing 

their CNS even more towards visual input than the already biased baseline levels due to age. This 

may in turn lead to increased fall risk through inaccurate interpretations of optic flow leading to 

inappropriate postural responses, inadvertently pushing the centre of balance beyond the threshold 

of stability. Using a paradigm similar to the current one (albeit with methods to mitigate any 

potential ceiling effects) with OAs with and without FOF may reveal more indication of how much 

anxiety about falling contributes towards the already increased visual reliance.  

While the previously discussed models serve to elucidate the observed behaviour of younger 

adults, and to some extent in older adults, it struggles to fully account for the behaviour we 

observed in both healthy OAs and OAs with PD+FOG. Anxiety may be playing a part in upweighting 
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of vision, but it is not the whole picture. While Bronstein (2019) describes how psychological inputs 

such as anxiety may bias the nervous system towards visual information, other age- or disease-

related mechanisms must also be feeding into this loop to exacerbate this bias. One possibility could 

be that non-visual inputs, or the initial processing of these inputs, degrade at a greater rate than 

visual inputs, resulting in increased reliance on the relatively more reliable input. While some have 

found that the proprioceptive system does not deteriorate as quickly with age as the vestibular and 

visual systems (Horak et al., 1989; Pasma et al., 2014), little is known about the rates of vestibular 

processing decline compared to the rate of decline of visual processing. It is possible that vestibular 

processing mechanisms could become impaired more quickly than vision, which may contribute to 

the increased reliance on vision we see with age. Alternatively, vision could be upweighted with age 

compared to vestibular simply because visual aids are relatively more available, and many age-

related visual problems are more likely to have been corrected than those pertaining to vestibular 

function. However, these visual aids (such as glasses to correct presbyopia) are designed to correct 

low-level visual deficits, which are not thought to have significant effect on self-motion perception 

for balance (Halperin et al., 2020). Whether or not the relative ease of vision correction compared to 

vestibular correction is likely to bias the Bayesian system of the CNS towards vision for balance 

control is perhaps an interesting question for future research.  

Regarding the effects of neurodegeneration, while group differences in our study were 

limited, wider research would suggest increased reliance on visual input, seemingly because other 

inputs (such as vestibular information and/or proprioception) are unreliable or unavailable. This is 

evident both in healthy ageing populations (Bugnariu & Fung, 2006; Choy et al., 2003; Franz, Francis, 

Allen, O’Connor, & Thelen, 2015; Skinner, Barrack, & Cook, 1984), as well as in patients with PD 

(especially those with FOG; (Huh et al., 2016)), Persistent Postural-Perceptual Dizziness7 (PPPD; (Lee, 

J. et al., 2018; Söhsten, Bittar, & Staab, 2016)), Vestibular Neuritis (Cousins et al., 2014b), and other 

related vestibular disorders (Staab et al., 2017). In PD+FOG populations particularly, these patients 

often show an inability to recruit vestibular information for postural control, as described above, 

reportedly due to impaired processing of vestibular signals (Colnat-Coulbois et al., 2005; Colnat-

Coulbois et al., 2011), resulting in evidence of increased reliance on visual information (Huh et al., 

2016). While an increase in CCM is observed in many of in these populations (Boisgontier et al., 

2013; Chow et al., 2018; Kaski, 2020; Masters et al., 2007; Tjernström, Fransson, Holmberg, Karlberg, 

& Magnusson, 2009; Wu et al., 2015; Wuehr et al., 2017), the findings from Chapter 5 indicate that 

increased CCM does not contribute to increased reliance on vision, therefore factors other than 

 
7 It should be noted that in PPPD, vestibular function is reliable, but the original vestibular disturbance 
experienced by people with this disorder appears to have biased the CNS against vestibular input. 
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anxiety and CCM warrant further investigation to elucidate the mechanisms underpinning these 

observed biases towards visual information. As discussed in Chapter 3, the impaired ability to 

reweight could be due to attentional switch problems, therefore the “comparator” (as described in 

