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Abstract—In this paper, the fault-tolerant consensus control problem
is investigated for multi-agent systems with sensor faults. A first-order
difference equation is utilized to describe the sensor fault, and an observer
is designed to estimate the state and the fault simultaneously. For security
enhancement and/or congestion mitigation purposes, the estimated state
is first encrypted into a series of finite-level codewords by an encryption
algorithm and then transmitted to other agents through a directed
topology. After being received, the codewords are then decrypted by the
corresponding decryption algorithm and subsequently utilized to design
the consensus controller. By constructing a novel matrix norm along
with its compatible vector norm, we obtain a necessary and sufficient
condition, which serves as an index in the observer and the controller
design. In the end, two simulation examples are given to demonstrate the
validity of the results in this paper.

Index Terms—Encryption-decryption scheme, multi-agent system, con-
sensus, fault-tolerant control, sensor faults.

I. I NTRODUCTION

The consensus problem has long been a fundamental research
topic with its root in distributed computing [3], [31]. In particular,
the consensus control problem for multi-agent systems (MASs) has
received considerable research attention ever since the seminal work
in [9], where a directed graph has been used to model the local
information exchange and the knowledge of the graph theory has been
introduced to obtain stability conditions for the underlying MASs. Up
to now, the consensus control problem for MASs has been extensively
studied (see e.g. [6], [24]) with promising applications ina variety
of domains such as formation control [8], [30], flocking control [5],
[15], [16] and distributed estimation [26], [29].

As a research forefront, the security issue of MASs has attracted
growing attention in response to the ever-increasing demand of
safety and reliability. For MASs, the security issue may result
from a communication-link weakness (logical security issue) or a
potential component fault (physical security issue). As for the logical
security issue in MASs, the interconnection among agents through
the communication networks exhibits obvious vulnerabilities to po-
tential attackers, and this may lead to unintended consequences. In
general, data logical security includes three main security properties:
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confidentiality, integrity, and availability. Confidentiality prevents an
unauthorized user from obtaining secret or private data. Integrity
prevents an unauthorized user from modifying the data. Availability
ensures that the data can be used when requested [28]. Compared
with the integrity and availability against different attacks (e.g.
Denial-of-Service attacks [10] and Byzantine agents attacks [35]),
the confidentiality of MASs, not limited to the single- or double-
integrator MASs, has only received initial research attention, which
motivates us to shorten this gap.

Generally speaking, data confidentiality protection related tech-
nologies include two main types, namely cryptography-based
encryption-decryption (CED) and private data release (PDR). CED
aims to transmit data securely and correctly, which always requires
heavy cryptographic calculations. On the other hand, PDR aims to
perturb released data such that the original data can not be inferred
from the perturbed data, and simultaneously, the perturbeddata can
still enable certain utilities [27], which is similar to thecoding-
decoding technology [33]. The coding-decoding technologyhas been
investigated in the existing literature (see [4], [12], [21], [22] for
single-integrator MASs, [23], [25] for double-integratorMASs, [17],
[20], [32] for general linear MASs and [7] for nonlinear MASs)
with the aim of designing a pair of encoder-decoder appropriately
such that at each time instant, the decoding error is possibly small
with the minimum size of the released data. Based on the above
analysis, in this paper, we propose a novel encryption-decryption
scheme combining CED and PDR technologies, where 1) the CED
technology is employed to ensure the high security of the system; and
2) the PDR technology, realized by the coding-decoding technology,
is employed to reduce the size of the released data, thereby reducing
the heavy calculations that will be imposed on the CED algorithm.

Apart from enhancing the logical security, another effective way to
improve the security of MASs is to guarantee the physical security,
which refers to the protection of tangible items. In this paper, we
concentrate on sensors and provide a feasible method to maintain
certain availabilities of sensors even in the presence of faults. As
is well known, sensors are used for obtaining information and thus
provide the primary support for process monitoring and control. As
for MASs, they usually perform tasks in harsh environments,which
makes the sensors prone to faults. These faults may result from
external environmental factors (e.g. temperature, humidity, pollution
and corrosion) or internal factors (e.g. abnormal wear of components
and over-heating). Moreover, due to the underlying interconnections
among agents, these faults, if not dealt with in time, could propagate
to the neighboring agents, thereby affecting the performance of the
overall MAS. In addition, as compared with the actuator faults ( [11],
[34]) and the process faults ( [18], [19]), the sensor faultsneed to
gain more research attention because the embedded controller is not
equipped with the fault-tolerant capability against sensor faults [38],
and this motivates the research on the fault-tolerant control.

In general, the sensor fault is first estimated by constructing an
augmented system as well as an observer, and a controller is then
designed to compensate the effect from the sensor fault [13], [14],
[39]. According to the prior knowledge about the faults, we can
choose to construct an augmented descriptor system or an augmented
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non-descriptor system. Specifically, if we do not know any prior
knowledge, an augmented descriptor system can be constructed [13],
[14]. Nevertheless, it is worth noting that to obtain an accurate
estimation, the detectability of the descriptor system is typically
required and such a requirement is rather stringent. To get rid of the
detectability requirement, an augmented non-descriptor system can be
constructed by assuming the magnitude or the derivation/first-order
difference of the fault is bounded [39]. Inspired by [39], where the
continuous-time systems is considered, we construct an augmented
non-descriptor system as well as its observer to deal with sensor faults
for discrete-time systems. The novelty lies in that: 1) by introducing
the first-order difference of the sensor fault, bias faults and drift faults
can be estimated/tolerated simultaneously; and 2) a novel matrix norm
along with its compatible vector norm is exploited so as to derive the
necessary and sufficient condition for the observer and observer-based
fault-tolerant controller design.

