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ABSTRACT

The shear viscosity, #, of model liquids and solids is investigated within the framework of the viscuit and Fluctuation Theorem (FT) probability
distribution function (PDF) theories, following Heyes et al. [J. Chem. Phys. 152, 194504 (2020)] using equilibrium molecular dynamics (MD)
simulations on Lennard-Jones and Weeks—Chandler-Andersen model systems. The viscosity can be obtained in equilibrium MD simulation
from the first moment of the viscuit PDF, which is shown for finite simulation lengths to give a less noisy plateau region than the Green-
Kubo method. Two other formulas for the shear viscosity in terms of the viscuit and PDF analysis are also derived. A separation of the
time-dependent average negative and positive viscuits extrapolated from the noise dominated region to zero time provides another route to
7. The third method involves the relative number of positive and negative viscuits and their PDF standard deviations on the two sides for
an equilibrium system. For the FT and finite shear rates, accurate analytic expressions for the relative number of positive to negative block
average shear stresses is derived assuming a shifted Gaussian PDF, which is shown to agree well with non-equilibrium molecular dynamics
simulations. A similar treatment of the positive and negative block average contributions to the viscosity is also shown to match the simulation
data very well.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0040106
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I. INTRODUCTION

The determination of the transport coefficients of molecular
liquids has become a relatively routine and widely employed activity
within the molecular simulation community. The shear viscosity, 7,
in particular, has been the subject of many studies because of its sig-
nificance in characterizing the flow properties of liquids in numer-
ous practical applications. The equilibrium Molecular Dynamics
(MD) technique can be employed to compute the transport coef-
ficients using the Green-Kubo (GK) equations.]‘l The GK method
involves integrating a time correlation function, C(t), which quan-
tifies the persistence in time (#) of states characterized by a certain

quantity, which for # is the shear stress of the system. In recent years,
there have been publications on how to most efficiently and accu-
rately determine the plateau value of the GK time-integral, which is
proportional to the viscosity.”* As the simulation is of finite length
in time, statistical fluctuations become an important detrimental fea-
ture whose effects increase with the correlation function time, . In
practice, in MD simulations, there is a time “window” in which the
plateau needs to be extracted before the noise dominates. This prob-
lem of determining the plateau value of the GK integral is one of the
themes of this work.

The decomposition of the GK-determined transport coeffi-
cients into their negative (entropy absorbing) and positive (entropy
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generating) components is a recent development.'’”' Besides pro-
viding useful insights into the physical origins of the processes that
determine the value of the transport coefficient, this procedure, it
will be shown, provides useful ancillary information in establishing
the time at which the plateau value has been reached. In addition, a
new viscuit probability distribution function based route to the shear
viscosity is presented, which shows evidence of being less subject
to statistical uncertainties than the original average time correlation
function GK method, even though the two are formally equivalent
in the thermodynamic limit.

Il. VISCOSITY THEORY AND THE SHEAR STRESS
AUTOCORRELATION FUNCTION

The theoretical and computational aspects of this work are
considered in this section. The MD simulations are based on the
Lennard-Jones (L]) pair potential, ¢(r) = 4e[(s/ 2 = (s/r)®], where r
is the center-to-center distance between the two molecules and € and
sare the characteristic intermolecular interaction energy and molec-
ular diameter, respectively. The quantities reported in this work are
given in the usual L] reduced units, e.g., the reduced number den-
sity, p* = ps3, temperature, T* = kpT/e (kg is Boltzmann’s constant),
potential energy as U* = Ule, and the same units for total energy
and kinetic energy. The shear stress and pressure are given in the
reduced units, P* = P/es™>, time t is in, t/sm">e "2, and the reduced
shear viscosity is " = q/s_zel/zmm. For compactness of notation,
the asterisk superscript is omitted in the rest of this work.

A. Green-Kubo Newtonian shear viscosity

The Newtonian shear viscosity is calculated using the GK
method, which employs the off-diagonal elements of the pressure
tensor, e.g., Pyy. For the monatomic L] fluid, the instantaneous value
of Pyy is given by

1Y 1N i
Py = V(Z[’”ivﬂ‘vyi —3 Zr&ij?‘/’ (’ij)])> 1)
i=1 i i
where N is the number of molecules in volume V (typically the
volume of the MD simulation cell), v4; is the & component of the
velocity of the molecule i or v;, and 7y, is the & component of the
pair separation vector between molecules i and j. The first derivative
of ¢(r) is denoted by ¢'. The shear stress autocorrelation function,
Cs(t), and its relation to the shear viscosity and derived quantities
are

Cu(t) = (Py(0)Py (1)), n(t) = le [Fewar,
n=lmn(t), Geo = (V/ksT)(Py), C(1) = C(1)/C:(0), (2)

Ts:fooC(t')dt’, 7= GooTs,
0

where C(t) is the same function normalized by its ¢ = 0 value, which
is the standard way of plotting the shear stress autocorrelation func-
tion in this work. The formalism (---) indicates an average over
time origins (i.e., time in the simulation declared to be ¢’ = 0) and
subsequent times over a simulation. The time dependent viscos-
ity is denoted by #(t), and its long time limit is the shear viscosity
(i.e., without the “#” argument). The “instantaneous” or infinite fre-
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quency shear rigidity modulus is denoted by Geo in Eq. (2), and 7 is
the shear stress relaxation or “Maxwell” time."” The product Geo 75 is
Maxwell’s expression for the shear viscosity, which forms the basis
of this formulation of viscoelasticity. The time correlation function,
Cs(t), is the shear stress relaxation function in the limit of the zero
shear rate encountered in the subject of rheology. For simplicity of
notation, the shear stress, = —Pyy, is used below.

C(t) and #(t) are prone to significant statistical uncertainties
in practice because the shear stress is a whole system property, and
therefore, only one value of ¢ for each off-diagonal element of the
stress tensor is obtained each time step. From a practical point of
view, 1 is obtained by establishing the plateau value of #(t) at long
times. This is hampered by the development of statistical fluctu-
ations in C(t) and hence #(t) typically in more or less the same
time region where the plateau in #(¢) is starting to form. Its effects
can be mitigated to some extent by carrying out longer simulations,
at least for small molecules, but for large flexible molecules where
the stress relaxation processes are slower and the computational
demands higher, it becomes more problematic to achieve this sep-
aration of signal and noise time scales. Previous theory and simula-
tions’” reveal that the standard deviation in the correlation function
and its time integral at long times scales as ~ (7/ Tsim)l/ 2 where T is
a characteristic relaxation time of the correlation function and T,
is the total simulation time.

The plateau in #7(f) can be obtained by fitting C(f) to an
expression and then integrating this analytically to determine #(t).
Hartkamp et al. used a fit to C(t), which was the sum of a Gaus-
sian and two exponentials (the Gaussian dominates in the “ballistic”
regime at short time).'* An alternative formula, a sech and two expo-
nentials, was proposed in Ref. 10, which was found to match better
the molecular dynamics correlation function data considered in that
study. The analytic expression of the sech function C(t) is

Cs(t) = Goo (A sech(t/71) + B exp(—t/12)
+ (1-A-B)exp(-t/13)),
1(t) = Goo (ATy tan”'[sinh(t/71)]
+ B[l -exp(~t/12)]) + Go(1-A-B)r; )
x [1-exp(-t/13)],
n= tlirg n(t) = Gw(gAﬁ +Bn+(1-A 7B)T3).

