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Abstract
The shear viscosity, η, of model liquids and solids is investigated within the framework of the viscuit

and Fluctuation Theory (FT) probability distribution function (PDF) theories, following on from

Heyes et al. [J. Chem. Phys. 152, 194504 (2020).] using equilibrium molecular dynamics (MD)

simulations on Lennard-Jones and Weeks-Chandler-Andersen model systems. The viscosity can be

obtained in equilibrium MD simulation from the first moment of the viscuit PDF which is shown for

finite simulation lengths to give a less noisy plateau region than the Green-Kubo method. Two other

formulas for the shear viscosity in terms of the viscuit and PDF analysis are also derived. A separation

of the time-dependent average negative and positive viscuits extrapolated from the noise dominated

region to zero time provide another route to η. The third method involves the relative number of

positive and negative viscuits, and their PDF standard deviations on the two sides for an equilibrium

system. For the FT and finite shear rates, accurate analytic expressions for the relative number of

positive to negative block average shear stresses is derived assuming a shifted gaussian PDF, which

is shown to agree well with Non-equilibrium Molecular Dynamics simulations. A similar treatment

of the positive and negative block average contributions to the viscosity is also shown to match the

simulation data very well.
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I. INTRODUCTION

The determination of the transport coefficients of molecular liquids has become a relatively

routine and widely employed activity within the molecular simulation community. The shear

viscosity, η, in particular has been the subject of many studies because of its significance in

characterizing the flow properties of liquids in numerous practical applications. The equilibrium

Molecular Dynamics (MD) technique can be employed to compute the transport coefficients

using the Green-Kubo (GK) equations.1,2 The GK method involves integrating a time corre-

lation function, C(t), which quantifies the persistence in time (t) of states characterized by

a certain quantity, which for η is the shear stress of the system. In recent years there have

been publications on how to most efficiently and accurately determine the plateau value of the

GK time-integral, which is proportional to the viscosity. 3–5 6–9 As the simulation is of finite

length in time, statistical fluctuations become an important detrimental feature whose effects

increase with the correlation function time, t. In practice in MD simulations there is a time

‘window’ in which the plateau needs to be extracted before the noise dominates. This problem

of determining the plateau value of the GK integral is one of the themes of this work.

The decomposition of the GK-determined transport coefficients into their negative (entropy

absorbing) and positive (entropy generating) components is a recent development.10–12 Besides

providing useful insights into the physical origins of the processes that determine the value of

the transport coefficient this procedure, it will be shown, provides useful ancillary information

in establishing the time at which the plateau value has been reached. Also a new viscuit

probability distribution function based route to the shear viscosity is presented which shows

evidence of being less subject to statistical uncertainties that the original average time correla-

tion function GK method, even though the two are formally equivalent in the thermodynamic
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limit.

II. VISCOSITYTHEORY AND THE SHEAR STRESS AUTOCORRELATION FUNC-

TION

The theoretical and computational aspects of this work are considered in this section. The MD

simulations are based around the Lennard-Jones (LJ) pair potential, φ(r) = 4ǫ[(s/r)12−(s/r)6],

where r is the center-to-center distance between the two molecules, and ǫ and s are the charac-

teristic intermolecular interaction energy and molecular diameter, respectively. The quantities

reported in this work are given in the usual LJ reduced units e.g ., the reduced number den-

sity, ρ∗ = ρs3, temperature, T ∗ = kBT/ǫ (kB is Boltzmann’s constant), potential energy as

U∗ = U/ǫ, and the same units for total energy and kinetic energy. The shear stress and

pressure are given in the reduced units, P ∗ = P/ǫs−3, time t is in, t/sm1/2ǫ−1/2 and reduced

shear viscosity is, η∗ = η/s−2ǫ1/2m1/2. For compactness of notation, the asterisk superscript is

omitted in the rest of this work.

Green-Kubo Newtonian Shear Viscosity

The Newtonian shear viscosity is calculated using the GK method which employs the off-

diagonal elements of the pressure tensor, e.g ., Pxy. For the monatomic LJ fluid the instanta-

neous value of, Pxy, is given by,

Pxy =
1

V

(

N
∑

i=1

[mivxivyi −
1

2

N
∑

j 6=i

rx,ij
ry,ij
rij

φ′(rij)]

)

, (1)

where N is the number of molecules in volume V (typically the volume of the MD simulation

cell), vαi is the α component of the velocity of molecule, i, or vi, and rα,ij is the α component

of the pair separation vector between molecules i and j. The first derivative of φ(r) is denoted
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by φ′. The shear stress autocorrelation function, Cs(t), and its relation to the shear viscosity

and derived quantities are,

Cs(t) = < Pxy(0)Pxy(t) >, η(t) =
V

kBT

∫ t

0

Cs(t
′)dt′, η = lim

t→∞
η(t),

G∞ = (V/kBT ) < P 2
xy >, C(t) = Cs(t)/Cs(0), τs =

∫ ∞

0

C(t′) dt′,

η = G∞τs, (2)

where C(t) is the same function normalized by its t = 0 value, which is the standard way

of plotting the shear stress autocorrelation function in this work. The formalism, < · · · >

indicates an average over time origins (i .e., time in the simulation declared to be t′ = 0) and

subsequent times over a simulation. The time dependent viscosity is denoted by, η(t), and its

long time limit is the shear viscosity (i .e., without the ‘t’ argument). The ‘instantaneous’ or

infinite frequency shear rigidity modulus is denoted by G∞ in Eq. (2), and τs is the shear stress

relaxation or ‘Maxwell’ time.13 The product G∞τs is Maxwell’s expression for the shear viscos-

ity which forms the basis of this formulation of viscoelasticity. The time correlation function,

Cs(t), is the shear stress relaxation function in the limit of zero shear rate encountered in the

subject of rheology. For simplicity of notation the shear stress, σ = −Pxy, is used below.

The C(t) and η(t) are prone to significant statistical uncertainties in practice because the shear

stress is a whole system property and therefore only one value of σ for each off-diagonal element

of the stress tensor is obtained each time step. From a practical point of view, η, is obtained

by establishing the plateau value of η(t) at long times. This is hampered by the development

of statistical fluctuations in C(t) and hence η(t) typically in more or less the same time region

where the plateau in η(t) is starting to form. Its effects can be mitigated to some extent by

carrying out longer simulations, at least for small molecules, but for large flexible molecules

where the stress relaxation processes are slower and the computational demands higher, it

5



becomes more problematic to achieve this separation of signal and noise time scales. Previous

theory and simulations,3–5 reveal that the standard deviation in the correlation function and

its time integral at long times scales as ∼ (τ/Tsim)
1/2 where τ is a characteristic relaxation

time of the correlation function and Tsim is the total simulation time.

The plateau in, η(t), can be obtained by fitting C(t) to an expression and then integrating

this analytically to determine η(t). Hartkamp et al. used a fit to C(t) which was the sum of a

gaussian and two exponentials (the gaussian dominates in the ‘ballistic’ regime at short time).14

An alternative formula, a sech and two exponentials was proposed in Ref. 10 which was found

to match better the Molecular Dynamics correlation function data considered in that study.

The analytic expression of the sech function Cs(t) is,

Cs(t) = G∞ (A sech(t/τ1) + B exp(−t/τ2) + (1−A− B) exp(−t/τ3)) ,

η(t) = G∞
(

Aτ1 tan−1[sinh(t/τ1)] + B τ2[1− exp(−t/τ2)]
)

+G∞(1− A−B)τ3[1− exp(−t/τ3)],

η = lim
t→∞

η(t) = G∞

(π

2
Aτ1 +Bτ2 + (1− A−B)τ3

)

. (3)

The dimensionless coefficients, A and B, and the three relaxation times, τ1, τ2 and τ3 can be

obtained by least squares fitting the MD-determined Cs(t) to the first formula in Eq. (3). The

two exponentials in Eq. (3) reproduce well the long time behavior of Cs(t) beyond the ballistic

region. Also the sech term tends to an exponential at long times.