Motivated by the above discussion, in this paper, we strive to
deal with the fault-tolerant consensus control problem forMASs
subject to sensor faults under an encryption-decryption scheme.
The main contributions of this paper are summarized as follows:
1) we have made one of the first attempts to deal with the data
confidentiality issue through combining cryptographic computation
algorithm and system dynamics, which could largely reduce the
calculation burden and preserve certain control-theoretic performance
of MASs; 2) a novel matrix norm along with its compatible vector
norm is constructed (according to the property of the spectral radius)
so as to obtain the necessary and sufficient condition to facilitate the
design of the observer-based consensus controller; and 3) anovel
analysis method is proposed based on the constructed norm todeal
with the tight couplings of coding-decoding-based PDR algorithm,
consensus controller and observer.

The rest of this paper is structured as follows. In Section II,
fundamental concepts on graphs, the model of MASs subject tosensor
faults and basic encryption-decryption ideas are introduced. In Sec-
tion III, the encryption-decryption-based consensus is analyzed and
the consensus controller is designed. In Section IV, two simulation
examples are provided and Section V concludes this paper.

Notations. Let 1m and 0m denote them × 1 column vector
with all ones and all zeros, respectively.0m×n stands for the
m× n matrix with all zeros.In is a n-dimensional identity matrix.
diag{f0, . . . , fn} represents a diagonal matrix withf0, . . . , fn as
its diagonal elements.ρ(A) and λmax(A) denote, respectively, the
spectral radius and the maximum eigenvalue of the square matrix
A. ‖ · ‖2 and ‖ · ‖∞ denote, respectively, the2-norm and the∞-
norm of a vector or a matrix. For a complex numbers, Re(s) and
s̄ represent its real part and conjugate complex number, respectively.
For a symmetric matrixP , P > 0 meansP is positive definite. For
a complex matrixC, C∗ denotes the conjugate transpose ofC. The
symbol⊗ represents the Kronecker product. For a given real number
x, ⌈x⌉ means the minimum integer not smaller thanx.

II. PROBLEM FORMULATION

For an MAS consisting ofN agents, the information flow within
the system forms a directed graphG, (v, ε,AG), where v =
{v1, v2, . . . , vN} is the set of nodes and each node represents an
agent,ε ⊂ v× v is the set of edges andεij = (vi, vj) ∈ ε if there is
an information flow from nodevi to nodevj , andAG =

[

aij

]

N×N

is the adjacency matrix. The set of neighbors of nodevi is denoted
by Ni = {j|j ∈ v, j 6= i, εji ∈ ε} and the cardinality ofNi (i.e. the
in-degree of nodevi) is denoted bydi. aij = 1/(di +1) if and only
if εji ∈ ε, otherwiseaij = 0. L =

[

lij
]

N×N
denotes the Laplacian

matrix of the graphG with lii =
∑N

j=1,j 6=i
aij , lij = −aij , i 6= j.

The i-th eigenvalue ofL is denoted byλi(L). A directed graphG
is said to contain a directed spanning tree if there exists a node that
can reach any other nodes through paths.

In this paper, we consider the leaderless consensus of an MAS
consisting ofN agents. The dynamics of each agent is described by

{

xi(k + 1) = Axi(k) +Bui(k)

yi(k) = Cxi(k) + Ffi(k)
(1)

where xi ∈ R
n, ui ∈ R

m and yi ∈ R
q are the state variable,

the input variable and the output variable, respectively.fi(k) =
[

fi1(k), · · · , fip(k)
]T ∈ R

p denotes the unknown sensor fault that
evolves according to

f
[1]
i (k + 1) = f

[1]
i (k) + ∆f

[1]
i (k), (2)

where∆f
[1]
i ,

[

∆f
[1]
i1 , ∆f

[1]
i2 , · · · ,∆f

[1]
ip

]T

andf
[1]
i (k) , fi(k +

1) − fi(k). The form (2) can describe a variety of faults including
bias faults (by letting∆f

[1]
i (k) ≡ 0 andf [1]

i (0) = 0) and drift faults
(by letting∆f

[1]
i (k) ≡ 0 andf [1]

i (0) 6= 0).

Definition 1: (Consensus) The consensus is said to be reached
asymptotically if

lim
k→∞

‖xi(k)− xj(k)‖ = 0, i, j = 1, 2, . . . , N (3)

is satisfied for any given matrix norm.