Bronstein’s model (Bronstein, 2019)) could remain ‘stuck’ on vision since it is already biased towards 

this sensory input. As reviewed in Chapter 4, increased visual reliance in people with PD+FOG is to 

be expected due to proprioceptive deficits along with age-related decrease in vestibular function 

which, given the sensory reweighting mechanisms described above, presumably increase the 

weighting of visual inputs. However, we did not see this clearly in our results, and correlational 

analyses on the PD+FOG group seemed to indicate that changes in postural response were not due 

to anxiety. Clearly, further work is necessary to better tease apart the mechanisms involved in 

sensory reweighting in ageing and clinical contexts.  

Research Applications 

How might the present findings inform clinical research help those at risk of falling? As we 

age and become more prone to falling (especially if we become anxious or fearful about falling 

(Hadjistavropoulos et al., 2011)), how might better balance control strategies be emphasised or 

learned, and how might anxiety/fear be managed? If anxiety is indeed a factor that contributes 

increased visual reliance (and therefore potentially decreased stability), interventions designed to 

simply reduce state anxiety may go some way towards decreasing fall risk in vulnerable groups. 

Payette and colleagues (2017) found significant associations between Generalised Anxiety Disorder 

and FOF. Therefore, one useful avenue of research is exploring whether anxiety disorder 

interventions such as cognitive-behavioural therapy (CBT) have a beneficial effect on fall risk and 

related fear in those with GAD and FOF, when combined with motor therapy. Indeed, some studies 

have explored similar interventions directly targeting FOF. Parry and colleagues (2016) employed a 

CBT approach (a commonly successful intervention for anxiety reduction (Hofmann & Smits, 2008)) 

alongside usual care for FOF, and found significant improvements in both FOF and depression scores 

compared with usual care alone. A pilot study conducted by Wetherell and colleagues (2018) 

documented the effectiveness of an approach combining elements of CBT with exercise and 

exposure therapy on reducing FOF. However, intervention effects eroded after six months, 

highlighting the need for further research on how these strategies can be improved upon to 

maintain long-term effectiveness in reducing FOF. 

The current studies have focussed on orthostatic balance control. This is informative when 

considering orthostatic balance, but it is useful to explore how these findings apply to dynamic tasks 

– especially when considering that most falls occur during movement such as walking (Talbot, 
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Musiol, Witham, & Metter, 2005). We may expect that dynamic sensory reweighting will be more 

volatile during dynamic gait tasks, with changing environmental features detected both visually and 

under-foot, as people adapt to their surroundings. Therefore, it is important that these findings may 

eventually be evaluated in dynamic gait research. Interestingly, Osaba, Martelli, Prado, Agrewal, and 

Lalwani (2020) unexpectedly observed that OAs’ gait was no more altered by visual perturbations 

than that of YAs during a treadmill task, despite all previous research indicating increase in visual 

reliance in OAs. They concluded that this was likely because OAs adapt their gait to a much slower 

speed than YAs, allowing more time for reweighting thus less interference from unreliable visual 

information, while YAs move much faster, thus are affected by the visual conflict. Evidently, the 

learned coping mechanisms that OAs develop to counteract the neural changes in sensory 

reweighting and allow for easier movement must be considered when expanding this research to 

non-static tasks. 

Clinical Applications 

The current study used Virtual Reality (VR) to explore visual weighting and postural control, 

and successfully induced anxiety in participants when they were placed in the environment designed 

to induce postural threat. As VR technology develops and becomes more versatile (e.g. more 

portable, with more convincing environments), it may prove to be a very useful clinical tool to 

reduce postural anxiety in those with FOF, potentially through exposure therapy and practicing safer 

postural strategies through virtual scenes simulating challenging environments. The innate ability of 