III. VISCUITS

The shear viscosity can be recast as the first moment of a probability distribution function

(PDF) of the single trajectory (ST) contributions or ‘viscuits’. A viscuit is a single trajectory
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contribution to the GK viscosity average indicated in Eq. (2), which is the quantity that is

used in reformulating the Green Kubo method. This idea was proposed by Stillinger and

Debenedetti,15 and shares some features in common with Erpenbeck’s ‘hybrid’ extension of

GK.16 The definition of the viscuit, ηu(t), and its relationship to the time-dependent viscosity,

η(t), is,

ηu(t) =
V

kBT

∫ t

0

σ(0)σ(t′)dt′

η(t) = < ηu(t) >,

=

∫ ∞

−∞
dηu(t) ηu(t) P (ηu(t)). (4)

The viscuit defined in the first line of Eq. (4) is just one contribution from a specific trajectory

to the GK integral, which is already available in the standard GK MD treatment but whose

statistics are not normally investigated.17 Formally, the ηu(t) involves an integral up to time

t, and is defined starting from the stress at a single specific time (‘time origin’) during the

simulation. In a simulation the first integral in Eq. (4) is replaced by a summation of the

instantaneous stress evaluated at time intervals of the simulation time step. The PDF P (ηu(t))

is the probability distribution function of the ηu(t). In the second line of the above equation,

η(t), is written as the average of the viscuits. The viscuit at any given time can be negative

or positive, and these can be averaged separately during the simulation. In the final line of

Eq. (4) the time dependent viscosity is written as the first moment of the PDF of the viscuits

evaluated up to a predefined value of t. There is a different PDF for each value of t, but the

PDF are found to converge to a limiting form for large t i .e., of several Maxwell relaxation

times. For typical LJ liquid states this is typically in the time range t = 2 to 3 reduced units,

depending on the temperature and density.

Simulation details
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The state point mainly used here was, ρ = 0.8442 and T = 0.722, which is referred to as ‘R1’,

which is close to the triple point of the LJ system and has become a standard or reference

liquid state point for this generic molecular liquid (see Refs2,18,19 for their original use and there

is a more recent compendium of triple point density and temperature values in Ref. 20). A

table of literature values of the shear viscosity at the LJ R1 state point is given in Ref. 21

and a series of η values for different N is presented in Ref. 22. The R1 state point shows the

highest liquid state viscosity and has the most persistent structure in the long time region of the

stress relaxation function (i .e., more pronounced viscoelastic behavior) which is characteristic

of more structured liquids composed of small polyatomic molecules. With increasing tempera-

ture and decreasing density the LJ viscosity decreases and the time correlation function decays

more rapidly. and becomes more featureless (characteristic of a dense supercritical fluid than

a typical liquid). We note that the chosen state point is close to the two-phase vapor-liquid

boundary and care is required to ensure that the simulations are in the one-phase region.

Simulations were also conducted at the same density and temperature using a Weeks-Chandler-

Andersen (WCA) potential,23 which is the repulsive part of the LJ potential. This density and

temperature is also in the dense fluid part of the WCA phase diagram.24 Comparison of results

computed at this density and temperature for the two potentials helps to discern the effects of

the attractive part of a potential on the computed properties. This comparison also helps to

identify those properties that depend on the details of the potential and those which do not.

Some simulations were carried out for solid state points to assess further the range of applica-

bility of the viscuit theory. The temperature was controlled by the Nosé-Hoover thermostat,25

with a time constant of 3 LJ time units.

In regard to the Fluctuation Theorem, other simulations were carried out at finite shear rate
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using the SLLOD equations of motion to implement planar Couette flow.26,27 This is an exam-

ple of a Non-equilibrium Molecular Dynamics (NEMD) simulation. The calculated quantities

are given in units of ǫ and σ, and the mass of the molecule, m. Quantities denoted with a ‘LJ’

subscript indicate that they are given in these units, and can apply therefore to simulations

carried out with the LJ or WCA potentials. The interaction cutoff was 2.5 and the simulations

were carried out for between 105 and 2× 107 time steps.

Negative and positive contribution to the viscuit

Figure 1(a) shows the normalized shear stress correlation function, C(t), of a liquid LJ state

near the triple point split into its negative and positive components, C−(t) and C+(t) (i .e., those

that come from a negative or positive viscuit at time t, respectively). A fit to the total cor-

relation function using the sech formula in Eq. (3) is also shown. The positive component is

more slowly decaying than the total function, and the negative component decreases from 0 at

t = 0. At short times, C(t) is determined mainly by C+(t), as the product of two quantities

at two closely separated times must be predominantly positive because the two states are

strongly correlated. With increasing time the contribution C−(t) increases from zero, and this

development is in fact responsible for the rapid decay of the total correlation function, C(t), to

zero at long times. The C−(t) and C+(t) individually are slow to decay on the same timescale,

but their effects cancel out at long times and the total correlation function decays more rapidly

to zero.

Figure 1(a) also shows −C−(t), which is seen to be statistically indistinguishable from C+(t)

for times in excess of ≃ 1.5. The long time decay of the two components scales as t−1/2, but

with opposite prefactor signs. Figure 1(b) shows the corresponding plot for the WCA potential

carried out at the same density and temperature (i .e., ρ = 0.8442 and T = 0.722), and exhibits
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the same trends as the LJ system. The ∼ t−1/2 scaling of the correlation function components

arises from random fluctuations in the product of two stresses widely separated in time. The

reason for this particular exponent value becomes clearer in Fig. 2 and associated discussion.

The time dependent viscosity, η(t), defined in Eq. (2) applied to the data in Fig. 1 is shown

in Fig. 2(a), together with the same quantity derived from the analytic sech fit formula given

in Eq. (3). The total η(t) of the WCA fluid in the large t limit is about two-thirds of the

LJ value, presumably because the LJ liquid is a more cohesively held together fluid than the

WCA case, whose potential is purely repulsive. The average of the positive and negative vis-

cuit components is also presented in Fig. 2(a). Figure 2(b) shows the same data plotted as a

function of t1/2. A least squares fit to the limiting region of η−(t) and η+(t) also shown on the

figure reveals that η(t) increases as t1/2 at times longer than several Maxwell relaxation times.

It takes the negative contribution longer to achieve the t1/2 scaling region than the positive

contribution. This long time scaling can be rationalized on the basis of the known statistics of

η(t), whose exact expressions are,

η(t) = η−(t) + η+(t),

ηu,−(t) =
V

kBT

∫ t

0

σ(0)σ(t′)dt′ < 0, η−(t) =< ηu,−(t) >−,

ηu,+(t) =
V

kBT

∫ t

0

σ(0)σ(t′)dt′ > 0, η+(t) =< ηu,+(t) >+,

ηu(t) =
V

kBT

∫ t

0

σ(0)σ(t′)dt′, η(t) =< ηu(t) >,

P (ηu(t)) = P (ηu,−(t)) + P (ηu,+(t)), P (ηu,−(t → ∞)) = P (ηu,+(t → ∞)) (5)

where P (x) is the probability of x, and notation, < · · · >± indicates an average of the viscuits

for time, t, whose magnitudes have either the − or + sign. The equality in the two sub-PDFs

at long time given in the last line of Eq. (5) is because the short time ‘correlated’ region should
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contribute a progressively smaller proportion to the total in the large t (or noise-dominated)

limit. The long time form of the contributions to the viscosity integral from the two sides is

established using gaussian statistics. In the long time limit the viscuit standard deviation in

the total time dependent viscosity, η(t), follows a t1/2 scaling.5,28 For a half-normal distribution

the mean and standard deviation are proportional to each other, and also to the standard

deviation of the combined PDF valid over the whole viscuit domain.29 Therefore the η−(t) and

η+(t) individually should also scale as t1/2, assuming gaussian statistics. Hence the difference

between η−(t) and η+(t) for large t is also a measure of the breadth of the η(t) distribution of

each side in the large t limit.