By constructing the following augmented state

ζi(k) ,
[

xT
i (k) fT

i (k)
(

f
[1]
i (k)

)T
]T

,

the augmented system can be established as follows:
{

ζi(k + 1) = Āζi(k) + B̄ui(k)+D̄∆f
[1]
i (k)

yi(k) = C̄ζi(k),
(4)

where

Ā ,





A 0n×p 0n×p

0p×n Ip Ip
0p×n 0p×p Ip



 , B̄ ,





B
0p×m

0p×m



 ,

C̄ ,
[

C F 0q×p

]

, D̄ ,





0n×p

0p×p

Ip



 .

Considering the augmented system (4), we propose an observer-
based encryption-decryption fault-tolerant consensus control scheme
for MASs, which is shown in Fig. 1. First, based on the augmented
system (4), an observer is designed to estimate the state andthe
sensor fault simultaneously. Then, the estimated state variable is
encrypted into codewords by a prescribed PDR algorithm as well as
a CED algorithm, and subsequently transmitted to the specific agents
according to the topology. The received codewords are decrypted and
further utilized to design the distributed consensus controller.

In the following, the observer, the coding-decoding-basedPDR
scheme and the distributed consensus controller will be designed one
by one.

Observer of agenti:










ζ̂i(k + 1) = Āζ̂i(k) + B̄ui(k) +G(yi(k)− ŷi(k))

ŷi(k) = C̄ζ̂i(k)

ζ̂i(0) = 0,

(5)

where ζ̂i(k) ,

[

x̂T
i (k) f̂T

i (k)
(

f̂
[1]
i (k)

)T
]T

and G is the

observer gain matrix to be designed.
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Decryption Controller Plant Sensor Observer

( )is k
ˆ ( )ix k( )iy k( )ix k( )iu k( )jix k

( )if k( )js k

( )j kx

Encryption

( )i kx

Fig. 1. Observer-based encryption-decryption control scheme.

PDR-coding algorithm of agenti:


















si(k) = Qt

(

x̂i(k)− Aξi(k − 1)

g(k − 1)

)

ξi(k) = Aξi(k − 1) + g(k − 1)si(k)

ξi(0) = 0,

(6)

where ξi(k) is an auxiliary variable introduced to obtainsi(k),
si(k) is the codeword to be transmitted to agentj (εij ∈ ε),
g(k) is a decaying scaling function to be determined, which can
also be seen as a symmetric key in the process of PDR since one
cannot decrypt the received information ifg(k) remains unknown.
For v =

[

v1, · · · , vn
]T

, the quantization function is defined as

Qt(v) ,
[

qt(v1), · · · , qt(vn)
]T

with

qt(vi) =

{

dβ, (d− 1
2
)β ≤ vi < (d+ 1

2
)β

−qt(−vi), vi ≤ − 1
2
β,

(7)

whereβ is the given quantization parameter,|vi − qt(vi)| ≤ β/2
and d = 0, 1, 2, . . . ,M with M = maxi,k ‖si(k)/β‖∞. The
communication channel of each agent is required to be capable of
transmitting⌈log2(nM + 1) + 1⌉ bits of data at each time step.

PDR-decoding algorithm of agenti:
{

xji(k) = Axji(k − 1) + g(k − 1)sj(k)

xji(0) = 0, j ∈ Ni,
(8)

wherexji(k) is the state obtained after decryption.
Controller of agent i:

ui(t) = −cK

N
∑

j=1

aij(ξi(k)− xji(k)), (9)

wherec > 0 is the coupling gain andK is the feedback gain matrix.
Remark 1:Under the PDR algorithm, agentj sends the codeword

sj(k) to agent i (εji ∈ ε). Agent i receivessj(k) and obtains
the statexji(k) according to the decryption algorithm (8). From
(6) and (8), we havexji(k) = ξj(k). Through the introduction of
the quantization process, the coding-decoding algorithm works as a
PDR technology to add uncertainties into the released data,which
can be executed in conjunction with CED technology, e.g. Paillier
encryption algorithm (PEA), to further enhance the security of the
released data. To be more specific, we can transmit the first packet
using PEA to ensure the initial state is secure and then let the PDR
algorithm take over, which is sufficient to protect the stateinformation
of the MAS since the initial inferred error of eavesdropperswill lead
to an exponential growing of the estimation error. The encryption-
decryption scheme proposed in this paper can be summarized as:
1) the PDR algorithm, realized by introducing a dynamic coding-
decoding algorithm, is exploited to add uncertainties intothe released

data; 2) the introduced coding-decoding algorithm is well designed
to preserve control-theoretic performance of the MAS; 3) the CED
algorithm, realized by a kind of homomorphic encryption algorithm,
is introduced to ensure the high security of the released data; and
4) PDR and CED algorithms are executed cooperatively to greatly
reduce the calculation burden.