The dimensionless coefficients, A and B, and the three relaxation
times, 71, T2, and 73, can be obtained by least squares fitting the MD-
determined C(t) to the first formula in Eq. (3). The two exponentials
in Eq. (3) reproduce well the long time behavior of C(t) beyond the
ballistic region. The sech term also tends to an exponential at long
times.

lll. VISCUITS

The shear viscosity can be recast as the first moment of a prob-
ability distribution function (PDF) of the single trajectory (ST) con-
tributions or “viscuits.” A viscuit is a single trajectory contribution
to the GK viscosity average indicated in Eq. (2), which is the quantity
that is used in reformulating the Green-Kubo method. This idea was
proposed by Stillinger and Debenedetti'~ and shares some features in
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common with Erpenbeck’s “hybrid” extension of GK.'® The defini-
tion of the viscuit, #,(¢), and its relationship to the time-dependent
viscosity, #(t), is

Mu(t) = kBLTfota(o)a(t’)dt’,
1) = {ra(0))
= [ dnae) () PO (). @

The viscuit defined in the first line of Eq. (4) is just one contribu-
tion from a specific trajectory to the GK integral, which is already
available in the standard GK MD treatment but whose statistics are
not normally investigated.'” Formally, #,(t) involves an integral up
to time ¢ and is defined starting from the stress at a single specific
time (“time origin”) during the simulation. In a simulation, the first
integral in Eq. (4) is replaced by a summation of the instantaneous
stress evaluated at time intervals of the simulation time step. The
PDF P(4,(1)) is the probability distribution function of #,(¢). In the
second line of the above equation, #(t) is written as the average of
the viscuits. The viscuit at any given time can be negative or posi-
tive, and these can be averaged separately during the simulation. In
the final line of Eq. (4), the time dependent viscosity is written as
the first moment of the PDF of the viscuits evaluated up to a pre-
defined value of ¢. There is a different PDF for each value of ¢, but
the PDF is found to converge to a limiting form for large ¢, i.e., of
several Maxwell relaxation times. For typical L] liquid states, this is
typically in the time range ¢ = 2-3 reduced units, depending on the
temperature and density.

A. Simulation details

The state point mainly used here was p = 0.8442 and T = 0.722,
which is referred to as “R1,” which is close to the triple point of the L]
system and has become a standard or reference liquid state point for
this generic molecular liquid (see Refs. 2, 18, and 19 for their original
use, and there is a more recent compendium of triple point density
and temperature values in Ref. 20). A table of literature values of
the shear viscosity at the L] R1 state point is given in Ref. 21, and a
series of # values for different N is presented in Ref. 22. The R1 state
point shows the highest liquid state viscosity and has the most per-
sistent structure in the long time region of the stress relaxation func-
tion (i.e., more pronounced viscoelastic behavior), which is char-
acteristic of more structured liquids composed of small polyatomic
molecules. With increasing temperature and decreasing density, the
L] viscosity decreases and the time correlation function decays more
rapidly and becomes more featureless (characteristic of a dense
supercritical fluid than a typical liquid). We note that the chosen
state point is close to the two-phase vapor-liquid boundary, and
care is required to ensure that the simulations are in the one-phase
region.

Simulations were also conducted at the same density and tem-
perature using the Weeks-Chandler-Andersen (WCA) potential,”
which is the repulsive part of the L] potential. This density and tem-
perature are also in the dense fluid part of the WCA phase diagram.”*
A comparison of results computed at this density and temperature
for the two potentials helps to discern the effects of the attractive
part of a potential on the computed properties. This comparison also
helps to identify those properties that depend on the details of the
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potential and those that do not. Some simulations were carried out
for solid state points to assess further the range of applicability of the
viscuit theory. The temperature was controlled by the Nosé-~Hoover
thermostat,” with a time constant of 3 L] time units.

In regard to the fluctuation theorem, other simulations were
carried out at the finite shear rate using the SLLOD equations of
motion to implement planar Couette flow.””” This is an example of
a Non-equilibrium Molecular Dynamics (NEMD) simulation. The
calculated quantities are given in units of € and o and the mass of the
molecule, m. Quantities denoted with a “L]” subscript indicate that
they are given in these units and can apply therefore to simulations
carried out with the L] or WCA potentials. The interaction cutoff
was 2.5, and the simulations were carried out for between 10° and
2 x 107 time steps.

B. Negative and positive contribution to the viscuit

Figure 1(a) shows the normalized shear stress correlation func-
tion, C(t), of a liquid LJ state near the triple point split into its
negative and positive components, C_(t) and C.(t) (i.e., those that
come from a negative or positive viscuit at time t, respectively). A fit
to the total correlation function using the sech formula in Eq. (3) is
also shown. The positive component is more slowly decaying than
the total function, and the negative component decreases from 0 at
t = 0. At short times, C(¢) is determined mainly by C.(t), as the
product of two quantities at two closely separated times must be pre-
dominantly positive because the two states are strongly correlated.
With an increase in time, the contribution C_(t) increases from zero,
and this development is, in fact, responsible for the rapid decay of
the total correlation function, C(t), to zero at long times. C_(t) and
C.(t) individually are slow to decay on the same time scale, but their
effects cancel out at long times and the total correlation function
decays more rapidly to zero.

Figure 1(a) also shows —C_(¢), which is seen to be statisti-
cally indistinguishable from C.(t) for times in excess of ~1.5. The
long time decay of the two components scales as ¢t~ '/* but with
opposite prefactor signs. Figure 1(b) shows the corresponding plot
for the WCA potential carried out at the same density and tem-
perature (i.e., p = 0.8442 and T = 0.722) and exhibits the same
trends as the LJ system. The ~t~? scaling of the correlation func-
tion components arises from random fluctuations in the product
of two stresses widely separated in time. The reason for this par-
ticular exponent value becomes clearer in Fig. 2 and its associated
discussion.

The time dependent viscosity, #(t), defined in Eq. (2) applied
to the data in Fig. 1 is shown in Fig. 2(a), together with the same
quantity derived from the analytic sech fit formula given in Eq. (3).
The total #(t) of the WCA fluid in the large ¢ limit is about two-
thirds of the L] value presumably because the LJ liquid is a more
cohesively held together fluid than the WCA case, whose potential
is purely repulsive. The average of the positive and negative viscuit
components is also presented in Fig. 2(a). Figure 2(b) shows the
same data plotted as a function of /2. A least squares fit to the lim-
iting region of #_(t) and #.(t) also shown in this figure reveals that
5(t) increases as t'/2 at times longer than several Maxwell relaxation
times. It takes the negative contribution longer to achieve the ¢'/
scaling region than the positive contribution. This long time scaling
can be rationalized on the basis of the known statistics of #(t), whose
exact expressions are
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FIG. 1. (a) Normalized shear stress correlation function, C(t), used in the GK
method for the shear viscosity, which is also fitted to the sech formula in Eq. (3)
(“total-fit"). The contributions from the negative and positive viscuits, C_(f) and
C+(t), respectively, are shown. The sech fit formula parameters are A = 0.7415, B
=0.1745, 74 =0.049 1(1), 7, = 0.1982, and 73 = 0.4698. The figure also shows the
same data except that —C_(t) is plotted, and a fit of the form A/t""? to C.(t) is given
in the figure. The Lennard-Jones potential was used, with the other parameters p
=0.8442 and T = 0.722, N = 256 particles, and 107 time steps. (b) The same plot
for the WCA fluid with otherwise the same input parameters. The sech formula fit
parameters are A = 0.8408, B=0.1576, 71 = 0.042 89, 7, = 0.2400, and 73 = 74.7.
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FIG. 2. (a) The time dependent LJ viscosity, #(t), using the data from Figs. 1
and 2. The analytic sech fit formula from Eq. (3) is shown, as are the average
of the positive and negative viscuits, shown separately. (b) Same as (a) except
the data are plotted as a function of '/2. This shows that 7_(f) and #.(f) scale as
{" at long times. The fit parameters to the equations in Eq. (6) are a_ = 1.85(1),
b =3.95(2), a+ = 1.36(1), and b+ = 3.90(2), and therefore, 7 = a_ + a+ = 3.21(1).
The t='2 scaling seen in Figs. 1 and 2 is indicative of the “noise” region in the data
at long times.
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n(t) = n-(t) +n.(t),

he(0) = o [ o@0(E)de <0, n-(6) = (nu-(0).