The limiting dependence of η(t) on time is consistent (by differentiation) with C−(t) and C+(t)

decaying as t−1/2. Figure 1(a) demonstrates that the MD data follows this dependence. To

summarize, Figs. 1 and 2 show that the correlation function can be separated into two limiting

regions in the small and large time limits, between which the stress correlation between consec-

utive time steps dominates, to where at long times the noise is the important factor. Although

in the LJ fluid, the repulsive and attractive parts of the potential give positive and negative

contributions to the viscosity, the quantities, η− and η+ defined here are different quantities,

and are present even for purely repulsive potentials (i .e., WCA, see Fig. 1(b)). In fact, there

always has to be a η−(t) contribution to the time-dependent viscosity for any molecular system,

otherwise η(t) would not converge to a plateau value. The statistics of η−(t) and η+(t) are

rigorously determined by gaussian statistics in the large t limit.

The large t time dependence of η−(t) and η+(t) leads to a direct route to η. In the t → ∞ limit,

where the slopes in a
√
t plot of the two viscuit sides will be equal in magnitude and opposite
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in sign,

η−(t) = a− − b
√
t, η+(t) = a+ + b

√
t,

η−(t → ∞) + η+(t → ∞) ≡ η = a− + a+,

η−(t → ∞)

η+(t → ∞)
= −1. (6)

The sum of the intercepts, a− + a+, is 3.21(1) for the LJ fluid which is in very good agreement

with the value obtained by GK and other PDF routes discussed below. The slopes of the

negative and positive components achieve a limiting value of ±3.9 for times greater than ca.

1.7 time units, which is statistically the same as noted above. In the limit of t → ∞ the

noise dominates and in practice information about the viscosity is lost and the ratio of the two

contributions tends to −1. On the timescale of a simulation, however, the
√
t dependence of

the viscosity components provides another route to η and its negative and positive components.

The noise, which is usually considered to be an unwanted feature of GK calculations in the

plateau region can therefore be exploited via Eq. (5) to compute the viscosity. The simulation

data used for Figs. 1 and 2 is given in the supplementary material. Also the procedure used to

generate Fig. 2 was repeated for the LJ state point, ρ = 0.8 and 1.0 (or ‘R2’) and presented

in Fig. 2 of the supplementary material. This state point is near the middle of the LJ liquid

domain. The value of the Lennard-Jones viscosity obtained from Eq. (6) for R2 is 2.09(1) which

is the same as that using standard GK reported in Table I of Ref. 11.

Crystals exhibit viscoelastic properties and a limiting shear viscosity which is only a little

higher than that of a coexisting liquid, at least for a simple system like the WCA or LJ.30

Figure 3 shows the η−(t) and η+(t), and total viscosity for a LJ solid. The figure demonstrates

that the t1/2 scaling is clearly evident for η+(t) but takes a little longer to become established

in η−(t) in the solid.
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To summarize, the statistical fluctuations which in practice give rise to uncertainties in the

plateau value of the integrated time correlation function in the GK method do have a practical

use. By extrapolation of the data from the noise-dominated region to zero time, the contribu-

tions to the viscosity from the negative and positive parts of the viscuit PDF can be assigned at

any time and the total viscosity simply determined by adding the two intercepts (see Eq. (6)).

Figure 3(b) shows the ratio, η−(t)/η+(t), as a function of time for the LJ and WCA fluids at the

reference state point. This quantity is monotonically varying with time and approaches the −1

limit for t → ∞ quite slowly. A comparison with Fig. 2(b) shows that the t → ∞ limit is best

incorporated in any treatment by taking the local slope of the negative and positive side curves.

A. PDF definitions and viscosity formulas

There are a number of ways of computing the shear viscosity from the viscuit PDFs, depending

on how the viscuit PDF is defined.

PDF defined over the whole domain

The PDF, P (ηu(t)), given in Eq. (4) corresponds to the case where the viscuit is in real units

(i .e., here LJ) and where, −∞ < ηu(t) < ∞. The integral of the PDF over this complete

argument range is set to unity by a normalization constant. The ηu(t) quantity is represented for

conciseness in the following equations by ‘x’ which, note, has an implicit time or ‘t’ dependence.

The PDF in P (x) is not symmetric on the negative and positive sides,11,12 and the difference

between the two leads directly to a definition of the simulation average quantity, η(t) (and
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hence the viscosity itself by taking the t → ∞ limit),

η(t) = η+(t) + η−(t),

=

∫ 0

−∞
xP (x) dx+

∫ ∞

0

xP (x) dx,

=

∫ ∞

0

x[P (x)− P (−x)] dx. (7)

The potential advantage of this route is that the subtraction in Eq. (7) may cancel out, at least

partially, the fluctuation or ‘noise’ derived contributions to the PDF which is unavoidable in

practical GK MD calculations (and is manifest in the
√
t dependence of the component viscuit

averages shown in Fig. 2(b)). These contributions will be present at all t, not just in the large

‘
√
t’ limit.

Figure 4(a) compares the, η(t), obtained by GK from Eq. (2) and the PDF route of Eq. (7).

On the left of the plot are the GK time dependent viscosities, η(t), obtained by integration of

the time correlation function, and given as continuous curves. On the right of the figure are

the corresponding PDF viscosities as a function of the viscuit value, shown as symbols. The

various colored curves and symbols are for different total simulation times, which are indicated

on the figure. Both show a plateau range when the argument (i .e., explicit time or absolute

viscuit) magnitude is large. The difference between the positive and negative sides of the PDF,

∆PLJ(x) = [P (x) − P (−x)], for the longest simulation time case is also shown magnified at

the bottom of the figure. It shows a rapidly rising ascent followed by a monotonically decaying

tail. Data for the WCA fluid is presented.

Although formally equivalent, upon sufficient averaging, the PDF method exhibits smaller

fluctuations than the GK method for large arguments, and for the same simulation length and

other parameters. For example for the longest total simulation length (58844 reduced time

14



units) the GK and PDF WCA shear viscosities are 2.29(1) and 2.286(3), with the uncertainties

in the last digit in brackets. The corresponding LJ simulations give 3.10(3) and 3.144(3).

This indicates that the PDF route has a lower statistical uncertainty than the GK route. The

difference in the statistical uncertainty in fact shows up in a more pronounced way for short

simulation lengths. Even for quite short runs the PDF route exhibits a well defined plateau

but the GK ‘plateau’ is extremely noisy, as may be seen in Fig. 4(a). A partial cancellation of

the noise in the negative and positive sides of the PDF in the expression in Eq. (7) may be the

reason for this difference in behavior. In addition, the PDF approach to the viscosity generally

may be intrinsically better formulated to ‘filter’ out the noise. The qualitative difference be-

tween the GK and viscuit routes results from differences in the form of the integrand in the two

cases. The stress autocorrelation function has a slowly decaying tail in the noise-dominated

time range while the PDF differences decay more rapidly at high values of the stress, which

gives rise to a more smoothly converging integral.

However it should be noted that the value of the PDF plateau does vary with simulation time,

following generally the long-time average of the GK integral (although this region can be seen

to be more noisy in the GK case). Therefore the optimum simulation lengths will be similar

irrespective of whether GK or this PDF route is used, but the PDF method does always gives a

better defined plateau than the GK route, for any given simulation length. These preliminary

results indicate that the viscosity can be defined more precisely by the PDF method. A more

extended study would be required however, for example, on the relative rates of convergence

with argument upper limit, before it could be established whether the PDF route has practical

advantages over the usual GK approach in determining the viscosity.

Figure 4(b) presents ∆PLJ(|ηu,LJ |) on a lin-log scale for a range of t values at the reference
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state point using the WCA potential. As t increases the quantity broadens out and its peak

shifts to higher values of ηu,LJ . They all show an exponential decay in the large viscuit limit.