Define the estimation error asei(k) , xi(k) − x̂i(k), the
augmented estimation error asēi(k) , ζi(k)− ζ̂i(k), the encryption
error as ẽi(k) , ξi(k) − x̂i(k) and the quantization error as
δi(k − 1) , si(k) − (x̂i(k)− Aξi(k − 1)) /g(k − 1). Then, we
obtain

{

ēi(k + 1) = (Ā−GC̄)ēi(k)+D̄∆f
[1]
i (k)

ei(k) =
[

In 0n×2p

]

ēi(k),
(10)

and
{

ẽi(k) = g(k − 1)δi(k − 1), k ≥ 1

ẽi(0) = 0.
(11)

For notation simplicity, we denote

x ,
[

xT
1 , x

T
2 , · · · , xT

N

]T
, x̂ =

[

x̂T
1 , x̂

T
2 , · · · , x̂T

N

]T
,

y ,
[

yT
1 , y

T
2 , · · · , yT

N

]T
, ζ ,

[

ζT1 , ζT2 , · · · , ζTN
]T

,

e ,
[

eT1 , e
T
2 , · · · , eTN

]T
, ē ,

[

ēT1 , ē
T
2 , · · · , ēTN

]T
,

ẽ ,
[

ẽT1 , ẽ
T
2 , · · · , ẽTN

]T
, ξ ,

[

ξT1 , ξ
T
2 , · · · , ξTN

]T
,

s ,
[

sT1 , s
T
2 , · · · , sTN

]T
, u ,

[

uT
1 , u

T
2 , · · · , uT

N

]T
,

δ ,
[

δT1 , δ
T
2 , · · · , δTN

]T
. (12)

With the aid of the Kronecker product, the collective dynamics of
the MAS can be represented as

{

x(k + 1) = (IN ⊗A)x(k) + (IN ⊗B)u(k)

y(k) = (IN ⊗C)x(k).
(13)

Moreover, (6) and (10) can be written in the following compact form:


















s(k) = Qt

(

x̂(k)− (IN ⊗ A)ξ(k − 1)

g(k − 1)

)

ξ(k) = (IN ⊗ A)ξ(k − 1) + g(k − 1)s(k)

ξ(0) = 0,

(14)

{

ē(k + 1) = (IN ⊗ (Ā−GC̄))ē(k)+D∆f [1](k)

e(k) = (IN ⊗
[

In 0n×2p

]

)ē(k).
(15)

where ∆f [1] ,

[

(∆f
[1]
1 )T , (∆f

[1]
2 )T , · · · , (∆f

[1]
N )T

]T

and D ,

IN ⊗ D̄.
In this paper, we investigate the fault-tolerant consensuscontrol

problem for MASs subject to sensor faults under the encryption-
decryption scheme. In other words, we aim to design the PDR
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algorithm (6)-(8), the observer (5) and the controller (9) such that:
1) the consensus of the MAS is reached asymptotically in the

presence of the sensor fault (2);
2) the size of the transmitted data is bounded under the PDR

algorithm (6)-(8).

III. M AIN RESULTS

In this section, we first address the consensus problem of the
addressed MAS and then analyze the size of the transmitted data.
To start with, we give the following assumptions and lemmas,which
will be used for deriving our main results in the sequel.

Assumption 1:The directed graphG contains a directed spanning
tree.

Assumption 2:There exist known positive constantsχc and χ0

such that‖xc(0)‖∞ ≤ χc and ‖ζ(0)‖∞ ≤ χ0, where xc(0) =
x(0)− (1Nr

T ⊗ In)x(0).
Lemma 1:[36] Under Assumption 1,0 is a simple eigenvalue of

L and all the other eigenvalues have positive real parts, i.e.0 =
λ1(L) < Re(λ2(L)) ≤ . . . ≤ Re(λN (L)). Moreover,L1N = 0N

and there exists a vectorr =
[

r1, · · · , rN
]T

such thatrT
1N = 1

andrTL = 0
T
N .

It follows from Lemma 1 that there exist matrixT =
[

1√
N
1N T0

]

andT−1 =
[√

Nr T T
1

]T
such that

T−1LT = J =

[

0 0

0 ∆

]

,

where∆ is a block diagonal matrix.
Lemma 2:Suppose that Assumption 1 holds. LetP = P T > 0 be

the solution of the following discrete Riccati equation:

ATPA− P − ATPB(BTPB + I)−1BTPA+Q = 0. (16)

DefineK = (BTPB+I)−1BTPA, r0≥maxi |λi(L)−c0| andr =
(

λmax(Q
− 1

2KTBTPBKQ− 1

2 )
)− 1

2 . Let c0≤2mini{Re(λi(L))}.
If there exist a matrixQ = QT > 0 and a scalarc0 such that
r0/c0 < r, thenρ(A− 1

c0
λi(L)BK) < 1 for all i = 2, . . . , N .

Proof: It follows from (16) andK = (BTPB + I)−1BTPA
that

ATPA− P −ATPB(BTPB + I)−1BTPA+Q

= (A−BK)TP (A−BK) +KTK − P +Q = 0. (17)

For a complex numbers = a+ bj, we know that

(A− sBK)∗P (A− sBK)

= (A− aBK)TP (A− aBK) + b2KTBTPBK. (18)

It follows from (17) and (18) that

(A− sBK)∗P (A− sBK)− P

= 2(1− a)ATPBK + (a2 + b2 − 1)KTBTPBK

−KTK −Q

= (1− 2a+ a2 + b2)KTBTPBK + (1− 2a)KTK −Q

= |s− 1|2KTBTPBK −Q+ (1− 2a)KTK. (19)