1) = g f) o@D >0 O = e

1) = o [ oo, (0 = (o))

P(1u(t)) = P(ru—(£)) + P(ru+(£))

P(tu-(t = 00)) = P(1fu+(t = 00)),

where P(x) is the probability of x and the notation (---). indicates
an average of the viscuits for time, ¢, whose magnitudes have either
the — or + sign. The equality in the two sub-PDFs at long times
given in the last line of Eq. (5) is because the short time “correlated”
region should contribute a progressively smaller proportion to the
total in the large ¢ (or noise-dominated) limit. The long time form
of the contributions to the viscosity integral from the two sides is
established using Gaussian statistics. In the long time limit, the vis-
cuit standard deviation in the total time dependent viscosity, #(t),
follows a t'? scaling.S‘JS For a half-normal distribution, the mean
and standard deviation are proportional to each other and also to
the standard deviation of the combined PDF valid over the whole
viscuit domain.”’ Therefore, the n-(t) and 7. (¢) individually should
also scale as t'/2, assuming Gaussian statistics. Hence, the difference
between #_(t) and #.(t) for large t is also a measure of the breadth
of the #(¢) distribution of each side in the large ¢ limit.

The limiting dependence of #(t) on time is consistent (by dif-
ferentiation) with C_(t) and C.(t) decaying as 12, Figure 1(a)
demonstrates that the MD data follow this dependence. To sum-
marize, Figs. 1 and 2 show that the correlation function can be
separated into two limiting regions in the small and large time lim-
its, between which the stress correlation between consecutive time
steps dominates, where at long times, the noise is the important fac-
tor. Although in the LJ fluid, the repulsive and attractive parts of
the potential give positive and negative contributions to the viscos-
ity, the quantities #— and #, defined here are different quantities
and are present even for purely repulsive potentials [i.e., WCA, see
Fig. 1(b)]. In fact, there always has to be a _(t) contribution to the
time-dependent viscosity for any molecular system; otherwise, #(t)
would not converge to a plateau value. The statistics of #-(¢) and
#+(t) are rigorously determined by Gaussian statistics in the large ¢
limit.

The large t time dependence of #_(t) and #.(¢) leads to a direct
route to #. In the t — oo limit, where the slopes in a v/ plot of the
two viscuit sides will be equal in magnitude and opposite in sign,

n-(t) =a- —bV/t,  n.(t) = ar + b/t
H-(t > 00) + 4, (t > c0) =9 = a_ +ay, ©)
n-(t > o0)
7+ (t = 00)
The sum of the intercepts, a_ + as, is 3.21(1) for the L] fluid, which
is in very good agreement with the value obtained by GK and other

PDF routes discussed below. The slopes of the negative and posi-
tive components achieve a limiting value of +£3.9 for times greater

-1.
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than ~1.7 time units, which is statistically the same as noted above.
In the limit of t — oo, the noise dominates, and in practice, informa-
tion about the viscosity is lost and the ratio of the two contributions
tends to —1. On the time scale of a simulation, however, the /¢
dependence of the viscosity components provides another route to %
and its negative and positive components. The noise, which is usu-
ally considered to be an unwanted feature of GK calculations in the
plateau region, can therefore be exploited via Eq. (5) to compute the
viscosity. The simulation data used for Figs. 1 and 2 are given in the
supplementary material. In addition, the procedure used to generate
Fig. 2 was repeated for the L] state point p = 0.8 and 1.0 (or “R2”) and
presented in Fig. 2 of the supplementary material. This state point is
near the middle of the L] liquid domain. The value of the Lennard-
Jones viscosity obtained from Eq. (6) for R2 is 2.09(1), which is the
same as that using standard GK reported in Table I of Ref. 11.

Crystals exhibit viscoelastic properties and a limiting shear vis-
cosity, which is only a little higher than that of a coexisting liquid, at
least for a simple system such as the WCA or LJ.”’ Figure 3 shows
n-(t) and 7.(t) and total viscosity for a LJ solid. This figure also
demonstrates that the £ scaling is clearly evident for 77, () but takes
a little longer to become established in #7_(t) in the solid.

To summarize, the statistical fluctuations, which, in practice,
give rise to uncertainties in the plateau value of the integrated time
correlation function in the GK method, do have a practical use. By
extrapolation of the data from the noise-dominated region to zero
time, the contributions to the viscosity from the negative and pos-
itive parts of the viscuit PDF can be assigned at any time, and the
total viscosity is simply determined by adding the two intercepts [see
Eq. (6)]. Figure 3(b) shows the ratio n—(¢)/n.(t) as a function of time
for the L] and WCA fluids at the reference state point. This quan-
tity is monotonically varying with time and approaches the —1 limit
for t - oo quite slowly. A comparison with Fig. 2(b) shows that the
t — oo limit is best incorporated in any treatment by taking the local
slope of the negative and positive side curves.

C. PDF definitions and viscosity formulas

There are a number of ways of computing the shear viscosity
from the viscuit PDFs, depending on how the viscuit PDF is defined.

1. PDF defined over the whole domain

The PDF, P(n.(t)), given in Eq. (4) corresponds to the
case where the viscuit is in real units (i.e., here LJ) and where
—o00 < #1,(t) < oo. The integral of the PDF over this complete argu-
ment range is set to unity by a normalization constant. The #,(f)
quantity is represented for conciseness in the following equations by
“x,” which, note, has an implicit time or “t” dependence. The PDF in
P(x) is not symmetric on the negative and positive sides,'"'” and the
difference between the two leads directly to a definition of the simu-
lation average quantity, #(t) (and hence the viscosity itself by taking
the t = oo limit),

n(t) = n+(t) +n-(1)
= /l xP(x) dx + /OooxP(x) dx

= /O.oo x[P(x) — P(-x)] dx. (7)
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FIG. 3. (a) The time dependent shear viscosity, #, as a function of \/# for a LJ solid
state point where p = 1.1 and T = 0.80. The MD data for the viscuit first moment of
the PDF are compared with the GK time correlation formula. The formulas for both
approaches are given in Eq. (4). (b) The ratio #_/x. from Eq. (5) as a function of
t=" for the LJ and WCA fluids at the same density and temperature, p = 0.8442
and T = 0.722. The long time limit of the ratio is —1.

The potential advantage of this route is that the subtraction in
Eq. (7) may cancel out, at least partially, the fluctuation or “noise”
derived contributions to the PDF, which is unavoidable in practical
GK MD calculations [and is manifest in the \/# dependence of the
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component viscuit averages shown in Fig. 2(b)]. These contributions
will be present at all £, not just in the large “\/¢” limit.