Data for another another LJ and WCA state point, R2, where ρ = 0.8 and T = 1.0 which is

near the middle of the LJ liquid range are presented in supplementary material. The figures

corresponding to Figs. 1,2,4 and 5 are shown, which demonstrates that the trends are the same

and therefore not unique to any particular liquid state point.

The distribution of viscuits for a given t can be characterized to low order by its standard

deviation σd(t) = [< ηu(t)
2 > − < ηu(t) >

2]1/2. The standard deviation of the viscuit plays a

central role in defining different possible PDFs, and the relationships between them.

PDF defined separately on the two sides

As P (x) is not symmetric between the negative and positive sides,11,12 one alternative and

appropriate representation is to define two distinct PDFs, one, P−(x) for the negative argument

range, −∞ < x < 0 and another, P+(x) for 0 < x < ∞. Each one-sided PDF is normalized

separately so that the integrals on both sides are each equal to 1. The standard deviation of

the two PDFs, σd,− and σd,+, respectively are given by,

σ2
d,− =

∫ 0

−∞
x2P−(x) dx− [

∫ 0

−∞
xP−(x) dx]

2,

σ2
d,+ =

∫ ∞

0

x2P+(x) dx− [

∫ ∞

0

xP+(x) dx]
2, (8)

respectively.

It was also found in Ref. 11 that if x is defined as the viscuit divided by its standard deviation

(treated separately for each side) then the two PDFs are statistically indistinguishable for not

too small t. These scaled-argument PDFs, are defined by a single function, P0,±, which are
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related to their unscaled versions as follows,

P0,−(
x

σd,−
) −∞ < x < 0, P0,+(

x

σd,+
) 0 < x < ∞,

∫ 0

−∞
P−(x)dx = 1,

∫ ∞

0

P+(x)dx = 1,
∫ 0

−∞
P0,−

(

x

σd,−

)

dx

σd,−
= 1,

∫ ∞

0

P0,+

(

x

σd,+

)

dx

σd,+
= 1,

P0,−

(

x

σd,−

)

= σd,−P−(x), P0,+

(

x

σd,+

)

= σd,+P+(x), (9)

where the relationships on the last line of Eq. (9) follow directly from the definitions on the

second and third lines. It was found in Ref. 11 that, P0,−(−X/σd,−) = P0,+(X/σd,+) ≡ P0(y) for

X > 0 and, y = −X/σd,− or X/σd,+, where appropriate. The non-dimensionalized argument

PDFs, P0,− and P0,+ are therefore observed in the large t limit to be symmetric on the negative

and positive argument sides. This can be exploited in another definition of the time-dependent

viscosity, as follows.

Equation (4) combined with the relations in the last line of Eq. (9) gives a simple expression

for the time dependent viscosity, η(t), in terms of the standard deviations of the two (real unit)

PDFs. The quantity, σd,±, has units of viscosity and the dimensionless variable, y = x/σd,±,

is used below. One of the features of treating the two halves of the PDF separately is that

an additional piece of information about the two sides is required to make further theoretical

progress, which is the relative number of occurrences of the negative and positive viscuits. Let

R− = N−/[N−+N+] and R+ = N+/[N−+N+], where N− and N+ are the number of occurrences

of negative and positive viscuits, respectively, during the simulation. Then,

η(t) = η−(t) + η+(t),

= R−

∫ 0

−∞
xP−(x)dx+R+

∫ ∞

0

xP+(x)dx,

= σ2
d,−R−

∫ 0

−∞
y
P0,−(y)

σd,−
dy + σ2

d,+R+

∫ ∞

0

y
P0,+(y)

σd,+

dy,
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= σd,−R−

∫ 0

−∞
yP0,−(y)dy + σd,+R+

∫ ∞

0

yP0,+(y)dy,

η(t) = A(σd,+R+ − σd,−R−), A =

∫ ∞

0

yP0(y)dy > 0,

η−(t)

η+(t)
= −σd,−R−

σd,+R+
, |σd,−R−

σd,+R+
| < 1 (10)

where A is dimensionless. Note that in Eq. (10) x is the viscuit and y is the viscuit scaled

by the standard deviation of x for one of the sides. Also note that x and y have an implicit

integral of the viscuit up to a time, t in their definition. The penultimate line in Eq. (10)

gives another definition of η(t), which requires a value of A. Numerical integration of the

simulation-derived P0, from a specific simulation gave the value, A = 0.817(2). The condition

in the last line of Eq. (10) holds because η(t) must be positive to satisfy the condition that the

heat production rate (which is proportional to the viscosity) is on average produced on shearing.

Figure 5(a) shows the viscuit standard deviation of the ηu,−(t), ηu,+(t) and ηu(t). These are

plotted against t1/2 together with the corresponding < ηu,−(t) >, < ηu,+(t) > and < ηu,(t) >.

In general the standard deviations increase more rapidly with time than the average viscosity

itself. The total viscuit standard deviation is larger than that of the two components, whereas

the total viscosity is in between the negative and positive contributions.

Figure 5(b) compares the GK formula for the time dependent shear viscosity and that obtained

from the formula in Eq. (10) which involves the two standard deviations and the relative num-

ber of negative and positive viscuit occurrences. The PDF route agrees well with the GK in

the ascending region, and gives a plateau value which is close to the GK value and probably

within the mutual uncertainties of the two approaches, especially as A itself has some statistical

uncertainty. The formula for the time dependent viscosity in the penultimate line of Eq. (10)

is therfore validated.
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Figure 6(a) shows the ratio N−(t)/N+(t) as a function of σd,−/σd,+ for the LJ and WCA ref-

erence state point. These are statistically indistinguishable over the accessible range and the

curve is concave. At short times the relative probability of there being negative viscuits tends

to zero more rapidly than the standard deviation ratio, as evident in the curvature. In the large

t limit (from left to right on the figure) both (absolute) ratios tend to unity. At long times

the viscuit will tend in effect to be the sum of random numbers whose statistics is the same

for negative and positive sides. Any correlation effects at short time in the averaging become

numerically insignificant in this long time limit (top right hand corner). The trend in the data

represents a transition to zero contribution from the negative side as t → 0 (bottom left of the

figure) to purely random statistics (top right) as t → ∞.

Figure 6(b) presents the ratio, −[η−(t)/η+(t)] as a function of σd,−/σd,+ which is seen now to

be a convex function. (again for data where time increases from left to right). The viscosity

ratio converges more slowly to zero than the standard deviations ratio at short times, evident

form the curvature in that region. At long times these two ratios tend to unity, whereas at

short time the ratio tends to zero. These are the same limits as evident in Fig. 6(a) for the

number ratios. The shape of the ratio plots in the two figures is different, however, despite

having the same values in the short and long time limits.

Figure 7(a) combines the LJ and WCA data from Figs. 6(a) and (b) on a single figure. The two

curves are symmetric about the y = x line, which is confirmed by rotating them clockwise by

−45o and then reflecting the rotated N−/N+ curve about the x-axis. The curves tracing out the

two sets of data in the negative abscissa region are then seen to be statistically indistinguish-

able. The figure demonstrates that within the simulation statistics the ratios −[η−(t)/η+(t)]
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and N−/N+ can be made coincident after these two transformations, which suggests that they

share the same underlying information. Figure 7(b) presents the property ratios given in the

last line of Eq. (10) plotted against each other. The linear trend predicted by the equation is

adhered to very well at all times which supports that analytic treatment.

Analytic representations of the PDFs

In Ref. 11 it was shown that P0 could be represented well by a sum of Ne exponentials (three

were employed in that work),

P0(y) =

∫ ∞

0

H(q)e−cq|y| dq ≃
Ne
∑

i=1

ai exp(−bi|y|),

A =

Ne
∑

i=1

ai
b2i
, (11)

where H(q) is the continuous distribution of decay coefficients, cq. A discrete sum of expo-

nentials is an approximation to this continuous distribution and has the constants, ai and bi.