VR to greatly vary these environments may also lead to greater generalisation of learning. In other 

words, it could be possible to habituate OAs to anxiety to mitigate any effects of anxiety on sensory 

processing. Preliminary results from case studies suggest that exposure therapy can be successful in 

reducing fear of falling and related avoidance behaviour (Robinson & Wetherell, 2018). There is 

evidence that VR is useful for reducing height-related fear when paired with music (Seinfeld et al., 

2015), and research tools such as Toronto Rehabilitation Institute’s Challenging Environment 

Assessment Laboratory (CEAL), which pairs immersive VR with treadmill walking (Campos et al., 

2018), have great potential to provide innovative research on therapeutic methods for populations 

at risk of falling. One study employed a visual perturbation strategy similar to the one used in the 

current studies in research designed to examine the success of VR training in improving balance 

control learning, and found positive results, with OAs demonstrating reduced falls after VR training 

(Parijat, Lockhart, & Liu, 2015). Regarding techniques for non-healthy ageing populations, Kim, 

Darakjian, and Finley (2017) found no adverse effects when exposing a group of PD patients to a 

virtual city scene in which they had to walk for 20 minutes, and promoted the use of such head-

mounted VR display techniques for therapeutic use. As discussed in Chapter 5, it is possible that 
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visual feedback may produce more reliable results in VR experiments, by virtue of increasing the 

visual awareness of own-body movement. Therefore, providing a virtual body that reflects real-time 

movements may be a useful consideration for VR-based interventions. One important factor to 

consider when designing these VR-based interventions, however, is the nature of the virtual 

environments. Very recent research has found that postural instability (measured via COP sway 

area) significantly increases between a real-world environment and a virtual environment even with 

both at ground level (Chander et al., 2020). Previous research has demonstrated that VR-induced 

postural instability may be minimised when the virtual environment is a duplicate of the surrounding 

real-world environment (Cleworth et al., 2012), therefore future virtual interventions may benefit 

from this consideration. Augmented Reality (AR) allows for introduction of virtual objects and scenes 

into the real-world environment, which may be a useful way forward to address any potential issues 

with VR-induced instability due to the mis-match between reality and ‘virtuality’, and has already 

seen some positive results in early balance training studies with OAs (Mostajeran, Steinicke, Ariza 

Nunez, Gatsios, & Fotiadis, 2020).  

When it comes to the question of how clinical research might develop better interventions 

for those with impaired motor/sensory systems, the answers are not straightforward. For example, 

those with PD are potentially relying more on vision because other options are potentially defective 

– this strategy is perhaps the lesser of two evils (the other being placing more reliance on a 

misleading proprioceptive/vestibular system). If proprioception and/or vestibular information is 

unreliable due to impaired processing and/or bias in the feedback due to pathology or arousal, then 

they realistically do not have any choice other than to rely more on visual input – even if this is likely 

to be destabilising. While our study on the effects of CCM did not find any effect of directing focus 

internally on visual weighting, many studies do find that external focus of attention is beneficial for 

balance control, and propose encouraging external focus in those who are at increased risk of falls. 

However, due to deficits in proprioceptive feedback, should attempts be made to encourage more 

external focus in a PD population? Some findings suggest that this would help; external cues do 

seem to be beneficial for locomotion in people with PD, for example by producing more stable gait 

(Landers, Wulf, Wallmann, & Guadagnoli, 2005; Rocha et al., 2014; Rochester et al., 2007; Wulf, 

Landers, Lewthwaite, & Toöllner, 2009) and particularly for those with FOG (Gilat et al., 2018; Ginis 

et al., 2017; Rahman, Griffin, Quinn, & Jahanshahi, 2008). However, inducing external focus and/or 

cognitive task difficulty is not necessarily a one-size-fits-all method for improving balance control; 

some research suggests that an increase in external focus is ineffective or even detrimental to 

balance control, depending on the abilities of the target group and/or the nature of the focus task 

(Ellmers et al., 2020; Hardeman et al., 2020; Huxhold, Li, Schmiedek, & Lindenberger, 2006; Kal et al., 
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2019). Therefore, interventions using direction of attention and/or distraction techniques for 

balance improvement evidently need to consider the specific motor and cognitive needs of the 

individual. 