Figure 4(a) compares the #(t) obtained by GK from Eq. (2) and
the PDF route of Eq. (7). On the left-hand side of the plot are the
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FIG. 4. (a) The time-dependent viscosity from GK (time scaled by x30) and the
single PDF difference formula of Eq. (7) plotted as a function of the viscuit value
for t = 2.35 and for different simulation times, tsm, which are given in the fig-
ure. The WCA potential was used at the reference state point, p = 0.8442 and
T =0.722, with N = 343. The difference in the parts of the single WCA PDF on the
two sides, AP(|7u,.4]), are also shown (magnified by a factor of x250). (b) Same
as for (a) except the APy y(|%7u,14]) for the corresponding WCA state point are given
(without magnification) for different ¢ values, which are indicated in the figure.
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GK time dependent viscosities, #(t), obtained by integration of the
time correlation function and given as continuous curves. On the
right-hand side of this figure are the corresponding PDF viscosities
as a function of the viscuit value, shown as symbols. The various
colored curves and symbols are for different total simulation times,
which are indicated in Fig. 4(b). Both show a plateau range when the
argument (i.e., explicit time or absolute viscuit) magnitude is large.
The difference between the positive and negative sides of the PDF,
APrj(x) = [P(x) — P(—x)], for the longest simulation time case is also
shown magnified at the bottom of Fig. 4(a). It shows a rapidly rising
ascent followed by a monotonically decaying tail. Data for the WCA
fluid are presented.

Although formally equivalent, upon sufficient averaging, the
PDF method exhibits smaller fluctuations than the GK method
for large arguments and for the same simulation length and other
parameters. For example, for the longest total simulation length
(58 844 reduced time units), the GK and PDF WCA shear vis-
cosities are 2.29(1) and 2.286(3), with the uncertainties in the last
digit in brackets. The corresponding L] simulations give 3.10(3)
and 3.144(3). This indicates that the PDF route has a lower statis-
tical uncertainty than the GK route. The difference in the statistical
uncertainty, in fact, shows up in a more pronounced way for short
simulation lengths. Even for quite short run,s the PDF route exhibits
a well-defined plateau, but the GK “plateau” is extremely noisy, as
may be seen in Fig. 4(a). A partial cancellation of the noise in the
negative and positive sides of the PDF in the expression in Eq. (7)
may be the reason for this difference in behavior. In addition, the
PDF approach to the viscosity generally may be intrinsically bet-
ter formulated to “filter” out the noise. The qualitative difference
between the GK and viscuit routes results from differences in the
form of the integrand in the two cases. The stress autocorrelation
function has a slowly decaying tail in the noise-dominated time
range, while the PDF differences decay more rapidly at high val-
ues of the stress, which gives rise to a more smoothly converging
integral.

However, it should be noted that the value of the PDF plateau
does vary with simulation time, following generally the long-time
average of the GK integral (although this region can be seen to
be more noisy in the GK case). Therefore, the optimum simula-
tion lengths will be similar irrespective of whether GK or this PDF
route is used, but the PDF method does always gives a better defined
plateau than the GK route for any given simulation length. These
preliminary results indicate that the viscosity can be defined more
precisely by the PDF method. A more extended study would be
required, however, for example, on the relative rates of convergence
with argument upper limit, before it could be established whether
the PDF route has practical advantages over the usual GK approach
in determining the viscosity.

Figure 4(b) presents APr;(|#4,17]) on a lin-log scale for a range
of ¢ values at the reference state point using the WCA potential. As
t increases, the quantity broadens out, and its peak shifts to higher
values of 77,,,1. They all show an exponential decay in the large viscuit
limit. Data for another L] and WCA state point, R2, where p = 0.8
and T = 1.0, which is near the middle of the LJ liquid range, are
presented in supplementary material. The figures corresponding to
Figs. 1,2,4,and 5 are also shown, which demonstrates that the trends
are the same and therefore not unique to any particular liquid state
point.
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FIG. 5. (a) The n—(t) and #+(f) and the time dependent standard deviation (SD)
of the corresponding viscuits. (b) compares the time-dependent viscosity obtained
by GK and that obtained by the PDF route of Eq. (10). The A constant formula in
Eq. (10) was assigned the value A = 0.817 obtained by least squares fit to the MD
Py data. The LJ potential was used for the p = 0.8442 and T = 0.722 state point,
where N = 256 particles and there were 107 time steps.

The distribution of viscuits for a given ¢ can be characterized to
low order by its standard deviation o4(t) = [{7.(£)?) = (n.(£))*]"/.
The standard deviation of the viscuit plays a central role in defining
different possible PDFs and the relationships between them.
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2. PDF defined separately on the two sides

As P(x) is not symmetric between the negative and positive
sides,'"”'” one alternative and appropriate representation is to define
two distinct PDFs: one is P_(x) for the negative argument range
—o00 < x < 0, and the other is P, (x) for 0 < x < oo. Each one-sided
PDF is normalized separately so that the integrals on both sides are
each equal to 1. The standard deviation of the two PDFs, 04— and

04,4, respectively, are given by

0= [l x*P_(x) dx — [[l xP_(x) dx]z,

0. = /wa2P+(x) dx - [‘[ON xP, (x) dx]z,

®)

respectively.

It was also found in Ref. 11 that if x is defined as the vis-
cuit divided by its standard deviation (treated separately for each
side), then the two PDFs are statistically indistinguishable for not
too small ¢. These scaled-argument PDFs are defined by a sin-
gle function, Py ., which are related to their unscaled versions as
follows:

0 oo
f P_(x)dx =1, / Py (x)dx=1,
—oo 0
0 oo
/ po)_(i)ﬁ: , f p0,+(1) de |
—oo 04— ) 04— 0 Od,+ | 04+

X X
Po,f(f) = 04-P-(x), P0,+( ) = 04+P+(x),
0q 0d,+

&)

—

where the relationships on the last line of Eq. (9) follow directly from
the definitions on the second and third lines. It was found in Ref. 11
that Py, _(-X/04,-) = Po+(X/04+) = Po(y) for X >0 and y = -X/oy,—
or X/0,4+, where appropriate. The non-dimensionalized argument
PDFs Py,— and Py are therefore observed in the large ¢ limit to be
symmetric on the negative and positive argument sides. This can be
exploited in another definition of the time-dependent viscosity as
follows.

Equation (4) combined with the relations in the last line of
Eq. (9) gives a simple expression for the time dependent viscos-
ity, #(t), in terms of the standard deviations of the two (real unit)
PDFs. The quantity, 04,4+, has units of viscosity, and the dimen-
sionless variable, y = x/0,,+, is used below. One of the features of
treating the two halves of the PDF separately is that an additional
piece of information about the two sides is required to make further
theoretical progress, which is the relative number of occurrences
of the negative and positive viscuits. Let R- = N_/[N_ + N,] and
R, = N/[N- + N,], where N_ and N, are the number of occur-
rences of negative and positive viscuits, respectively, during the
simulation. Then,

ARTICLE scitation.org/journalljcp

n(t) = n-(t) + 1+ (t)

0 oo
=R_ / xP_(x)dx + Ry f xPy(x)dx
—o0 0

0 oo
ey Py 4o, [ yReg,
—oo 04— 0 04, +

0 oo
=04-R- [ YPo-(y)dy +0a4Rs fo yPo. (y)dy,
n(t) = A(o4+Rs —04-R-), A= fo yPo(y)dy >0,  (10)

n-(t) _ oa-R- o5 R_

l”]+(t) B Ud,+R+ ’

| <1,
0d,+R+

where A is dimensionless. Note that in Eq. (10), x is the viscuit and
y is the viscuit scaled by the standard deviation of x for one of the
sides. In addition, note that x and y have an implicit integral of the
viscuit up to a time ¢ in their definition. The penultimate line in
Eq. (10) gives another definition of #(t), which requires a value of
A. Numerical integration of the simulation-derived Py from a spe-
cific simulation gave the value A = 0.817(2). The condition in the
last line of Eq. (10) holds because #(t) must be positive to satisfy the
condition that the heat production rate (which is proportional to the
viscosity) is, on average, positive during shearing.