Equation (11) also gives a formula for the parameter, A, defined in Eq. (10) in terms of the sum

of exponentials representation of P0. The value of A from the formula in Eq. (11) is 0.827(4).

which is a little higher than that obtained by directly integrating the simulation PDF. In order

to fit to the PDF values smaller than about 0.01 it was found that more exponentials were

required, and six were used here. The least squares fit parameters are presented in Table I.

The parameters for the sum of exponentials fit to P0 are sensitive to the data set used. Never-

theless the overall fit over the simulated argument range (0 to 7) is only weakly dependent on

the precise MD data set chosen, presumably due to mutual compensation between the terms.

The importance of the sum of exponentials analytic form of Eq. (11) is that it reproduces the

exponential behavior in the tails of the PDF, where the largest viscuits occur.

Figure 8 shows the degree of fit to liquid and solid state points on a lin-lin scale. A stretched
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exponential (‘se’) and a Gamma function (‘G’),

Pse,0(y) = Ase exp(−bsey
αse),

PG,0(y) = AGy
bG exp(−αGy), (12)

respectively were also fitted to the MD P0 data, as they have been used to represent a range

of naturally evolving dynamical processes.31,32 They both agree quite well with the simulation

data down to a value of at least 0.1 or y = 2, as seen in the lin-lin plot of Fig. 8. The least

squares fit parameters to the analytic expressions in Eq. (12) are also given in Table I. It is

perhaps not surprising that they fit quite well as probability distribution functions based on an

exponential component are widespread in Nature, being associated with ‘events’ which occur

independently at a constant average rate.33,34

Figure 9(a) shows the P0 on a lin-log scale, to focus on the tail region of the viscuits, which

cannot be discerned in Fig. 8. Figure 9(a) reveals that while the sum of six exponentials

fits the MD data well down to 0.001, the stretched exponential increasingly overestimates the

MD data below P0 = 0.1. The Gamma function underestimates the MD data below about

P0 = 0.04. The stretched exponential can be expressed as a weighted sum of exponentials,35

but its simple analytic form imposes constraints on the form of this weighting function, which

are apparently not compatible with the viscuit PDF obtained directly by MD over its whole

range. Figure 9(b) demonstrates the same trends are evident for four solid state points at

low temperature and high pressure. The fit is not quite so good as in Fig. 9(a) which may

be because these are unusually low temperature and high pressure state points. Neverthe-

less this analysis demonstrates the wide range of state points where the P0 simplification is

practically useful. While P0 is essentially state point and transport coefficient invariant,11 the

associated standard deviations are generally quite different on the two sides over time scales rel-
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evant to the shear viscosity determination (see Fig. 5(a)). The differences between the two sides

of the viscuit PDF are manifest in their standard deviations, calculated for each side separately.

IV. FLUCTUATION THEOREM

Evans, Cohen and Morriss in 1993,36 gave a general statistical mechanical formula for systems

driven out of equilibrium by an external field which has come to be known as the Fluctuation

Theorem (FT) (see also Refs.37–39). The FT has subsequently been verified by experiment

and many NEMD simulations.40–44. The FT is another route which can be used to derive

expressions for positive and negative contributions to the viscosity. The symbols, ηt,− and ηt,+,

are given for these FT quantities to distinguish them from the viscuit quantities, η− and η+.

In the case of shear flow the external field is the shear rate, γ̇. The SLLOD NEMD equations of

motion can be used to implement homogenous shear flow,45 and the quantity of interest for the

FT description of this situation is the mean shear stress, σt, over time, t, for a single trajectory,

σt =
1

t

∫ t

0

σ(u) du. (13)

The terms ‘block average’ and ‘t-average’ shear stress are often used for σt. Note that in the

viscuit treatment of Sec. III, the PDF is that of viscuits, which are time integrals of the product

of two instantaneous stresses at different times. The PDF in the FT case is of the t−average

shear stress. Although the two quantities are not the same they are related, but it would ap-

pear, not in a particularly trivial way, as will be discussed below. The PDF of the σt is denoted

by Pt(σt) where the t subscript emphasizes that its functional form can depend on the sampling

time, t. The t-average PDF extends over all the negative and positive values of σt and is char-

acterized by a single standard deviation. There does not appear to be an obvious advantage
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in separating the FT PDF into two different functions on the two sides, unlike in the viscuit case.

For t > τs (the relaxation time, see Eq. (2)) as evident in Fig. 6 of Ref. 38 the PDF of σt tends

to a shifted gaussian, irrespective of the shear rate,

Pt(σt) =
1√

2πσd,t

exp

(

−(σt − σt)
2

2σ2
d,t

)

=
1√

2πσd,t

exp

(

− δσ2
t

2σ2
d,t

)

,

δσt = σt − σt, σ2
d,t ≡< δσ2

t > (14)

where the simulation average, σt ≥ 0 (for γ̇ > 0) is the average of the σt over the entire time

domain covered for large t. The standard deviation of these block averages is σd,t, which is

determined for the whole t−average range, −∞ < σt < ∞. The two parts of the PDF relevant

to the FT are,

Pt(σt) =
1√

2πσd,t

exp

(

−(σt − σt)
2

2σ2
d,t

)

,

Pt(−σt) =
1√

2πσd,t

exp

(

−(−σt − σt)
2

2σ2
d,t

)

. (15)

For the FT the ratio of these two PDFs is required.38,39 The two expressions in Eq. (15) combined

give,

Pt(σt)

Pt(−σt)
= exp

(

2
σtσt

σ2
d,t

)

. (16)

The FT term on the right hand side is,39

Pt(σt)

Pt(−σt)
= exp (V σtγ̇tβ) , (17)

where V is the volume, γ̇ is the (constant) steady state shear rate, β = 1/kBT and kB is

Boltzmann’s constant. For the shifted gaussian PDF to satisfy the FT requires that,

2
σt

σ2
d,t

= V γ̇tβ. (18)

It was proved by Searles and Evans,39 that GK and EHK expressions for transport coefficients

can be derived using the FT assuming a gaussian distribution for the t−averaged stress (in the
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case of the viscosity) taking the t → ∞ limit and providing the system is close to equilibrium

(i .e., γ̇ << 1, in LJ reduced units). The usual GK expression can be applied in these circum-

stances, providing σ(t) is replaced by δσ(t) = σ(t) − σ, the excess stress from the mean. The

shear viscosity, η(γ̇) = G∞,0(γ̇)τs(γ̇) where τs is the relaxation time and if δσ0 ≡ δσ(0), the

infinite frequency shear modulus, G∞,0 =< δσ2
0 > V β.

τs =

∫ ∞

0

< δσ(0)δσ(x) >

< δσ2
0 >

dx, s = 2τs. (19)

Therefore from Eqs. (18) and (19),

σt =
σ2
d,t

2
V γ̇tβ = s

< δσ2
0 >

2
V γ̇β,

= τs < δσ2
0 > V γ̇β = G∞,0τsγ̇ = ηγ̇ (20)

which uses the gaussian statistics relationship that, σ2
d,t = [s/t] < σ2

0 >. Equation (20) proves

that the shifted gaussian is consistent with the FT. This is applicable in the large t limit and

weak field regime (i .e., here, γ̇ → 0) because the PDF is no longer a shifted gaussian (par-

ticularly in the wings) at high shear rates. The FT does not require the PDF to be a shifted

gaussian, though.

The shifted gaussian expression for the t−average PDF defined in Eq. (14) can be employed

to derive approximate analytic expressions for certain quantities which can also be readily

computed in an NEMD simulation. Figure 10 shows the σt probability distribution function at

the state point ρ = 0.8442 and T = 0.722 using the WCA potential for a shear rate of γ̇ = 0.025

for three values of the averaging time, t. The figure shows that the PDF depart from gaussian

for the three t−cases. They are skewed and exhibit an extended tail on the negative side. At

this near triple point state point there are departures from a gaussian t−average PDF even at

quite small shear rates. The mean stress is therefore less than the peak value. Equation (23)
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gives for the FT,

lim
t→∞

1

t
ln

(

Pt(σt)

Pt(−σt)

)

= V γ̇βσt, (21)

where σt ≥ 0, which is confirmed within the MD statistics in Fig. 11 for data from the current

NEMD simulations.