Clearly, if |s−1| <
(

λmax(Q
− 1

2 KTBTPBKQ− 1

2 )
)− 1

2 = r and
1− 2a≤0, then(A− sBK)∗P (A− sBK)− P < 0. Furthermore,
notice thatr0/c0 < r implies

max
i

∣

∣

∣

∣

λi(L)

c0
− 1

∣

∣

∣

∣

< r, (20)

andc0≤2mini{Re(λi(L))} implies

1− 2Re

(

λi(L)

c0

)

= 1− 2Re(λi(L))

c0
≤0. (21)

Therefore, it can be inferred that(A − 1
c0
λi(L)BK)∗P (A −

1
c0
λi(L)BK) < P . Letting ν denote the corresponding eigenvector

of the eigenvalueλ(A− 1
c0
λiBK), we have

ν∗(A− 1

c0
λi(L)BK)∗P (A− 1

c0
λi(L)BK)ν

= ν∗λ̄(A− 1

c0
λiBK)Pλ(A− 1

c0
λiBK)ν

= |λ(A− 1

c0
λiBK)|2ν∗Pν < ν∗Pν, (22)

which further implies

ρ(A− 1

c0
λiBK) < 1, (23)

and the proof is complete.
Lemma 3:Let P1 = P T

1 > 0 be the solution of the following
discrete Riccati equation with a given matrixQ1 = QT

1 > 0:

ĀP1Ā
T − P1 − ĀP1C̄

T (C̄P1C̄
T + I)−1C̄P1Ā

T +Q1 = 0.
(24)

Then, we haveρ(Ā−GC̄) < 1 and the observer gain matrix in (5)
can be designed asG = ĀP1C̄

T (C̄P1C̄
T + I)−1.

Proof: It follows from (24) andG = ĀP1C̄
T (C̄P1C̄

T + I)−1

that

(Ā−GC̄)P1(Ā−GC̄)T − P1

= ĀP1Ā
T − ĀP1C̄

T (C̄P C̄T + I)−1C̄P1Ā
T

− ĀP1C̄
T (C̄P C̄T + I)−2C̄P1Ā

T − P1

= −Q1 − ĀP1C̄
T (C̄P C̄T + I)−2C̄P1Ā

T < 0. (25)

With the similar procedure in Lemma 2, we can readily obtain
ρ(Ā−GC̄) < 1.

Remark 2:The design of the consensus controller is dependent on
the Laplacian matrix of the communication graph. Differentfrom the
undirected graph, the directed graph leads to complex eigenvalues
of its Laplacian matrix, which complicates the controller design
problem, and a conventional approach is to discuss the real and
imaginary parts of the eigenvalue separately in order to obtain the
controller gain, see e.g. [32]. In this paper, inspired by [20], we
propose a novel Riccati-equation-based method as illustrated by
Lemma 2, where the consensus controller gain is divided intotwo
parts, namely, the coupling gain and the feedback gain. The coupling
gain can be adjusted to handle the effect of the graph on the consensus
and the feedback gain can be used to achieve the consensus. In
addition, compared with the results in [20], the results derived by
Lemma 2 has removed the full-rank assumption on the matrixB.

Combining (9), (13), (14) and (15), we obtain the closed-loop
collective dynamics as follows:

x(k + 1) = (IN ⊗ A)x(k)− (cL⊗BK)ξ(k)

× (ξ(k)− x(k))

= (IN ⊗ A− cL⊗BK)x(k)− (cL⊗BK)

× (ξ(k)− x̂(k) + x̂(k)− x(k))

= (IN ⊗ A− cL⊗BK)x(t)− (cL⊗BK)

× (ẽ(k)− e(k))

= (IN ⊗ A− cL⊗BK)x(t)− (cL⊗BK)

×
(

ẽ(k)−
(

IN ⊗
[

In 0n×2p

])

ē(k)
)

. (26)

Now, we are in a position to give the main results.
Theorem 1:Consider the case∆f

[1]
i (k) ≡ 0. Under Assumption 1

and the encryption-decryption-based fault-tolerant consensus control
scheme (5)-(9), if and only ifρ(A − cλi(L)BK) < 1 for all i =
2, . . . , N and ρ(Ā − GC̄) < 1, then there exists an encryption-
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decryption keyg(k) > 0 such that the consensus of the MAS with
agents (1) can be reached for any given initial states.

Proof: Sufficiency. Letting xc(k) = x(k) − (1Nr
T ⊗ In)x(k)

and z(k) = (T−1 ⊗ In)xc(k), we obtain from(IN − 1Nr
T )L =

L(IN − 1Nr
T ) = L that

z(k + 1) = (IN ⊗ A− cJ ⊗BK)z(k)− (cJT−1 ⊗BK)

×
(

ẽ(k)−
(

IN ⊗
[

In 0n×2p

])

ē(k)
)

,
[

zT1 (k + 1) zT2−N (k + 1)
]T

, (27)

wherez1(k) ∈ R
n andz2−N (k) ∈ R

(N−1)n. Noting that

z1(k) =
(√

Nr
T (IN − 1Nr

T )⊗ In
)

x(k) ≡ 0, (28)

we have

z2−N (k + 1) = Λz2−N (k)− (c∆T1 ⊗BK)

×
(

ẽ(k)−
(

IN ⊗
[

In 0n×2p

])