Figure 5(a) shows the viscuit standard deviation of the #,,—(t),
Hu+(t), and 17,(t). These are plotted against £1/2 together with the cor-
responding (#,,-(£)), (#u,+(t)) and (7., (¢)). In general, the standard
deviations increase more rapidly with time than the average viscos-
ity itself. The total viscuit standard deviation is larger than that of
the two components, whereas the total viscosity is in between the
negative and positive contributions.

Figure 5(b) compares the GK formula for the time dependent
shear viscosity and that obtained from the formula in Eq. (10), which
involves the two standard deviations and the relative number of neg-
ative and positive viscuit occurrences. The PDF route agrees well
with the GK in the ascending region and gives a plateau value, which
is close to the GK value and probably within the mutual uncertain-
ties of the two approaches, especially as A itself has some statistical
uncertainty. The formula for the time dependent viscosity in the
penultimate line of Eq. (10) is therefore validated.

Figure 6(a) shows the ratio N_(#)/N.(t) as a function of
04,-104+ for the L] and WCA reference state point. These are sta-
tistically indistinguishable over the accessible range, and the curve
is concave. At short times, the relative probability of there being
negative viscuits tends to zero more rapidly than the standard devi-
ation ratio, as evident in the curvature. In the large ¢ limit [from left
to right on Fig. 6(a)], both (absolute) ratios tend to unity. At long
times, the viscuit will tend in effect to be the sum of random num-
bers whose statistics is the same for negative and positive sides. Any
correlation effects at short time in the averaging become numeri-
cally insignificant in this long time limit (top right hand corner).
The trend in the data represents a transition to zero contribution
from the negative side as t — 0 [bottom left of Fig. 6(a)] to purely
random statistics (top right) as t — co.

Figure 6(b) presents the ratio —[#n-(¢)/n.+(t)] as a function of
04,-/04.+, which is seen now to be a convex function (again for data
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FIG. 6. (a) The ratio of the number of negative to positive viscuit occurrences
against the corresponding standard deviation ratio. The linear regression slope
and intercept of the large t fit (red line) are 0.683 8(4) and 0.316 2(4), respectively.
(b) The ratio of the negative to positive viscosity contributions against the cor-
responding standard deviation ratio. The slope and intercept are 1.5117(3) and
—0.5117(3), respectively. The red lines in (a) and (b) are linear regression fits to
the data in the large ¢ limit, constrained to having the exact t — oo limits. The
points are the MD data at the same LJ and WCA state points as for Figs. 1 and 2.
Note that time ¢ increases from left to right on the figure.
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where time increases from left to right). The viscosity ratio converges
more slowly to zero than the standard deviations ratio at short times,
evident from the curvature in that region. At long times, these two
ratios tend to unity, whereas at short times, the ratio tends to zero.
These are the same limits as evident in Fig. 6(a) for the number
ratios. The shape of the ratio plots in Figs. 6(a) and 6(b) is differ-
ent, however, despite having the same values in the short and long
time limits.

Figure 7(a) combines the L] and WCA data from Figs. 6(a) and
6(b) on a single figure. The two curves are symmetric about the
y = x line, which is confirmed by rotating them clockwise by —45°
and then reflecting the rotated N_/N. curve about the x axis. The
curves tracing out the two sets of data in the negative abscissa region
are then seen to be statistically indistinguishable. The figure demon-
strates that within the simulation statistics, the ratios —[#n-(t)/1+(¢)]
and N_/N, can be made coincident after these two transformations,
which suggests that they share the same underlying information.
Figure 7(b) presents the property ratios given in the last line of
Eq. (10) plotted against each other. The linear trend predicted by
the equation is adhered to very well at all times, which supports that
analytic treatment.

3. Analytic representations of the PDFs

In Ref. 11, it was shown that Py could be represented well by a
sum of N, exponentials (three were employed in that work),

oo Nl’-’
P = [T H@e dg= Y aexp(-bibi),
0 i=1 (11)

Z

SH )

A=

1

5>
1%

where H(q) is the continuous distribution of decay coefficients, c,.
A discrete sum of exponentials is an approximation to this continu-
ous distribution and has the constants 4; and b;. Equation (11) also
gives a formula for the parameter A, defined in Eq. (10) in terms of
the sum of exponentials representation of Py. The value of A from
the formula in Eq. (11) is 0.827(4), which is a little higher than that
obtained by directly integrating the simulation PDF. In order to fit
to the PDF values smaller than about 0.01, it was found that more
exponentials were required, and six were used here. The least squares
fit parameters are presented in Table I. The parameters for the sum
of exponentials fit to Py are sensitive to the dataset used. Neverthe-
less, the overall fit over the simulated argument range (0-7) is only
weakly dependent on the precise MD dataset chosen presumably due
to mutual compensation between the terms. The importance of the
sum of exponential analytic form of Eq. (11) is that it reproduces
the exponential behavior in the tails of the PDF, where the largest
viscuits occur.

Figure 8 shows the degree of fit to liquid and solid state points
on a lin-lin scale. A stretched exponential (“se”) and a Gamma
function (“G”),

Py (y) =Age CXP(_bseyo‘SC )’
) (12)
Peo(y) = Acy © exp(-acy),
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FIG. 7. (a) The LJ and WCA reference state data from Figs. 6(a) and 6(b) com-
bined and rotated clockwise by 45°. The #—_(t)/%+(t) and N_/N: are denoted by “V"
and “N,” respectively, in the figure. In addition, the N_/N. data are then reflected
about the x axis. The two sets of data are then coincident within statistics. (b) The
property ratios given in the last line of Eq. (10) plotted against each other. The
linearity and slope of the data are consistent with the formula for the total viscosity
given in that equation.

respectively, were also fitted to the MD P, data, as they have been
used to represent a range of naturally evolving dynamical pro-
cesses.””” They both agree quite well with the simulation data down
to a value of at least 0.1 or y = 2, as seen in the lin-lin plot of
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TABLE I. Least squares fit to the fit formulas for Py taking the MD data from that used
in Fig. 9(a). Key: a; and b; for the sum of exponential formula given in Eq. (11) and
the stretched exponential and Gamma function defined in Eq. (12).

quantity quantity quantity

a 0.381159 as 0.596 254 as 0.058339
az 1.436787 ag 0.444 089 as  —0.014486
b 0.819665 b3 4.034747 bs 1.485265
b, 15.668 87 by 1.485814 bs 1.074376
Ase 3.099 582 bee 2.426 957 Ase 0.472958
Ac 0.770477 b  —0.263138 aG 0.951 469

Fig. 8. The least squares fit parameters to the analytic expressions
in Eq. (12) are also given in Table I. It is perhaps not surprising
that they fit quite well as probability distribution functions based on
an exponential component are widespread in nature, being associ-
ated with “events” that occur independently at a constant average
rate.””*