Number ratio of t-averages on the two sides

The relative number of positive and negative occurrences of the t−averaged stress, σt, over a

simulation is Nt,+/Nt,−, where Nt,+ is the number of t−averages, σt, which are positive, and

Nt,− is the number of negative occurrences of σt. These two quantities can be computed directly

during the simulation as a function of t and γ̇. The FT was used by Evans and Searles in Ref. 39

to derive an expression for Nt,+/Nt,− as a function of t whose steps in the present notation are,

Nt,+

Nt,−
=

∫∞
0

Pt(σt) dσt
∫ 0

−∞ Pt(σt) dσt

,

=

∫∞
0

Pt(σt) dσt
∫∞
0

Pt(−σt) dσt

. (22)

Equation (22) is valid because the PDF is defined over the whole t−average range. According

to the FT,

Pt(σt) = eBσttPt(−σt),

Pt(−σt) = e−BσttPt(σt), (23)

where B = V γ̇/kBT and σt ≥ 0. Substituting the formulas in Eq. (23) in Eq. (22) gives,

Nt,+

Nt,−
=

∫∞
0

eBσttPt(−σt) dσt
∫∞
0

Pt(−σt) dσt

≡< eBσtt >−,

Nt,+

Nt,−
=

∫∞
0

Pt(σt) dσt
∫∞
0

e−BσttPt(σt) dσt

≡< e−Bσtt >−1
+ . (24)

where < · · · >± denotes a simulation average in either the negative or positive stress sides of

the t−average stress PDF. The averages on the negative stress (i .e., −σt) side are signified by
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< · · · >−. In any practical application then the condition,

1 = < eBσtt >−< e−Bσtt >+, (25)

follows directly from Eq. (24) which acts as a useful measure of the sampling efficiency of

these quantities during and NEMD simulation. One might expect the statistical errors on the

first formula of Eq. (24) for Nt,+/Nt,− to be larger than the second because as the shear rate

increases relatively fewer states with a negative stress will appear because the PDF is shifted

to the right, as has already been noted in Ref. 39. Therefore the first condition in Eq. (24)

should suffer from sampling limitations for finite duration simulations. Large contributors to

both averages in Eq. (24) will be dominated by quite rare events. In the case of the negative

stress t−average, those states with large negative values will dominate the right hand sides of

the first formula in Eq. (24). In the case of the positive stress t−average, those states when

the stress is small will dominate.

Following on from Eq. (22), the fraction of t−averages with negative and positive values are,

Nt,−
Nt,+ +Nt,−

=
< e−Bσtt >+

1+ < e−Bσtt >+
≡ 1

1+ < e+Bσtt >−
,

Nt,+

Nt,+ +Nt,−
=

< eBσtt >−
1+ < eBσtt >−

≡ 1

1+ < e−Bσtt >+
. (26)

Note that σt ≥ 0 in Eq. (26) which follows from the definitions in Eqs. (22)-(24). The FT-

predicted quantities in Eqs. (22) and (26) can be compared with the same quantities computed

directly and independently during an NEMD simulation.

Assuming a shifted gaussian σt PDF for all t an analytic expression for Nt,+/Nt,− can be derived

by variable substitution and integration, which is,

Nt,+

Nt,−
=

∫∞
0

exp
(

− (xt−xt)2

2

)

dxt

∫ 0

−∞ exp
(

− (xt−xt)2

2

)

dxt

,
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=
1 + erf(xt/

√
2)

1− erf(xt/
√
2)
, (27)

where xt = σt/σd,t, erf is the error function and xt =< xt >=< σt > /σd,t.

Figure 12(a) presents the ratio of the number of positive to negative t−averaged stress states,

Nt,+/Nt,−, as a function of shear rate for three values of t. This ratio is expected to increase

with time, t, for a given value of γ̇. The ratio, Nt,+/Nt,− increases with shear rate for a given

t, because the PDF then shifts more into the positive stress side. The prediction by the shifted

gaussian approximation for the shear stress PDF given in Eq. (27) agrees very well with the

values computed directly by NEMD in the range up to γ̇ ≤ 0.15 at least, as may be seen in

Fig. 12(a). This is the case even though the PDFs may show noticeable departures from the

gaussian form. This is the case even at relatively small shear rates at the reference state point,

as seen in Fig. 10 for which γ̇ = 0.025. The relative number of positive to negative t−averages

on the two sides appears not to be too sensitive to the skewness of the PDF, presumably

because of cancellation of the contributions in different stress ranges because of the extent and

height of the tail in the wings on the two sides.

Figure 12(b) shows the curves compared with the FT predictions given in Eq. (24) for t = 0.288.

The formula in the first line of Eq. (24) involves an average computed from the negative stress

states, while the second formula in the equation is an average over the positive stress states.

The second formula agrees best with the MD values, but still systematically underestimates

the exact values. The first formula in Eq. (24) to a greater extent underestimates the correct

values, which is expected as discussed above. The magnitude of this sampling deficiency was

also pointed out in Ref. 39 (p. 1562) for the negative side sampling statistics.
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Ratio of +/- contributions to the viscosity

The average shear stress, broken up into its negative and positive value contributions, can be

expressed in terms of the first moment of the σt PDF,

σt = σt,− + σt,+,

=

∫ 0

−∞
σtPt(σt)dσt +

∫ ∞

0

σtPt(σt)dσt, (28)

where σt,− < 0 and σt,+ > 0. Note that the PDF in Eq. (28) extends over the entire negative and

positive stress sides, and is defined in terms of a single standard deviation which is t−dependent.

Substituting Eq. (14) into Eq. (28), after rearrangement and integration gives,

σt,−
σd,t

= −exp(−x2
t/2)√

2π
+

xt

2

(

1− erf(
xt√
2
)

)

,

σt,+

σd,t
=

exp(−x2
t/2)√

2π
+

xt

2

(

1 + erf(
xt√
2
)

)

,

σt,− + σt,+ = σt (29)

where xt = σt/σd,t. The last line of Eq. (29) is the sum of the first two lines. The simulation

time average, xt, is the average of xt which depends on time because of the time dependence

of σd,t (which is finite for all t). The shear rate also has an effect on xt. For large t, σd,t will

scale as ∝ t1/2.

As the standard deviation, σd,t is amassed from both sides of the PDF and the shear rate is

common to both sides, then the ratio of the positive to negative contributions to the viscosity,

ηt,+/ηt,− = σt,+/σt,− in the shifted gaussian approximation follows from Eq. (29) and is,

ηt,+
ηt,−

=

exp(−x2

t /2)√
2π

+ xt
2

(

1 + erf( xt√
2
)
)

− exp(−x2

t /2)√
2π

+ xt

2

(

1− erf( xt√
2
)
) (30)

Note that this ratio is negative as η− < 0. Equation (30) leads to,

lim
xt→0

(

ηt,+
ηt,−

)

=
[ 1√

2π
] + xt

2
+

x2t
2
√
2π

+O(x3
t )

−[ 1√
2π
] + xt

2
− x2

t

2
√
2π

+O(x3
t )
,
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lim
γ̇→0

(ηt,− + ηt,+) = ηt. (31)

where the last line follows directly from Eq. (29). In the limits, γ̇ → 0, and hence xt → 0,

then ηt,+/ηt,+ → −1. The contributions of ηt,− and ηt,+ to the total viscosity are equal in

the zero shear rate limit, whereas this is not the case for the viscuit-derived quantities, η−

and η+. Figure 13 compares −ηt,+/ηt,− obtained directly by NEMD and the shifted-gaussian

approximation given in Eq. (30) for three t−averaging times. The same parameters as Fig. 12

are used. The agreement is very good, despite the PDFs departing from a gaussian shape under

shear for the values of t given on the figure.