Limitations, Future Directions, Conclusion 

Limitations 

Both methodological and analytical limitations exist in the experimental sections of this 

thesis. Perhaps the most obvious of these is the limited-trial paradigm used throughout. This will not 

be discussed in extensive detail here, since the advantages and disadvantages have been described 

in previous chapters. Briefly, the decision to only use a single trial per experimental condition has, as 

one might expect, resulted in large between-subject variability and a potential error in representing 

visual reliance in a given individual. In some cases, these are difficult to interpret, and could obscure 

some meaningful results; using a single trial inevitably results in variability in the point in the sway 

position at which the perturbation was presented, which was not controlled within or between 

participants. However, since presenting repeated incongruent visual perturbations runs the risk of 

participants habituating to the stimulation and therefore obscuring any effects of unexpected 

perturbation (Bronstein, 1986; Bronstein, 2019; Nishiike et al., 2013; Oude Nijhuis et al., 2009), it 

was decided that a limited trial paradigm would yield the more reliable findings. In the third 

experimental chapter, the use of 4 trials may indeed have resulted in reweighting that may have 

obscured effects of internal focus/threat. Since a clear effect of threat was found in the first study, it 

is very possible that a Type 2 error occurred in Chapter 5 due to the repeated perturbations causing 

a downweighting of vision. It is clearly difficult to strike the balance between avoiding the confound 

of habituation versus obtaining sufficient data to be indicative of a particular participants’ cognitive 

state/behaviour. One potential solution to this may be to spread multiple perturbations over several 

sessions, taking care to maintain variables such as foot position.  

Secondly, the selection of outcome measures is potentially problematic. All measures of 

anxiety and conscious control of movement were self-reported. While using self-report methods are 

currently the only available avenue to measure CCM, many studies make use of physiological 

measures to supplement self-reported anxiety data. Galvanic Skin Response (GSR), for instance, is 

commonly used to quantify physiological arousal. However, GSR does not provide a reliable absolute 

measure of arousal for any given instant. Furthermore, self-reported anxiety levels tend to 

correspond well with physiological measures (Cleworth et al., 2019; Kantor, Endler, Heslegrave, & 

Kocovski, 2001), and previous research using very similar paradigms to the extant studies have also 

relied solely on self-reported measures for quantifying psychological variables such as anxiety 
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(Cleworth et al., 2016). Indeed, LeDoux (2014) argues that physiological response to threat is 

independent from the conscious psychological experience of anxiety or fear. Contemporary models 

of fear and anxiety categorise anxiety as a largely cognitive process that, while related to and, to a 

large extent, driven by physiological response, this conscious experience of processing anxious 

thoughts is best evaluated by self-reports of that conscious experience, rather than through 

physiological measures of arousal. Therefore, in the context of this group of studies, self-reported 

measures of anxiety are more relevant than physiological responses.  

More generally, relying on COP as the sole descriptor of postural response has its limitations, 

especially since participant height and weight were not measured, which influence ground force 

reactions. Similarly, these studies cannot adequately address the question of how increased 

stiffening during the Threat condition may have affected the centre of movement (COM) of the 

body, which was not measured directly. Following previous research, we adopted the perspective of 

the “inverted pendulum” model, where the body pivots around the ankle (Carpenter, Mark G., 

Frank, & Silcher, 1999; Johansson, R., Magnusson, & Akesson, 1988), when selecting and interpreting 

outcomes, but it is possible that this is not the most appropriate model for this specific paradigm. 

The current studies represent an initial investigation into the effects of postural threat/vection – an 

initial indication of behaviour with increased age and anxiety. There are many physiological and 

psychological factors that interact to ultimately generate behavioural responses in the current 

context. This complexity is compounded by factors such as ageing and associated physiological, 

neurological and psychological changes. future studies could address these factors by employing a 

paradigm similar to that of the current study to examine how, for example, the experience of vection 

affects COM as well as COP for different age groups in the context of increased threat. 