ē(k)
)

, (29)

where Λ , IN−1 ⊗ A − c∆ ⊗ BK. Omitting the computation
procedure, we arrive at

z2−N (k) = Λk−1z2−N (1)−
k−1
∑

l=1

Λk−l−1(c∆T1 ⊗BK)

×
(

ẽ(l)−
(

IN ⊗
[

In 0n×2p

])

ē(l)
)

, k ≥ 2. (30)

Denoteρ = maxi{ρ(A − cλi(L)BK), ρ(Ā − GC̄)}. Recalling
that ρ(A− cλi(L)BK) < 1 andρ(Ā−GC̄) < 1, we haveρ < 1.
Using the property of the spectral radius, for any0 < ε < 1 − ρ,
we can find a matrix norm such thatρ(A− cλi(L)BK) = ρ(Λ) ≤
‖Λ‖ = η1 ≤ ρ + ε < 1, ρ(Ā − GC̄) = ρ(IN ⊗ (Ā − GC̄)) ≤
‖IN ⊗ (Ā − GC̄)‖ = η2 ≤ ρ + ε < 1 and η2 < η1. Then, (30)
further leads to

‖z2−N (k)‖
≤ ηk−1

1 ‖z2−N (1)‖+ ‖c∆T1 ⊗BK‖

×
k−1
∑

l=1

g(l− 1)ηk−l−1
1 ‖δ(l − 1)‖+ ‖c∆T1 ⊗BK‖

×
∥

∥IN ⊗
[

In 0n×2p

]∥

∥

k−1
∑

l=1

ηk−l−1
1 ‖ē(l)‖, k ≥ 2, (31)

with

z2−N (1) = Λz2−N (0) +
(

c∆T1 ⊗
(

BK
[

In 0n×2p

]))

ē(0).

Denotingf1(k) =
∑k−1

l=1 g(l−1)ηk−l−1
1 ‖δ(l−1)‖ for k ≥ 2 and

h(k) = f1(k)/g(k), we obtain

h(k + 1) =
η1g(k)

g(k + 1)
h(k) +

g(k − 1)

g(k + 1)
‖δ(k − 1)‖. (32)

If supk g(k)/g(k + 1) = µ, 0 < η1µ < 1 and lim
k→∞

g(k) = 0, then

h(k) satisfies

h(k) ≤ 2µ2

1− η1µ
max

k
‖δ(k)‖, (33)

and lim
k→∞

f1(k) = 0.

Moreover, definingf2(k) =
∑k−1

l=1 ηk−l−1
1 ‖ē(l)‖, we obtain

f2(k) ≤
k−1
∑

l=1

ηk−l−1
1 ηl−1

2 ‖ē(1)‖ ≤ ηk−2
1

1− η2/η1
‖ē(1)‖ (34)

and furthermorelim
k→∞

f2(k) = 0. Thus, we have

lim
k→∞

‖z2−N (k)‖ = 0, (35)

which, together withz(k) = (T−1⊗In)xc(k), finally concludes that

lim
k→∞

‖xc(k)‖ = 0, (36)

and the consensus is therefore achieved.

Necessity. We know thatlimk→∞ Λk = 0 if and only if ρ(A −
cλi(L)BK) < 1, andlimk→∞(Ā−GC̄)k = 0 if and only if ρ(Ā−
GC̄) < 1. If ρ(A− cλi(L)BK) ≥ 1 or ρ(Ā−GC̄) ≥ 1, z2−N (k)
will not converge to zero unlessz2−N (0) = 0. The necessity is
directly proved and the proof of Theorem 1 is now complete.

Remark 3:Based on the foregoing analysis, we know thatg(k)
can be arbitrary forms satisfyingsupk g(k)/g(k + 1) = µ, 0 <
η1µ < 1 andlimk→∞ g(k) = 0, and two simple examples areg0µ−k

and g0/(k + p). For the formg(k) = g0µ
−k, µ can be any values

satisfying1 < µ < 1/(ρ + ε). Nevertheless, we prefer to choose a
largerµ so as to have a higher convergence rate ofz(k).

Corollary 1: Consider the more general case where∆f
[1]
i (k) 6= 0

and ‖∆f
[1]
i (k)‖∞ ≤ fmax for any i and k. Under Assumption 1

and the encryption-decryption-based fault-tolerant consensus control
scheme (5)-(9), ifρ(A − cλi(L)BK) < 1 for all i = 2, . . . , N
andρ(Ā−GC̄) < 1, then there exists an encryption-decryption key
g(k) > 0 such that the bounded consensus of the MAS with agents
(1) can be reached for any given initial states.

Proof: It follows from (15) that

‖ē(k)‖ ≤ ηk−1‖ē(1)‖+ k2‖D‖fmax

1− η
, (37)

where0 < η < 1 andk2 > 0. This, together with (34), concludes that
there exists a positive constantB such that lim

k→∞
‖xi(k)− xj(k)‖ ≤

B, i.e., the bounded consensus can be reached.

In Theorem 1, we have derived thenecessary and sufficient
condition for the existence of the PDR algorithm. Meanwhile, we
have provided a specific design method for the consensus controller
gain and the observer gain in Lemma 2 and Lemma 3, respectively.
In the following, we will discuss the size of the transmitteddata.