Each single trajectory or segment leading to a particular δσ2
t , can be written in terms of a sum

of t viscuits (treating t to be an integer number of time increments or steps in a simulation) of

duration 0 to t. In fact, in principle for large enough t, one would only need a single segment to

have sufficient averaging to determine the viscosity (i .e., is tantamount to the EHK method).

The viscuit, ηu(t), is a component of any single, δσ2
t . Searles and Evans proved the (generalized)

Einstein-Helfand-Kubo,16,46,47 and Green-Kubo formulas for the shear viscosity for small but

not zero shear rate, and for large t → ∞,

< (σt − σ) >2 ≡ < δσ2
t >=

2

t

∫ t

0

< δσ(0)δσ(t′) > dt′, (32)

whereas for a single trajectory,

(σt − σ)2 ≃ 2

t

t
∑

k=1

t
∑

k′=k

δσ(k)δσ(k′)∆t′, (33)

where ∆t′ is a time interval such as a simulation time step. The double summation indicates

that the single δσ2
t contains a sum of viscuits of time length from 0 to t. It is therfore valid to

state that the viscuit analysis is related to the FT (in the limit γ̇ → 0) but currently not in an

obviously tractable way to link the two approaches in all aspects.
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V. CONCLUSIONS

The viscuit reformulation of the Green-Kubo (GK) method for the shear viscosity has the

useful feature that the shear stress relaxation ‘events’ which give rise to the viscosity, η, can

be resolved into those that make negative and positive contributions to η, a feature which is at

the center of this work. This separation reveals clearly the role played by ‘noise’ in the time

correlation functions, whose time dependence can be exploited to evaluate the viscosity. These

positive and negative contributions to the viscosity are present even for purely repulsive pair

potential systems.

Traditional use of Green-Kubo (GK) has been hampered by statistical uncertainty in the in-

tegral of the stress autocorrelation function in a time range where a plateau is expected. This

is due to finite simulation lengths which are inevitable in practice. A reformulation of GK in

terms of its component elements or ‘viscuits’ carried out here leads to three new definitions of

the (Newtonian) viscosity in terms of the viscuit formulation, two of which involve its proba-

bility distribution function (PDF). These can be computed readily in an equilibrium Molecular

Dynamics (MD) simulation.

These three new methods, to varying extents, exploit the time region where the noise becomes

increasingly important, and beyond the correlation time of the shear stress autocorrelation func-

tion. Equation (6) involves extrapolating to zero time the negative and positive average viscuit

GK component from well within the noise-dominated time regime. The viscosity is simply the

sum of the two intercepts. This relies on obtaining very good statistics for the time dependence

of the negative and positive viscuit contributions to the viscosity in the large time limit. This is

possible for the simple model systems treated in this work. It may be more problematic for more
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complex molecules where exploration of phase space is a more computationally demanding task.

Equation (7) presents the second method, which uses the difference in the PDF on the negative

and positive viscuit sides at the same magnitude of the viscuit. The PDF employed is evalu-

ated over the whole viscuit domain. The third new method defined in Eq. (10) makes use of

statistical properties of the two sides of the PDF treated separately. This third method formula

relies on obtaining two quantities of the two negative and positive quadrants. It also requires

assignment of a basic constant, A, which also has (currently) to be obtained numerically. As

a result this method probably exhibits the largest statistical uncertainty when employed in

MD. This formula might prove useful nevertheless if these characteristic quantities could be

obtained approximately by theory without resort to MD simulation.

Of the three viscuit routes to η, the second one defined in Eq. (7) might have the most significant

practical benefit in simulations. It is straightforward to implement and gives a plateau which is

largely free of noise, and therefore helps assign a well-defined value for the viscosity. It does not

reduce the necessary total run simulation time compared to the original GK method, however,

because the plateau value is a function of total simulation length and follows broadly the GK

plateau value (which is however much noisier) at each simulation length. This is not surprising

in retrospect as the two approaches use the same starting information. For a sufficiently long

simulation time this PDF route may possibly remove the ‘plateau problem’ which would enable

a more precise value of the viscosity to be determined by equilibrium MD. A more systematic

MD investigation would be required to see of this is the case however. Another advantage of

the PDF route to the viscosity is that many statistical mechanical theories of the liquid state

are based on a presumed distribution of dynamical events, which for example may represent

‘hopping’ of the system between local basins of attraction.48 The PDF viscuit reformulation
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of GK would naturally be compatible with such a formulation, and therefore help explore and

test these theories.

An outstanding challenge is how to assign physically meaningful positive and negative viscuit

contributions to the viscosity, which may have statistical mechanical significance. It might be

considered that these two numbers should be unique as physical quantities, but their values

increase dramatically with the time ascribed to the plateau value in the Green-Kubo integral

and formally equivalent viscuit PDF routes. They are very sensitive to the precise value of the

cut-off time, t which is used to assign the viscosity in the plateau region. An objective criterion

to assign these two numbers would be a useful advance.

Along an isomorph the viscuit PDF should exhibit isomorph scaling when the stress is divided

by ρT . The current evidence is, however, that the liquid-solid melting and freezing lines are not

isomorphs in the vicinity of the triple point.49,50 The principal state point used here ρ = 0.8442

and T = 0.722 is close to the triple point, so the status of isomorph scaling in this region is

still unresolved. However, if a simulation were to be carried out at a temperature of above

about 2.0 along the freezing line then very good isomorph scaling should be observed in the

viscuit PDFs. The extension of the present MD viscuit analysis to molecular fluids would be

a promising future direction. As the theory makes no specific reference to molecular type it

should be applicable also to polyatomic molecules in just the same way as for the Lennard-Jones

system. The qualitative features should be the same but there may be systematic quantitative

differences as the molecules become more complex. The role of intramolecular interactions and

chain length in organic molecules would be aspects which could be studied.

Further practical applications of the Fluctuation Theorem (FT) are considered in this study,
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as negative and positive contributions to the viscosity are also a feature of the FT treatment.

Approximate analytic expressions for the relative number of positive to negative block average

shear stresses are derived assuming a shifted gaussian PDF in the FT approach. Some of

these are shown to agree well with Non-equilibrium Molecular Dynamics simulations, despite

the fact that the PDFs exhibit non-negligible departures from a shifted gaussian in the cases

investigated here. This indicates a cancellation of certain processes which may be worth further

investigation. A similar treatment of the positive and negative block average contributions to

the viscosity is also shown to reproduce the simulation data remarkably well.

There is a qualitative difference between the analytic forms of the PDFs in the viscuit analysis

compared to those typically encountered with the FT. These have near exponential and (typ-

ically) gaussian reference forms, respectively. The viscuit could be viewed to be a dynamical

‘event’ originating at the molecular level which occurs essentially randomly in time (but hav-

ing a well-defined average occurrence frequency depending on magnitude). The viscuit might

consequently be expected to exhibit an exponential distribution, at least over part of its range.

Another example of a dynamical event originating on the molecular scale is the net force on

a molecule in a liquid, which also has been found to have an exponential or near exponential

distribution for some state points.51,52

The Green-Kubo method has become a widely employed tool in determining the viscosity

of practically relevant liquids, for example, in tribology.53 These new ways of obtaining the

viscosity from the viscuit reformulation of GK derived here may find use in that field.
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SUPPLEMENTARY MATERIAL

The supplementary material contains the MD simulation determined time correlation function

and time-dependent viscosity data used to generate Figs. 1 and 2. This is for the R1 state

point. In addition the simulations which produced the data for Figs. 1, 2, 4 and 5 in the

paper are repeated with MD data generated at the R2 state point, ρ = 0.8 and T = 1.0. The

corresponding figures for this state point are given in supplementary material.
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quantity quantity quantity

a1 0.381159 a3 0.596254 a5 0.058339

a2 1.436787 a4 0.444089 a6 −0.014486

b1 0.819665 b3 4.034747 b5 1.485265

b2 15.66887 b4 1.485814 b6 1.074376

Ase 3.099582 bse 2.426957 αse 0.472958

AG 0.770477 bG −0.263138 αG 0.951469

TABLE I. Least squares fit to the fit formulas for P0 taking the MD data from that used in Fig. 9(a).