Previous research has observed a discrepancy between the experience of vection and actual 

postural behaviour in response to a visual disturbance (for review see (Saftari & Kwon, 2018)). 

Vection can be defined as the erroneous sensation of movement that occurs when all or part of the 

visual field is in motion, and is measured through self-report (Johansson, G., 1977; Saftari & Kwon, 

2018). The amplitudes of vection and postural sway elicited from optic flow are positively correlated 

(Thurrell & Bronstein, 2002), and dependence on vision can predict the strength of experienced 

vection (Palmisano, Apthorp, Seno, & Stapley, 2014). With age, however, postural sway increases 

while vection declines; Haibach, Slobounov, and Newell (2009) recorded both postural sway and 

self-reported ratings of vection from YAs and OAs in response to a moving room in VR. The OAs 

demonstrated larger postural sway, but lower rates of vection, suggesting that an age-related 

reduction in proprioceptive feedback may be contributing to increased postural sway. Self-reported 

sensation of vection was not recorded in the any of the studies in this thesis. It is arguable that this 
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somewhat limits our interpretations of between-subject responses, since it is possible that the 

illusion of motion used in the first study, for example, did not induce the sensation of vection to the 

same extent in OAs than YAs. However, the manipulation of environment to increase anxiety is 

arguably still valid, and within-group comparisons still indicate a somewhat lesser effect of postural 

threat on postural response in OAs compared to YAs despite comparable self-reported anxiety 

levels. 

A similar limitation is the failure to assess sensory function in the cohorts that were 

recruited for this thesis; sensory function differences may have influenced the degree to which a 

person relies on vision to begin with, thereby potentially affecting between-subject comparisons. 

However, any major sensory function differences were controlled for through the sample exclusion 

criteria. For Chapter 4, between-group differences in sensory function were assumed given the 

nature of PD+FOG, but it must be acknowledged that taking direct sensory function measurements 

may have improved the between-group analysis of these data. Again, this limitation does not affect 

within-subject comparisons beyond the potential for carrying out mediation analyses. One factor 

that may have affected between-condition comparisons is the intrinsic nature of the Threat 

condition, where a difference in the environment (i.e., the large drop in front of the participants and 

slight difference in small features on the horizon that were included to provide visual cues about the 

length of the gully) may have affected optic flow compared to the Ground environment. The use of 

the fixation point was included to mitigate this effect, as participants were looking at a clear feature 

that was in the same position in both conditions and controlled for the point at which the 

participants foveated, thereby better controlling for optic flow. Furthermore, all distinct objects in 

the environment were positioned beyond the fixation point, which was itself beyond the normal 

near point of convergence (about 6-10cm). Since the vast majority of each scene is beyond the 

convergence point, we do not expect that this would have been a significant confound of any 

observed effects of Threat. The velocity of the perturbation was identical between conditions, so the 

actual flow rate across the retina was the same; however, the perception of that flow may have 

differed due to differences in contrast, which may have been richer in the Threat condition given the 

large depth of ground surface in front of the participant compared to the flat surface in the Ground 

condition. Nonetheless, while contrast can affect optic flow perception (Stone & Thompson, 1992), 

the areas with greatest contrast have consistency between conditions. However, we must accept 

that the intrinsic difference in the visible environment between conditions may have had some 

effect on optic flow, and future studies should account for this when using similar paradigms. 

Creative solutions that manipulate anxiety specific to fear of falling while keeping the visual scene 

unaltered may mitigate this issue. Young and colleagues (2015) used a “trapdoor” paradigm to elicit 
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FOF-specific anxiety where participants were made to believe that some areas of the raised surface 

they walked on would collapse if stepped on, when in fact the entire walkway was solid. This method 

allows an increase in fall-related anxiety without needing to change any of the visual scene. Future 

studies using VR could employ this method virtually, thereby preserving consistent optic flow 

between baseline and threat conditions while presenting a visual perturbation. 