From the definition of the quantization functionQt in (7), it can
be calculated that

M =

⌈

max
i,k

∥

∥

∥

∥

x̂i(k)−Aξi(k − 1)

βg(k − 1)

∥

∥

∥

∥

∞
− 1

2

⌉

. (38)

Theorem 2:Consider the case∆f
[1]
i (k) ≡ 0. Under Assumptions

1-2, suppose that the following conditions are satisfied:


























ρ(Ā−GC̄) < 1, (39a)

ρ(A− cλi(L)BK) < 1, i = 2, . . . , N, (39b)

sup
k

g(k)

g(k + 1)
= µ, 1 < µ < 1

(ρ+ε)
, (39c)

lim
k→∞

g(k) = 0, (39d)

whereε andρ are defined in Theorem 1. Then,M is bounded.

Proof: At time instantk + 1, we obtain
∥

∥

∥

∥

x̂i(k + 1)− Aξi(k)

g(k)

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

x̂i(k + 1)− xi(k + 1)

g(k)

∥

∥

∥

∥

∞
+

∥

∥

∥

∥

xi(k + 1)− Aξi(k)

g(k)

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

∥

[

In 0n×2p

]

ēi(k)

g(k)

∥

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

Bui(k)

g(k)

∥

∥

∥

∥

∞

+
g(k − 1)‖A‖∞

g(k)

∥

∥

∥

∥

xi(k)−Aξi(k − 1)

g(k − 1)
− si(k)

∥

∥

∥

∥

∞

≤ ‖ē(k)‖∞ + ‖Bui(k)‖∞ + ‖A‖∞‖ē(k)‖∞
g(k)
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+
g(k − 1)‖A‖∞

g(k)

∥

∥

∥

∥

x̂i(k)− Aξi(k − 1)

g(k − 1)
− si(k)

∥

∥

∥

∥

∞

≤ (1 + ‖A‖∞)‖ē(k)‖∞ + ‖Bui(k)‖∞
g(k)

+
g(k − 1)β‖A‖∞

2g(k)
.

(40)

Sinceaij = 1/(di + 1), we have
∑N

j=1 aij < 1 and

‖Bui(k)‖∞
< c‖BK‖∞ max

j
‖ξi(k)− x̂i(k) + x̂i(k)− xi(k)

− (ξj(k)− x̂j(k))− (x̂j(k)− xj(k))

+ (xi(k)− xj(k))‖∞
≤ c‖BK‖∞(g(k − 1)β + 2‖(T ⊗ In)z(k)‖∞
+ 2‖ēi(k)‖∞). (41)

Substituting (40) into (41) yields
∥

∥

∥

∥

x̂i(k + 1)− Aξi(k)

g(k)

∥

∥

∥

∥

∞

<
2c‖BK‖∞‖T ⊗ In‖∞‖z(k)‖∞

g(k)

+ (1 + ‖A‖∞)
‖ē(k)‖∞
g(k)

+
g(k − 1)β

2g(k)
‖A‖∞

+
cβ‖BK‖∞g(k − 1)

g(k)
+

2c‖BK‖∞‖ē(k)‖∞
g(k)

. (42)

Moreover, combining (31), (33) and (34), we obtain

‖z(k)‖

≤ ηk−1
1 ‖z(1)‖+ ‖c∆T1 ⊗BK‖µ

2βg(k)

1− η1µ

+ ‖c∆T1 ⊗BK‖
∥

∥IN ⊗
[

In 0n×2p

]
∥

∥

ηk−2
1 ‖ē(1)‖
1− η2/η1

. (43)

From the equivalence property of the matrix norm, we know that
there exist positive constantsk1 andk2 such thatk1 ‖·‖∞ ≤ ‖·‖ ≤
k2 ‖·‖∞. As a result, we have

‖z(k)‖∞ ≤ k2
k1

ηk−1
1 ‖z(1)‖∞

+
k2
k1

µ2βg(k)

1− η1µ
‖c∆T1 ⊗BK‖∞

+
k3
2‖c∆T1 ⊗BK‖∞ηk−2

1

k1(1− η2/η1)
‖ē(1)‖∞, (44)

and

‖ē(k)‖∞ ≤ ‖ē(k)‖
k1

≤ ηk
2‖ē(0)‖
k1

≤ k2η
k
2 ‖ē(0)‖∞
k1

. (45)

Finally, we obtain
∥

∥

∥

∥

x̂i(k + 1)− Aξi(k)

g(k)

∥

∥

∥

∥

∞

< µβc‖BK‖∞ +
1 + ‖A‖∞ + 2c‖BK‖∞

g(0)

k2χ0

k1

+
ck2‖BK‖∞‖T‖∞

k1

(

2k3
2η2χ0‖c∆T1 ⊗BK‖∞
g(0)k1η1(η1 − η2)

+
2µ2β‖c∆T1 ⊗BK‖∞

1− η1µ
+

2χc‖T−1‖∞‖A‖∞
g(0)η1

)