Key: The ai and bi for the sum of exponentials formula given in Eq. (11) and the stretched exponential

and Gamma function defined in Eq. (12)
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Figure Captions

Figure 1: Frame (a) Normalized shear stress correlation function, C(t), used in the GK method

for the shear viscosity, which is also fitted to the sech formula in Eq. (3) (‘total-fit’). The con-

tributions from the negative and positive viscuits, C−(t) and C+(t), respectively, are shown.

The sech fit formula parameters are: A = 0.7415, B = 0.1745, τ1 = 0.0491(1), τ2 = 0.1982 and

τ3 = 0.4698. The figure also shows the same data except that −C−(t) is plotted and a fit of the

form A/t1/2 to C+(t) is given on the figure. The Lennard-Jones potential was used, with the

other parameters, ρ = 0.8442 and T = 0.722, N = 256 particles and 107 time steps. Frame (b)

shows the same plot for the WCA fluid with otherwise the same input parameters. The sech

formula fit parameters are: A = 0.8408, B = 0.1576, τ1 = 0.04289, τ2 = 0.2400 and τ3 = 74.7.

Figure 2: Frame (a) The time dependent LJ viscosity, η(t), using the data from Figs. 1 and

2. The analytic sech fit formula from Eq. (3) is shown, as are the average of the positive and

negative viscuits, shown separately. As frame (b) except the data is plotted as a function of

t1/2. This frame shows that η−(t) and η+(t) scale as t1/2 at long times. The fit parameters to

the equations in Eq. (6) are, a− = 1.85(1), b− = 3.95(2), a+ = 1.36(1) and b+ = 3.90(2), and

therefore η = a− + a+ = 3.21(1). The t±1/2 scaling seen in Figs. 1-2 is indicative of the ‘noise’

region in the data at long times.

Figure 3: Frame (a) The time dependent shear viscosity, η, as a function of
√
t for a LJ solid

state point where ρ = 1.1 and T = 0.80. The MD data for viscuit first moment of the PDF are

compared with the GK time correlation formula. The formulas for both approaches are given

in Eq. (4). Frame (b) shows the ratio η−/η+ from Eq. (5) as a function of t−1 for the LJ and

WCA fluids at the same density and temperature, ρ = 0.8442 and T = 0.722. The long time

limit of the ratio is −1.
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Figure 4: Frame (a) The time-dependent viscosity from GK (time scaled by ×30) and the

single PDF difference formula of Eq. (7) plotted as a function of the viscuit value for t = 2.35,

and for different simulation times, tsim, which are given on the figure. The WCA potential was

used at the reference state point, ρ = 0.8442 and T = 0.722, with N = 343. The difference in

the parts of the single WCA PDF on the two sides, ∆PLJ (|ηu,LJ |), are also shown (magnified

by a factor of ×250). Frame (b) as for frame (a) except the ∆PLJ(|ηu,LJ |) for the corresponding

WCA state point are given (without magnification) for different t values, which are indicated

on the figure.

Figure 5: Frame (a) The η−(t) and η+(t) and the time dependent standard deviation (SD)

of the corresponding viscuits. Frame (b) compares the time-dependent viscosity obtained by

GK and that obtained by the PDF route of Eq. (10). The A constant formula in Eq. (10)

was assigned the valur, A = 0.817 obtained by least squares fit to the MD P0 data. The LJ

potential was used for the ρ = 0.8442 and T = 0.722 state point, where N = 256 particles and

there were 107 time steps.

Figure 6: Frame (a) The ratio of the number of negative to positive viscuit occurrences

against the corresponding standard deviation ratio. The linear regression slope and intercept

of the large t fit (red line) are 0.6838(4) and 0.3162(4), respectively. Frame (b) The ratio of

the negative to positive viscosity contributions against the corresponding standard deviation

ratio. The slope and intercept are 1.5117(3) and −0.5117(3), respectively. The red lines in

both frames are linear regression fits to the data in the large t limit, constrained to having the

exact t → ∞ limits. The points are the MD data at the same LJ and WCA state points as for

Figs. (1) and (2). Note time t increases from left to right on the figure.
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Figure 7: Frame (a) The LJ and WCA reference state data from Figs. 6(a) and (b) combined

and rotated clockwise by 45o. The η−(t)/η+(t) and N−/N+ are denoted by ‘V’ and ‘N’, respec-

tively, on the figure. In addition, the N−/N+ data are then reflected about the x-axis. The

two sets of data are then coincident within statatistics. Frame (b) The property ratios given

in the last line of Eq. (10) plotted against each other. The linearity and slope of the data is

consistent with the formula for the total viscosity given in that equation.

Figure 8: The standard deviation normalized LJ PDFs, P0, for a liquid, ρ = 0.8442 and

T = 0.722, and solid, ρ = 1.1 and T = 0.8, state point. The data is plotted on a lin-lin

scale. The MD data are shown as symbols and least square fits to the following functions

are:‘Expon-6’ (sum of 6 exponentials,), ‘Gamma’ is a Gamma function and ‘Stretched E’ is a

stretched exponential defined in Eq. (12) as continuous curves.

Figure 9: The standard deviation normalized PDFs, P0, for LJ state points in the liquid

and solid phase shown on a lin-log scale. Frame (a) is for ρ = 0.8442 and T = 0.722 (liquid)

and ρ = 1.1 and T = 0.8 (solid). Frame (b) is for four solid (ρ, T ) state points: 0.9743, 0.578

(S1), 1.3000, 0.578 (S2), 1.0530, 0.2504 (S3), and 1.0670, 0.1670 (S4). S1 and S2 are along an

isotherm, and S3 and S4 are along the sublimation line (i .e., P ≃ 0). Data for both sides of

the PDF are plotted separately. The fits over the argument range 0 − 7 are: ‘Expon-6’ (sum

of 6 exponentials,), ‘Gamma’ is a Gamma function and ‘Stretched E’ is a stretched exponential.)

Figure 10: The shear stress t−average (see Eq. (13)) probability distribution function which

is relevant to the Fluctuation Theorem. The key parameters are: ρ = 0.8442, T = 0.722,

N = 256 and γ̇ = 0.025. The WCA potential was used in the NEMD SLLOD simulations. The
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t values used to define the t−averages are given on the figure. Data for three values of t are

considered.

Figure 11: Validation of the Fluctuation Theorem as written in the form of Eq. (21) involving

the ratio of the two sides of the t−average stress PDF using the SLLOD NEMD data of this

work. The system simulation parameters were, ρ = 0.8442, T = 0.722 and N = 256. The PDF

ratio is plotted against the average shear stress, σt, which increases with shear rate. Data for

three values of t are shown. The WCA potential was used and the simulation was for 2940 LJ

time units. Note that the black line is not a fit to the MD data (symbols) but that predicted

by the FT (i .e., the slope is V γ̇β).

Figure 12: The ratio of the number of positive to negative t−averaged stress states, N+/N−,

as a function of shear rate for the ρ = 0.8442 and T = 0.722 state point using the LJ potential

with N = 256. Frame (a) three t−average times are considered with their values given on the

figure. The ratios computed directly by MD are compared with the predictions of the analytic

formula given in Eq. (27). Frame (b) presents the t = 0.288 data from frame (a) and compares

it with the FT predictions given in Eq. (24). The formula in the first line of Eq. (24) is denoted

on the figure by ‘FT-1’, and the formula on the seccond line is ‘FT-2’.

Figure 13: As for Fig. 12 except, −η+/η−, is plotted. Again the values obtained directly from

the MD simulations and the shifted-gaussian approximation of Eq. (30) are compared for three

t stress-averaging times.
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