Finally, it is important to discuss the potential limitations associated with the choice of 

perturbation size. Following the pilot study using three different perturbation amplitudes/velocities, 

the smallest perturbation was chosen for subsequent empirical studies due to the risk of a potential 

ceiling effect occurring with the use of larger perturbations, and because it minimised the risk of 

impact on the response to the subsequent trial i.e., it was subtle enough to be integrated within the 

balance task so that the risk of habituation to the perturbation was lessened. However, we must 

acknowledge that using a larger perturbation may have produced different responses to those we 

have observed throughout this thesis, therefore we cannot generalise the observed results to 

contexts with greater sensory disparities. Nevertheless, the smaller perturbation is arguably more 

similar to the subtle sensory disparities experienced in the real world (such as a momentary slight 

sway when experiencing vection), where it is uncommon to experience rotations of the speed of the 

largest perturbation. Therefore, the small perturbation was judged to be the most sensitive 

manipulation for measuring the subtle responses to small changes in visual weighting in the sensory 

reweighting system. While other studies using visual perturbations (e.g., (Keshner et al., 2004)) 

observed greater COP responses than those observed in the current studies, these experiments used 

larger perturbations that were arguably less representative of natural postural sway. The aim of the 

current study was to measure postural sway in response to a stimulus that was more reminiscent of 

natural sway, therefore we used an arguably more representative stimulus at the cost of smaller and 

more volatile responses. Again, we argue that this results in response observations that may be 

more ecologically valid. 

Directions for Future Research 

While inclusion of electromyographical (EMG) or centre of mass (COM) measures were not 

able to be included in the current studies, this paradigm would certainly benefit from including EMG 

and COM measurement to support the kinetic (i.e. COP-related) measures. Measuring muscle 

activity using EMG would potentially clarify what underlying muscular mechanisms are at work 

during postural threat in the current paradigm, and whether they would align with the current 

kinetic findings. Moreover, given the differences between kinematic and kinetic outcome measures 

observed in previous studies using postural threat and/or presentation of incongruent sensory cues 
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(Bugnariu & Fung, 2006; Cleworth et al., 2016), it is possible that the mechanisms underlying COM-

specific postural behaviour in different contexts such as increased threat, internal focus, age, or 

neurodegenerative disease may differ to what we see in the kinetic data. 

As mentioned in the limitations, a different perturbation size may produce different results. Future 

studies could endeavour to test whether varying perturbation sizes and speeds produce different 

effects on VEPRs, whilst mitigating potential habituation effects. 

Concluding Remarks 

This thesis aimed to address the broad question of how anxiety affects sensory integration 

for balance control, particularly with regards to reliance on visual input. The present results 

answered this question through the progression of studies conducted for the thesis – the main novel 

findings being that postural threat and the corresponding heightened feelings of anxiety do increase 

reliance on visual information, and that, to a variable degree, healthy ageing and neurodegenerative 

disease also produce an upweighting of visual input. The mechanisms behind the latter are unlikely 

to involve anxiety or increased conscious movement control, given the current findings, but these 

warrant further research using more comprehensive additional measures. 

The thesis also generated new questions, such as which mechanisms other than anxiety and 

conscious control of movement are also responsible for changes in visual weighting and balance 

control (particularly in healthy adults and those with neurodegenerative disease), and how the wider 

findings so far may be used to inform more effective and individualised therapeutic techniques for 

those at high risk of falls and injury. Whether increased visual reliance with anxiety is due to the 

dominant nature of visual input compared to inertial input, increased attention to threat-relevant 

stimuli, and/or other factors is a question that may be answered by carefully designed future 

paradigms. It is hoped that future research will endeavour to answer these remaining questions 

through robustly designed experiments, informed by the knowledge that this thesis has generated.   
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