+
µβ‖A‖∞

2
, (46)

which implies thatM is bounded. The proof is complete.
Remark 4: The condition η1µ < 1 is utilized to prove the

boundedness ofM , but this condition is not necessary in ensuring
the convergence ofz2−N (k). This can be demonstrated by the

following example: choosingg(k) = g0µ
−k with η1µ > 1 and

µ > 1, then we obtain from (32) thatf1(k) ≤ g0
(

ηk−2
1 +

η
k−2

1
−µ2−k

η1µ−1

)

max
k

‖δ(k)‖,∀k ≥ 3. Thus, lim
k→∞

f1(k) = 0, which

implies that z2−N(k) is convergent. Moreover, it is worth noting
that the derived bounded consensus in Corollary 1 will lead to the
infinite size of the transmitted data under the proposed scheme (5)-
(9), which is undesirable. In this case, we would like to provide a
feasible scheme to reduce the size of the transmitted data. To be
more specific, 1) a healthy system can be introduced for each agent
as a reference system to deal with the external consensus; and 2)
an internal observer-based controller can be designed to track the
reference system.

Remark 5:Compared with existing results (e.g. [20]), the technical
novelties of this paper can be summarized as follows:

1) The observer-based PDR algorithm is constructed, hence the
state is no longer required to be fully available.

2) A general sensor fault model is considered that includes the
commonly investigated bias faults and drift faults as special
cases.

3) A novel matrix norm along with its compatible vector norm is
exploited so as to derive the necessary and sufficient condition
for the desired consensus.

4) The full-rank assumption on the matrixB is removed when
designing the gain of the controller.

IV. SIMULATIONS

Consider an MAS consisting of six agents described by (1) with

A =

[

1 0.1
0.15 0.5

]

, B =

[

0.2
0.25

]

, C =
[

1 0
]

, F = 1,

where A is unstable but(A,B) is stabilizable. The augmented
system with(Ā, C̄) is detectable. The initial state is set asx(0) =
[

1 0 2 2 3 0 4 1 5 3 6 4
]T

.
The directed topology among agents is shown in Fig. 2 and the

Laplacian matrix of the graph is

L =

















0.75 0 0 −0.25 −0.25 −0.25
−0.5 0.5 0 0 0 0
−0.33 −0.33 0.67 0 0 0
−0.5 0 0 0.5 0 0
0 0 0 −0.5 0.5 0
0 0 0 0 −0.5 0.5

















.

The eigenvalues ofL are0, 0.5, 0.6667, 1 and0.625±0.3307i. The
decaying scaling function is chosen asg(k) = 0.98k and the quan-
tization parameter isβ = 1. According to Lemma 2, the controller
parameters in (9) are designed asK =

[

0.9457 0.2602
]

and c =
1.0526. Other parameters arec0 = 0.95, r0 = 0.4637, r = 1.7013,
r0/c0 = 0.4881 < r andQ = I . LettingQ1 = 0.01I , we obtain the
observer gain asG =

[

6.4430 1.8283 −5.9331 −0.0769
]T

.

1

2

3

4

5

6

Fig. 2. Topology of the multi-agent system.
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We consider the case where the bias fault and the drift fault
occur simultaneously withf [1]

1 (k) ≡ 1, f [1]
2 (k) ≡ 0, f [1]

3 (k) ≡ 3,
f
[1]
4 (k) ≡ 4, f

[1]
5 (k) ≡ 0, f

[1]
6 (k) ≡ 6, f1(0) = 0, f2(0) = 7,

f3(0) = 1, f4(0) = 2, f5(0) = 4, f6(0) = 5. Simulation results
are shown in Figs. 3-7. Figs. 3-4 depict the trajectories ofxc(k) and
u(k). Figs. 5-6 illustrate that the estimation error‖ei(k)‖2 of the
designed observer approaches zero asymptotically and the bias/drift
fault can be estimated. By denotingsmax(k) , maxi ‖si(k)‖∞, we
have Fig. 7 showing that the size of the encrypted data is indeed
bounded. Therefore, this simulation example with offset faults has
confirmed the theoretical results.
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Fig. 3. Trajectories ofxc(k).
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Fig. 4. Trajectories of the input variableui(k).
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V. CONCLUSION

In this paper, we make one of the first attempts to deal with the
security issue of MASs (from the perspective of logical security and
physical security) through developing a new cryptographiccomputa-
tion algorithm with system dynamics. Our focus is to discover the
underlying fundamental properties by investigating linear systems,
which can be extended to nonlinear systems. The main contributions
include the design of the coding-decoding-based PDR algorithm and
the design of the consensus controller under the directed topology. By
employing and designing a decaying scale factor, the introduced PDR
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Fig. 6. Estimated fault̂fi(k).
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Fig. 7. Trajectory ofsmax(k).

algorithm will not affect the steady-state performance of the system,
i.e., the steady-state error will converge to zero. By introducing a
novel matrix norm, the necessary and sufficient condition has been
derived for the desired consensus. With the merits of enhancing
the data security and facilitating the data compression, the proposed
encryption-decryption scheme has potential applicationsin networked
control systems [37], sensor networks [2], etc. As a future research
topic, the encryption-decryption-based distributed estimation problem
deserves further investigation especially in the presenceof measure-
ment noise or outliers [1].
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