Figure 9(a) shows Py on a lin-log scale to focus on the tail
region of the viscuits, which cannot be discerned in Fig. 8. Fig-
ure 9(a) reveals that while the sum of six exponentials fits the MD
data well down to 0.001, the stretched exponential increasingly over-
estimates the MD data below Py = 0.1. The Gamma function under-
estimates the MD data below about Py = 0.04. The stretched expo-
nential can be expressed as a weighted sum of exponentials,”” but
its simple analytic form imposes constraints on the form of this
weighting function, which are apparently not compatible with the
viscuit PDF obtained directly by MD over its whole range. Fig-
ure 9(b) demonstrates that the same trends are evident for four
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FIG. 8. The standard deviation normalized LJ PDFs, Py, for a liquid, p = 0.8442
and T = 0.722, and solid, p = 1.1 and T = 0.8, state point. The data are plotted
on alin-lin scale. The MD data are shown as symbols, and least square fits to the
following functions are as follows: “Expon-6" (sum of 6 exponentials), “Gamma” is
a Gamma function, and “Stretched E” is a stretched exponential defined in Eq. (12)
as continuous curves.
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FIG. 9. The standard deviation normalized PDFs, Py, for LJ state points in the
liquid and solid phase shown on a lin-log scale. (a) is for p = 0.8442 and T = 0.722
(liquid) and p = 1.1 and T = 0.8 (solid). (b) is for four solid (p, T) state points:
0.9743, 0.578 (S1), 1.3000, 0.578 (S2), 1.0530, 0.2504 (S3), and 1.0670, 0.1670
(S4). S1 and S2 are along an isotherm, and S3 and S4 are along the sublimation
line (i.e., P ~ 0). Data for both sides of the PDF are plotted separately. The fits
over the argument range 0-7 are as follows: “Expon-6” (sum of 6 exponentials),
“Gamma’ is a Gamma function, and “Stretched E” is a stretched exponential.

solid state points at low temperature and high pressure. The fit is
not quite as good as in Fig. 9(a), which may be because these are
unusually low temperature and high pressure state points. Never-
theless, this analysis demonstrates the wide range of state points
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where the Py simplification is practically useful. While Py is essen-
tially state point and transport coefficient invariant,'" the associated
standard deviations are generally quite different on the two sides
over time scales relevant to the shear viscosity determination [see
Fig. 5(a)]. The differences between the two sides of the viscuit PDF
are manifest in their standard deviations, calculated for each side
separately.

IV. FLUCTUATION THEOREM

Evans, Cohen, and Morriss in 1993 gave a general statisti-
cal mechanical formula for systems driven out of equilibrium by
an external field, which has come to be known as the Fluctuation
Theorem (FT) (see also Refs. 37-39). The FT has subsequently been
verified by experiment and many NEMD simulations.”” ** The FT is
another route that can be used to derive expressions for positive and
negative contributions to the viscosity. The symbols #;,— and #; . are
given for these FT quantities to distinguish them from the viscuit
quantities #— and 7.

In the case of shear flow, the external field is the shear rate, j.
The SLLOD NEMD equations of motion can be used to implement
homogeneous shear flow,"” and the quantity of interest for the FT
description of this situation is the mean shear stress, o;, over time ¢
for a single trajectory,

o = % _/Ota(u) du. (13)

The terms “block average” and “t-average” shear stress are often used
for 0. Note that in the viscuit treatment of Sec. 111, the PDF is that of
viscuits, which are time integrals of the product of two instantaneous
stresses at different times. The PDF in the FT case is of the t—average
shear stress. Although the two quantities are not the same, they are
related, but it would appear, not in a particularly trivial way, as will
be discussed below. The PDF of o; is denoted by P;(0;), where the
t subscript emphasizes that its functional form can depend on the
sampling time, t. The t-average PDF extends over all the negative
and positive values of o, and is characterized by a single standard
deviation. There does not appear to be an obvious advantage in sep-
arating the FT PDF into two different functions on the two sides,
unlike in the viscuit case.

For t > 7, [the relaxation time, see Eq. (2)], as evident in Fig. 6
of Ref. 38, the PDF of o; tends to a shifted Gaussian, irrespective of
the shear rate,

Pt(Ut) =

1 ( (at—at)z) 1
exp| - > =
\V2m0y, 20, \/2m0y,

2
X exp(—j;t ), dot = 0¢ — 0y, O‘it = (80?), (14)
dt

where the simulation average, o; > 0 (for y > 0), is the average of o;
over the entire time domain covered for large t. The standard devia-
tion of these block averages is 0,,¢, which is determined for the whole
t-average range, —oo < 0y < co. The two parts of the PDF relevant to
the FT are
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1 (O't - 6;)2 )
Pi(or) = exp| — ,
t( t) /_27'[0'd,t p( 20_§J (15)
1 (—O't - 61)2 )
Pi(-0t) = exp| — .
o) V27104, P( zag,t
For the FT, the ratio of these two PDFs is required.”””” The two
expressions in Eq. (15) combined give
Pi(or) exp 2@ (16)
Pt(—O't) adt
The FT term on the right-hand side is”’
Pt(Ut) .
=exp(Voajtp), (17)
X p(Voarjyip)

where V is the volume, j is the (constant) steady state shear rate,
B =1/kpT, and kp is Boltzmann’s constant. For the shifted Gaussian
PDF to satisfy the FT, it requires that

Ot .
,t

It was proved by Searles and Evans’ that the GK and EHK expres-
sions for transport coefficients can be derived using the FT assuming
a Gaussian distribution for the t—averaged stress (in the case of the
viscosity) taking the t — oo limit and providing that the system is
close to equilibrium (i.e., < 1, in L] reduced units). The usual
GK expression can be applied in these circumstances, provided o(t)
is replaced by d0(t) = o(t) — 0, the excess stress from the mean.
The shear viscosity is 7(§) = Gooo(7)7s(j), where 7, is the relax-
ation time, and if doo = 80(0), the infinite frequency shear modulus
is Goop = (803) VB,

* (0(0)da(x))

Ts = dx, s=21.. (19)
600
Therefore, from Eqgs. (18) and (19),
o —V tﬂ-sw )V VB
= Ts<600>vyﬁ = Goo0Ts) = 11 (20)

which uses the Gaussian statistics relationship that o3, = [s/t](07).
Equation (20) proves that the shifted Gaussian is consistent with
the FT. This is applicable in the large ¢ limit and weak field regime
(i.e., here, y — 0) because the PDF is no longer a shifted Gaus-
sian (particularly in the wings) at high shear rates. The FT does not
require the PDF to be a shifted Gaussian, though.

The shifted Gaussian expression for the t-average PDF defined
in Eq. (14) can be employed to derive approximate analytic expres-
sions for certain quantities, which can also be readily computed in an
NEMD simulation. Figure 10 shows the o; probability distribution
function at the state point p = 0.8442 and T = 0.722 using the WCA
potential for a shear rate of j = 0.025 for three values of the averaging
time, t. The figure shows that the PDF departs from the Gaussian for
the three t-cases. They are skewed and exhibit an extended tail on the
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FIG. 10. The shear stress t-average [see Eq. (13)] probability distribution function,
which is relevant to the fluctuation theorem. The key parameters are p = 0.8442,
T=0.722, N = 256, and y = 0.025. The WCA potential was used in the NEMD
SLLOD simulations. The t values used to define the t-averages are given in the
figure. Data for three values of { are considered.

negative side. At this near triple point state point, there are depar-
tures from a Gaussian ¢-average PDF even at quite small shear rates.
The mean stress is therefore less than the peak value. Equation (23)
gives for the FT

) = Vyjpot, (21)

where g; > 0, which is confirmed within the MD statistics in Fig. 11
for data from the current NEMD simulations.

A. Number ratio of t-averages on the two sides

The relative number of positive and negative occurrences of the
t-averaged stress, 0, over a simulation is Ny,+/N;,_, where N; , is the
number of t-averages, o1, which are positive and N, — is the number
of negative occurrences of g;. These two quantities can be computed
directly during the simulation as a function of t and j. The FT was
used by Evans and Searles in Ref. 39 to derive an expression for
N¢+/N;, - as a function of ¢ whose steps in the present notation are

& B [000 P[(O}) dU[
Ne—  [° Pi(01) doy
fow P[((Tt) d(ft

AT TEr (22)

Equation (22) is valid because the PDF is defined over the whole
t-average range. According to the FT,
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FIG. 11. Validation of the fluctuation theorem as written in the form of Eq. (21)
involving the ratio of the two sides of the t-average stress PDF using the SLLOD
NEMD data of this work. The system simulation parameters are p = 0.8442,
T=0.722, and N = 256. The PDF ratio is plotted against the average shear stress,
¢, which increases with the shear rate. Data for three values of t are shown. The
WCA potential was used, and the simulation was for 2940 LJ time units. Note that
the black line is not a fit to the MD data (symbols) but that predicted by the FT
(i.e., the slope is V).

Pt(Gt) = eBot[Pt(—Gt)»

23
Pt(—crt) = e_Barth(O‘t), ( )

where B = Vy/kgT and o; > 0. Substituting the formulas in Eq. (23)
in Eq. (22) gives

Nt,+ _ fooo eBUrtPt(—O't) dO't
Nt,f fooo Pt(—O}) dO't
N Jy" Pi(o) dor Bty

— .o

= <eB(71f)_,

(29)

N[,_ - fooo e‘B"f’Pt(m) dO’t -

where (-}, denotes a simulation average in either the negative or
positive stress sides of the t-average stress PDF. The averages on the
negative stress (i.e., —o;) side are signified by (---)_. In any practical
application, the condition

1= (eBcr,t>7<e—Bzf,t)+ (25)

follows directly from Eq. (24), which acts as a useful measure of the
sampling efficiency of these quantities during and NEMD simula-
tion. One might expect the statistical errors on the first formula of
Eq. (24) for N +/Ny,— to be larger than the second because as the
shear rate increases, relatively fewer states with a negative stress will
appear because the PDF is shifted to the right, as has already been
noted in Ref. 39. Therefore, the first condition in Eq. (24) should suf-
fer from sampling limitations for finite duration simulations. Large
contributors to both averages in Eq. (24) will be dominated by quite
rare events. In the case of the negative stress t-average, those states
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with large negative values will dominate the right-hand sides of the
first formula in Eq. (24). In the case of the positive stress t-average,
those states when the stress is small will dominate.

Following on from Eq. (22), the fraction of t-averages with
negative and positive values are

Nt,— ~ (e—Ba,t>+ 1

Nt +Nim 1+ (eBat) ~ 14 (etBar)
N T e
N+ _ (e”")_ _ 1

Nis+ N 1+ (eBPot) 7 1+ (e Bat) ~

Note that o; > 0 in Eq. (26), which follows from the definitions in
Egs. (22)-(24). The FT-predicted quantities in Eqs. (22) and (26)
can be compared with the same quantities computed directly and
independently during an NEMD simulation.

Assuming a shifted Gaussian o; PDF for all f, an analytic
expression for Ny+/N;,— can be derived by variable substitution and
integration, which is

Ni- ff)oo exp(—@) dx;

_ Lrerf(%/V2)
1-erf (%/V2)’

where x; = 6¢/0,,s, erf is the error function, and X; = (x;) = (0t} /0,4,

Figure 12(a) presents the ratio of the number of positive to neg-
ative t-averaged stress states, Nt /Ny, _, as a function of shear rate for
three values of t. This ratio is expected to increase with time, ¢, for a
given value of j. The ratio N; /N, _ increases with the shear rate for
a given ¢ because the PDF then shifts more into the positive stress
side. The prediction by the shifted Gaussian approximation for the
shear stress PDF given in Eq. (27) agrees very well with the values
computed directly by NEMD in the range up to y < 0.15 at least,
as may be seen in Fig. 12(a). This is the case even though the PDFs
may show noticeable departures from the Gaussian form. This is the
case even at relatively small shear rates at the reference state point, as
seen in Fig. 10, for which § = 0.025. The relative number of positive
to negative t-averages on the two sides appears not to be too sensi-
tive to the skewness of the PDF presumably because of cancellation
of the contributions in different stress ranges because of the extent
and height of the tail in the wings on the two sides.

Figure 12(b) shows the curves compared with the FT predic-
tions given in Eq. (24) for t = 0.288. The formula in the first line
of Eq. (24) involves an average computed from the negative stress
states, while the second formula in the equation is an average over
the positive stress states. The second formula agrees best with the
MD values but still systematically underestimates the exact values.
The first formula in Eq. (24) to a greater extent underestimates the
correct values, which is expected as discussed above. The magnitude
of this sampling deficiency was also pointed out in Ref. 39 (p. 1562)
for the negative side sampling statistics.

(27)

B. Ratio of + contributions to the viscosity

The average shear stress, broken up into its negative and pos-
itive value contributions, can be expressed in terms of the first
moment of the a; PDF as
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FIG. 12. The ratio of the number of positive to negative t-averaged stress states,
N4+/N_, as a function of shear rate for the p = 0.8442 and T = 0.722 state point
using the LJ potential with N = 256. (a) Three t-average times are considered
with their values given in the figure. The ratios computed directly by MD are com-
pared with the predictions of the analytic formula given in Eq. (27). (b) presents the
t = 0.288 data from (a) and compares it with the FT predictions given in Eq. (24).

The formula in the first line of Eq. (24) is denoted in the figure by “FT-1,” and the
formula on the second line is “FT-2.”

0t = 0t,— + 01t

0 oo
:[ O'[Pt(O't)dUt +f0 UtP[(O't)dUt, (28)

where o,- < 0 and or+ > 0. Note that the PDF in Eq. (28)
extends over the entire negative and positive stress sides and
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is defined in terms of a single standard deviation, which is
t-dependent.

Substituting Eq. (14) into Eq. (28) after rearrangement and
integration gives

w5 (-(5)

p— 72 p— p—
e+ exp(—xi/2) xt( ( Xt )) _
— = v T 1+erfl == | ), G- +0us =01
Ous N N e

where x; = 0//0,,;. The last line of Eq. (29) is the sum of the first
two lines. The simulation time average, X;, is the average of x; that
depends on time because of the time dependence of ¢4,; (which is
finite for all £). The shear rate also has an effect on X;. For large t, 64+
will scale as octV/2.

As the standard deviation oy, is amassed from both sides of
the PDF and the shear rate is common to both sides, the ratio of the
positive to negative contributions to the viscosity #:+ /7t — = 01+ /01—
in the shifted Gaussian approximation follows from Eq. (29) and is

(29)

e _ee(ED L R (30)
t,— — L Zt — ity
o 3(1-er())
Note that this ratio is negative as #— < 0. Equation (30) leads to
1 % x 3
1) L1 3o
%0\ 11— [ 11, = 3y
b [ 5]+ 3 - om r o) (31)

im(e- +7e4) = 10,
y—0

where the last line follows directly from Eq. (29). In the limits
 — 0 and hence X; — 0, #:+/n:+ — —1. The contributions of
#:,— and 7:+ to the total viscosity are equal in the zero shear rate
limit, whereas this is not the case for the viscuit-derived quantities
#- and #,. Figure 13 compares —#: /1~ obtained directly by
NEMD and the shifted-Gaussian approximation given in Eq. (30)
for three t-averaging times. The same parameters as Fig. 12 are
used. The agreement is very good, despite the PDFs departing from
a Gaussian shape under shear for the values of t given in the
figure.

Each single trajectory or segment leading to a particular 87 can
be written in terms of a sum of  viscuits (treating f to be an integer
number of time increments or steps in a simulation) of duration 0
to t. In fact, in principle, for large enough ¢, one would only need
a single segment to have sufficient averaging to determine the vis-
cosity (i.e., is tantamount to the EHK method). The viscuit, #,(t), is
a component of any single Jo7. Searles and Evans proved the (gen-
eralized) Einstein-Helfand-Kubo'®*®"” and Green-Kubo formulas
for the shear viscosity for small but not zero shear rate and for large
t — oo,

(o-a)) = o0t) = 2 [“(o()do( e, (32

whereas for a single trajectory,
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FIG. 13. As for Fig. 12, except —#+/1— is plotted. Again the values obtained directly
from the MD simulations and the shifted-Gaussian approximation of Eq. (30) are
compared for three ¢ stress-averaging times.

(0 -7)" =

~ N

> fj da(k)da (K )AL, (33)
k'=k

k=1

where At’ is a time interval such as a simulation time step. The dou-
ble summation indicates that the single 807 contains a sum of viscuits
of time length from 0 to ¢. It is therefore valid to state that the vis-
cuit analysis is related to the FT (in the limit y — 0) but currently
not in an obviously tractable way to link the two approaches in all
aspects.

V. CONCLUSIONS

The viscuit reformulation of the Green-Kubo (GK) method for
the shear viscosity has the useful feature that the shear stress relax-
ation “events,” which give rise to the viscosity, #, can be resolved
into those that make negative and positive contributions to 7, a fea-
ture that is at the center of this work. This separation reveals clearly
the role played by “noise” in the time correlation functions, whose
time dependence can be exploited to evaluate the viscosity. These
positive and negative contributions to the viscosity are present even
for purely repulsive pair potential systems.

Traditional use of Green-Kubo (GK) has been hampered by
statistical uncertainty in the integral of the stress autocorrelation
function in a time range where a plateau is expected. This is due
to finite simulation lengths that are inevitable in practice. A refor-
mulation of GK in terms of its component elements or “viscuits”
carried out here leads to three new definitions of the (Newto-
nian) viscosity in terms of the viscuit formulation, two of which
involve its probability distribution function (PDF). These can be
computed readily in an equilibrium Molecular Dynamics (MD)
simulation.

These three new methods, to varying extents, exploit the time
region where the noise becomes increasingly important and beyond
the correlation time of the shear stress autocorrelation function.
Equation (6) involves extrapolating to zero time the negative and
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positive average viscuit GK component from well within the noise-
dominated time regime. The viscosity is simply the sum of the two
intercepts. This relies on obtaining very good statistics for the time
dependence of the negative and positive viscuit contributions to
the viscosity in the large time limit. This is possible for the simple
model systems treated in this work. It may be more problematic for
more complex molecules where exploration of phase space is a more
computationally demanding task.

Equation (7) presents the second method, which uses the dif-
ference in the PDF on the negative and positive viscuit sides at the
same magnitude of the viscuit. The PDF employed is evaluated over
the whole viscuit domain. The third new method defined in Eq. (10)
makes use of statistical properties of the two sides of the PDF treated
separately. This third method formula relies on obtaining two quan-
tities of the two negative and positive quadrants. It also requires
assignment of a basic constant, A, which also has (currently) to be
obtained numerically. As a result, this method probably exhibits
the largest statistical uncertainty when employed in MD. This for-
mula might prove useful nevertheless if these characteristic quanti-
ties could be obtained approximately by theory without resort to MD
simulation.

Of the three viscuit routes to #, the second one defined in Eq. (7)
might have the most significant practical benefit in simulations. It is
straightforward to implement and gives a plateau, which is largely
free of noise, and therefore helps assign a well-defined value for
the viscosity. It does not reduce the necessary total run simulation
time compared to the original GK method, however, because the
plateau value is a function of the total simulation length and follows
broadly the GK plateau value (which is however much noisier) at
each simulation length. This is not surprising in retrospect as the two
approaches use the same starting information. For a sufficiently long
simulation time, this PDF route may possibly remove the “plateau
problem,” which would enable a more precise value of the viscosity
to be determined by equilibrium MD. A more systematic MD inves-
tigation would be required to see if this is the case, however. Another
advantage of the PDF route to the viscosity is that many statisti-
cal mechanical theories of the liquid state are based on a presumed
distribution of dynamical events, which, for example, may repre-
sent “hopping” of the system between local basins of attraction."’
The PDF viscuit reformulation of GK would naturally be compati-
ble with such a formulation and therefore help explore and test these
theories.

An outstanding challenge is how to assign physically meaning-
ful positive and negative viscuit contributions to the viscosity, which
may have statistical mechanical significance. It might be considered
that these two numbers should be unique as physical quantities,
but their values increase dramatically with the time ascribed to the
plateau value in the Green-Kubo integral and formally equivalent
viscuit PDF routes. They are very sensitive to the precise value of
the cutoff time, ¢, which is used to assign the viscosity in the plateau
region. An objective criterion to assign these two numbers would be
a useful advance.

Along an isomorph, the viscuit PDF should exhibit isomorph
scaling when the stress is divided by pT. The current evidence is,
however, that the liquid-solid melting and freezing lines are not iso-
morphs in the vicinity of the triple point.”””’ The principal state
point used here p = 0.8442 and T = 0.722 is close to the triple point,
so the status of isomorph scaling in this region is still unresolved.
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However, if a simulation were to be carried out at a temperature of
above about 2.0 along the freezing line, then very good isomorph
scaling should be observed in the viscuit PDFs. The extension of the
present MD viscuit analysis to molecular fluids would be a promis-
ing future direction. As the theory makes no specific reference to
molecular type, it should be applicable also to polyatomic molecules
in just the same way as for the Lennard-Jones system. The qualitative
features should be the same, but there may be systematic quantita-
tive differences as the molecules become more complex. The role of
intramolecular interactions and chain length in organic molecules
would be aspects that could be studied.

Further practical applications of the Fluctuation Theorem (FT)
are considered in this study, as negative and positive contributions
to the viscosity are also a feature of the FT treatment. Approximate
analytic expressions for the relative number of positive to negative
block average shear stresses are derived assuming a shifted Gaus-
sian PDF in the FT approach. Some of these are shown to agree well
with non-equilibrium molecular dynamics simulations, despite the
fact that the PDFs exhibit non-negligible departures from a shifted
Gaussian in the cases investigated here. This indicates a cancellation
of certain processes, which may be worth further investigation. A
similar treatment of the positive and negative block average contri-
butions to the viscosity is also shown to reproduce the simulation
data remarkably well.

There is a qualitative difference between the analytic forms of
the PDFs in the viscuit analysis compared to those typically encoun-
tered with the FT. These have near exponential and (typically) Gaus-
sian reference forms, respectively. The viscuit could be viewed to be
a dynamical “event” originating at the molecular level, which occurs
essentially randomly in time (but having a well-defined average
occurrence frequency depending on magnitude). The viscuit might
consequently be expected to exhibit an exponential distribution, at
least over part of its range. Another example of a dynamical event
originating on the molecular scale is the net force on a molecule in
a liquid, which also has been found to have an exponential or near
exponential distribution for some state points.”"””

The Green-Kubo method has become a widely employed tool
in determining the viscosity of practically relevant liquids, for exam-
ple, in tribology.”” These new ways of obtaining the viscosity from
the viscuit reformulation of GK derived here may find use in that
field.

SUPPLEMENTARY MATERIAL

The supplementary material contains the MD simulation deter-
mined time correlation function and time-dependent viscosity data
used to generate Figs. 1 and 2. This is for the R1 state point. In addi-
tion, the simulations that produced the data for Figs. 1, 2, 4, and 5 in
this paper are repeated with MD data generated at the R2 state point,
p=0.8and T = 1.0. The corresponding figures for this state point are
also shown.
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